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We present our solution to the crew-scheduling problem for North
American railroads. (Crew scheduling in North America is very
different from scheduling in Europe, where it has been well
studied.) The crew-scheduling problem is to assign operators to
scheduled trains over a time horizon at minimal cost while honoring
operational and contractual requirements. Currently, decisions
related to crew are made manually. We present our work
developing a network-flow-based crew-optimization model that can
be applied at the tactical, planning, and strategic levels of crew
scheduling. Our network flow model maps the assignment of crews
to trains as the flow of crews on an underlying network, where
different crew types are modeled as different commodities in this
network. We formulate the problem as an integer programming
problem on this network, which allows it to be solved to optimality.
We also develop several highly efficient algorithms using problem
decomposition and relaxation techniques, in which we use the
special structure of the underlying network model to obtain
significant increases in speed. We present very promising
computational results of our algorithms on the data provided by a
major North American railroad. Our network flow model is likely
to form a backbone for a decision-support system for crew
scheduling.

Introduction

This paper concerns the development of new algorithms

for railroad crew scheduling, which is one of the most

important decision problems faced by railroad

management. The crew-scheduling problem (CSP)

consists of assigning crews to trains and creating rosters

for each crew while satisfying a variety of Federal

Railway Administration (FRA) regulations and trade-

union work rules. The objectives are to minimize the

cost of operating trains and to improve the quality of

life for crew. An improved quality of crew life can lead

to more productive employees, less employee turnover,

and safer operations. North American railroads desire

a software product that can help them make dramatic

strides in crew management, but there is no

methodology or software product that meets their

specific needs. Although airline CSPs have been well

studied and well solved, and railroad CSPs for European

and Asian railroads have also been addressed to some

extent, CSPs for North American railroads, because of

various union and regulatory complexities, are unique

and remain unsolved, as we describe. This paper focuses

on developing efficient network flow-optimization

models that can form a backbone for all important

aspects of crew scheduling for North American

railroads: tactical, planning, and strategic. Henceforth

in this paper, unless otherwise specified, we are referring

to the context of North American railroads when we

refer to the CSP.

U.S. freight tonnage is expected to double in volume

over the next 20 years [1]. Railroad executives are

extremely concerned about their ability to attract,

train, and retain sufficient semiskilled labor to staff the

increased number of train starts that will be needed to

support this growth. Railroad companies pay train crew

employees very high salaries (around $70,000 per year
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plus benefits1) and still have difficulty attracting a high-

quality work force. Operating a train as an engineer or

managing a train as a conductor is not an easy job. It is

further complicated by the fact that crews are seldom

assigned to trains on the basis of a fixed schedule.

Generally the company calls the next available crew on

the telephone and gives them their assignment two hours

before a train departs. The crew takes the train to an

away location, where they rest at a hotel waiting for an

assignment, and then, when their turn comes up, they

return on the assigned train. Consequently, train crews do

not know from one day to the next, let alone a week or

a month ahead, when they will be working. Train crews

spend inordinate amounts of time on call, waiting for

assignment, and then spend a great deal of time away

from their homes and families. The irregular work style

of railroad crews makes attracting potential employees

to this career more difficult.

Also, railroads are not very profitable, typically earning

less than ten percent return on capital, and thus are

constrained from raising already high wages to attract

more employees. To close the supply-and-demand gap

for train crews, railroads must raise the productivity of

their existing crews and change the historical pattern of

operations to improve employees’ quality of life. Success

on both fronts will be required to ensure that railroads

can continue to grow profitably. Labor cost, the largest

component of a railroad operating expense, accounts for

a large percentage of total revenue. Depending on the size

of its network, each Class I railroad (a Class I railroad, as

defined by the Association of American Railroads, has an

operating revenue exceeding $319.3 million) employs in

the neighborhood of 15,000 to 25,000 locomotive

engineers, conductors, and brakemen [3]. Consequently,

improving the efficiency and effectiveness of train crews

has the potential to dramatically reduce the cost of

transportation. In this paper, we propose a network flow

model and algorithms for assigning crews to trains that

will make a significant impact on on-time performance

and crew utilization and productivity, while also

improving both the quality of life for crew and railroad

safety.

In a large Class I railroad, various divisions have the

task of analyzing train crews. Each group is interested in

a different aspect of crew planning and scheduling. These

perspectives can generally be characterized on the basis of

the planning horizon of the issue at hand. Crew issues

faced by railroads can be broadly classified into three

categories. The models and algorithms proposed in this

paper have applications in all of these areas of decision

making:

� Tactical—Decisions that must be made immediately

to support real-time train operations. Tactical

problems have a planning horizon of 24 to 48 hours.
� Planning—Decisions that must be made as a part of

the crew-schedule design process. Typically, railroads

make adjustments to their network operating plan

every month, with significant changes two or three

times a year to account for both long-run and

seasonal changes in traffic patterns.
� Strategic—Decisions that must be made considerably

(i.e., more than a year) in advance of implementation

to ensure that sufficient lead time is available to

properly prepare and implement a new business

practice.

Crew scheduling is one of the important mathematical

problems in the rich set of planning and scheduling

problems that can be modeled and solved using

mathematical optimization techniques [4–6]. Crew

scheduling is a well-known problem in operations

research and has been historically associated with airlines

and mass transit companies. Several papers on crew-

scheduling management have appeared in the past

literature; most notable among these are Wren [7],

Bodin et al. [8], Carraresi and Gallo [9], Wise [10], and

Desrosiers et al. [11]. These papers explore a set-covering-

based approach to solve the CSP. Crew scheduling is

conventionally divided into two stages: crew pairing and

crew rostering. A crew pairing is a sequence of connected

segments that start and end at the same crew base and

satisfy all legal constraints. The objective is to find the

minimum cost set of crew pairings so that each flight or

train segment is covered. The objective of crew rostering is

to assign individual crew members to trips or sequences of

crew pairings. This pairing-and-rostering approach uses

a set-covering formulation and is solved using a branch-

and-bound framework in which the linear programming

relaxations at each node in the branch-and-bound tree

are solved by using column generation. This type of

algorithm is also popularly called branch-and-price.

The pairing-and-rostering approach has gained wide

acceptance and application in the airline industry. In a

recent survey paper, Gopalakrishnan and Johnson [12]

discuss the state of the art in solution methodologies for

the airline crew pairing-and-rostering problem. There

have also been some applications of this approach in the

railroad industry. Caprara et al. [13], Ernst et al. [14],

and Freling et al. [15] describe the application of this

approach to railroad crew management. Caprara et al.

describe the solution techniques adopted at an Italian

railroad company. They consider several business rules

that are specific to European railroads and develop a

heuristic algorithm to generate rosters. Ernst et al.

1The crew salary information is based on data obtained from [2]. In 2004, the average
annual salary was $63.000, and we extrapolated our figure based on the assumption of
five percent annual raises.
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consider a set of constraints called workload constraints,

which imply that, on average, at each depot, each crew

should work within acceptable time limits. While solving

the problem, they relax the lower bound constraints.

These constraints do not apply to the North American

crew-scheduling problem. Freling et al. develop a

decision-support system for airline and railroad crew

planning using a branch-and-price-solution approach to

solve the integrated problem of pairing and rostering.

They show that the integrated approach provides

significant benefits over the sequential approach of

solving the pairing problem and then the rostering

problem. Barnhart et al. [16, 17] also describe

applications of the pairing-and-rostering approach.

Other research in the area of railroad crew scheduling

that uses a different approach is that of Chu and Chan

[18] and Walker et al. [19]. Chu and Chan consider the

problem of crew scheduling for Light Rail Transit in

Hong Kong. They decompose the problem into two

stages: The first one partitions driving blocks into pieces,

and the second one combines the pieces into runs. With

their added localized optimization heuristics, they were

able to solve the problem in less than half an hour of

computation time. However, their approach could not

model the problem completely, and the solution could

only be used as a guideline to generate crew schedules.

Walker et al. develop an integer-programming-based

method for simultaneous disruption recovery of train

timetable and crew roster in real time in the context of

New Zealand railroads. The crew rules that they consider

are relatively simplistic and can be expressed in the form

of integer programming constraints, and they solve the

problem using a column-and-constraint-generation

algorithm.

While there have been several papers devoted to the

study of railroad CSPs in Europe, Asia, and Australia,

North American railroad problems are yet to be

addressed satisfactorily. The only application of

optimization methods to North American railroad crew

scheduling is that of Gorman and Sarrafzadeh [20]. They

studied crew balancing in the context of a major North

American railroad, the Burlington Northern Santa Fe

Railway, and developed a dynamic programming

approach to solve the problem. The major shortcoming of

their research is that they did not consider the possibility

of different crew types, each governed by a different set of

rules. Another drawback is that their approach could

handle only a particular crew district configuration

(single-ended crew district). While most crew districts in

North America are single-ended, there are several that are

double-ended or even more complex. The multicommodity

network flow approach described in this paper models all

of the rules considered by Gorman and Sarrafzadeh and

also handles the case in which different crew pools have

different sets of rules. It is also applicable to all of

the crew district configurations encountered in North

America. These configurations are described in the next

section.

From our review of the literature, we see that crew

pairing-and-rostering approaches that use column

generation have been the predominantly successful

method for solving CSPs. However, this approach cannot

be used for North American railroads for the following

two reasons:

1. The rail networks of all Class I North American

railroads are each divided into several crew districts.

As a train follows its route, it goes from one crew

district to another, picking up and dropping off crew

at crew change terminals. Almost all crew districts

consist of two or three terminals. Hence, a pairing-

and-rostering approach is needlessly complex and

is not required, as most pairings would consist of

two trains, an outbound train from home to away

and an inbound train from away to home. Also,

rail networks typically consist of 200 to 300 crew

districts, and the emphasis is on an approach that

is simple and fast; column-generation techniques,

which are computationally very intensive, are not

appropriate.

2. The FRA regulations governing North American

railroads are extremely complex. The most

complicated of these rules is the first-in-first-out

(FIFO) requirement. The FIFO constraint requires

that crews should be called on duty in the order in

which they become qualified for assignment at a

location. None of the previously published solutions

can handle a constraint of this kind. While this

constraint is easy to state, explicitly modeling it

makes the problem computationally intractable. The

success of all approaches using column-generation or

branch-and-price algorithms depends on the ease of

solving the subproblem. The addition of the FIFO-

side constraint to the problem would spoil the special

structure of the subproblem and greatly increase the

computation time. Because our model must be fast

enough to be used in a real-time environment, this

approach is once again not suitable.

To summarize, while there has been significant work

in the area of crew scheduling for European, Asian, and

Australian railroads as well as in the area of airline crew

scheduling, there is no modeling approach that is flexible

enough to tackle crew-scheduling problems faced by

North American railroads. Our approach is a novel

contribution to the application of innovative
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optimization techniques to solve real-world business

problems.

Network flow models have found successful

application in a large number of diverse fields, including

applied mathematics, computer science, engineering,

management, and operations research [21]. In this paper,

we model the CSP as a multicommodity network flow

problem on an underlying space-time network. In this

model, crew pools (sets of crews governed by the same

business rules in a crew district) represent commodities,

and the flow of individual crew members represents their

assignments. The space-time network is constructed in

such a way that the flow of crew members automatically

satisfies all FRA regulations and trade-union rules other

than the FIFO requirement. We formulate the CSP as an

integer programming formulation (IPF) on a space-time

network in which FIFO constraints are modeled as side

constraints to the multicommodity flow problem. We

show that solving the IPF using the standard branch-and-

bound methodology is computationally intractable. On

the other hand, the same problem with relaxed FIFO

constraints can be solved very efficiently. We call the CSP

with relaxed FIFO constraints the relaxed problem, and a

solution to this problem provides a lower bound to the

optimal solution of the CSP. We develop the successive

constraint generation (SCG) algorithm, which starts with

the solution of the relaxed problem and then iteratively

adds constraints to remove FIFO violations. We also

develop the quadratic cost perturbation (QCP) algorithm,

which perturbs arc costs in the space-time network to

penalize FIFO violations, and we prove that this

approach guarantees FIFO compliance. We also show

that the QCP approach produces optimal solutions in

most cases and a gap of less than 0.2 percent for a few

cases, with running times of the order of minutes.

Our major research contributions in this paper are

the following:

� We develop a space-time network construction

algorithm so that the flow of crews on this network

automatically satisfies all FRA regulations and trade-

union rules other than the FIFO requirement. The

network-construction procedure is flexible enough to

handle several combinations of rules and regulations

and also various different configurations for different

crew districts. It is also flexible enough to handle costs

that are nonlinear functions of arc durations.
� We formulate the CSP as an integer programming

problem on the space-time network, enforcing the

FIFO requirements by adding side constraints.

We prove the one-to-one correspondence between

solutions to this integer program and solutions to

the CSP.

� We show that the FIFO requirement, if handled by

the integer programming approach, complicates

the structure of the problem and renders it

computationally intractable.
� We develop SCG, an exact algorithm that first solves

the relaxed version of the integer program (without

FIFO constraints) and then iteratively adds

constraints in order to eliminate FIFO infeasibilities.
� We develop an approach based on a QCP that

perturbs the cost of arcs in the space-time network

in such a way as to penalize violations of the

FIFO constraints.
� We prove that this method guarantees FIFO

compliance for the problem that we study, and we

also show that it produces the optimal solution

in most cases.
� We present extensive computational results and case

studies of our algorithms on real-world data.

The outline for the rest of the paper is as follows. In

the next section, we give a complete description of the

problem, focusing on the terminology used, governing

rules and regulations, inputs, and the nature of

constraints and the objective function. We then describe

the mathematical modeling approach, which includes

construction of the space-time network and the IPF,

followed by a description of the solution approaches we

have developed to efficiently solve the problem. We then

present some of the practical applications of the model as

well as computational results comparing the performance

of all of our algorithms. We also present the results of a

case study done on a representative scenario. The final

section presents our concluding remarks.

Problem description
In this section, we provide an overview of CSPs faced

by North American railroads. We first describe some

of the essential terminology needed to understand the

problem. We then review some of the typical regulations

that govern crew management. Next, we list the set of

inputs required to properly define and formulate the CSP,

and finally we briefly describe the nature of constraints

and the objective function.

Terminology

Crew district—The rail network is divided into crew

districts that constitute a subset of terminals (nodes).

Each crew district is typically a geographic corridor over

which trains can travel with one crew. A typical railroad

network for a major railroad in the U.S. may be divided

into as many as 200 to 300 crew districts. As a train

follows its route, it goes from one crew district to another,

picking up and dropping off crew at crew change
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terminals. In contrast to the airline industry, in which

certain crews have the flexibility to operate over a large

territorial domain, crews in the North American railroad

industry are qualified to operate only in certain specific

geographic territories. The physics of operating a train

depends on the track geometry, which is defined by

the hills and curves in the route and by signaling and

interlocking systems that control the movement of trains.

A crew must be intimately familiar with all aspects of

a route in order to operate a train safely on that route.

Consequently, most crews are qualified to operate on only

a limited number of routes.

Crew pools—Within a crew district, there are several

types of crews, called crew pools, which may be governed

by different trade-union rules and regulations. For

example, a crew pool may have preference over the trains

operated in a prespecified time window. Similarly, a crew

pool consisting of senior crew personnel is assigned only

to predesignated trains so that crews in that pool know

their working hours ahead of time. The multiple crew

pools within each district, with different constraints,

make CSPs complex and difficult to model

mathematically.

Home and away terminals—The terminals where crews

from a crew pool change trains are designated either as

home terminals or away terminals. The railroad incurs

no lodging cost when a crew is at its home terminal.

However, the railroad has to make arrangements for crew

accommodation at their away terminals. Different crew

districts have different combinations of home and away

terminals. A crew district with one home terminal and

one away terminal is called a single-ended crew district. In

such crew districts, a crew typically operates a train from

its home location to an away location, rests in a hotel for

at least eight hours, operates another train back to its

home terminal, rests for ten to twelve hours, and repeats

this cycle. The other type of crew district is a double-ended

crew district, in which more than one terminal is a home

terminal for different crew pools. Some of the other crew-

district configurations are crew districts with one home

terminal and several away terminals and crew districts

with several home terminals and corresponding sets of

away terminals.

Crew detention—Once a crew reaches its away terminal

and rests for the prescribed number of hours, the crew

is ready to head back to its home terminal. However,

if there is no train, the crew may have to wait longer.

According to the trade-union rules, once a crew is at the

away terminal for more than a prespecified number of

hours (generally 16 hours), the crew earns wages (called

detention costs) without being on duty. For example, if

a crew is waiting for assignment at the away terminal for

18 hours, it is paid detention charges for two hours.

Crew deadheading—This term refers to the

repositioning of crew between terminals. At the away

terminal, there is sometimes no return train projected for

some time, or there is a shortage of crews at another

terminal. Thus, instead of waiting for train assignment at

its current terminal, the crew can take a taxicab or a train

(as passengers) and deadhead to the home terminal.

Similarly, the crew may also deadhead from a home

terminal to an away terminal in order to rebalance and

better match the train demand patterns and avoid train

delays. Crew deadheading is expensive; the crew is

considered to be on duty while deadheading and thus

earns wages, and the railroad may also incur taxi

expenses. Each year, a major freight railroad may

spend tens of millions of dollars on crew deadheading.

On-duty and tie-up time—Whenever a crew is assigned

to a train, it performs some tasks to prepare the train for

departure; hence, crews are called on duty before train

departure time. The time at which the crew must report

for duty is called the on-duty time. Similarly, a crew

performs some tasks after the arrival of the train at its

destination, and thus crews are released from duty after

the train arrival. The time at which the crew is released

from duty is called tie-up time. We refer to the duty

duration before train departure as duty-before-departure

and the duty duration after train arrival as duty-after-

arrival. Hence, the total duty period of a crew assigned

to a train is the sum of the duty-before-departure, the

duty-after-arrival, and the travel time of the train.

Duty period—In most cases, the duty period of a crew

assigned to a train is the total duration between the on-

duty time and the tie-up time. In some cases, when a crew

rests for a very short time at an away location before

being assigned to a train, the rest time and the duration of

the second train may also be included in the duty period

of the crew. (The calculation of the duty period is

described in more detail in the next section.)

Dead crews—By federal law, a train crew can be on

duty for a maximum of 12 consecutive hours, at which

time the crew must cease all work, a state we refer

to as dead, or dog-lawed. Dead crews are a frequent

consequence of such events as delayed trains, congestion,

and mechanical breakdowns. In such cases, crew

dispatchers must send a relief crew by taxi or another

train so that the dead crew can be relieved. The dead crew

must then get sufficient rest before becoming available

to operate another train.

Train delays—When a train reaches a crew change

location and there is no available crew qualified to

operate this train, the train must be delayed. Each train

delay disrupts the operating plan and causes further

delays due to the propagating network effect. Train

delays due to crew unavailability are quite common

among railroads. These delays are very expensive (some
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estimate $1,000 per hour) and can be reduced significantly

through better crew scheduling and train scheduling.

Regulatory and contractual requirements

Assignment of crews to trains is governed by a variety of

FRA regulations and trade-union rules. These regulations

range from the simple to the complex. The regulations

also vary from district to district and from crew pool to

crew pool. We list below some examples of these kinds of

constraints and their typical parameter values:

� The duty period of a crew cannot exceed 12 hours.

The duty period of a crew on a train is usually

calculated as the time interval between the on-duty

time and tie-up time of the train.
� Whenever a crew is released from duty at the home

terminal or has been deadheaded to the home

terminal, they can resume duty only after 12 hours

(ten hours’ rest followed by a two-hour call period) if

the duty period is greater than ten hours, and after ten

hours (eight hours’ rest followed by a two-hour call

period) if the duty period is less than or equal to ten

hours.
� Whenever a crew is released from duty at the away

terminal, they must go for a minimum eight hours’

rest, except under the following circumstances:
� If the total time period corresponding to the last

travel time from the home terminal followed by a

rest time of less than four hours plus travel time

of the next assignment back home is shorter than

12 hours (in this case, duty period ¼ travel time on

inbound train þ rest time at away location þ travel

time on outbound train).
� If the total time corresponding to the last travel

time from the home terminal plus travel time of the

next assignment back home is less than 12 hours

when the rest time between the assignments is more

than four hours (in this case, duty period ¼ travel

time on inbound train þ travel time on outbound

train).
� Crews belonging to certain pools must be assigned to

trains in a FIFO order.
� A train can be operated only by crews belonging to

prespecified pools.
� Every train must be operated by a single crew.
� Crews are guaranteed a certain minimum pay per

month regardless of whether or not they work.

Figure 1 gives an example of the kind of decision

process that must be followed by crew planners. Since the

regulations for crew assignment can vary from district to

district and crew pool to crew pool, it is a mathematical

challenge to build a unified model to formulate and solve

this problem. This partly explains why these problems

remain unsolved and no commercial optimization

product has yet been deployed at railroads. Another

reason why there has been limited operations research

analysis of complex rail problems could be that the rail

industry in the U.S. has been consolidated into only four

major players, which means that there are not many

customers for such a solution. Also, because of low

margins in the railroad industry, investment in research

funding is viewed as a luxury, despite a potentially high

return on investment in automated decision-support

systems.

Problem inputs

Here we describe the inputs to the mathematical

formulation of the CSP.

� Train schedule—This schedule provides information

about the departure time, arrival time, on-duty time,

tie-up time, departure location, and arrival location

for every train in each crew district through which it

passes. We do not consider stochasticity in the train

schedule, and we assume that train delays are due

only to the unavailability of crew and not to train

cancellations or other disruptions.
� Crew pool attributes—This includes attributes of

various crew types, including their home locations,

away locations, minimum rest time, and train

preferences.
� Crew initial position—This provides the position of

crew at the beginning of the planning horizon. It

includes information about the terminal at which

a crew is released from duty, the time of release,

the number of hours of duty done in the previous

assignment, and the crew pool to which the crew

belongs.
� Train-pool preferences—These preferences, if any,

are information about the set of trains that can be

operated by a crew pool.
� Away-terminal attributes—This information includes

the rest rules and detention rules for each crew pool

at each away terminal.
� Deadhead attributes—This is the time taken to travel

by taxi between two terminals in a crew district.
� Cost parameters—These parameters are used to set

up the objective function for the CSP. They consist

of crew wage per hour, deadhead cost per hour,

detention cost per hour, and train delay cost per hour.

Constraints and objective function

The CSP involves making decisions regarding the

assignment of crews to trains, deadheading of crews by
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taxi, and train delays. The constraints can be categorized

into two groups: operational constraints and contractual

requirements. The operational constraints ensure that

every train gets a qualified crew to operate it and prevents

a crew from being assigned to more than one train at the

same time. These constraints also include the assignment

of certain crew pools to prespecified trains. The

assignment of crews to trains must, in addition, satisfy the

contractual requirements described above in the section

on regulatory and contractual requirements. In our

mathematical model, the operational constraints of the

model are handled by the integer multicommodity flow

formulation, and the contractual restrictions are honored

in the network construction phase, as described in the

next section. The objective function of the CSP is to

minimize the total cost of crew wages, deadheading,

crew detentions, and train delays.

Mathematical modeling
In this section, we present our mathematical modeling

approach to solve the CSP. We first describe the

construction of the space-time network, which is central

to all of our solution methodologies. In the second part

of this section, we formulate the CSP as an integer

multicommodity flow problem on this network, establish

correspondence between the mathematical formulation

and the CSP, and discuss the size of the problem and

inherent computational complexities.

Space-time network

The CSP is formulated as an integer multicommodity

flow problem with side constraints on a space-time

network. We decompose the CSP for each crew district

and construct the space-time network for a crew district.

In the network, each node corresponds to a crew event

and has two defining attributes: location and time. The

events that we model while we construct the space-time

network for the CSP are departure of trains, arrival of

trains, departure of deadheads, arrival of deadheads,

supply of crew, and termination of crew duty to mark

the end of the planning horizon. All of the arcs in the

network facilitate the flow of crews over time and space.

Figure 2 presents an example of the space-time network in

a crew district. For the sake of clarity, this network

represents only a subset of all of the arcs.

For each crew, we create a supply node whose time

corresponds to the time at which this crew is available

for assignment and whose location corresponds to

Figure 1
Example of a crew-assignment decision tree. (Extraboard: an emergency supply of crew that can be assigned if required.)
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the terminal from which the crew is released for duty.

Each supply node is assigned a supply of one unit and

corresponds to a crew member. We also create a common

sink node for all crews at the end of the planning horizon.

This sink has no location attribute and has the time

attribute equal to the end of the planning horizon. The

sink node has a demand equal to the total number of crew

supplied. The supply and sink nodes ensure that all of the

crews that flow into the system at the beginning of the

planning horizon are accounted for and flow out of

the system at the end of the planning horizon.

For each train l passing through a crew district, we

create a departure node l0 at the first departing station of

the train in the crew district and an arrival node l 00 at the

last arriving station of the train in the crew district. Each

arrival or departure node has two attributes: place and

time—for example, place (l0)¼ departure station (l ) and

time (l0)¼ on-duty time (l ); and similarly, place (l 00) ¼
arrival station (l ) and time (l 00) ¼ tie-up time (l ).

In the network, for each train l we create a train arc

(l0, l 00) connecting the departure node and arrival node.

We create deadhead arcs to model the travel of crew

by taxi. A deadhead arc is constructed between a train-

arrival or crew-supply node at a location and a train-

departure node at another location. All of the deadhead

arcs that satisfy the contractual rules and regulations are

created. We construct rest arcs to model the resting of a

crew at a location. A rest arc is constructed between a

train-arrival node or a crew-supply node at a location and

a train-departure node at the same location. Rest arcs are

created in conformance with the contractual rules and

regulations. All rest arcs that satisfy the contractual rules

and regulations are constructed. Since the contractual

regulations are often crew-pool-specific, deadhead arcs

and rest arcs are created specific to a crew pool. This

implies that only crew belonging to a particular crew pool

can flow on a particular rest arc or a deadhead arc. For

example, suppose that a supply node corresponds to a

crew belonging to crew pool A; then all of the arcs that

emanate from this node can carry only crew belonging

to crew pool A.

Finally, we create demand arcs from all train-arrival

nodes and crew-supply nodes to the sink node. Each

arc has an associated cost equivalent to the crew wages,

deadhead costs, or detention costs, as the case might be.

Also in the network, the time at the tail of an arc is always

less than the time at the head of an arc, which ensures the

forward flow of commodities on the time scale. It can be

noted that all contractual requirements other than the

FIFO constraint are easily handled in the network

construction.

The space-time network models the flow of crews while

honoring all of the contractual constraints except for the

FIFO rule. However, it does not model the case in which

qualified crews are not available for assignment to a train,

thus causing a train delay. Therefore, we next construct

additional arcs incorporating train delays. At a location,

we create rest arcs and deadhead arcs that do not honor

the rest regulations, and we penalize them to ensure that

flows on these arcs occur only when qualified crews are

not available for assignment. The flows on these arcs

denote that trains will be delayed until crews become

qualified for train operation. However, because the

delay of a train may have a propagating effect on

the availability of crews in subsequent assignments,

Figure 2

Space-time network for a single-ended district with a single crew 

type.
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we assume here that the crew assigned to a delayed train

has sufficient slack in the rest time at the train-arrival

node to qualify it for subsequent assignments. Thus, the

additional rest arcs and deadhead arcs model the train

delays, with the assumption that the effect of train delays

is only local.

To summarize, this section describes the construction

of the space-time network for the CSP. Honoring

contractual regulations while constructing the network

significantly reduces the number of constraints in the

integer program. We next present the multicommodity

IPF of the CSP.

Integer programming formulation (IPF)

We formulate the CSP as an integer multicommodity flow

problem on the space-time network described in the

previous section. In our formulation, each crew pool

represents a commodity. Crews enter the system at

crew-supply nodes, and every supply node corresponds

to a supply of one crew. The crew takes a sequence of

connected train, rest, and deadhead arcs before finally

reaching the sink. While flow of more than one crew type

can take place on a train arc, rest and deadhead arcs can

have flow of only one type, because the business rules for

rest and deadhead are crew-pool-specific. We next present

the IPF of the problem; the notation is shown in Table 1.

The decision variables are as follows:

xcl : flow of crew pool c 2 C on each train arc l 2 L,

xd : flow on deadhead arc d 2 D,

and

xr : flow on rest arc r 2 R.

The objective function is

min
X

l2L

X

c2C
c
c

l
x
c

l
þ
X

d2D
c
d
x
d
þ
X

r2R
c
r
x
r
:

The constraints are the following:
X

c2C
x
c

l
¼ 1 ; for all l 2 L; ð1Þ

X

a2iþ
x
a
¼ 1 ; for all i 2 N

s
; ð2Þ

X

a2N�
d

x
a
¼ f ; ð3Þ

x
c

l
¼

X

a2tailðlÞ�
c

x
a
; for all l 2 L; c 2 C ; ð4Þ

x
c

l
¼

X

a2headðlÞþ
c

x
a
; for all l 2 L; c 2 C ; ð5Þ

X

r
02A

r

x
r
0 �Mð1� x

r
Þ � 0; for all r 2 R ; ð6Þ

x
c

l
2 0; 1f g and integer; for all l 2 L; c 2 C; ð7Þ

x
d
2 0; 1f g and integer; for all d 2 D ; ð8Þ

x
r
2 0; 1f g and integer; for all r 2 R : ð9Þ

Constraint (1), the train cover constraint, ensures that

every train is assigned a qualified crew to operate it.

Constraint (2) ensures flow balance at a crew-supply node,

while Constraint (3) ensures flow balance at the sink node.

Constraints (4) and (5) ensure flow balance at train-

departure and train-arrival nodes, respectively. The flow

balance constraints at a train-arrival node ensure that the

crew assigned to a train is subsequently assigned to a rest

arc, a deadhead arc, or a sink arc that emanates from the

arrival node of the train. Flow balance constraints at a

train-departure node ensure that the crew assigned to the

Table 1 Notation for integer programming formulation.

N Set of nodes in the space-time network

L Set of train arcs in the network, indexed by l

D Set of deadhead arcs in the network, indexed

by d

R Set of rest arcs in the network, indexed by r

A Set of arcs in the space-time network, indexed

by a

G(N, A) Space-time network

Ns Set of crew-supply nodes

Nd Sink node

C Set of crew pools in the system, indexed by c

iþ Set of outgoing arcs at node i

i� Set of incoming arcs at node i

iþc Set of outgoing arcs specific to crew pool c

at node i

i�c Set of incoming arcs specific to crew pool c

at node i

Ar Set of arcs on which flow will violate FIFO

constraint if there is flow on rest arc r

f Total number of available crew

M A very large number

ccl Cost of crew wages for crew pool c 2 C on

train arc l 2 L

cd Cost of deadhead arc d 2 D

cr Cost of rest arc r 2 R

tail(l ) Node from which arc l originates

head(l ) Node at which arc l terminates
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train has been assigned to a rest arc, a deadhead arc, or

a supply arc that terminates at the departure node of the

train. Constraint (6) ensures that the crew assignment

honors the FIFO constraint. Constraints (7), (8), and (9)

specify that all of the decision variables in the model are

binary. The objective function is constructed to minimize

the total cost of crew wages, deadheading, detentions, and

train delays. Note that the detention and delay costs are

taken into account while calculating the cost of rest arcs.

Now we show how Constraint (6) enforces FIFO

requirements. Figure 3 illustrates crew assignments in two

situations: one in which FIFO is satisfied and the other in

which FIFO is violated. In case (a), the crew on the train

traveling on arc (1–3) arrives at terminal 2 first and also

leaves first, and hence FIFO is satisfied. In case (b), FIFO

is violated because the crew on the train traveling on arc

(1–3) enters terminal 2 first but leaves after the other

crew. Therefore, in the solution, if there is flow on

arc (4, 5), there should not be any flow on arc (3, 6).

Let us consider the following cases for Constraint (6)

with respect to flow on arc (4, 5):

� Case 1: x(4,5)¼ 1: The constraint becomes
X

r
02Að4;5Þ

x
r
0 � 0) x

r
0 ¼ 0 8 r0 2 Að4;5Þ :

This ensures that if there is flow on rest arc (4, 5),

there cannot be flow on any arc belonging to the

prohibited set A(4,5), and hence there will not be any

flow on arc (3, 6).

� Case 2: x(4,5)¼ 0: The constraint becomes
X

r
02Að4;5Þ

x
r
0 �M 8r0 2 Að4;5Þ ;

which essentially means that the constraint is relaxed.

Let us now estimate the size of a typical instance of

the CSP in a crew district. Most crew districts have two

terminals, and a typical train schedule has approximately

500 trains running over the course of several weeks in a

crew district. Each crew district could have two to four

crew types and approximately 50 crews. Therefore,

the space-time network could have approximately

50 þ 2 3 500 ¼ 1,050 nodes. The number of arcs in the

network could be very large if we construct all feasible

rest arcs and deadhead arcs. To restrict the number

of arcs constructed, we place a limit on the maximum

duration of rest arcs. For example, if the train schedule

stretches over a period of ten days, it is unrealistic for

a crew to rest for more than three days. In this case,

we can restrict the maximum rest arc duration to three

days. After the space-time network of a typical problem

is pruned on the basis of this rule, the number of

deadhead arcs is typically approximately 25,000, and

the number of rest arcs is approximately 100,000.

Because the number of rest arcs for a typical problem is

of the order of 100,000 and each rest arc has one FIFO

constraint, the number of FIFO constraints in the model

would be 100,000. With the number of FIFO constraints

that large, we would be losing one of the main advantages

of the network flow formulation—that by honoring all

business rules in the network construction phase, we keep

the number of constraints small. Our computational

results also confirm that handling FIFO constraints

explicitly in this manner makes the problem

computationally intractable.

Let us now consider the IPF in which we relax

Constraint (6), the FIFO constraint; we call this problem

the relaxed problem. This problem typically has more

than 100,000 variables and several thousand constraints,

which makes it a large optimization problem in itself.

Integer programs of this size are usually very difficult to

solve to optimality or near-optimality in a reasonable

amount of time, but we were able to solve this problem

to optimality in a matter of minutes using the branch-

and-bound-based MIP solver ILOG CPLEX** 9.0. We

believe that this is due to the special structure of the

relaxed problem, which helps shorten the solution time

significantly. All variables in the formulation are binary

variables, and this leads to the MIP engine exploring

fewer branches on the branch-and-bound tree compared

with the case in which variables are integer variables.

Whenever the engine branches on a noninteger variable,

the value is set to 0 on one branch and to 1 on the other.

Hence, at each level of the tree, the value of one variable

is pre-fixed and can be eliminated from the model.

Consequently, it is very likely that a feasible integral

solution is obtained early in the process, and nodes in the

branch-and-bound tree are fathomed much earlier than

while solving a general integer program.

Figure 3

The FIFO rule: (a) Valid assignment; (b) invalid assignment.
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Another benefit of the network-flow-based approach is

that even though we do not explicitly model each crew,

the space-time network and the constraints are such that

we can easily extract from the final solution of the model

the set of trains a crew takes over the entire planning

horizon. To do this, we start at the supply node of a

particular crew and identify a path from this supply

node to the sink node that has positive flow on it.

Note that because of the commodity-specific flow

balance constraints at each node, every crew has

a unique path with positive flow from its supply

node to the sink node.

Theorem 1

There is a one-to-one correspondence between a feasible flow

on the space-time network satisfying Constraints (1)–(9)

and a feasible solution to the CSP.

Proof

Consider a feasible flow on the space-time network. We

have seen how the path of each crew can be extracted

from the solution using a simple run-through procedure.

Because of the network construction methodology, the

extracted path of each crew has to satisfy all business

and contractual rules. Hence, we see that every feasible

solution on the space-time network corresponds to a

feasible crew schedule. We can also show that the reverse

transformation from a feasible crew schedule to a feasible

flow on the space-time network is possible, thus

establishing the result.

Thus, we have shown the one-to-one correspondence

between feasible solutions to the IPF and feasible

solutions to the CSP, and have therefore established the

validity of our integer programming approach. In the

next section, we describe various algorithms to solve the

CSP which are centered on handling FIFO constraints in

a computationally efficient manner.

Solution approaches

In this section we present our approaches to solve the

CSP. Since the FIFO constraints are the ones that

complicate the nature of the IPF, our solution approaches

are centered around effective ways to handle this

constraint. We develop a constraint-generation-based

exact approach and a cost-perturbation-based heuristic

approach to solve the problem. While the constraint-

generation-based approach performs significantly better

than the direct approach to solve the IPF, its application

in a real-time environment may be restricted by long

running times. On the other hand, the cost-perturbation

scheme produces good-quality FIFO-compliant solutions

very efficiently and hence is better suited for the real-time

environment.

Successive constraint generation (SCG) algorithm

The SCG algorithm works by iteratively pruning out crew

assignments that violate the FIFO constraints from

the current solution of a more relaxed problem. We

considered two methods for implementing constraint

generation: 1) a branch-and-bound algorithm in which

constraints are added to the linear programming (LP)

relaxation that is solved at each node of the branch-and-

bound tree until FIFO violations are eliminated (branch-

and-cut); and 2) an iterative method in which we run

a branch-and-bound algorithm on the relaxed problem,

solve it to optimality, and then add constraints to remove

infeasibilities. This is followed by another run of

branch-and-bound on the more constrained problem,

and so on.

As a result of our deliberation, we chose to implement

the second method over the first, for the following

reasons:

� Because the LP relaxation of the relaxed problem can

have fractional flows on the rest arcs, the number of

rest arcs with positive flow in the LP relaxation will be

greater than the number of rest arcs with positive flow

in an integral version. Also, the greater the number of

rest arcs with positive flow, the greater the possibility

of FIFO violations. Hence, more FIFO constraints

are likely to be added to a non-integral solution. SCG

that is implemented using the second method allows

us to stop at any point when we feel that the level

of FIFO infeasibility is reasonably small. We are

able to do that because, after the addition of a set of

constraints, we obtain an integral solution at regular

intervals of less than a minute. On the other hand,

in the branch-and-cut method, the addition of

constraints at a node on the branch-and-bound

tree would only guarantee FIFO compliance of

the LP relaxation, which is not an integral solution

in general. Hence, we do not have the option to

prematurely terminate until we reach a point at which

we obtain at least one integral solution to the LP

relaxation. Consequently, we do not have control

over the quality of intermediate solutions in terms

of the number of FIFO violations.
� We show in our computational results that QCP does

an excellent job of enforcing FIFO constraints for the

current set of business rules, but we also mention that

QCP does not guarantee FIFO compliance when

there is priority in assigning crews to trains. We

believe that the real benefit of SCG could come

from being used in conjunction with QCP. In this

approach, we would first apply QCP to obtain a

solution with very few FIFO violations. SCG would
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then be applied on this solution to prune out the small

number of remaining infeasibilities. A branch-and-cut

approach in this context would be unnecessarily

complicated because, when a small number of

constraints are added, the problem can be reoptimized

within a few seconds using SCG.

The SCG algorithm starts with the optimal solution of

the relaxed problem, which may have several violations of

the FIFO rule. In each iteration, the algorithm scans the

rest arcs in the current solution that have positive flow,

and for each such rest arc assignment that violates FIFO

constraints, it adds the corresponding FIFO constraints.

We then re-solve the problem and recheck for FIFO

infeasibilities. This process is repeated until all FIFO

infeasibilities are removed.

The SCG algorithm is as follows:

Step 1: Solve the relaxed problem. If a feasible solution

exists, proceed to Step 2. Otherwise stop,

because the problem is infeasible.

Step 2: Examine all of the rest arcs with positive flow in

the solution of Step 1. Add FIFO constraints

to the integer program on those rest arc

assignments that violate FIFO requirements.

Step 3: If FIFO constraints are added in Step 2,

reoptimize the modified integer program and go

to Step 2. Otherwise stop, because an optimal

solution has been produced.

Note that the final solution of SCG satisfies all of the

constraints of the IPF, and the constraints of SCG are

a subset of the constraints of IPF. Hence, the SCG

algorithm is an exact algorithm guaranteeing an optimal

solution to the original problem. However, in the worst

case, SCG could add all of the FIFO constraints to the

integer program and would thus become an intractable

approach. Fortunately, this seldom happens in practice.

Our computational results show that the number of

constraints added is usually much smaller than the

total number of rest arcs in the network.

While the SCG is an exact algorithm and produces

provably optimal solutions, the running time of this

algorithm can be quite high. In some instances during our

computational experiments, SCG had a running time of

the order of minutes, while in others, it had a running

time of the order of hours. While such running times

are acceptable in the planning environment, they would

restrict the applicability of this algorithm in the real-time

environment. In the next section, we describe a cost-

perturbation-based algorithm that produces very good-

quality FIFO-compliant solutions with running times

comparable to those of the relaxed problem.

Quadratic cost perturbation (QCP) algorithm

In the previous section, we describe an SCG-based

approach to remove the FIFO violations iteratively. In

this section, we present an algorithm that penalizes the

FIFO violations in a solution. We show that this method

guarantees zero FIFO violations in the case in which

there is no priority in assigning crews to trains, and it

serves as a heuristic method for the case in which there

are priority restrictions. Cost perturbation not only

enforces FIFO constraints but also retains the special

network flow structure of the problem, leading to fast

computational times. The basic intuition behind this

approach is that we perturb the costs of arcs while solving

the relaxed problem in such a way as to guarantee FIFO

compliance.

Figure 4 presents our cost-perturbation strategy for the

case in which there is only one crew pool type. Consider

the case in which crews are detained at Terminal 2. Then,

due to the nature of detention costs, the cost of the

assignment made in the FIFO manner [Assignment (b)]

would definitely be less than or equal to the cost of

Assignment (a), and hence the solution to the relaxed

problem would honor FIFO constraints. On the other

hand, suppose that all of the rest arcs had a cost of zero;

then both assignments would have the same cost, and the

relaxed problem would have no cost incentive to choose

Assignment (b) over Assignment (a). Thus, a solution to

the relaxed problem may violate the FIFO constraints.

In order to provide an incentive to the relaxed problem

to choose case (b) over case (a), we perturb the cost

assignments on rest arcs so that the solution of the

relaxed problem has assignments of type (b) instead of

type (a).

Figure 4

FIFO assignments: Crew assignments are made (a) in a non-FIFO 

manner; (b) in a FIFO manner.
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The cost perturbation scheme that we use is a function

of the duration of rest arcs. Suppose that the time

duration between events corresponding to nodes 3 and 4,

4 and 5, and 5 and 6 are a, b, and c, respectively. Consider
a cost assignment that is proportional to the square of the

duration of rest arcs. The constant of proportionality is

represented by k. Then,

Cost of Assignment (a) ¼ k½duration of arc ð3; 6Þ�2

þ k½duration of arc ð4; 5Þ�2

¼ kðaþ bþ cÞ2 þ kb
2

¼ kða2 þ 2b
2 þ c

2 þ 2ab

þ 2bcþ 2caÞ

and

Cost of Assignment (b) ¼ k½duration of arc ð3; 5Þ�2

þ k½duration of arc ð4; 6Þ�2

¼ kðaþ bÞ2 þ kðbþ cÞ2

¼ kða2 þ 2b
2 þ c

2 þ 2abþ 2bcÞ:

It can be observed that the cost of Assignment (b) is

less than that of Assignment (a). Hence, when the rest

arcs have zero costs, the quadratic cost perturbation

scheme in the relaxed problem will give FIFO-compliant

assignments when there is only one crew pool type. The

observation made here can also be generalized for

multiple crew pools unless there is a priority of crew pools

in assignments to trains. If there is a priority assigned

to crews in train assignments, a crew can have a FIFO-

violated assignment to gain the priority assignments. We

state our observations here as the following theorem.

Theorem 2

QCP applied to the relaxed problem guarantees FIFO-

compliant crew assignments if there is no priority in

assigning crews to the trains.

Proof

In the space-time network, rest arcs may have one of

three costs assigned to them: zero cost, detention cost, or

train delay cost. If, for example, all of the rest arcs in

Figure 4 have zero cost, as shown above, the relaxed

problem chooses the FIFO-compliant assignment

because it is less expensive. If the rest arcs in Figure 4(a)

have detention costs on them, the FIFO assignment

shown in Figure 4(b) has either the same or a lesser level

of detention. Hence, the perturbation scheme will work in

this case as well. A similar argument would also work for

train delay costs because FIFO assignments will always

have train delays equal to or less than those of non-FIFO

assignments.

Since we do not want to change the cost structure of

the original problem to a large extent, we set the value of

k to a very small value and perturb the cost of each rest

arc by a value that is computed as described above. Our

computational tests (presented below in the section on

comparison of algorithms) show that this method works

very well, and that the solutions produced by QCP are

indeed FIFO-compliant in the case in which there are no

priorities. The solution time of this method is very short

and is comparable to that of the relaxed problem. Note

that in the case in which there are priorities, this approach

can be used to obtain a solution with a small number

of violations, and then the SCG algorithm can be used

to prune out these violations. Another interesting

observation is that for most of the instances tested, this

method produces solutions with objective function values

that are the same as those for the relaxed problems. This

implies that FIFO constraints can be satisfied with little

or no impact on the solution cost. Hence, using this

approach, we are able to obtain an excellent quality of

solutions using much less computational time. Because of

its attractive running times and high solution quality, this

method has the potential to be used in both planning

and real-time environments.

Significance and uses of the model
The crew-scheduling model has applications in the

tactical, planning, and strategic environments. In this

section, we elaborate and provide specific examples of

ways in which the model can be used as an effective

tool for decision making.

Tactical crew scheduling

The defining problem in tactical crew scheduling is

determining which crew should be assigned to operate

each train. However, a number of subproblems and issues

must be considered before crews are assigned to trains.

Railroads have around-the-clock crew-calling centers that

are responsible for monitoring the status of each crew and

the status of each train and anticipating when a particular

crew should be called to operate a particular train. A

typical crew-calling center employs 200 to 300 crew callers

who call crews and answer inbound telephone queries

from management and the crews. First, a crew caller

looks at the projected lineup (crew assignment) of

outbound trains at a particular crew-change location.

With a projection of train departure times, say 13:30,

15:00, and 16:00, the crew caller then goes through a

number of checks before assigning a crew to a train;

the checks determine such factors as whether the train

is covered by a designated assigned pool or by FIFO

assignment from the general pool and when the
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next qualified crew will be rested and available to operate

this train. The actual rules are very complex, and the

combinations of solutions that must be considered can

overwhelm a person.

Our model has several applications in the tactical

scheduling environment. Some of these applications are

given below:

� Assignment of crews to trains—The output of our

model tells us how to assign crews to trains.
� Recommending which crews to place in hotels and

which crews to deadhead home—When a crew arrives

at an away terminal, the crew callers must decide

whether the crew should deadhead back home or

go to a hotel for rest. The model can be used to

mathematically look ahead and systematically make

the tradeoffs among different cost categories of crew

wages, deadheads, detentions, and rest violations.
� Minimizing the number of trains delayed because of

shortage of crew—Train delays are potentially very

costly because they may lead to the unavailability

of crew to operate another train in the future and

may have a negative domino effect on network-wide

operations. By creating several deadhead arcs while

constructing the space-time network, we ensure that

such a situation is avoided.
� Disruption management—The crew-scheduling model

can be used as a tool to return disrupted operations

to normalcy. Suppose that at some point in time

the operations are disrupted. The current state or

snapshot of the system gives us the location of each

crew and the hours of duty already served. Using this

information and the information about the future

train schedule, the crew-scheduling models can be

used to optimally reassign crew to trains.

Crew planning

The essence of the crew-planning problem for operations

or planning is to determine the number of crews that

should be in each crew pool. It can be noted that since

each position is guaranteed a minimum number of work

hours per month, it is quite costly to overestimate the

number of positions required to staff a pool. Currently,

railroads solve the pool-sizing problem on the basis

of historical precedent and rules-of-thumb, through

negotiation with the union, and by trial and error. The

network flow model can satisfy the need for a structured

approach that captures all of the considerations,

quantifies the various costs, and recommends the

best way to define and staff crew pools. Some of the

applications of the model in the planning environment are

described in the following paragraphs.

Developing and evaluating crew schedules—The crew-

scheduling model can be used to compare the current

crew schedule with the model-generated schedule on the

basis of several criteria, such as average rest time at the

home location, average rest time at the away location,

and average deadhead time. By suitably changing the

model cost parameters, we can obtain schedules with

different characteristics. For example, if we want to

minimize detention, we can set the detention cost to

a very large value and run the model.

Varying the size of crew pools—Using the crew-

scheduling model, we can study the impact of varying the

crew pool size on the quality of the solution. For example,

suppose our objective is to minimize the number of crew

used. While formulating the problem, we give large cost

incentives to flow on the sink arcs from crew-supply

nodes to the sink node. This would lead to the model

producing a crew schedule that uses the minimum

number of crew.

Crew strategic analysis

Strategic management involves the development of

policies and plans and the allocation of resources to

implement these plans. The timeframe of strategic

management extends over several months or years.

Strategic crew problems include forecasting future

headcount needs and evaluating major policy changes,

such as negotiating changes to trade-union rules or

changing the number and location of crew change points

on a network. The railroad industry is now experiencing

unprecedented traffic growth. Therefore, it is very

important to be able to quantify the expected impact on

manpower needs as traffic grows, because it takes 18 to 24

months to hire, train, and qualify train crew personnel.

Recently, corporate strategists have been struggling with

the tradeoff between crew costs and train delays. Our

model can be used to quickly calibrate efficient frontiers

for each crew district and determine the number of crews

that minimizes the sum of train delay costs and crew

costs. If railroad management is dissatisfied with that

level of train performance, the cost of train delay can

simply be increased, and the model will request additional

crews so that a new cost-minimizing solution is

obtained.

Some of the applications of the network flow model

in the strategic environment are given in the following

paragraphs.

Determining the number and territory of crew districts—

We can use the crew-scheduling model to reoptimize and

test different crew district configurations. For example,

suppose crew district 1 operates trains between locations

A and B, and crew district 2 operates trains between

locations B and C. Merging all three stations into a single
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crew district could give us better opportunity to optimize

costs.

Evaluating the effects of changing crew trade-union

rules—The CSP is a complex optimization problem

because of strict trade-union rules related to crew

operation. Changes to any of these rules will likely face

considerable resistance from the labor union. At the same

time, such changes have the potential to affect crew costs

substantially. Using the crew-scheduling model, we can

evaluate the impact of changing the trade-union rules

on the crew cost. For example, suppose we want to know

the impact of changing the mandatory rest time at home

from twelve hours to ten hours. We can run the model

with the parameter setting of ten hours and measure the

change in crew cost.

Forecasting crew requirement—On the basis of the

forecasted train schedule, we can use the model to help

us forecast crew requirements. We first run the model

assuming that a very large number of crews are available.

Because the crew supply is much greater than required,

many crews will flow directly from the crew supply to the

sink node. The total crew supply minus the number of

unused crews will give an idea of the number of crews

required, based on the forecasted train schedule.

In this section, we have seen that the crew-scheduling

model has several real-world applications in the tactical,

planning, and strategic environments. If put into

production, the model has the potential to enable railroad

professionals to improve their day-to-day operations

and to plan effectively to achieve their long-term

organizational goals.

Computational results
In this section, we present computational results of our

algorithms on several problem instances and a case

study of a representative instance. We implemented our

algorithms in Microsoft Visual Basic** programming

language and tested them on the data provided by a

major Class I railroad. We modeled our integer programs

using ILOG Concert Technology** 2.0 modeling

language and solved them using the CPLEX 9.0 solver.

We conducted all computational tests on a 2.4-GHz Intel

Pentium** 4 processor with 512 MB RAM.

Comparison of algorithms

In this section, we compare the performances of the

relaxed problem, the exact IPF, the SCG algorithm, and

the QCP algorithm in several real-world instances. Our

problem instances consist of train schedules over a period

of one to four weeks. In one instance, the number of crew

pools is 1, making the problem a single-commodity

flow problem. In the other set of instances, the number

of crew pools is 2, and the problem is formulated as a

multicommodity flow problem. For each instance, we

measure the solution cost, the solution time, the number

of FIFO constraints added to the formulation, and the

number of FIFO constraints violated in the solution. It

can be noted that no FIFO constraints are added while

solving the relaxed problem and the QCP. The results

of our computational tests are presented in Table 2.

We have reached the following conclusions from the

results:

� The solutions to the relaxed problem have the highest

number of FIFO violations, but the solution times are

the fastest.

� The IPF has several thousand FIFO constraints.

These constraints make the problem computationally

intractable, and we could not obtain a feasible

Table 2 Comparison of algorithmic performance.

Weeks Crew

pools

Relaxed problem Exact IPF SCG QCP

Cost

($)

Time

(s)

FIFO

constraints

violated

Cost

($)

Time

(s)

FIFO constraints Cost

($)

Time

(s)

FIFO constraints Cost

($)

Time

(s)

FIFO

constraints

violatedAdded Violated Added Violated

1 1 130,952 10.8 73 - 3,600 11,062 N/A 132,022 2,015 958 25 130,952 10.9 0

2 1 265,284 30.3 148 - 3,600 23,527 N/A 267,067 1,981 1,492 95 265,284 31.4 0

3 1 399,816 57.2 225 - 3,600 35,976 N/A 399,816 1,908 1,657 151 399,816 60.0 0

4 1 531,378 91.8 274 - 3,600 48,797 N/A 532,091 2,326 1,805 226 531,378 97.4 0

1 2 132,495 17.7 64 - 3,600 17,999 N/A 132,495 347.5 478 0 132,495 17.7 0

2 2 267,130 55.6 118 - 3,600 40,623 N/A 267,316 2,423 1,068 0 267,221 60.9 0

3 2 402,045 112.0 173 - 3,600 63,215 N/A 405,227 4,858 1,321 25 402,678 125.0 0

4 2 533,694 187.3 226 - 3,600 86,477 N/A 538,039 3,928 1,745 25 534,327 210.7 0
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solution for any of the instances in one hour of

computational time.
� The SCG algorithm starts with the solution to the

relaxed problem as the initial solution and

progressively reduces the number of infeasibilities.

However, the amount of computational time taken

by this algorithm is still quite large. We were able to

obtain a FIFO-compliant solution for two instances;

for all other instances, we terminated the algorithm

when the iteration that was running during minute 30

of computational time was complete.
� The QCP algorithm produces FIFO-compliant crew

schedules for all instances. Also, in six instances out

of eight, the objective function values are equal to that

of the relaxed problem. As the relaxed problem

provides a lower bound to the optimal solution, the

QCP algorithm produces the optimal solution in six

instances out of eight, and the optimality gap is less

than 0.2 percent for the other two instances. This

algorithm also has very fast solution times, which are

comparable to that of the relaxed problem.

Thus, we conclude that the QCP algorithm

outperforms the other algorithms in both solution quality

and solution time. It produces optimal or near-optimal

solutions in a few minutes of running time and therefore

has the potential to be used in both the planning and real-

time environments.

Case study

In this section, we conduct a case study to illustrate how

the crew-scheduling model can be used to derive useful

information and support decision making at a railroad.

We perform the case study on a representative two-week

dataset that has 326 trains, two crew pools, and 48 crews,

and we run the computational tests using the QCP

algorithm. The various aspects of the problem that we

observe in this case study are discussed in the following

sections.

Effect of varying the number of available crews

In this study, we quantify the effect of varying the number

of available crews on the overall solution quality. We

start with a set of 42 available crews and reduce the

number of crews available until the problem becomes

infeasible. Table 3 presents the computational results, and

Figure 5(a) shows the relationship between the number of

available crews and solution cost.

We can make the following observations from this

study:

1. As the number of available crews decreases, the

model attempts to compensate for the lack of crews

by increasing the level of deadheading and train

delays.

2. Initially, reducing the number of available crews has

no adverse effect on the solution cost, but as more

crews are removed, the solution cost rises steeply.

For example, reducing the number of crews available

from 42 to 26 (a reduction of 38 percent) has an

insignificant impact on the solution cost, but

reducing the number of crews from 24 to 22 leads to

the solution cost increasing by more than $59,000 (an

increase of 20 percent).

Table 3 Effect of varying crew pool.

Crew available Crew used Deadheads (hr) Detention (hr) Train delay (hr) Solution cost ($) Increase in cost ($)

42 31 38 37.00 8.77 262,838 -

40 30 38 37.00 8.77 262,838 0

38 29 38 37.00 8.77 262,838 0

36 29 40 37.00 7.85 263,340 502

34 29 40 37.00 7.85 263,340 0

32 28 40 37.00 7.85 263,340 0

30 28 41 37.00 7.85 263,697 357

28 28 41 37.00 7.85 263,697 0

26 26 43 30.65 30.38 268,704 5,007

24 24 43 17.50 154.83 295,486 26,782

22 22 44 6.37 417.12 354,610 59,115

20 - - - - Infeasible -
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The objective function in this case study is not a

function of the number of crews used; it is only a function

of total deadhead, detention, and delay. This is why

solutions using different numbers of crews have identical

costs provided that their total deadhead, detention, and

delay are the same.

Effect of varying deadhead cost

In this study, we quantify the effect of varying deadhead

cost on the number of deadheads, total detention hours,

total train delay hours, and overall solution cost. The

default cost of deadheading used by the railroad is $144

per hour. We start with a deadhead cost of $0 per hour

and then progressively increase deadhead cost while

measuring the impact on the solution, as shown in Table 4.

We canmake the following observations from this study:

1. As the deadhead cost increases, the number of

deadheads in the solution decreases. However, after a

certain point, there is no significant decrease in the

number of deadheads. For example, even for a very

high deadhead cost of $10,000, the solution has 33

deadheads. From this observation we can conclude

that there is an inherent imbalance in the system that

necessitates deadheading.

2. As the deadhead cost increases, the solution of the

model has fewer deadheads and more train delays.

This behavior of the model provides the insight that

if the deadhead cost increases at some point in time,

the railroad must adapt by allowing far more

flexibility in terms of train delays. Alternatively, the

management can also negotiate with crew unions and

reduce the minimum rest time requirements.

Effect of varying minimum rest time at the home location

In this study, we quantify the effect of varying the

minimum rest time at the home location on the average

rest time at the home location, train delays at the home

Figure 5

Case study results: Solution cost as a function of (a) number of 

crews; (b) minimum rest time at home; (c) detention time.
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Table 4 Effect of varying deadhead cost.

Deadhead

cost/hr

($/hr)

Deadheads Detention

(hr)

Train

delay

(hr)

Solution

cost

($)

0 42 34.55 5.45 253,079

100 38 37.00 8.77 260,051

200 38 37.00 8.82 266,396

300 37 40.33 9.48 272,733

400 37 40.33 9.57 278,918

500 36 40.33 13.13 284,955

600 36 40.33 13.13 290,955

700 36 40.33 13.13 296,955

800 36 40.33 13.13 302,955

900 36 40.33 13.18 308,967

1,000 35 36.80 22.95 314,935

10,000 33 36.80 55.13 813,771
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location, average rest time at the away location, train

delays at the away location, and the overall solution cost.

The default value of minimum rest time used by the

railroad is 12 hours. We start with a minimum rest

requirement of zero hours and progressively increase the

value of this parameter while measuring the impact on the

solution, as shown in Table 5 and Figure 5(b).

From this study we observe that the minimum rest time

at home can be increased to 16 hours without a significant

increase in the solution cost. However, any increase

beyond 16 hours leads to a steep increase in the solution

cost. The railroad management can use these inputs to

effectively negotiate rest times with the union. For

example, if the union wants the minimum rest time to be

increased from 12 hours to 14 hours, the management can

use the model to quantify the impact of this change and

negotiate appropriately.

Effect of varying detention cost

The railroad pays detention charges for each hour of crew

rest beyond 16 hours at an away location. In this section,

we quantify the effect of varying the detention cost on the

total detention hours, number of deadheads, total train

delay hours, and overall solution cost, as presented in

Table 6. The default value of detention cost used by the

railroad is $140 per hour.

We make the following observations from this study:

1. As the detention cost per hour increases, the number

of detention hours in the solution decreases.

2. As the detention cost per hour increases, the solution

has a greater number of deadheads and train delays.

This behavior of the model provides the insight that

if the detention cost increases at some point in time,

the railroad must adapt by allowing more flexibility

in terms of train delays and crew deadheading.

Effect of varying detention time

In this study, we quantify the effect of varying the

detention time (theminimum rest time at the away location

after which a crew becomes eligible for a detention

Table 6 Effect of varying detention cost.

Deadhead

cost/hr

($/hr)

Detention

(hr)

Deadheads

(hr)

Train

delay

(hr)

Solution

cost

($)

0 305.45 35 1.17 254,840

40 64.57 37 3.32 258,630

80 40.33 37 8.77 260,528

120 37.00 38 8.77 262,098

160 34.55 39 8.77 263,542

200 30.77 39 11.97 264,904

240 23.32 39 18.50 265,849

280 23.32 39 18.50 266,782

320 18.67 39 24.18 267,534

360 11.10 39 35.53 268,167

400 1.93 40 49.23 268,452

500 1.93 40 49.23 268,645

600 1.93 40 49.23 268,838

700 1.93 40 49.23 269,032

Table 7 Effect of varying detention time.

Detention

time

(hr)

Average rest

at away location

(hr)

Detention

(hr)

Solution cost

($)

0 8.95 1,136.60 460,558

4 8.95 633.18 390,079

8 10.41 331.60 324,478

12 11.12 83.17 280,491

16 13.33 37.00 262,838

20 14.20 3.67 256,561

24 14.78 1.52 255,620

28 15.82 0.00 254,840

Table 5 Effect of varying minimum rest time at the home

location.

Minimum

rest

(hr)

Average

rest

at home

(hr)

Train

delays

at home

(hr)

Average

rest away

(hr)

Train

delays

away

(hr)

Solution

cost

($)

0 10.02 0.00 12.83 8.77 262,838

2 11.60 0.00 12.99 8.77 262,838

4 12.86 0.00 13.12 8.77 262,838

6 14.37 0.00 13.12 8.77 262,838

8 15.16 0.00 13.15 8.77 262,838

10 16.81 0.00 13.31 8.77 262,838

12 18.51 0.00 13.33 8.77 262,838

14 20.48 0.00 13.25 8.77 262,838

16 21.53 0.07 13.09 8.77 262,853

18 23.98 1.23 13.18 9.52 263,294

20 28.33 3.78 13.09 17.40 265,337
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allowance) on the average rest time at the away location,

detention hours, and overall solution cost. The results are

shown in Table 7 and Figure 5(c). The default value of

detention time provided by the railroad is 16 hours.

This study shows that increasing the detention time has

an impact on the solution cost, but it diminishes as the

detention time increases. We observe that increasing the

detention time from 0 to 20 hours reduces the solution

cost, but increasing it beyond 20 hours has almost no

impact on the solution quality.

Summary and conclusions
We have described a network-flow-based approach to

solve the railroad CSP in the context of North American

railroads. The CSP for North American railroads is

governed by several FRA regulations and trade-union

work rules. To develop a good crew schedule, in addition

to satisfying these regulations, the total wage costs, train

delay costs, deadhead costs, and detention costs must all

be minimized. The railroad divides the network into a

number of crew districts, and each crew district has

several crew pools. Each crew pool at a district can

have a different set of operating rules. These factors

make this a complex problem to model and solve.

The network flow formulation for the CSP developed

in this paper is both flexible and robust, and it can easily

be manipulated to represent each of the possibilities

encountered in real life. We formulate the CSP as an

integer program on a space-time network. The network is

constructed in such a way that all FRA regulations and

trade-union work rules other than FIFO constraints are

enforced during the network construction phase itself.

The operational constraints are handled in the IPF. We

develop two approaches to handle FIFO constraints.

The first is an SCG approach in which constraints are

generated iteratively to cut out FIFO violations. The

second approach, QCP, relies on perturbing the objective

function to generate FIFO-compliant solutions.

We provide computational results comparing the

performance of various approaches and show that the

perturbation approach outperforms the other approaches

in terms of both solution time and solution quality.

The crew-scheduling model has applications in a wide

range of settings. We describe several applications of the

model in the tactical, planning, and strategic environments.

The broad spectrum of applications varies from the short-

term problem of assigning crews to trains over the next

few days to the long-term problem of forecasting crew

requirements on the basis of future demand patterns.

The model provides railroad executives with a method to

calibrate and quantify the impact of current decisions on

future operations by running several ‘‘what-if ’’ scenarios.

We believe that this research will eventually lead to the

deployment of crew-planning models and algorithms at

North American railroads, replacing the current manual

process and that, in doing so, it will have a significant

impact on railroad on-time performance, crew utilization,

and productivity, while also improving the quality of life

for crew and improving railroad safety.
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