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We present our solution to the crew-scheduling problem for North
American railroads. (Crew scheduling in North America is very
different from scheduling in Europe, where it has been well
studied.) The crew-scheduling problem is to assign operators to
scheduled trains over a time horizon at minimal cost while honoring
operational and contractual requirements. Currently, decisions
related to crew are made manually. We present our work
developing a network-flow-based crew-optimization model that can
be applied at the tactical, planning, and strategic levels of crew
scheduling. Our network flow model maps the assignment of crews
to trains as the flow of crews on an underlying network, where
different crew types are modeled as different commodities in this
network. We formulate the problem as an integer programming
problem on this network, which allows it to be solved to optimality.
We also develop several highly efficient algorithms using problem

decomposition and relaxation techniques, in which we use the
special structure of the underlying network model to obtain
significant increases in speed. We present very promising
computational results of our algorithms on the data provided by a
major North American railroad. Our network flow model is likely
to form a backbone for a decision-support system for crew

scheduling.

Introduction

This paper concerns the development of new algorithms
for railroad crew scheduling, which is one of the most
important decision problems faced by railroad
management. The crew-scheduling problem (CSP)
consists of assigning crews to trains and creating rosters
for each crew while satisfying a variety of Federal
Railway Administration (FRA) regulations and trade-
union work rules. The objectives are to minimize the
cost of operating trains and to improve the quality of
life for crew. An improved quality of crew life can lead
to more productive employees, less employee turnover,
and safer operations. North American railroads desire
a software product that can help them make dramatic
strides in crew management, but there is no
methodology or software product that meets their
specific needs. Although airline CSPs have been well
studied and well solved, and railroad CSPs for European

and Asian railroads have also been addressed to some
extent, CSPs for North American railroads, because of
various union and regulatory complexities, are unique
and remain unsolved, as we describe. This paper focuses
on developing efficient network flow-optimization
models that can form a backbone for all important
aspects of crew scheduling for North American
railroads: tactical, planning, and strategic. Henceforth
in this paper, unless otherwise specified, we are referring
to the context of North American railroads when we
refer to the CSP.

U.S. freight tonnage is expected to double in volume
over the next 20 years [1]. Railroad executives are
extremely concerned about their ability to attract,
train, and retain sufficient semiskilled labor to staff the
increased number of train starts that will be needed to
support this growth. Railroad companies pay train crew
employees very high salaries (around $70,000 per year
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plus benefits') and still have difficulty attracting a high-
quality work force. Operating a train as an engineer or
managing a train as a conductor is not an easy job. It is
further complicated by the fact that crews are seldom
assigned to trains on the basis of a fixed schedule.
Generally the company calls the next available crew on
the telephone and gives them their assignment two hours
before a train departs. The crew takes the train to an
away location, where they rest at a hotel waiting for an
assignment, and then, when their turn comes up, they
return on the assigned train. Consequently, train crews do
not know from one day to the next, let alone a week or
a month ahead, when they will be working. Train crews
spend inordinate amounts of time on call, waiting for
assignment, and then spend a great deal of time away
from their homes and families. The irregular work style
of railroad crews makes attracting potential employees
to this career more difficult.

Also, railroads are not very profitable, typically earning
less than ten percent return on capital, and thus are
constrained from raising already high wages to attract
more employees. To close the supply-and-demand gap
for train crews, railroads must raise the productivity of
their existing crews and change the historical pattern of
operations to improve employees’ quality of life. Success
on both fronts will be required to ensure that railroads
can continue to grow profitably. Labor cost, the largest
component of a railroad operating expense, accounts for
a large percentage of total revenue. Depending on the size
of its network, each Class I railroad (a Class I railroad, as
defined by the Association of American Railroads, has an
operating revenue exceeding $319.3 million) employs in
the neighborhood of 15,000 to 25,000 locomotive
engineers, conductors, and brakemen [3]. Consequently,
improving the efficiency and effectiveness of train crews
has the potential to dramatically reduce the cost of
transportation. In this paper, we propose a network flow
model and algorithms for assigning crews to trains that
will make a significant impact on on-time performance
and crew utilization and productivity, while also
improving both the quality of life for crew and railroad
safety.

In a large Class I railroad, various divisions have the
task of analyzing train crews. Each group is interested in
a different aspect of crew planning and scheduling. These
perspectives can generally be characterized on the basis of
the planning horizon of the issue at hand. Crew issues
faced by railroads can be broadly classified into three
categories. The models and algorithms proposed in this
paper have applications in all of these areas of decision
making:

'The crew salary information is based on data obtained from [2]. In 2004, the average

annual salary was $63.000, and we extrapolated our figure based on the assumption of
five percent annual raises.
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® Tactical—Decisions that must be made immediately
to support real-time train operations. Tactical
problems have a planning horizon of 24 to 48 hours.

* Planning—Decisions that must be made as a part of
the crew-schedule design process. Typically, railroads
make adjustments to their network operating plan
every month, with significant changes two or three
times a year to account for both long-run and
seasonal changes in traffic patterns.

e Strategic—Decisions that must be made considerably
(i.e., more than a year) in advance of implementation
to ensure that sufficient lead time is available to
properly prepare and implement a new business
practice.

Crew scheduling is one of the important mathematical
problems in the rich set of planning and scheduling
problems that can be modeled and solved using
mathematical optimization techniques [4-6]. Crew
scheduling is a well-known problem in operations
research and has been historically associated with airlines
and mass transit companies. Several papers on crew-
scheduling management have appeared in the past
literature; most notable among these are Wren [7],
Bodin et al. [8], Carraresi and Gallo [9], Wise [10], and
Desrosiers et al. [11]. These papers explore a set-covering-
based approach to solve the CSP. Crew scheduling is
conventionally divided into two stages: crew pairing and
crew rostering. A crew pairing is a sequence of connected
segments that start and end at the same crew base and
satisfy all legal constraints. The objective is to find the
minimum cost set of crew pairings so that each flight or
train segment is covered. The objective of crew rostering is
to assign individual crew members to trips or sequences of
crew pairings. This pairing-and-rostering approach uses
a set-covering formulation and is solved using a branch-
and-bound framework in which the linear programming
relaxations at each node in the branch-and-bound tree
are solved by using column generation. This type of
algorithm is also popularly called branch-and-price.

The pairing-and-rostering approach has gained wide
acceptance and application in the airline industry. In a
recent survey paper, Gopalakrishnan and Johnson [12]
discuss the state of the art in solution methodologies for
the airline crew pairing-and-rostering problem. There
have also been some applications of this approach in the
railroad industry. Caprara et al. [13], Ernst et al. [14],
and Freling et al. [15] describe the application of this
approach to railroad crew management. Caprara et al.
describe the solution techniques adopted at an Italian
railroad company. They consider several business rules
that are specific to European railroads and develop a
heuristic algorithm to generate rosters. Ernst et al.
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consider a set of constraints called workload constraints,
which imply that, on average, at each depot, each crew
should work within acceptable time limits. While solving
the problem, they relax the lower bound constraints.
These constraints do not apply to the North American
crew-scheduling problem. Freling et al. develop a
decision-support system for airline and railroad crew
planning using a branch-and-price-solution approach to
solve the integrated problem of pairing and rostering.
They show that the integrated approach provides
significant benefits over the sequential approach of
solving the pairing problem and then the rostering
problem. Barnhart et al. [16, 17] also describe
applications of the pairing-and-rostering approach.

Other research in the area of railroad crew scheduling
that uses a different approach is that of Chu and Chan
[18] and Walker et al. [19]. Chu and Chan consider the
problem of crew scheduling for Light Rail Transit in
Hong Kong. They decompose the problem into two
stages: The first one partitions driving blocks into pieces,
and the second one combines the pieces into runs. With
their added localized optimization heuristics, they were
able to solve the problem in less than half an hour of
computation time. However, their approach could not
model the problem completely, and the solution could
only be used as a guideline to generate crew schedules.
Walker et al. develop an integer-programming-based
method for simultaneous disruption recovery of train
timetable and crew roster in real time in the context of
New Zealand railroads. The crew rules that they consider
are relatively simplistic and can be expressed in the form
of integer programming constraints, and they solve the
problem using a column-and-constraint-generation
algorithm.

While there have been several papers devoted to the
study of railroad CSPs in Europe, Asia, and Australia,
North American railroad problems are yet to be
addressed satisfactorily. The only application of
optimization methods to North American railroad crew
scheduling is that of Gorman and Sarrafzadeh [20]. They
studied crew balancing in the context of a major North
American railroad, the Burlington Northern Santa Fe
Railway, and developed a dynamic programming
approach to solve the problem. The major shortcoming of
their research is that they did not consider the possibility
of different crew types, each governed by a different set of
rules. Another drawback is that their approach could
handle only a particular crew district configuration
(single-ended crew district). While most crew districts in
North America are single-ended, there are several that are
double-ended or even more complex. The multicommodity
network flow approach described in this paper models all
of the rules considered by Gorman and Sarrafzadeh and
also handles the case in which different crew pools have
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different sets of rules. It is also applicable to all of

the crew district configurations encountered in North
America. These configurations are described in the next
section.

From our review of the literature, we see that crew
pairing-and-rostering approaches that use column
generation have been the predominantly successful
method for solving CSPs. However, this approach cannot
be used for North American railroads for the following
two reasons:

1. The rail networks of all Class I North American
railroads are each divided into several crew districts.
As a train follows its route, it goes from one crew
district to another, picking up and dropping off crew
at crew change terminals. Almost all crew districts
consist of two or three terminals. Hence, a pairing-
and-rostering approach is needlessly complex and
is not required, as most pairings would consist of
two trains, an outbound train from home to away
and an inbound train from away to home. Also,
rail networks typically consist of 200 to 300 crew
districts, and the emphasis is on an approach that
is simple and fast; column-generation techniques,
which are computationally very intensive, are not
appropriate.

2. The FRA regulations governing North American
railroads are extremely complex. The most
complicated of these rules is the first-in-first-out
(FIFO) requirement. The FIFO constraint requires
that crews should be called on duty in the order in
which they become qualified for assignment at a
location. None of the previously published solutions
can handle a constraint of this kind. While this
constraint is easy to state, explicitly modeling it
makes the problem computationally intractable. The
success of all approaches using column-generation or
branch-and-price algorithms depends on the ease of
solving the subproblem. The addition of the FIFO-
side constraint to the problem would spoil the special
structure of the subproblem and greatly increase the
computation time. Because our model must be fast
enough to be used in a real-time environment, this
approach is once again not suitable.

To summarize, while there has been significant work
in the area of crew scheduling for European, Asian, and
Australian railroads as well as in the area of airline crew
scheduling, there is no modeling approach that is flexible
enough to tackle crew-scheduling problems faced by
North American railroads. Our approach is a novel
contribution to the application of innovative
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optimization techniques to solve real-world business
problems.

Network flow models have found successful
application in a large number of diverse fields, including
applied mathematics, computer science, engineering,
management, and operations research [21]. In this paper,
we model the CSP as a multicommodity network flow
problem on an underlying space-time network. In this
model, crew pools (sets of crews governed by the same
business rules in a crew district) represent commodities,
and the flow of individual crew members represents their
assignments. The space-time network is constructed in
such a way that the flow of crew members automatically
satisfies all FRA regulations and trade-union rules other
than the FIFO requirement. We formulate the CSP as an
integer programming formulation (IPF) on a space-time
network in which FIFO constraints are modeled as side
constraints to the multicommodity flow problem. We
show that solving the IPF using the standard branch-and-
bound methodology is computationally intractable. On
the other hand, the same problem with relaxed FIFO
constraints can be solved very efficiently. We call the CSP
with relaxed FIFO constraints the relaxed problem, and a
solution to this problem provides a lower bound to the
optimal solution of the CSP. We develop the successive
constraint generation (SCQG) algorithm, which starts with
the solution of the relaxed problem and then iteratively
adds constraints to remove FIFO violations. We also
develop the quadratic cost perturbation (QCP) algorithm,
which perturbs arc costs in the space-time network to
penalize FIFO violations, and we prove that this
approach guarantees FIFO compliance. We also show
that the QCP approach produces optimal solutions in
most cases and a gap of less than 0.2 percent for a few
cases, with running times of the order of minutes.

Our major research contributions in this paper are
the following:

* We develop a space-time network construction
algorithm so that the flow of crews on this network
automatically satisfies all FRA regulations and trade-
union rules other than the FIFO requirement. The
network-construction procedure is flexible enough to
handle several combinations of rules and regulations
and also various different configurations for different
crew districts. It is also flexible enough to handle costs
that are nonlinear functions of arc durations.

¢ We formulate the CSP as an integer programming
problem on the space-time network, enforcing the
FIFO requirements by adding side constraints.

We prove the one-to-one correspondence between
solutions to this integer program and solutions to
the CSP.
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* We show that the FIFO requirement, if handled by
the integer programming approach, complicates
the structure of the problem and renders it
computationally intractable.

* We develop SCG, an exact algorithm that first solves
the relaxed version of the integer program (without
FIFO constraints) and then iteratively adds
constraints in order to eliminate FIFO infeasibilities.

* We develop an approach based on a QCP that
perturbs the cost of arcs in the space-time network
in such a way as to penalize violations of the
FIFO constraints.

* We prove that this method guarantees FIFO
compliance for the problem that we study, and we
also show that it produces the optimal solution
in most cases.

* We present extensive computational results and case
studies of our algorithms on real-world data.

The outline for the rest of the paper is as follows. In
the next section, we give a complete description of the
problem, focusing on the terminology used, governing
rules and regulations, inputs, and the nature of
constraints and the objective function. We then describe
the mathematical modeling approach, which includes
construction of the space-time network and the IPF,
followed by a description of the solution approaches we
have developed to efficiently solve the problem. We then
present some of the practical applications of the model as
well as computational results comparing the performance
of all of our algorithms. We also present the results of a
case study done on a representative scenario. The final
section presents our concluding remarks.

In this section, we provide an overview of CSPs faced
by North American railroads. We first describe some

of the essential terminology needed to understand the
problem. We then review some of the typical regulations
that govern crew management. Next, we list the set of
inputs required to properly define and formulate the CSP,
and finally we briefly describe the nature of constraints
and the objective function.

Terminology

Crew district—The rail network is divided into crew
districts that constitute a subset of terminals (nodes).
Each crew district is typically a geographic corridor over
which trains can travel with one crew. A typical railroad
network for a major railroad in the U.S. may be divided
into as many as 200 to 300 crew districts. As a train
follows its route, it goes from one crew district to another,
picking up and dropping off crew at crew change
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terminals. In contrast to the airline industry, in which
certain crews have the flexibility to operate over a large
territorial domain, crews in the North American railroad
industry are qualified to operate only in certain specific
geographic territories. The physics of operating a train
depends on the track geometry, which is defined by

the hills and curves in the route and by signaling and
interlocking systems that control the movement of trains.
A crew must be intimately familiar with all aspects of

a route in order to operate a train safely on that route.
Consequently, most crews are qualified to operate on only
a limited number of routes.

Crew pools—Within a crew district, there are several
types of crews, called crew pools, which may be governed
by different trade-union rules and regulations. For
example, a crew pool may have preference over the trains
operated in a prespecified time window. Similarly, a crew
pool consisting of senior crew personnel is assigned only
to predesignated trains so that crews in that pool know
their working hours ahead of time. The multiple crew
pools within each district, with different constraints,
make CSPs complex and difficult to model
mathematically.

Home and away terminals—The terminals where crews
from a crew pool change trains are designated either as
home terminals or away terminals. The railroad incurs
no lodging cost when a crew is at its home terminal.
However, the railroad has to make arrangements for crew
accommodation at their away terminals. Different crew
districts have different combinations of home and away
terminals. A crew district with one home terminal and
one away terminal is called a single-ended crew district. In
such crew districts, a crew typically operates a train from
its home location to an away location, rests in a hotel for
at least eight hours, operates another train back to its
home terminal, rests for ten to twelve hours, and repeats
this cycle. The other type of crew district is a double-ended
crew district, in which more than one terminal is a home
terminal for different crew pools. Some of the other crew-
district configurations are crew districts with one home
terminal and several away terminals and crew districts
with several home terminals and corresponding sets of
away terminals.

Crew detention—Once a crew reaches its away terminal
and rests for the prescribed number of hours, the crew
is ready to head back to its home terminal. However,
if there is no train, the crew may have to wait longer.
According to the trade-union rules, once a crew is at the
away terminal for more than a prespecified number of
hours (generally 16 hours), the crew earns wages (called
detention costs) without being on duty. For example, if
a crew is waiting for assignment at the away terminal for
18 hours, it is paid detention charges for two hours.
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Crew deadheading—This term refers to the
repositioning of crew between terminals. At the away
terminal, there is sometimes no return train projected for
some time, or there is a shortage of crews at another
terminal. Thus, instead of waiting for train assignment at
its current terminal, the crew can take a taxicab or a train
(as passengers) and deadhead to the home terminal.
Similarly, the crew may also deadhead from a home
terminal to an away terminal in order to rebalance and
better match the train demand patterns and avoid train
delays. Crew deadheading is expensive; the crew is
considered to be on duty while deadheading and thus
earns wages, and the railroad may also incur taxi
expenses. Each year, a major freight railroad may
spend tens of millions of dollars on crew deadheading.

On-duty and tie-up time—Whenever a crew is assigned
to a train, it performs some tasks to prepare the train for
departure; hence, crews are called on duty before train
departure time. The time at which the crew must report
for duty is called the on-duty time. Similarly, a crew
performs some tasks after the arrival of the train at its
destination, and thus crews are released from duty after
the train arrival. The time at which the crew is released
from duty is called tie-up time. We refer to the duty
duration before train departure as duty-before-departure
and the duty duration after train arrival as duty-after-
arrival. Hence, the total duty period of a crew assigned
to a train is the sum of the duty-before-departure, the
duty-after-arrival, and the travel time of the train.

Duty period—In most cases, the duty period of a crew
assigned to a train is the total duration between the on-
duty time and the tie-up time. In some cases, when a crew
rests for a very short time at an away location before
being assigned to a train, the rest time and the duration of
the second train may also be included in the duty period
of the crew. (The calculation of the duty period is
described in more detail in the next section.)

Dead crews—By federal law, a train crew can be on
duty for a maximum of 12 consecutive hours, at which
time the crew must cease all work, a state we refer
to as dead, or dog-lawed. Dead crews are a frequent
consequence of such events as delayed trains, congestion,
and mechanical breakdowns. In such cases, crew
dispatchers must send a relief crew by taxi or another
train so that the dead crew can be relieved. The dead crew
must then get sufficient rest before becoming available
to operate another train.

Train delays—When a train reaches a crew change
location and there is no available crew qualified to
operate this train, the train must be delayed. Each train
delay disrupts the operating plan and causes further
delays due to the propagating network effect. Train
delays due to crew unavailability are quite common
among railroads. These delays are very expensive (some
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estimate $1,000 per hour) and can be reduced significantly
through better crew scheduling and train scheduling.

Regulatory and contractual requirements
Assignment of crews to trains is governed by a variety of
FRA regulations and trade-union rules. These regulations
range from the simple to the complex. The regulations
also vary from district to district and from crew pool to
crew pool. We list below some examples of these kinds of
constraints and their typical parameter values:

* The duty period of a crew cannot exceed 12 hours.
The duty period of a crew on a train is usually
calculated as the time interval between the on-duty
time and tie-up time of the train.

* Whenever a crew is released from duty at the home
terminal or has been deadheaded to the home
terminal, they can resume duty only after 12 hours
(ten hours’ rest followed by a two-hour call period) if
the duty period is greater than ten hours, and after ten
hours (eight hours’ rest followed by a two-hour call
period) if the duty period is less than or equal to ten
hours.

* Whenever a crew is released from duty at the away
terminal, they must go for a minimum eight hours’
rest, except under the following circumstances:

e If the total time period corresponding to the last
travel time from the home terminal followed by a
rest time of less than four hours plus travel time
of the next assignment back home is shorter than
12 hours (in this case, duty period = travel time on
inbound train + rest time at away location + travel
time on outbound train).

¢ [f the total time corresponding to the last travel
time from the home terminal plus travel time of the
next assignment back home is less than 12 hours
when the rest time between the assignments is more
than four hours (in this case, duty period = travel
time on inbound train + travel time on outbound
train).

¢ Crews belonging to certain pools must be assigned to
trains in a FIFO order.

* A train can be operated only by crews belonging to
prespecified pools.

e Every train must be operated by a single crew.

e Crews are guaranteed a certain minimum pay per
month regardless of whether or not they work.

Figure 1 gives an example of the kind of decision
process that must be followed by crew planners. Since the
regulations for crew assignment can vary from district to
district and crew pool to crew pool, it is a mathematical
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challenge to build a unified model to formulate and solve
this problem. This partly explains why these problems
remain unsolved and no commercial optimization
product has yet been deployed at railroads. Another
reason why there has been limited operations research
analysis of complex rail problems could be that the rail
industry in the U.S. has been consolidated into only four
major players, which means that there are not many
customers for such a solution. Also, because of low
margins in the railroad industry, investment in research
funding is viewed as a luxury, despite a potentially high
return on investment in automated decision-support
systems.

Problem inputs
Here we describe the inputs to the mathematical
formulation of the CSP.

® Train schedule—This schedule provides information
about the departure time, arrival time, on-duty time,
tie-up time, departure location, and arrival location
for every train in each crew district through which it
passes. We do not consider stochasticity in the train
schedule, and we assume that train delays are due
only to the unavailability of crew and not to train
cancellations or other disruptions.

* Crew pool attributes—This includes attributes of
various crew types, including their home locations,
away locations, minimum rest time, and train
preferences.

* Crew initial position—This provides the position of
crew at the beginning of the planning horizon. It
includes information about the terminal at which
a crew is released from duty, the time of release,
the number of hours of duty done in the previous
assignment, and the crew pool to which the crew
belongs.

* Train-pool preferences—These preferences, if any,
are information about the set of trains that can be
operated by a crew pool.

* Away-terminal attributes—This information includes
the rest rules and detention rules for each crew pool
at each away terminal.

* Deadhead attributes—This is the time taken to travel
by taxi between two terminals in a crew district.

e Cost parameters—These parameters are used to set
up the objective function for the CSP. They consist
of crew wage per hour, deadhead cost per hour,
detention cost per hour, and train delay cost per hour.

Constraints and objective function

The CSP involves making decisions regarding the
assignment of crews to trains, deadheading of crews by
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Select crew from pool ‘ No

Crew available with
eight hours’ rest?

Crew available
with at least four hours’ rest and
= 12 — x duty?

Crew available
with = 12 — x hours since last
assigned?

Yes

Assign

Delay train

| terminal

Yes Select crew from pool

!

Does duty start
between 6:00 a.m. and
4:00 p.m.?

Crew available in
carded pool with 12 hours’

rest? Yes

Crew available in Assign to
regular pool with 12 hours’ carded pool
rest? Ve

Assign to
regular pool

Crew available in

extraboard? Yes

Assign to
extraboard

Delay train

Example of a crew-assignment decision tree. (Extraboard: an emergency supply of crew that can be assigned if required.)

taxi, and train delays. The constraints can be categorized
into two groups: operational constraints and contractual
requirements. The operational constraints ensure that
every train gets a qualified crew to operate it and prevents
a crew from being assigned to more than one train at the
same time. These constraints also include the assignment
of certain crew pools to prespecified trains. The
assignment of crews to trains must, in addition, satisfy the
contractual requirements described above in the section
on regulatory and contractual requirements. In our
mathematical model, the operational constraints of the
model are handled by the integer multicommodity flow
formulation, and the contractual restrictions are honored
in the network construction phase, as described in the
next section. The objective function of the CSP is to
minimize the total cost of crew wages, deadheading,
crew detentions, and train delays.

In this section, we present our mathematical modeling
approach to solve the CSP. We first describe the
construction of the space-time network, which is central
to all of our solution methodologies. In the second part
of this section, we formulate the CSP as an integer
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multicommodity flow problem on this network, establish
correspondence between the mathematical formulation
and the CSP, and discuss the size of the problem and
inherent computational complexities.

Space-time network
The CSP is formulated as an integer multicommodity
flow problem with side constraints on a space-time
network. We decompose the CSP for each crew district
and construct the space-time network for a crew district.
In the network, each node corresponds to a crew event
and has two defining attributes: location and time. The
events that we model while we construct the space-time
network for the CSP are departure of trains, arrival of
trains, departure of deadheads, arrival of deadheads,
supply of crew, and termination of crew duty to mark
the end of the planning horizon. All of the arcs in the
network facilitate the flow of crews over time and space.
Figure 2 presents an example of the space-time network in
a crew district. For the sake of clarity, this network
represents only a subset of all of the arcs.

For each crew, we create a supply node whose time
corresponds to the time at which this crew is available
for assignment and whose location corresponds to
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Space-time network for a single-ended district with a single crew
type.

the terminal from which the crew is released for duty.
Each supply node is assigned a supply of one unit and
corresponds to a crew member. We also create a common
sink node for all crews at the end of the planning horizon.
This sink has no location attribute and has the time
attribute equal to the end of the planning horizon. The
sink node has a demand equal to the total number of crew
supplied. The supply and sink nodes ensure that all of the
crews that flow into the system at the beginning of the
planning horizon are accounted for and flow out of

the system at the end of the planning horizon.
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For each train / passing through a crew district, we
create a departure node /' at the first departing station of
the train in the crew district and an arrival node /” at the
last arriving station of the train in the crew district. Each
arrival or departure node has two attributes: place and
time—for example, place (I') = departure station (I) and
time (I") = on-duty time (I); and similarly, place (I") =
arrival station (1) and time (1) = tie-up time (I).

In the network, for each train / we create a train arc
(7, ") connecting the departure node and arrival node.
We create deadhead arcs to model the travel of crew
by taxi. A deadhead arc is constructed between a train-
arrival or crew-supply node at a location and a train-
departure node at another location. All of the deadhead
arcs that satisfy the contractual rules and regulations are
created. We construct rest arcs to model the resting of a
crew at a location. A rest arc is constructed between a
train-arrival node or a crew-supply node at a location and
a train-departure node at the same location. Rest arcs are
created in conformance with the contractual rules and
regulations. All rest arcs that satisfy the contractual rules
and regulations are constructed. Since the contractual
regulations are often crew-pool-specific, deadhead arcs
and rest arcs are created specific to a crew pool. This
implies that only crew belonging to a particular crew pool
can flow on a particular rest arc or a deadhead arc. For
example, suppose that a supply node corresponds to a
crew belonging to crew pool A; then all of the arcs that
emanate from this node can carry only crew belonging
to crew pool A.

Finally, we create demand arcs from all train-arrival
nodes and crew-supply nodes to the sink node. Each
arc has an associated cost equivalent to the crew wages,
deadhead costs, or detention costs, as the case might be.
Also in the network, the time at the tail of an arc is always
less than the time at the head of an arc, which ensures the
forward flow of commodities on the time scale. It can be
noted that all contractual requirements other than the
FIFO constraint are easily handled in the network
construction.

The space-time network models the flow of crews while
honoring all of the contractual constraints except for the
FIFO rule. However, it does not model the case in which
qualified crews are not available for assignment to a train,
thus causing a train delay. Therefore, we next construct
additional arcs incorporating train delays. At a location,
we create rest arcs and deadhead arcs that do not honor
the rest regulations, and we penalize them to ensure that
flows on these arcs occur only when qualified crews are
not available for assignment. The flows on these arcs
denote that trains will be delayed until crews become
qualified for train operation. However, because the
delay of a train may have a propagating effect on
the availability of crews in subsequent assignments,
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we assume here that the crew assigned to a delayed train
has sufficient slack in the rest time at the train-arrival
node to qualify it for subsequent assignments. Thus, the
additional rest arcs and deadhead arcs model the train
delays, with the assumption that the effect of train delays
is only local.

To summarize, this section describes the construction
of the space-time network for the CSP. Honoring
contractual regulations while constructing the network
significantly reduces the number of constraints in the
integer program. We next present the multicommodity
IPF of the CSP.

Integer programming formulation (IPF)

We formulate the CSP as an integer multicommodity flow
problem on the space-time network described in the
previous section. In our formulation, each crew pool
represents a commodity. Crews enter the system at
crew-supply nodes, and every supply node corresponds
to a supply of one crew. The crew takes a sequence of
connected train, rest, and deadhead arcs before finally
reaching the sink. While flow of more than one crew type
can take place on a train arc, rest and deadhead arcs can
have flow of only one type, because the business rules for
rest and deadhead are crew-pool-specific. We next present

the IPF of the problem; the notation is shown in Table 1.

The decision variables are as follows:

xj : flow of crew pool ¢ € C on each train arc / € L,
x4 : flow on deadhead arc d € D,

and
x, : flow on rest arc r € R.

The objective function is

. c C
min E E c,xl—l— E cdxd—|— E CX, .

leL ceC deD rer

The constraints are the following:

Zx;?:L forall/ € L, (1)
ceC
» x,=1, forallie N, (2)

aen,

x;‘: Z x,, forallle L, cecC, 4)
actail(l),

x;'= Z x,, foralllc L, ceC, (5)
aehead(l):r
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Notation for integer programming formulation.

N Set of nodes in the space-time network

L Set of train arcs in the network, indexed by /
Set of deadhead arcs in the network, indexed
by d

R Set of rest arcs in the network, indexed by r

Set of arcs in the space-time network, indexed
by a

G(N, A) Space-time network

N Set of crew-supply nodes
N, Sink node
C Set of crew pools in the system, indexed by ¢

i Set of outgoing arcs at node i
i Set of incoming arcs at node i

i Set of outgoing arcs specific to crew pool ¢
at node i

i Set of incoming arcs specific to crew pool ¢
at node i

A, Set of arcs on which flow will violate FIFO
constraint if there is flow on rest arc r

f Total number of available crew

M A very large number

cf Cost of crew wages for crew pool ¢ € C on

train arc / € L

Caq Cost of deadhead arc d € D

[ Cost of rest arc r € R

tail(l) Node from which arc / originates

head(l) Node at which arc / terminates
> x,—M(1—-x,)<0, forallre R, (6)
r’eAr
x; € {0, 1} andinteger, forall/e€ L, ¢ € C, (7)
x, € {0, 1} andinteger, foralld € D, (8)
x, € {0, 1} and integer, forallr € R. 9)

Constraint (1), the train cover constraint, ensures that
every train is assigned a qualified crew to operate it.
Constraint (2) ensures flow balance at a crew-supply node,
while Constraint (3) ensures flow balance at the sink node.
Constraints (4) and (5) ensure flow balance at train-
departure and train-arrival nodes, respectively. The flow
balance constraints at a train-arrival node ensure that the
crew assigned to a train is subsequently assigned to a rest
arc, a deadhead arc, or a sink arc that emanates from the
arrival node of the train. Flow balance constraints at a
train-departure node ensure that the crew assigned to the
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The FIFO rule: (a) Valid assignment; (b) invalid assignment.

train has been assigned to a rest arc, a deadhead arc, or
a supply arc that terminates at the departure node of the
train. Constraint (6) ensures that the crew assignment
honors the FIFO constraint. Constraints (7), (8), and (9)
specify that all of the decision variables in the model are
binary. The objective function is constructed to minimize
the total cost of crew wages, deadheading, detentions, and
train delays. Note that the detention and delay costs are
taken into account while calculating the cost of rest arcs.
Now we show how Constraint (6) enforces FIFO
requirements. Figure 3 illustrates crew assignments in two
situations: one in which FIFO is satisfied and the other in
which FIFO is violated. In case (a), the crew on the train
traveling on arc (1-3) arrives at terminal 2 first and also
leaves first, and hence FIFO is satisfied. In case (b), FIFO
is violated because the crew on the train traveling on arc
(1-3) enters terminal 2 first but leaves after the other
crew. Therefore, in the solution, if there is flow on
arc (4, 5), there should not be any flow on arc (3, 6).
Let us consider the following cases for Constraint (6)
with respect to flow on arc (4, 5):

* Case 1: xu 5 = 1: The constraint becomes

doxy<0=x,=0Vred,;.

r GA(“)

This ensures that if there is flow on rest arc (4, 5),
there cannot be flow on any arc belonging to the
prohibited set A4 s), and hence there will not be any
flow on arc (3, 6).

* Case 2: x5 = 0: The constraint becomes

Z xrrSMVr,EA

r'ed

45)°

(45)

which essentially means that the constraint is relaxed.
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Let us now estimate the size of a typical instance of
the CSP in a crew district. Most crew districts have two
terminals, and a typical train schedule has approximately
500 trains running over the course of several weeks in a
crew district. Each crew district could have two to four
crew types and approximately 50 crews. Therefore,
the space-time network could have approximately
50 4+ 2 X 500 = 1,050 nodes. The number of arcs in the
network could be very large if we construct all feasible
rest arcs and deadhead arcs. To restrict the number
of arcs constructed, we place a limit on the maximum
duration of rest arcs. For example, if the train schedule
stretches over a period of ten days, it is unrealistic for
a crew to rest for more than three days. In this case,
we can restrict the maximum rest arc duration to three
days. After the space-time network of a typical problem
is pruned on the basis of this rule, the number of
deadhead arcs is typically approximately 25,000, and
the number of rest arcs is approximately 100,000.

Because the number of rest arcs for a typical problem is
of the order of 100,000 and each rest arc has one FIFO
constraint, the number of FIFO constraints in the model
would be 100,000. With the number of FIFO constraints
that large, we would be losing one of the main advantages
of the network flow formulation—that by honoring all
business rules in the network construction phase, we keep
the number of constraints small. Our computational
results also confirm that handling FIFO constraints
explicitly in this manner makes the problem
computationally intractable.

Let us now consider the IPF in which we relax
Constraint (6), the FIFO constraint; we call this problem
the relaxed problem. This problem typically has more
than 100,000 variables and several thousand constraints,
which makes it a large optimization problem in itself.
Integer programs of this size are usually very difficult to
solve to optimality or near-optimality in a reasonable
amount of time, but we were able to solve this problem
to optimality in a matter of minutes using the branch-
and-bound-based MIP solver ILOG CPLEX** 9.0. We
believe that this is due to the special structure of the
relaxed problem, which helps shorten the solution time
significantly. All variables in the formulation are binary
variables, and this leads to the MIP engine exploring
fewer branches on the branch-and-bound tree compared
with the case in which variables are integer variables.
Whenever the engine branches on a noninteger variable,
the value is set to 0 on one branch and to 1 on the other.
Hence, at each level of the tree, the value of one variable
is pre-fixed and can be eliminated from the model.
Consequently, it is very likely that a feasible integral
solution is obtained early in the process, and nodes in the
branch-and-bound tree are fathomed much earlier than
while solving a general integer program.
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Another benefit of the network-flow-based approach is
that even though we do not explicitly model each crew,
the space-time network and the constraints are such that
we can easily extract from the final solution of the model
the set of trains a crew takes over the entire planning
horizon. To do this, we start at the supply node of a
particular crew and identify a path from this supply
node to the sink node that has positive flow on it.

Note that because of the commodity-specific flow
balance constraints at each node, every crew has

a unique path with positive flow from its supply

node to the sink node.

Theorem 1

There is a one-to-one correspondence between a feasible flow
on the space-time network satisfying Constraints (1)—(9)
and a feasible solution to the CSP.

Proof

Consider a feasible flow on the space-time network. We
have seen how the path of each crew can be extracted
from the solution using a simple run-through procedure.
Because of the network construction methodology, the
extracted path of each crew has to satisfy all business
and contractual rules. Hence, we see that every feasible
solution on the space-time network corresponds to a
feasible crew schedule. We can also show that the reverse
transformation from a feasible crew schedule to a feasible
flow on the space-time network is possible, thus
establishing the result.

Thus, we have shown the one-to-one correspondence
between feasible solutions to the IPF and feasible
solutions to the CSP, and have therefore established the
validity of our integer programming approach. In the
next section, we describe various algorithms to solve the
CSP which are centered on handling FIFO constraints in
a computationally efficient manner.

In this section we present our approaches to solve the
CSP. Since the FIFO constraints are the ones that
complicate the nature of the IPF, our solution approaches
are centered around effective ways to handle this
constraint. We develop a constraint-generation-based
exact approach and a cost-perturbation-based heuristic
approach to solve the problem. While the constraint-
generation-based approach performs significantly better
than the direct approach to solve the IPF, its application
in a real-time environment may be restricted by long
running times. On the other hand, the cost-perturbation
scheme produces good-quality FIFO-compliant solutions
very efficiently and hence is better suited for the real-time
environment.
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Successive constraint generation (SCG) algorithm
The SCG algorithm works by iteratively pruning out crew
assignments that violate the FIFO constraints from
the current solution of a more relaxed problem. We
considered two methods for implementing constraint
generation: 1) a branch-and-bound algorithm in which
constraints are added to the linear programming (LP)
relaxation that is solved at each node of the branch-and-
bound tree until FIFO violations are eliminated (branch-
and-cut); and 2) an iterative method in which we run
a branch-and-bound algorithm on the relaxed problem,
solve it to optimality, and then add constraints to remove
infeasibilities. This is followed by another run of
branch-and-bound on the more constrained problem,
and so on.

As a result of our deliberation, we chose to implement
the second method over the first, for the following
reasons:

* Because the LP relaxation of the relaxed problem can
have fractional flows on the rest arcs, the number of
rest arcs with positive flow in the LP relaxation will be
greater than the number of rest arcs with positive flow
in an integral version. Also, the greater the number of
rest arcs with positive flow, the greater the possibility
of FIFO violations. Hence, more FIFO constraints
are likely to be added to a non-integral solution. SCG
that is implemented using the second method allows
us to stop at any point when we feel that the level
of FIFO infeasibility is reasonably small. We are
able to do that because, after the addition of a set of
constraints, we obtain an integral solution at regular
intervals of less than a minute. On the other hand,
in the branch-and-cut method, the addition of
constraints at a node on the branch-and-bound
tree would only guarantee FIFO compliance of
the LP relaxation, which is not an integral solution
in general. Hence, we do not have the option to
prematurely terminate until we reach a point at which
we obtain at least one integral solution to the LP
relaxation. Consequently, we do not have control
over the quality of intermediate solutions in terms
of the number of FIFO violations.

* We show in our computational results that QCP does
an excellent job of enforcing FIFO constraints for the
current set of business rules, but we also mention that
QCP does not guarantee FIFO compliance when
there is priority in assigning crews to trains. We
believe that the real benefit of SCG could come
from being used in conjunction with QCP. In this
approach, we would first apply QCP to obtain a
solution with very few FIFO violations. SCG would
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then be applied on this solution to prune out the small
number of remaining infeasibilities. A branch-and-cut
approach in this context would be unnecessarily
complicated because, when a small number of
constraints are added, the problem can be reoptimized
within a few seconds using SCG.

The SCG algorithm starts with the optimal solution of
the relaxed problem, which may have several violations of
the FIFO rule. In each iteration, the algorithm scans the
rest arcs in the current solution that have positive flow,
and for each such rest arc assignment that violates FIFO
constraints, it adds the corresponding FIFO constraints.
We then re-solve the problem and recheck for FIFO
infeasibilities. This process is repeated until all FIFO
infeasibilities are removed.

The SCG algorithm is as follows:

Step 1: Solve the relaxed problem. If a feasible solution
exists, proceed to Step 2. Otherwise stop,
because the problem is infeasible.

Step 2: Examine all of the rest arcs with positive flow in
the solution of Step 1. Add FIFO constraints
to the integer program on those rest arc
assignments that violate FIFO requirements.

Step 3: If FIFO constraints are added in Step 2,
reoptimize the modified integer program and go
to Step 2. Otherwise stop, because an optimal
solution has been produced.

Note that the final solution of SCG satisfies all of the

constraints of the IPF, and the constraints of SCG are
a subset of the constraints of IPF. Hence, the SCG
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algorithm is an exact algorithm guaranteeing an optimal
solution to the original problem. However, in the worst
case, SCG could add all of the FIFO constraints to the
integer program and would thus become an intractable
approach. Fortunately, this seldom happens in practice.
Our computational results show that the number of
constraints added is usually much smaller than the

total number of rest arcs in the network.

While the SCG is an exact algorithm and produces
provably optimal solutions, the running time of this
algorithm can be quite high. In some instances during our
computational experiments, SCG had a running time of
the order of minutes, while in others, it had a running
time of the order of hours. While such running times
are acceptable in the planning environment, they would
restrict the applicability of this algorithm in the real-time
environment. In the next section, we describe a cost-
perturbation-based algorithm that produces very good-
quality FIFO-compliant solutions with running times
comparable to those of the relaxed problem.

Quadratic cost perturbation (QCP) algorithm

In the previous section, we describe an SCG-based
approach to remove the FIFO violations iteratively. In
this section, we present an algorithm that penalizes the
FIFO violations in a solution. We show that this method
guarantees zero FIFO violations in the case in which
there is no priority in assigning crews to trains, and it
serves as a heuristic method for the case in which there
are priority restrictions. Cost perturbation not only
enforces FIFO constraints but also retains the special
network flow structure of the problem, leading to fast
computational times. The basic intuition behind this
approach is that we perturb the costs of arcs while solving
the relaxed problem in such a way as to guarantee FIFO
compliance.

Figure 4 presents our cost-perturbation strategy for the
case in which there is only one crew pool type. Consider
the case in which crews are detained at Terminal 2. Then,
due to the nature of detention costs, the cost of the
assignment made in the FIFO manner [Assignment (b)]
would definitely be less than or equal to the cost of
Assignment (a), and hence the solution to the relaxed
problem would honor FIFO constraints. On the other
hand, suppose that all of the rest arcs had a cost of zero;
then both assignments would have the same cost, and the
relaxed problem would have no cost incentive to choose
Assignment (b) over Assignment (a). Thus, a solution to
the relaxed problem may violate the FIFO constraints.
In order to provide an incentive to the relaxed problem
to choose case (b) over case (a), we perturb the cost
assignments on rest arcs so that the solution of the
relaxed problem has assignments of type (b) instead of

type (a).
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The cost perturbation scheme that we use is a function
of the duration of rest arcs. Suppose that the time
duration between events corresponding to nodes 3 and 4,
4 and 5, and 5 and 6 are o, f3, and y, respectively. Consider
a cost assignment that is proportional to the square of the
duration of rest arcs. The constant of proportionality is
represented by k. Then,

Cost of Assignment (a) = k[duration of arc (3, 6)]2
+ klduration of arc (4, 5)}2
= k(e +f+79) +kf
= k(oc2 + 2/32 + y2 + 20
+2fy + 2ya)
and
Cost of Assignment (b) = k[duration of arc (3, 5)]2
+ klduration of arc (4, 6)]2
= kot )+ k(B +9)°

= k(e’ + 28" + 7" + 208 +2By).

It can be observed that the cost of Assignment (b) is
less than that of Assignment (a). Hence, when the rest
arcs have zero costs, the quadratic cost perturbation
scheme in the relaxed problem will give FIFO-compliant
assignments when there is only one crew pool type. The
observation made here can also be generalized for
multiple crew pools unless there is a priority of crew pools
in assignments to trains. If there is a priority assigned
to crews in train assignments, a crew can have a FIFO-
violated assignment to gain the priority assignments. We
state our observations here as the following theorem.

Theorem 2

QCP applied to the relaxed problem guarantees FIFO-
compliant crew assignments if there is no priority in
assigning crews to the trains.

Proof

In the space-time network, rest arcs may have one of
three costs assigned to them: zero cost, detention cost, or
train delay cost. If, for example, all of the rest arcs in
Figure 4 have zero cost, as shown above, the relaxed
problem chooses the FIFO-compliant assignment
because it is less expensive. If the rest arcs in Figure 4(a)
have detention costs on them, the FIFO assignment
shown in Figure 4(b) has either the same or a lesser level
of detention. Hence, the perturbation scheme will work in
this case as well. A similar argument would also work for
train delay costs because FIFO assignments will always
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have train delays equal to or less than those of non-FIFO
assignments.

Since we do not want to change the cost structure of
the original problem to a large extent, we set the value of
k to a very small value and perturb the cost of each rest
arc by a value that is computed as described above. Our
computational tests (presented below in the section on
comparison of algorithms) show that this method works
very well, and that the solutions produced by QCP are
indeed FIFO-compliant in the case in which there are no
priorities. The solution time of this method is very short
and is comparable to that of the relaxed problem. Note
that in the case in which there are priorities, this approach
can be used to obtain a solution with a small number
of violations, and then the SCG algorithm can be used
to prune out these violations. Another interesting
observation is that for most of the instances tested, this
method produces solutions with objective function values
that are the same as those for the relaxed problems. This
implies that FIFO constraints can be satisfied with little
or no impact on the solution cost. Hence, using this
approach, we are able to obtain an excellent quality of
solutions using much less computational time. Because of
its attractive running times and high solution quality, this
method has the potential to be used in both planning
and real-time environments.

The crew-scheduling model has applications in the
tactical, planning, and strategic environments. In this
section, we elaborate and provide specific examples of
ways in which the model can be used as an effective
tool for decision making.

Tactical crew scheduling

The defining problem in tactical crew scheduling is
determining which crew should be assigned to operate
each train. However, a number of subproblems and issues
must be considered before crews are assigned to trains.
Railroads have around-the-clock crew-calling centers that
are responsible for monitoring the status of each crew and
the status of each train and anticipating when a particular
crew should be called to operate a particular train. A
typical crew-calling center employs 200 to 300 crew callers
who call crews and answer inbound telephone queries
from management and the crews. First, a crew caller
looks at the projected lineup (crew assignment) of
outbound trains at a particular crew-change location.
With a projection of train departure times, say 13:30,
15:00, and 16:00, the crew caller then goes through a
number of checks before assigning a crew to a train;

the checks determine such factors as whether the train
is covered by a designated assigned pool or by FIFO
assignment from the general pool and when the 337
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next qualified crew will be rested and available to operate
this train. The actual rules are very complex, and the
combinations of solutions that must be considered can
overwhelm a person.

Our model has several applications in the tactical
scheduling environment. Some of these applications are
given below:

* Assignment of crews to trains—The output of our
model tells us how to assign crews to trains.

* Recommending which crews to place in hotels and
which crews to deadhead home

When a crew arrives
at an away terminal, the crew callers must decide
whether the crew should deadhead back home or
go to a hotel for rest. The model can be used to
mathematically look ahead and systematically make
the tradeoffs among different cost categories of crew
wages, deadheads, detentions, and rest violations.

* Minimizing the number of trains delayed because of
shortage of crew—Train delays are potentially very
costly because they may lead to the unavailability
of crew to operate another train in the future and
may have a negative domino effect on network-wide
operations. By creating several deadhead arcs while
constructing the space-time network, we ensure that
such a situation is avoided.

* Disruption management—The crew-scheduling model
can be used as a tool to return disrupted operations
to normalcy. Suppose that at some point in time
the operations are disrupted. The current state or
snapshot of the system gives us the location of each
crew and the hours of duty already served. Using this
information and the information about the future
train schedule, the crew-scheduling models can be
used to optimally reassign crew to trains.

Crew planning

The essence of the crew-planning problem for operations
or planning is to determine the number of crews that
should be in each crew pool. It can be noted that since
each position is guaranteed a minimum number of work
hours per month, it is quite costly to overestimate the
number of positions required to staff a pool. Currently,
railroads solve the pool-sizing problem on the basis

of historical precedent and rules-of-thumb, through
negotiation with the union, and by trial and error. The
network flow model can satisfy the need for a structured
approach that captures all of the considerations,
quantifies the various costs, and recommends the

best way to define and staff crew pools. Some of the
applications of the model in the planning environment are
described in the following paragraphs.
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Developing and evaluating crew schedules—The crew-
scheduling model can be used to compare the current
crew schedule with the model-generated schedule on the
basis of several criteria, such as average rest time at the
home location, average rest time at the away location,
and average deadhead time. By suitably changing the
model cost parameters, we can obtain schedules with
different characteristics. For example, if we want to
minimize detention, we can set the detention cost to
a very large value and run the model.

Varying the size of crew pools—Using the crew-
scheduling model, we can study the impact of varying the
crew pool size on the quality of the solution. For example,
suppose our objective is to minimize the number of crew
used. While formulating the problem, we give large cost
incentives to flow on the sink arcs from crew-supply
nodes to the sink node. This would lead to the model
producing a crew schedule that uses the minimum
number of crew.

Crew strategic analysis

Strategic management involves the development of
policies and plans and the allocation of resources to
implement these plans. The timeframe of strategic
management extends over several months or years.
Strategic crew problems include forecasting future
headcount needs and evaluating major policy changes,
such as negotiating changes to trade-union rules or
changing the number and location of crew change points
on a network. The railroad industry is now experiencing
unprecedented traffic growth. Therefore, it is very
important to be able to quantify the expected impact on
manpower needs as traffic grows, because it takes 18 to 24
months to hire, train, and qualify train crew personnel.
Recently, corporate strategists have been struggling with
the tradeoff between crew costs and train delays. Our
model can be used to quickly calibrate efficient frontiers
for each crew district and determine the number of crews
that minimizes the sum of train delay costs and crew
costs. If railroad management is dissatisfied with that
level of train performance, the cost of train delay can
simply be increased, and the model will request additional
crews so that a new cost-minimizing solution is
obtained.

Some of the applications of the network flow model
in the strategic environment are given in the following
paragraphs.

Determining the number and territory of crew districts—
We can use the crew-scheduling model to reoptimize and
test different crew district configurations. For example,
suppose crew district 1 operates trains between locations
A and B, and crew district 2 operates trains between
locations B and C. Merging all three stations into a single
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Table 2 Comparison of algorithmic performance.

Weeks Crew Relaxed problem Exact IPF SCG ocp
poots Cost Time  FIFO  Cost Time FIFO constraints Cost Time FIFO constraints  Cost Time  FIFO

%) (s) conmstraints ($) () — s — (¥ (s) constraints

violated Added  Violated Added  Violated violated
1 1 130,952 10.8 73 - 3,600 11,062 N/A 132,022 2,015 958 25 130,952 10.9 0
2 1 265284 30.3 148 - 3,600 23,527 N/A 267,067 1,981 1,492 95 265,284 314 0
3 1 399,816 57.2 225 - 3,600 35976  N/A 399,816 1,908 1,657 151 399,816  60.0 0
4 1 531,378 91.8 274 - 3,600 48,797 N/A 532,091 2,326 1,805 226 531,378 974 0
1 2 132,495 17.7 64 - 3,600 17,999  N/A 132,495 347.5 478 0 132,495 17.7 0
2 2 267,130 55.6 118 - 3,600 40,623 N/A 267,316 2,423 1,068 0 267,221 60.9 0
3 2 402,045 112.0 173 - 3,600 63,215 N/A 405227 4858 1,321 25 402,678 125.0 0
4 2 533,694 187.3 226 - 3,600 86,477 N/A 538,039 3,928 1,745 25 534,327 210.7 0

crew district could give us better opportunity to optimize
costs.

Evaluating the effects of changing crew trade-union
rules—The CSP is a complex optimization problem
because of strict trade-union rules related to crew
operation. Changes to any of these rules will likely face
considerable resistance from the labor union. At the same
time, such changes have the potential to affect crew costs
substantially. Using the crew-scheduling model, we can
evaluate the impact of changing the trade-union rules
on the crew cost. For example, suppose we want to know
the impact of changing the mandatory rest time at home
from twelve hours to ten hours. We can run the model
with the parameter setting of ten hours and measure the
change in crew cost.

Forecasting crew requirement—On the basis of the
forecasted train schedule, we can use the model to help
us forecast crew requirements. We first run the model
assuming that a very large number of crews are available.
Because the crew supply is much greater than required,
many crews will flow directly from the crew supply to the
sink node. The total crew supply minus the number of
unused crews will give an idea of the number of crews
required, based on the forecasted train schedule.

In this section, we have seen that the crew-scheduling
model has several real-world applications in the tactical,
planning, and strategic environments. If put into
production, the model has the potential to enable railroad
professionals to improve their day-to-day operations
and to plan effectively to achieve their long-term
organizational goals.

Computational results
In this section, we present computational results of our
algorithms on several problem instances and a case
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study of a representative instance. We implemented our
algorithms in Microsoft Visual Basic** programming
language and tested them on the data provided by a
major Class I railroad. We modeled our integer programs
using ILOG Concert Technology** 2.0 modeling
language and solved them using the CPLEX 9.0 solver.
We conducted all computational tests on a 2.4-GHz Intel
Pentium** 4 processor with 512 MB RAM.

Comparison of algorithms
In this section, we compare the performances of the
relaxed problem, the exact IPF, the SCG algorithm, and
the QCP algorithm in several real-world instances. Our
problem instances consist of train schedules over a period
of one to four weeks. In one instance, the number of crew
pools is 1, making the problem a single-commodity
flow problem. In the other set of instances, the number
of crew pools is 2, and the problem is formulated as a
multicommodity flow problem. For each instance, we
measure the solution cost, the solution time, the number
of FIFO constraints added to the formulation, and the
number of FIFO constraints violated in the solution. It
can be noted that no FIFO constraints are added while
solving the relaxed problem and the QCP. The results
of our computational tests are presented in Table 2.

We have reached the following conclusions from the
results:

* The solutions to the relaxed problem have the highest
number of FIFO violations, but the solution times are
the fastest.

e The IPF has several thousand FIFO constraints.
These constraints make the problem computationally
intractable, and we could not obtain a feasible
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Table 3  Effect of varying crew pool.

Crew available Crew used Deadheads (hr) Detention (hr) Train delay (hr) Solution cost ($) Increase in cost ($)
42 31 38 37.00 8.77 262,838 -
40 30 38 37.00 8.77 262,838 0
38 29 38 37.00 8.77 262,838 0
36 29 40 37.00 7.85 263,340 502
34 29 40 37.00 7.85 263,340 0
32 28 40 37.00 7.85 263,340 0
30 28 41 37.00 7.85 263,697 357
28 28 41 37.00 7.85 263,697 0
26 26 43 30.65 30.38 268,704 5,007
24 24 43 17.50 154.83 295,486 26,782
22 22 44 6.37 417.12 354,610 59,115
20 - - - - Infeasible -

solution for any of the instances in one hour of
computational time.

* The SCG algorithm starts with the solution to the
relaxed problem as the initial solution and
progressively reduces the number of infeasibilities.
However, the amount of computational time taken
by this algorithm is still quite large. We were able to
obtain a FIFO-compliant solution for two instances;
for all other instances, we terminated the algorithm
when the iteration that was running during minute 30
of computational time was complete.

* The QCP algorithm produces FIFO-compliant crew
schedules for all instances. Also, in six instances out
of eight, the objective function values are equal to that
of the relaxed problem. As the relaxed problem
provides a lower bound to the optimal solution, the
QCP algorithm produces the optimal solution in six
instances out of eight, and the optimality gap is less
than 0.2 percent for the other two instances. This
algorithm also has very fast solution times, which are
comparable to that of the relaxed problem.

Thus, we conclude that the QCP algorithm
outperforms the other algorithms in both solution quality
and solution time. It produces optimal or near-optimal
solutions in a few minutes of running time and therefore
has the potential to be used in both the planning and real-
time environments.

Case study

In this section, we conduct a case study to illustrate how
the crew-scheduling model can be used to derive useful
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information and support decision making at a railroad.
We perform the case study on a representative two-week
dataset that has 326 trains, two crew pools, and 48 crews,
and we run the computational tests using the QCP
algorithm. The various aspects of the problem that we
observe in this case study are discussed in the following
sections.

Effect of varying the number of available crews
In this study, we quantify the effect of varying the number
of available crews on the overall solution quality. We
start with a set of 42 available crews and reduce the
number of crews available until the problem becomes
infeasible. Table 3 presents the computational results, and
Figure 5(a) shows the relationship between the number of
available crews and solution cost.

We can make the following observations from this
study:

1. As the number of available crews decreases, the
model attempts to compensate for the lack of crews
by increasing the level of deadheading and train
delays.

2. Initially, reducing the number of available crews has
no adverse effect on the solution cost, but as more
crews are removed, the solution cost rises steeply.
For example, reducing the number of crews available
from 42 to 26 (a reduction of 38 percent) has an
insignificant impact on the solution cost, but
reducing the number of crews from 24 to 22 leads to
the solution cost increasing by more than $59,000 (an
increase of 20 percent).
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Table 4  Effect of varying deadhead cost.

450,000
400,000
350,000

300,000

Cost ($)

250,000
200,000

150,000

Deadhead  Deadheads  Detention Train  Solution
cost/hr (hr) delay cost
($/hr) (hr) %)
0 42 34.55 545 253,079
100 38 37.00 8.77 260,051
200 38 37.00 8.82 266,396
300 37 40.33 9.48 272,733
400 37 40.33 9.57 278918
500 36 40.33 13.13 284,955
600 36 40.33 13.13 290,955
700 36 40.33 13.13 296,955
800 36 40.33 13.13 302,955
900 36 40.33 13.18 308,967
1,000 35 36.80 22.95 314,935
10,000 33 36.80 55.13 813,771

20

265,500

22

24 26 28 30 32 34 36 38 40 42 44
Number of crews

(a)

265,000

264,500

264,000

The objective function in this case study is not a
function of the number of crews used; it is only a function
of total deadhead, detention, and delay. This is why
solutions using different numbers of crews have identical
costs provided that their total deadhead, detention, and
delay are the same.

Effect of varying deadhead cost

In this study, we quantify the effect of varying deadhead
cost on the number of deadheads, total detention hours,
total train delay hours, and overall solution cost. The
default cost of deadheading used by the railroad is $144
per hour. We start with a deadhead cost of $0 per hour
and then progressively increase deadhead cost while

measuring the impact on the solution, as shown in Table 4.

We can make the following observations from this study:

1. As the deadhead cost increases, the number of
deadheads in the solution decreases. However, after a
certain point, there is no significant decrease in the
number of deadheads. For example, even for a very
high deadhead cost of $10,000, the solution has 33
deadheads. From this observation we can conclude
that there is an inherent imbalance in the system that
necessitates deadheading.

2. As the deadhead cost increases, the solution of the
model has fewer deadheads and more train delays.
This behavior of the model provides the insight that
if the deadhead cost increases at some point in time,
the railroad must adapt by allowing far more
flexibility in terms of train delays. Alternatively, the
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Cost ($)

263,500

263,000

262,500 1 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20 22

Minimum rest time (hr)

(b)
500,000

450,000 |
400,000

350,000

Cost ($)

300,000

250,000

1 1 1 1 1 1 1
0 2 4 6 8 101214 16 18 20 22 24 26 28 30 32

200,000

Detention time (hr)

(©

Case study results: Solution cost as a function of (a) number of
crews; (b) minimum rest time at home; (c) detention time.

management can also negotiate with crew unions and
reduce the minimum rest time requirements.

Effect of varying minimum rest time at the home location
In this study, we quantify the effect of varying the

minimum rest time at the home location on the average
rest time at the home location, train delays at the home
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Table 5 Effect of varying minimum rest time at the home
location.

Minimum Average  Train Average  Train  Solution

rest rest delays  rest away delays cost
(hr) at home at home (hr) away %)
(hr) (hr) (hr)
0 10.02 0.00 12.83 8.77 262,838
2 11.60 0.00 12.99 8.77 262,838
4 12.86 0.00 13.12 8.77 262,838
6 14.37 0.00 13.12 8.77 262,838
8 15.16 0.00 13.15 8.77 262,838
10 16.81 0.00 13.31 8.77 262,838
12 18.51 0.00 13.33 8.77 262,838
14 20.48 0.00 13.25 8.77 262,838
16 21.53 0.07 13.09 8.77 262,853
18 23.98 1.23 13.18 9.52 263,294
20 28.33 3.78 13.09 17.40 265,337

Table 6 Effect of varying detention cost.

Deadhead  Detention Deadheads Train Solution

cost/hr (hr) (hr) delay cost

($/hr) (hr) ®
0 305.45 35 1.17 254,840
40 64.57 37 3.32 258,630
80 40.33 37 8.77 260,528
120 37.00 38 8.77 262,098
160 34.55 39 8.77 263,542
200 30.77 39 11.97 264,904
240 23.32 39 18.50 265,849
280 23.32 39 18.50 266,782
320 18.67 39 24.18 267,534
360 11.10 39 35.53 268,167
400 1.93 40 49.23 268,452
500 1.93 40 49.23 268,645
600 1.93 40 49.23 268,838
700 1.93 40 49.23 269,032

location, average rest time at the away location, train
delays at the away location, and the overall solution cost.
The default value of minimum rest time used by the
railroad is 12 hours. We start with a minimum rest

requirement of zero hours and progressively increase the
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Table 7  Effect of varying detention time.

Detention Average rest Detention  Solution cost
time at away location (hr) (%)
(hr) (hr)

0 8.95 1,136.60 460,558
4 8.95 633.18 390,079
8 10.41 331.60 324,478
12 11.12 83.17 280,491
16 13.33 37.00 262,838
20 14.20 3.67 256,561
24 14.78 1.52 255,620
28 15.82 0.00 254,840

value of this parameter while measuring the impact on the
solution, as shown in Table 5 and Figure 5(b).

From this study we observe that the minimum rest time
at home can be increased to 16 hours without a significant
increase in the solution cost. However, any increase
beyond 16 hours leads to a steep increase in the solution
cost. The railroad management can use these inputs to
effectively negotiate rest times with the union. For
example, if the union wants the minimum rest time to be
increased from 12 hours to 14 hours, the management can
use the model to quantify the impact of this change and
negotiate appropriately.

Effect of varying detention cost
The railroad pays detention charges for each hour of crew
rest beyond 16 hours at an away location. In this section,
we quantify the effect of varying the detention cost on the
total detention hours, number of deadheads, total train
delay hours, and overall solution cost, as presented in
Table 6. The default value of detention cost used by the
railroad is $140 per hour.

We make the following observations from this study:

1. As the detention cost per hour increases, the number
of detention hours in the solution decreases.

2. As the detention cost per hour increases, the solution
has a greater number of deadheads and train delays.
This behavior of the model provides the insight that
if the detention cost increases at some point in time,
the railroad must adapt by allowing more flexibility
in terms of train delays and crew deadheading.

Effect of varying detention time

In this study, we quantify the effect of varying the
detention time (the minimum rest time at the away location
after which a crew becomes eligible for a detention
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allowance) on the average rest time at the away location,
detention hours, and overall solution cost. The results are
shown in Table 7 and Figure 5(c). The default value of
detention time provided by the railroad is 16 hours.

This study shows that increasing the detention time has
an impact on the solution cost, but it diminishes as the
detention time increases. We observe that increasing the
detention time from 0 to 20 hours reduces the solution
cost, but increasing it beyond 20 hours has almost no
impact on the solution quality.

We have described a network-flow-based approach to
solve the railroad CSP in the context of North American
railroads. The CSP for North American railroads is
governed by several FRA regulations and trade-union
work rules. To develop a good crew schedule, in addition
to satisfying these regulations, the total wage costs, train
delay costs, deadhead costs, and detention costs must all
be minimized. The railroad divides the network into a
number of crew districts, and each crew district has
several crew pools. Each crew pool at a district can
have a different set of operating rules. These factors
make this a complex problem to model and solve.

The network flow formulation for the CSP developed
in this paper is both flexible and robust, and it can easily
be manipulated to represent each of the possibilities
encountered in real life. We formulate the CSP as an
integer program on a space-time network. The network is
constructed in such a way that all FRA regulations and
trade-union work rules other than FIFO constraints are
enforced during the network construction phase itself.
The operational constraints are handled in the IPF. We
develop two approaches to handle FIFO constraints.
The first is an SCG approach in which constraints are
generated iteratively to cut out FIFO violations. The
second approach, QCP, relies on perturbing the objective
function to generate FIFO-compliant solutions.

We provide computational results comparing the
performance of various approaches and show that the
perturbation approach outperforms the other approaches
in terms of both solution time and solution quality.

The crew-scheduling model has applications in a wide
range of settings. We describe several applications of the
model in the tactical, planning, and strategic environments.
The broad spectrum of applications varies from the short-
term problem of assigning crews to trains over the next
few days to the long-term problem of forecasting crew
requirements on the basis of future demand patterns.

The model provides railroad executives with a method to
calibrate and quantify the impact of current decisions on
future operations by running several “what-if ” scenarios.

We believe that this research will eventually lead to the
deployment of crew-planning models and algorithms at
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North American railroads, replacing the current manual
process and that, in doing so, it will have a significant
impact on railroad on-time performance, crew utilization,
and productivity, while also improving the quality of life
for crew and improving railroad safety.

We thank Larry A. Shughart from Innovative
Scheduling, who has several years of railroad experience,
for helping us understand the real-world significance of
crew scheduling and for providing us with valuable
business insights. We also thank the anonymous
referees for their insightful comments and suggestions,
which led to a significantly improved paper.
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States, other countries, or both.

1. “2004 Freight Rail Component of the Florida Rail Plan,”
Florida Department of Transportation Report, 2005;
see hitp://www.dot.state fl.us/rail| Publications/2004 Plan/
FreightComponentSmry.pdf.

2. America’s Railroads—Employee Compensation, National
Railway Labor Conference; see http.//www.raillaborfacts.org/
issues-at-stakejwages-and-benefits.aspx.

3. Surface Transportation Board, U.S. Department of
Transportation, Bureau of Accounts, Employment Data,
2006; see http:|/www.sth.dot.gov/econdata.nsf]
322683bcf67f4143852566210062ac90?OpenView&
Start=1&Count=300&Expand=I1#1.

4. A. A. Assad, “Analytical Models in Rail Transportation: An
Annotated Bibliography,” INFOR 19, No. 1, 59-80 (1981).

S. A. A. Assad, “Analysis of Rail Classification Policies,”
INFOR 21, No. 4, 293-314 (1983).

6. J.-F. Cordeau, P. Toth, and D. Vigo, “A Survey of
Optimization Models for Train Routing and Scheduling,”
Transport. Sci. 32, No. 4, 380—404 (1998).

7. A. Wren, Editor, Computer Scheduling of Public Transport,
North-Holland Publishing Company, Amsterdam, The
Netherlands, 1981.

8. L. Bodin, B. Golden, A. A. Assad, and M. Ball, “Routing and
Scheduling of Vehicles and Crews: The State of the Art,”
Computer & Oper. Res. 10, No. 2, 63-211 (1983).

9. P. Carraresi and G. Gallo, “Network Models for Vehicle and
Crew Scheduling,” Euro. J. Oper. Res. 16, No. 2, 139-151
(1984).

10. T. H. Wise, “Column Generation and Polyhedral
Combinatorics for Airline Crew Scheduling,” Ph.D.
dissertation, Cornell University, Ithaca, NY, 1995.

11. J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis,
“Time-Constrained Routing and Scheduling,” Handbooks in
Operations Research and Management Sciences: Network
Routing, Vol. 8§, M. O. Ball, T. L. Magnanti, C. L. Monma,
and G. L. Nemhauser, Editors, Elsevier Science, Amsterdam,
The Netherlands, 1995, pp. 35-139.

12. B. Gopalakrishnan and E. L. Johnson, “Airline Crew
Scheduling: State-of-the-Art,” Ann. Oper. Res. 140, No. 1,
305-337 (2005).

13. A. Caprara, M. Fischetti, P. Toth, D. Vigo, and P. L. Guida,
“Algorithms for Railway Crew Management,” Math.
Program. 79, 124-141 (1997).

14. A. T. Ernst, H. Jiang, M. Krishnamoorthy, H. Nott, and
D. Sier, “An Integrated Optimization Model for Train Crew
Management,” Ann. Oper. Res. 108, No. 1/4, 211-224 (2001). 343

B. VAIDYANATHAN ET AL.



344

15. R. Freling, R. M. Lentink, and A. P. M. Wagelmans, “A
Decision Support System for Crew Planning in Passenger
Transportation Using a Flexible Branch-and-Price
Algorithm,” Ann. Oper. Res. 127, No. 1/4, 203-222 (2004).

16. C. Barnhart, E. L. Johnson, R. Anbil, and L. Hatay, “A
Column Generation Technique for the Long-Haul Crew
Assignment Problem,” Optimization in Industry: Volume II,
T. Ciriano and R. Leachman, Editors, John Wiley and Son,
Chichester, England, 1994, pp. 7-22.

17. C. Barnhart, E. L. Johnson, G. L. Nemhauser, and P. Vance,
“Crew Scheduling,” Handbook of Transportation Science,

R. W. Hall, Editor, Springer, New York, 2003, pp. 493-521.

18. S.C.K.ChuandE. C. H. Chan, “Crew Scheduling of Light Rail
Transit in Hong Kong: From Modeling to Implementation,”
Computer & Oper. Res. 25, No. 11, 887-894 (1998).

19. C. G. Walker, J. N. Snowdon, and D. M. Ryan,
“Simultaneous Disruption Recovery of a Train Timetable and
Crew Roster in Real Time,” Computer & Oper. Res. 32, No. 8,
2077-2094 (2005).

20. M. F. Gorman and M. Sarrafzadeh, “An Application of
Dynamic Programming to Crew Balancing at Burlington
Northern Santa Fe Railway,” Int. J. Services Technol. &
Management 1, No. 2/3, 174-187 (2000).

21. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows:
Theory, Algorithms, and Applications, Prentice-Hall, Upper
Saddle River, NJ, 1993.

Received October 2, 2006, accepted for publication
December 15, 2006, Internet publication May 17, 2007

B. VAIDYANATHAN ET AL.

Balachandran Vaidyanathan Department of Industrial
and Systems Engineering, University of Florida, 303 Weil Hall,
Gainesville, Florida 32611 (vbala@ufl.edu). Mr. Vaidyanathan is a
doctoral candidate. He received his B.S. degree from the Indian
Institute of Technology, Madras, in 2002. His interests include
mathematical modeling and the design of algorithms to solve real-
world problems. He has been awarded Honorable Mentions in the
INFORMS 2004 and 2006 paper competition on Management
Science in Railroad Applications sponsored by The Institute for
Operations Research and the Management Sciences. In addition
to application-oriented research, Mr. Vaidyanathan is also
conducting research on developing algorithms for a special case
of assignment and transportation problems, which has wide
application to transportation networks.

Krishna C. Jha Innovative Scheduling, Inc., 2153 S.E.
Hawthorne Road, Suite 128, Gainesville, Florida 32641. Dr. Jha is a
director of research and development at Innovative Scheduling,
Inc., specializing in mathematical modeling, state-of-the-art
optimization techniques, algorithmic design and development, and
software engineering. During his doctoral studies, he developed
innovative very-large-scale neighborhood search algorithms for
several combinatorial optimization problems. Dr. Jha is the
recipient of the first prize in the INFORMS 2003 paper
competition on Management Science in Railroad Applications,
and the INFORMS 2006 Daniel H. Wagner Prize for excellence
in operations research practice.

Ravindra K. Ahuja Department of Industrial and Systems
Engineering, University of Florida, 303 Weil Hall, Gainesville,
Florida 32611 (ahuja@ufi.edu). Professor Ahuja is co-director

of the Supply Chain and Logistics Engineering Center at the
University of Florida, and president and CEO of Innovative
Scheduling, Inc. He received his Ph.D. degree in industrial and
management engineering from the Indian Institute of Technology,
Kanpur. He visited the Sloan School of Management at the
Massachusetts Institute of Technology to conduct research on
the development of faster algorithms for network flow problems,
a collaboration that resulted in the fastest available algorithms
for most fundamental network flow problems and led to his
coauthoring Network Flows: Theory, Algorithms, and Applications.
In 1993 this book won the prestigious Lanchester Prize, awarded
annually to the best publication in operations research. Dr. Ahuja
is also a coauthor of two books on developing decision-support
systems; he publishes widely and is an associate editor of
Transportation Science and Networks. He won the INFORMS
2003 Pierskalla Award for best contribution of operations research
in health applications, and the INFORMS 2006 Daniel H. Wagner
Award for excellence in operations research practice.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007



