Strategic planning of
preparedness budgets for
wildland fire management

As part of the prototyping effort for the preparedness module
(PM) of the Fire Program Analysis (FPA) system that IBM
developed for five U.S. federal agencies, we designed and
implemented an optimization model for determining budgets
necessary for managing wildland fires during the initial response
period. For a given budget, the model uses a mixed-integer linear
optimization approach to maximize the number of acres managed
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(i.e., land protected from fire damage as a result of the initial
response). The model is solved iteratively to establish a function
that maps best achievable effectiveness, in terms of acres managed,
at different budget levels. To handle the computationally
prohibitive size of the resulting model instances, we devised a
heuristic-based solution approach, and we reformulated the client’s
original model by switching to a continuous time domain and
introducing piecewise-linearized functions. As a result, we not
only built a tractable model, but also succeeded in delivering a
performance speedup of more than 150 fold. We also conducted
validation experiments for certain assumptions in the model to

assess their impact on the solution quality.

Introduction

Forest fires in the United States consume more than five
million acres of land and result in extensive loss of life,
property, and natural resources. Furthermore, the federal
government spends, on average, $800 million each year to
contain the fires. The deployment of firefighting resources
required to contain the fires (such as engines, bulldozers,
and helicopters) poses an immense challenge because of
the large number of resources, the unique requirements of
each geographical location, the multitude of resources
available to fight the fires, and the varying staffing level
associated with each resource. The issue is further
complicated because several agencies with different
interests and responsibilities manage the federal lands,
including the USDA (United States Department of
Agriculture) Forest Service, Bureau of Land
Management, Bureau of Indian Affairs, National Park
Service, and U.S. Fish and Wildlife Service. In the past,
each agency has used planning analysis models and
systems to determine the desired staffing and budget
required for wildland fire-management programs. Most
of these systems rely on economic theory that has played
a fundamental role in wildland fire management since

Headley [1] and Sparhawk [2] described tradeoffs
involved in establishing an optimal wildfire management
program. The theoretical framework used to identify the
most economically efficient level of fire management
expenditures has been the Cost Plus Net Value Change
model (C+NVC) [3], which minimizes the cost of wildland
fire management by minimizing the sum of the
preparedness cost (expenditures associated with
preparation for a fire season), suppression cost (direct
wildfire-suppression expenditures during a fire season),
and NVC (net wildfire damages). However, the C+NVC
model does not specify the strategies for deployment of
firefighting resources that are necessary to achieve the
minimum cost. For a model to be of operational value,
the solution must indicate the specific resource
deployment plan for any given wildfire and the
corresponding total budget requirement.

By using the C+NVC model, the USDA Forest Service
developed the National Fire Management Analysis
System (NFMAS), the first operational system in the
United States that computes the most efficient
deployment of firefighting resources. NFMAS allows its
users (wildfire management analysts and planners) to
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choose firefighting resources, resource dispatch rules, and
preparedness budgets; it then calculates the predicted
corresponding costs and damages for a given
geographical area and set of fire conditions. The user
may systematically change these input parameters in an
attempt to arrive at the best resource deployment plan
that minimizes the sum of the total cost and the net
wildfire damages. However, because NFMAS is a
simulation model and relies on the user to determine the
optimal strategy through trial and error, it cannot always
reliably identify the optimal resource deployment
strategy.

Other systems that are not based on criteria as broad as
those of NFMAS have also been developed. For example,
the CFES-TAM model [4] was developed for the
California Division of Forestry. It does not directly
consider the economic costs of wildfire damages, but
rather implements a California legislative mandate to
provide equal protection for lands of equal value. The
National Park Service uses a fire management model
called FIREPRO that was not designed to consider the
relative utility of firefighting resources, which we often
refer to as the “value” of such resources, or to solve
for the optimal deployment of firefighting resources.

As we have just noted, government agencies use
different systems to estimate their program needs,
including preparedness resource planning, yet no
one system has been able to adapt to the increasing
complexity of fire management. These challenges resulted
in the need for the standard, automated, interagency Fire
Program Analysis (FPA) system, with a preparedness
module (PM) as part of a first phase for fire preparedness
resource planning. Central to this resource planning
process is a linear optimization (mixed-integer
programming) model that maximizes acres managed for
a given level of cost. The model is solved iteratively across
a range of total cost constraints in order to establish a
function that maps the best achievable effectiveness, in
terms of acres managed, for each cost level in that range.
An interpretation of the mapping may provide a funding
authority with the means to select from a menu of
cost-efficient alternatives. A function known as the
effectiveness frontier indicates the amount of fire
protection that can be obtained at different levels of
appropriation and empowers the appropriator to make
informed decisions regarding alternative program levels.

The body of this paper covers the background,
formulation, and solution approach to the resource
planning problem in the FPA project. Following the
solution approach, we examine the modeling challenges,
present computational results and analyses, and discuss
our efforts in validating the model. Finally, the impact of
our work is summarized and some future directions are
discussed.
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Fire program analysis—preparedness module
The strategic planning model for FPA-PM is a mixed-
integer program that optimally deploys firefighting
resources to maximize acres managed for a specified cost
level. This is done in a way that allows the generated
budgets to be accumulated nationally for program
analysis and budget requests. The scope may be
considered strategic in nature, and the model does
address the tactics of resource deployment at the
operational level, such as the specific sequence of resource
deployment. The model is a direct extension of the one
developed by Rideout and Kirsch [5], which is referred to
as the original model in this paper.

The model addresses the response requirements for two
types of fires, each entailing a different response strategy.
Initial response fires require suppression in the first 18
hours. Wildland fire use (WFU) fires [6] have a defined
management and workload associated with monitoring
the fire. WFU fires are fires proactively set by fire
planning units in order to reduce hazardous conditions at
locations that may result in a potential fire in the future.
The fire management team identifies such locations and
performs a controlled burning to eliminate the hazardous
conditions. Since these fires are set intentionally by the
firefighting crew, each fire has an estimated management
and monitoring workload. Correspondingly, each
resource that can be deployed to the WFU fire has two
numerical values, one associated with the management
capability and the other with the monitoring capability.

To help capture the variance in potential fire effects
across a fire season (i.e., a year) and across geographical
regions known as fire planning units, or FPUs (and
therefore to help capture the potential impact on natural,
cultural, and social resources), the year is divided into
26 two-week blocks called sensitivity periods. Two-week
periods are proposed as the minimum resolution needed
to capture the most important temporal differences in fire
effects on land management values. (The term land
management values relates to such factors as keeping air
and water clean, sustaining rural forest and economic
development, improving forest health, restoring
ecological balance, and enhancing wildlife habitat
and population). For any given FPU that requires
a budgeting analysis, a set of representative fires—
distributed throughout the FPU over the sensitivity
periods—are generated in our model on the basis of
historical fire data. A weight is assigned to each
representative fire to reflect the differences in the
management values of the land burned by that fire.
Unless otherwise noted in the paper, representative
fires are simply referred to as “fires.”

Each type of firefighting resource has an associated

fireline production rate (rate of dissipation of fire

retardants), preparedness cost (fixed cost), and utilization
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cost (deployment cost). Many restrictions exist on the use
of fire resources within FPUs. A significant consideration
in determining an initial response to an unplanned
ignition must take into account the fire equipment or
strategies that may be applied to a particular place. This
consideration must incorporate agency-specific policy,
ensure compliance with applicable laws and legislation,
and provide protection for sensitive resources from
potentially damaging fire operations. Each resource may
also have operational constraints placed on its use that
are unrelated to management objectives. A constraint

in this context relates to the operational capability of

a particular piece of equipment to perform under the
necessary conditions. Examples include constraining the
use of a helicopter at high elevations if it is not rated
for high-altitude missions, or constraining the use of a
bulldozer on slopes that exceed the general capabilities
for that piece of equipment.

Containment of a fire is achieved if the sum of the
firelines constructed is at least equal to the fire perimeter
at any time for a given total cost. If the model is unable to
contain a fire within its cost allotment, the fire is assumed
to have escaped the initial response. The size and cost of
an escaped fire are estimated from statistical analysis
of historical fire and weather data. Given a total cost
constraint, the integer program deploys firefighting
resources in an attempt to contain the fires while
maximizing the number of weighted acres managed
(WAM), a measurement of overall fire management
effectiveness. WAM is defined as the sum of individual
fire management effectiveness over all of the fires in an
FPU. For each fire, the management effectiveness is
calculated by multiplying acres managed by the weight of
the fire. (The term weight is used to indicate the relative
importance of fires and is affected by characteristics
such as human and animal population density.)

In summary, given a set of fires and available resources
in an FPU, the optimization model

1. Maximizes the WAM.

2. Enforces fire containment constraints that determine
the final fire sizes.

3. Enforces the total budget constraint (i.e., the total of
preparedness and suppression costs).

Each execution of the optimization model determines
a single point on the effectiveness frontier. Each
point represents a combination of total cost and the
effectiveness that it can attain as measured by WAM. The
entire effectiveness frontier is mapped by iteratively
executing the optimization model across cost levels.
Mapping the effectiveness frontier allows the budget
planners to determine, for each FPU, the preparedness
staffing needs, the associated effectiveness, and the number
of acres that would be expected to burn for a given
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budget level. Additionally, the model data for each
FPU and its corresponding model results (the entire
effectiveness frontier) populate the national FPA
database for all of the planning units in the nation.
This allows the national budget planners to assess
tradeoffs among planning units nationwide.

Model development

In this section, we describe the notation used in order to
present the model. We also list certain characteristics that
are central to the model formulation. We then provide the
actual formulation and its detailed explanation.

Parameters

Time parameters

T; Maximum time (in minutes) considered for initial
response to fire i.

T9 Time at which fire i is considered to have escaped;
TY is set to (T;+ 1). (For example, the escape time
of the fire is one minute more than the maximum
containment time 77.)

Fire parameters

1 Set of all representative fires to be managed for
the year, indexed using 7.

J Set of unique fire groups, indexed using j. A fire
group is a collection of simultaneous fires.

I3 Set of unique initial response fires in fire group j.

IV Set of unique WFU fires in fire group j
(oY =1).

W;  Importance (i.e., weight) given to a land burned
by fire i.

PP [Initial perimeter (in chains) of fire i at time
zero (¢t =0), when the fire is discovered. A
chain is a unit of measure in land surveys
(80 chains = 1 mile).

P;(t) Perimeter growth piecewise-linear (PWL)
function of fire i.

P; Total perimeter of fire i at time 7.

P?  Total perimeter of escaped fire i at time 7.

AP Initial area burned (in acres) by fire i at time zero,
when the fire is discovered.

A;(t) Area growth PWL function of fire i.

A;  Total area burned by fire i at time T

AY  Total area burned by escaped fire i at time 7°9.

TS  Total growth or burning time of fire i.

WLS Management workload for WFU fire i.

WLT Monitoring workload for WFU fire i.

MS  Management capability of resource r on WFU
fire i, where i € I)".

MT  Monitoring capability of resource r on WFU
fire i, where i € I/W 377
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Resource parameters

R Set of all potential firefighting resources,
indexed using r.

Ry Set of resources that must be utilized, where
R,C R.

R; Set of all resources that may be deployed to fire
i, where R; C R.

I When /I is defined as equal to >~/ |Ril, Ir is

the set of all fires that may be contained using
resource r, where I C I.

RWVT Set of all water tenders, where RV T C R.

R Set of water tenders that may be deployed to
fire i, i.e., R" = R¥TNR;.

R™) Set of resources (engines) that can be supported

by a water tender, where RW™W) C R.

Set of resources in R™) that may be deployed

to fire i, i.c., R§W> = RW) N R,

ROR Set of all ground resources that may be
deployed to fire i, where R°R C R; C R.

RAT Set of all air tankers that may be deployed to
fire i, where RAT C R; C R.

T Arrival time of resource r on fire 7.

T¢ Departure time of resource r from fire i.

Q.(t)  Fireline production PWL function by resource
r when containing fire i.

VQ,(t) Additional fireline production PWL function of
resource r when supported by a water tender in
containing fire i.

K Maximum number of air tankers that one
ground resource can support.

Fixed and variable cost parameters

TC Total cost ceiling (preparedness plus suppression
costs) for initial response.

F. Fixed cost for using a resource r € R.

C;  Partial suppression costs of fighting escaped fire i
incurred during initial response.

D,(f) Resource-independent suppression cost PWL
function for fighting contained fire i.

DP  Resource-independent suppression cost at the
time of discovery of fire i.

H,;  Total variable cost for using resource r in
suppressing fire 7 at time 7;.

H,(t) Hourly cost PWL function for using resource r in
suppressing fire i.

Penalty cost parameters

P Set of overhead resource groups, indexed using p.
Each overhead resource group is a collection of
resources in a corresponding program leadership
group. (Overhead resource groups share common
characteristics, such as belonging to a certain
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resource type or dispatch location or having
similar training program requirements. A
program leadership group comprises a set of
resources requiring the same training program
for improving their effectiveness.)

S Set of station resource groups, indexed using s.
Each station resource group is a collection of
resources stationed at the same dispatch location.

E Set of equipment resource groups, indexed using
e. Each equipment resource group is a collection
of resources of the same type, e.g., engines or
helicopters.

R,  Set of resources in overhead group p, where
R, C R.

R,  Set of resources in station group s, where R, C R.

R,  Set of resources in equipment group e, where
R, C R.

TH, Threshold quantity of overhead group p beyond

which acquisition penalties are incurred.

(Acquiring resources beyond the threshold limit

accrues a penalty cost.)

Penalty cost of using resources of overhead group

p beyond the threshold quantity TH,,.

Ve,  Penalty cost of using n resources at dispatch
location s, where 0 < n < |Ry|.

TH, Threshold quantity of type-e resources beyond
which acquisition penalties are incurred.

O,  Unit penalty cost of using resources of type e
beyond the threshold quantity TH.,.

Objective parameters

B Total number of weighted acres burned (WAB).
Wy Total WAB if no containment action is taken.
W Total WAM by initial response, i.e., W= W, — B.

Decision variables

In the previous section, we listed parameters—that is,
various entities that correspond to the input data used in
defining the model inputs. They define the characteristics
of the model. In this section, we list variables or decision
variables. These entities define the unknown values for
which an optimal value is desired. All variables in our
model are denoted in lower case.

d! 1if fire i is contained during daytime; 0 otherwise.
n: 1 if fire i is contained during nighttime; 0 otherwise.
»» 1 if resource r is used on any fire; 0 otherwise.

u;- 1 if resource r is used on fire i; 0 otherwise.

u’ Length of duration of deployment of resource r on
fire i.

Length of burning duration of fire 7, if contained
during daytime.
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d;

w
Zir

8p

Length of burning duration of fire i, if contained
during nighttime.

Deployment cost of resource r on fire i.

Additional line production by resource r on fire i in
presence of water tender w.

1 if TH, or more resources of overhead group p are
used; 0 otherwise.

ven 1 if n resources at dispatch location s are used; 0

Oc

otherwise.
Non-negative penalty costs incurred by resources of

type e.

Characteristics of parameters and variables

In

the previous sections we listed various parameters and

variables. Here we provide a list of notes that further
elucidate the meaning of some of these entities.

The optimization model aims at allocating resources
to a set of deterministic, representative fires for which
there is perfect a priori knowledge for the entire
planning horizon.

T; is the maximum time during which the resources
can fight a fire i. A fire that escapes has a duration of
(T; + 1), also denoted as TY.

Both resource-deployment and fire-burning durations
are measured on the same time scale 7 between 0 and
T;, which denotes the time elapsed after a fire event is
reported at time zero.

Initial response fires can be contained either during
daytime or nighttime. This delineation is required,
since during nighttime the fires do not grow in size.
Hence df = 1 if fire is contained during daytime and
nf =1 for fires contained at night.

The total fire perimeter P; and the total area burned
A; are defined for all fires. Escaped fires, i.e., fires with
d = nf =0, are assigned a final perimeter P? and an
area AY.

Fire-suppression resources include attributes that may
limit their use in specific FPUs. This requirement is
implemented by introducing sets R; and 7,.

No resource is deployed to an uncontained fire. This
requirement was mandated by subject matter experts,
because any fire that escapes the initial attack will be
handled in a large-fire optimization. (The initial attack
is the process of fighting the fire for 18 hours or until
the fire covers more than 300 acres.)

Simultaneous fires (concurrent fires) in one fire group
compete for exclusive use of initial response resources;
in other words, if a resource is deployed to one fire, it
cannot be deployed to any other fires in the same fire

group.
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* Resource arrival times are accounted for in the fireline
production rates (rates of dissipation of fire
retardants). By adjusting the production rates in
the same manner, one can account for decreases
in production caused by fatigue or refill times.

¢ Fire-containment costs comprise fixed resource costs
F. (also known as preparedness costs) and variable
suppression costs, which in turn are composed of
resource-independent suppression costs D;(f) (also
known as mop-up costs) and resource-dependent
suppression costs H;.(t). Mop-up costs are the costs
associated with cleanup after a fire has been contained.

¢ Fixed resource costs are incurred if a resource is
deployed as a result of the optimization. However,
fixed resource costs are incurred for all resources in
set R, (must-use resources that usually have already
been paid for) whether or not they are deployed.

® Various penalty costs (e.g., overhead, station, and
equipment costs) associated with an optimal resource
organization should be accounted for within the
optimal model to ensure the optimality of the
solution. Applying penalty costs in the post-
optimization phase is not guaranteed to preserve
optimality of the solution. This requirement is
implemented by introducing new variables g, v,,, and
0., and corresponding penalty cost parameters G,
V., and O,. Note that overhead costs refer to
nondeployment-related costs associated with
acquiring additional resources above a threshold
number. These overhead costs are applied to a group
of resources belonging to a certain resource type,
dispatch location, or training program requirement.

e The penalty cost associated with any overhead
resource group p is a constant (G,); it is independent
of number of resources n, for n > TH, > 0, and is
zero for 0 <n < TH,.

* The penalty cost associated with any resource group
of type e is linear in the number of resources n, for
n> TH, > 0, and the cost is zero for 0 < n < TH,.

Formulation

The optimization model may be presented as shown in
the equations that follow. The meaning of each equation
in this global problem optimization (GPO) is given in the
section on formulation details.

max W = W(0>

. D d G\ f
_mm{lze; W{Ai —&—Ai(ti) —&—Ai(T,. )ni
+(A$_A§>)(1_d§_nf)]},

(1)
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(13)
(14)
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Formulation details

A detailed explanation of the objective function
[Equation (1)] and each constraint [Equations (2)—(24)]
listed in the formulation in the previous section is
provided below:

1. The objective of the FPA model is to maximize the
WAM. Conversely, the model attempts to minimize
the weighted acres burned (WAB). The WAB for
each fire is the product of the weight assigned to
the fire and the final fire size. It is also subject to
the containment or escape of the fire. For fires
contained during daytime, the WAB is the sum
of the discovery size and size of the fire until the
time at which containment is achieved. For fires
contained during nighttime, the WAB is a sum
of the discovery size and the size of the fire until
nightfall. The size of the fires that escape the initial
attack is defined as the escape size.

2. Each resource deployed to a fire must remain
deployed until containment is achieved. Hence, the
containment duration of the fire is greater than or
equal to the deployment duration of the resources.

3. A resource cannot be deployed after the departure
time of the resource. This is relevant for aerial
resources that cannot fight fire during nighttime.

4. A resource can be deployed only after the arrival
time of the fire.

5. A fire is said to be successfully contained if the total
line produced by all deployed resources is greater
than or equal to the perimeter of the fire at the
containment duration. If the resource organization
contains engines and water tenders, additional line
production capability of engines in the presence
of water tenders is also taken into account.

6. The resource binary variable should be set to 1 for
each resource that has been deployed to a fire.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. The fire can be contained either during daytime or

nighttime.

. Ifafireis contained during daytime, the containment

time should be less than or equal to the nighttime.
If a fire is contained during nighttime, the
containment time should be less than or equal to
the nighttime end time of the fire.

Each ground resource deployed to a fire must
remain deployed until the fire is contained.

A fire cannot be contained in the absence of a
ground resource. This policy is adopted by
firefighters in the field to enable verification of
containment by a ground crew if aerial resources
are used to contain the fires.

The maximum additional line production capacity
of an engine resource in the presence of a water
tender is less than or equal to the product of the
additional line production rate of the engine
resource and the number of water tender resources
deployed to the fire.

The maximum additional line production capacity
of an engine resource in the presence of a water
tender is less than or equal to the maximum line
production capacity of the resource until the
maximum deployment duration of the resource.
The additional line production of an engine
resource is zero in the absence of a water tender.
Any must-use resource must form a part of the
resource organization (even if it is not deployed

to any fire).

The deployment cost of a resource is greater than
or equal to the product of the deployment cost
function and the deployment duration of the
resource.

The sum total of management capability of all
deployed resources is greater than or equal to

the management workload required for the fire.
The sum total of the monitoring capability of all
deployed resources is greater than or equal to the
monitoring workload required for the fire.

The resources in the overhead resource group must
be accounted for.

The total number of resources deployed from an
overhead group cannot exceed the overhead group
threshold limit.

The resources deployed from each dispatch location
must be accounted for.

If a resource has been deployed from a dispatch
location, the dispatch location flag must be
activated.

The total penalty cost for deploying more resources
than the penalty group threshold is greater than or
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equal to the product of the penalty cost per resource
and the number of resources deployed from that
penalty group.

24. The total cost of resource organization (fixed
and deployment cost, fire-suppression cost, and
leadership, station, and equipment penalty cost)
should be less than or equal to the budget cost.

Solution approach

The optimization model formulated in the previous
section implicitly addresses two different problems:
resource acquisition, which deals with the problem of
generating the feasible initial response organization,

and resource deployment, which evaluates the maximum
effectiveness for a given proposal for an initial response
organization, within allowed budgets. While the resource
acquisition component of the model is fairly compact, the
deployment problem is associated with details pertaining
to numerous combinations of resources, fires, and
deployment time periods. Solving the global model as

is proves difficult and in most cases impossible because
of the computationally prohibitive size of the model
instances (especially for large FPUs) and the intrinsic
runtime complexity that arises from low-level resource
deployment decision-making.

Two-phase decomposition heuristic

Analysis of preliminary optimization results and available
historical data reveals that resource acquisition is the
overarching factor in the model because, on average, the
resource acquisition cost (fixed cost plus various penalty
costs) makes up more than 80% of the total initial
response cost. Therefore, we devised a solution approach
that is based on a two-phase decomposition crash heuristic
(DCH).

Resource deployment problem (RDP)

The first phase is formulated as a cost-unconstrained
resource deployment problem, which makes use of the
previously presented set of equations in the GPO without
the cost constraints in Equations (19)—(24).

Resource acquisition problem (RAP)

The second phase is formulated as a resource acquisition
problem that involves deciding which fire(s) to let escape
and which proposed resource(s) to give up so that

the original cost constraint can be satisfied, given
Equations (19)-(23) and with

max W = max( W) — B)
= W, —min| > WABz + Y W Ao(1-2)

icl icl !

(25) 381
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and

R,
Z SCiZi + ZF,yr + Z Gpgp + Z ZVsnvm
icl reR PEP seS n=0
£ 0 <7C (26)

eck

The new parameters and decision variables introduced
in RAP are defined as

WAB; Total weighted acres burned by fire 7 in the
first-phase solution.

SC; Total suppression cost incurred to contain fire
in the first-phase solution.
z; 1 if fire i is to be contained (as in the first

phase); 0 if fire i is allowed to escape.

The solutions resulting from the two subproblems are
then combined to construct a feasible integer solution
to hot-start the original mixed-integer programming
instance. Note that providing a feasible solution as a
starting point for an optimization problem is referred
to as “hot-starting” an optimization; this enables the
optimizer to search for alternate solutions that result
in an improvement in the objective function, thereby
reducing the solution time. Specifically, the solution to
the RDP gives values corresponding to fire containment
(df, n"), resource preference (y,), and containment
duration (¢, ). The RAP then maximizes the WAM
using the resource preferences (y,), final fire size (derived
from containment duration ¢ or¢7), and fixed and
deployment costs given by RDP. The overall algorithm
is outlined in the next section.

WAM algorithm
[Step 0: Initialize budget level]

TC = Budget; owEr BOUND.

[Step 1: Solve RDP] Obtain the preferred resource
organization and resource deployment results
(d,f, ng: Vrs [?7 Z?v Uir, U, dir, 1;;)

[Step 2: Solve RAP] Combine results from Step 1 with
total cost constraint to arrive at a feasible solution for
the budget point TC.

[Step 3: Solve GPO] Hot-start GPO with the feasible
solution from Step 2 to obtain a globally optimal
solution for the budget point TC. Hot-starting GPO
with the RAP solution allows the optimizer to reach
optimality more rapidly.

[Step 4: Iterate forward] TC .= TC + Budgetsrgp; if
TC < BudgetUPPER_BOUND’ £0 to Step 2, else STOP.
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Given this algorithm, we note that the ability to produce
a globally optimal solution in Step 3 does not rely on the
decomposition heuristic. Even in the absence of DCH, the
GPO step could be cold-started in order to obtain an
optimal solution, albeit at a much higher computational
cost in terms of CPU cycles and memory. (Solving an
optimization problem without providing an initial
feasible solution as a starting point is referred to as a cold
start.) However, DCH exploits additional mathematical
structures underlying the optimization problem to
produce feasible solutions quickly, so that the GPO step
can be hot-started from the incumbent feasible solution to
converge to a global optimal solution at only a small
fraction of the original computational cost.

Strategies for solving RDP

In order to successfully solve RDP, we analyzed the
underlying model structure and data and also had
discussions with fire planners and tactical fire managers.
As a result, we gained two important insights. First, RDP
can be further decomposed into a set of subproblems,
each dealing with a single fire group. These subproblems
are much more tractable in terms of size and complexity
and can be solved independently. Also, since the
subproblems are separable, solving each subproblem
independently results in less memory requirement and
improved performance.

As part of our second insight, we note that implicit
consideration is given to the cost when selecting
resources, even if no explicitly imposed cost constraint
is considered during this first phase. This implicit
consideration allows us to obtain a more globally
balanced solution when the cost constraint is eventually
applied in the second phase. Specifically, the following
two strategies are adopted to ensure that the most cost-
effective firefighting resources are selected for the
proposed resource organization.

Strategy 1

Strategy 1 is most effective at low total cost levels; it is
focused on procuring and deploying the most efficient
resources to any given fire. Whether or not a resource
is added to the proposed firefighting organization is
dependent on its “efficiency,” which is calculated by
considering the following factors:

® The fireline production capacity of the resource for
the fire versus the costs associated with it (fixed cost,
variable resource cost, or penalty cost). The fireline
production capacity of a resource is the total length
of fireline created around the perimeter of the fire.

* The reusability of the resource, e.g., the degree of
closeness of the resource to most of the fires.
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* The versatility of the resource, i.e., the degree to
which it can be used productively on a large number
of fires.

A composite objective function is defined in order to
make the model focus on efficient resources that result in
fires being contained within a reasonable time interval:

[ > d,+ oD+ + YD)

I‘ER’. il il

. icl reR peEP
min . (27)
IR,

+ ZZVsnvsn + ZO(’

seS n=0 ecE
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where M is chosen such that M > max (7'C for containing
fire 7).

Strategy 2

Strategy 2 is most effective at high total cost levels, where
we are at liberty to pick more expensive resources,
thereby accruing higher fixed costs in order to contain
fires earlier. A “greedy approach” is used to deploy the
best resources to each fire, with “suitability” indicating
the ability to contain the fire at the earliest possible
time. (Note that the greedy approach or algorithm is a
heuristic-based approach used for selection of the most
effective resources for each fire.) The objective function
in this strategy minimizes WAB [see the objective in
Equation (1)]. The single-minded focus on WAB
reduction results in the best match between the fires
and the resources.

Modeling challenges

Although it is a strategic planning tool, the FPA
application still requires the modeling of fire growth and
resource deployment characteristics at a fairly detailed
level, which posed significant challenges to our modeling
efforts. We analyze these challenges in the following
subsections.

Computational performance

The computational performance of the optimizer on
model instances is affected by two factors: model
complexity and large model instance size. The number of
rows, columns, and nonzero matrix elements is also a
measure of the computational workload performed at
every node of the branch-and-bound tree. As background
for the more general reader, note that the set of
constraints and the objective function in an optimization
problem comprise a matrix. The rows of the matrix
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include constraints and the columns include variables.
The most common algorithm used in solving an
optimization problem is the branch-and-bound
algorithm, which employs an iterative process to improve
the quality of the solution.

The number of 0/ integer variables determines the
number of nodes to be explored by the branch-and-bound
algorithm in its pursuit of the global optimum. The FPA
model reduces to a knapsack problem, a standard
problem in combinatorial optimization, by simplifying
the containment requirements so that a predetermined set
of resources are assigned to contain each fire—and by
removing all of the group penalties associated with
resources. With this simplification, the effectiveness
metric used in the objective function can be expressed
in terms of resource selection decisions. Hence, the
optimization problem formulated in this paper falls
into the class of NP-hard problems for which the
computational complexity is exponential with respect to
the size of the data set representing the model instance,
as was proved in Nemhauser and Wolsey [7].

The original model proposed by Rideout and Kirsch [5]
required that the resource deployment and fire burn
duration be measured on the discrete time scale described
by seven time intervals measured in minutes (30, 60, 120,
200, 300, 450, 1,080), which denote the time elapsed since
the point at which a fire ignition event is reported (z=0).
As a result, the model instances became complex because
of the large number of deployment-specific 0/1 variables
associated with the fireline production rate and variable
resource cost data for each set of deployable resources
for each fire for each time interval. Such a modeling
approach does not allow the interpolation of function
values for points lying strictly between the discretized
domain points. If a smaller number of time intervals is
used to keep the number of 0/1 variables small, the
quality of the solution often suffers because of a reduction
of the time domain.

A way around this problem is to model the time
domain as a continuous function with all time-dependent
parameters (e.g., fireline produced, variable resource
costs, acres, and perimeters) represented as piecewise-
linear (PWL) and continuous functions of time with
appropriate slopes and breakpoints. The PWL
representation of data offers two distinct advantages:
First, it allows for evaluation of the underlying function
at all points in the domain, which improves the quality of
the solution compared with the discrete time interval.
Second, the PWL representation introduces no new 0/1
variables because the function is convex, resulting in a
compact representation of the function which contributes
to the reduction of model instance size. Furthermore,
from a development perspective, current state-of-the-art
modeling and solver technology, such as AMPL (a
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(a) Resource line production and (b) variable cost as a function of
time for a simulated representative fire. In part (a), resource
fireline production, each curve in the graph represents the fireline
produced by the fire. The y axis represents resource fireline
production (in chains). In part (b), resource deployment costs,
each curve represents the cost incurred by resource (in dollars).

modeling language for mathematical programming) [8],
CBC (available from COIN-OR, which stands for
COmputational INfrastructure for Operations Research),
and CPLEX** (available from ILOG, Inc.), include
readily available methods for modeling PWL functions
using an anchor, slopes, and breakpoints of the linear
segments of which the function is composed.

In analyzing initial data instances from Mississippi,
Oregon, and California, we observed that some
redundancies exist in input parameters such as the fire
perimeter, area burned, resource line production, and
variable resource cost. The line production and variable
resource cost data demonstrate a PWL characteristic that
is certainly over-determined by the use of discrete time
intervals in the original model. Figure 1 shows plots of
resource cumulative line production and variable cost
(deployment cost) as a function of time. The discrete
interval data in Figure 1 corresponding to seven time
intervals can be represented efficiently using PWL
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representation. While the perimeter and area data for fires
demonstrates PWL features with few breakpoints, the line
production and variable resource cost data for resources
is almost linear and hence can be represented by the PWL
function with just one breakpoint (the breakpoint may
not be common among the resources).

The underlying optimization model instances could be
represented equivalently by a much smaller amount of
data containing only the slopes and the breakpoints of the
PWL functions, which would otherwise be represented
redundantly by the current data, based on seven
time intervals. These slopes and breakpoints can be
automatically discovered computationally by building a
data transformation component that extracts the slopes
and breakpoints from the discrete interval data. This
allows different functions (such as line production and
perimeter) for different fires and resources to have
different slope and breakpoint representations. This
approach has the added advantage of relaxing the implicit
assumption of using a common set of breakpoints along
the time dimension, shared by all time-dependent data.

Fire containment and resource deployment
characteristics existed that posed additional computation
challenges. One such challenge is discussed in the next
section.

Water tenders

Water tenders are special resources that do not contribute
to line production but support certain specific resources
(such as fire engines) by providing them with onsite
retardant replenishment capability. Also, since the water
tenders are available at multiple dispatch locations with
unique cost and capacity constraints, we use a binary
variable to represent the assignment of a water tender to
an engine fighting a specific fire. This results in m X n
integer variables for each combination of engines and
water tenders (m engines, n water tenders). Modeling
this requirement resulted in a significant decrease in the
tractability of the model. In order to incorporate this
business requirement for detailed modeling of the fireline
production capability of the water tender resource, we
proposed an innovative approximation algorithm that
would require only m additional integer variables
corresponding to m engines. Our approximation
introduces a continuous variable /} corresponding to the
additional line-production capacity of an engine resource
in the presence of a water tender resource w on a fire i.
By studying historical data and also by consulting FPA
subject matter experts, we developed the average line
production support rate for a water tender resource.
Using this number, we were able to apply constraints
on the value of [} to effectively model the additional
line production capacity of the resource. For details of
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Table 1 FPA optimization model instance characteristics for fire planning units of Alaska (AK) and Mississippi (MS).

FPU Resource Fires Resources Fire resources Fire groups Variables 0/1 variables Columns Rows
scenario
AK ucC 482 951 73,998 195 262,065 76,008 262,065 514,712
UsS 479 54 4,301 195 17,038 5,318 17,038 32,874
US+ucC 482 953 73,998 195 262,069 76,010 262,069 515,721
MS ucC 119 189 20,982 87 74,152 21,428 74,152 109,657
Us 119 20 1,923 87 7,244 2,183 7,244 11,056
US+ucC 119 189 20,982 87 74,154 21,428 74,154 109,780

the approximation we used, please refer to the constraint
equations (12) and (13).

Computational results

We tested the heuristic approach on data instances from
seven FPUs—Mississippi (MS), Alaska (AK), southern
California (SC), Washington (WA), Wyoming (WY),
Colorado (CO), and Arizona (AZ). Depending on the
analysis type selected by the user, a corresponding unique
set of data instances is generated for the FPU. For each
FPU, three types of analysis exist: 1) a user-selected
scenario (US), 2) an unconstrained or all potential
scenario (UC), and 3) a combination of the user-selected
scenario and the unconstrained scenario (USHUC).

A US scenario generates data corresponding to the
current organization of the FPU. This scenario is a good
starting point for the user in order to assess the efficiency
of the current resource organization in fighting fires. A
UC scenario generates all possible sets of resources that
can be deployed to each dispatch location in order to
generate a larger collection of deployable resources. In
addition to US and UC, each FPU contributes one
additional scenario data instance known as US+UC.

A USHUC scenario contains both user-selected (i.e.,
existing) and unconstrained (i.e., all possible) resources,
with each US resource explicitly marked as “must use” or
“can use.” Must-use resources are those resources that
form part of the optimal resource organization regardless
of their productivity or efficiency; these are generally
resources that have already been paid for. Can-use
resources, on the other hand, are subject to the discretion
of the optimization model. Table 1 shows the numbers of
fires, resources, and sizes of model instances for all three
scenarios for Mississippi and Alaska FPUs. The contrast
between the two FPUs becomes obvious when the
corresponding data elements are compared. The
Mississippi FPU has fewer fires than the Alaska FPU
(about 119 compared with 480); hence, the resource
requirement for Mississippi is much smaller than that
for Alaska. As a result, the model instance size for
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Mississippi is smaller than the instance size for Alaska.
We obtained encouraging results, with the DCH phase
consistently producing near-optimal feasible solutions for
each of the instances using a fraction of the available
computational resources. We also observed some
interesting patterns when analyzing and comparing the
US, UC, and USHUC results (Figure 2). For Mississippi
FPU datasets, the value for the WAM is of the order
of UC > US+UC > US. Mississippi has a maximum
resource capacity of 29, of which 11 are must-use
resources; in other words, 11 specific resources must be
procured regardless of their efficiency or effectiveness.
This leaves the optimizer with only 18 resources to choose
from the pool of resources. These 11 resources cost about
$2.6M; hence, we see that the Mississippi WAM curve for
USHUC follows the US curve very closely until $6M,
after which the WAM for US+UC improves substantially
over US. This observation results from the fact that, at
lower budget levels, the fixed costs incurred by must-use
resources bias the budget allocation and prevent US+UC
from achieving significantly higher WAM than the
corresponding US scenario. It also explains why the UC
scenario has a much higher WAM than US or US+UC,
since the former is not constrained by must-use resources
and may pick the most cost-effective candidates from the
pool of resources.

Another interesting observation we can make when
examining the results is that as the budget level increases,
the number of fires contained at the incremental budget
level decreases in some cases. In the Alaska UC data
instance (row 3 of Table 2), the number of fires that
escaped at a cost of $18M and $19M actually increases
from 243 to 267, but the WAM increases by 76K acres.
Upon further study of the results, we observe that adding
$1M to the budget enables the optimizer to procure more
efficient resources, thereby containing higher-intensity
fires. Recall that the objective function in the model
maximizes WAM; therefore, it is understandable that the
model must allow some low-intensity fires to escape in
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exchange for fire-suppression dollars that can be spent
otherwise to achieve higher WAM.

Model validation

The purpose of this validation exercise was to analyze the
impact of some of the key assumptions used in developing
the FPA model. Specifically, we relax the assumption
about having perfect knowledge of fire occurrences and
evaluate the sensitivity of the solution to multiple fire
occurrence scenarios. We also assess the effect of resource
redeployment among simultaneous fires on the
containment results.

Analysis of stochastic scenarios

The FPA model is deterministic and runs on a
representative fire season scenario generated from
historical data. Uncertainty exists with respect to the fire
season, the number of fires, time of ignition, and location
and growth of fires. Additional micro-parameters exist
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that may alter the workload profile associated with the
realized fire season scenario. (The term micro-parameters
refers to additional fire characteristics and stochasticity
of the underlying data.) Uncertainty in the fire data
invalidates the optimality of the incumbent budgeting
and associated resource allocation decisions from

the FPA model. Therefore, we undertook a model
validation exercise to assess the gap between the results
of expected acreage burned from a multiple-scenario
version of the optimization model and the same
obtained from running the deterministic model

on a single scenario.

We defined the comprehensive multiple-scenario
budgeting problem as the recourse problem (RP). The
current approach is defined as the expected mean-value
problem (EEV), and the optimistic lower-bounding as the
wait-and-see problem (WS) [9]:

min z(y, &) = CTX + min(qu|Wy =h—Ty,y>0), (28)

suchthat Ay =b, y > 0; (29)
Define WS = E,[min [2(7, )] = E.[=(x, &)]; (30)
Define RP = min E, lz(x, &) (31)
Define EEV = E,[2(E, )], where E = E(¢). (32)

In our attempt to characterize the gaps that result from
the process of overlooking uncertainty, we computed the
values of theoretical measures such as the expected value
of perfect information (EVPI) and the value of the
stochastic solution (VSS) by repeatedly utilizing the
deterministic optimization model.

Figure 3 depicts the results of the testing performed on
California and Alaska data instances. Each plot contains
the WAB obtained for different budget points for the
constrained and unconstrained scenarios. In analyzing
the results, we observed that WAB[unconstrained
scenario] is less than WABJconstrained scenario]. We also
observed that the difference between WAB[unconstrained
scenario] and WAB[constrained scenario] is not
monotonic across all scenarios.

We concluded that resource organization is critical in
scenarios having large and/or simultaneous fires. Also,
having resources with short response time (i.e., having an
early arrival) and high line production capability helps in
reducing the containment duration, which in turn reduces
the WAB. For scenarios having small fires (i.e., fires with
low growth rate or small escape size), resource selection is
less critical. Finally, we also concluded that having access
to more resources helps us to attack simultaneous fires
more effectively, since the optimization model does not
allow redeployment of resources to multiple fires in
the group.
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Table 2 Computation results at selected budget levels for fire planning units of Alaska (AK) and Mississippi (MS). The CPU time is

accumulated on an IBM xSeries™ platform based on a 3.06-GHz Intel Xeon** CPU.

Data instance CPU time Budget level Budget used WAM WAB Fires escaped
AK US 11s $18,000,000 $12,412,462 2,252,215 7,967,910 179
$19,000,000 $12,412,462 2,252,215 7,967,910 179
$20,000,000 $12,412,462 2,252,215 7,967,910 179
AK US+UC 54 min $18,000,000 $18,000,000 4,657,698 5,572,375 263
$19,000,000 $18,999,863 4,739,459 5,490,615 227
$20,000,000 $20,000,000 4,814,443 5,415,630 283
AK UC 66 min $18,000,000 $17,999,728 4,727,455 5,502,618 243
$19,000,000 $18,999,989 4,803,763 5,426,310 267
$20,000,000 $19,999,957 4,888,055 5,342,019 224
MS US 3 min $5,000,000 $4,621,246 2,890,399 2,021,281 16
$5,500,000 $4,613,116 2,890,399 2,021,281 16
$6,000,000 $4,613,116 2,890,399 2,021,281 16
MS US+UC 4 min $5,000,000 $4,935,714 3,003,366 1,908,314 13
$5,500,000 $5,320,660 3,070,468 1,841,211 13
$6,000,000 $5,999,999 3,130,819 1,780,860 16
MS UC 9 min $5,000,000 $4,999.,733 3,114,124 1,797,556 14
$5,500,000 $5,499,969 3,283,241 1,628,439 50
$6,000,000 $6,000,000 3,692,856 1,218,823 19

Analysis of resource redeployment using simulation
Another important assumption is that resources cannot
be shared (redeployed) among simultaneous fires in the
same fire group. In other words, the FPA model assumes
that simultaneous fires start at exactly the same time, and
hence it does not permit the use of a resource on more
than one fire. This assumption reduces the availability of
resources to other fires and is counter to the policies used
in the field to allocate resources. The assumption is based
upon the fact that the optimizer is a strategic planning
tool for determining preparedness budgets and not an
optimal resource deployment tool. Nonetheless, we are
interested in analyzing the impact of this assumption

on the optimal solution.

In performing the model validation, we followed a
process illustrated in Figure 4. We used a simulation
model that could generate a fire scenario and used a
predefined dispatch policy to contain the fires. The
simulation model also had the capability to redeploy
resources to simultaneous fires. The scenario generated
by the simulation model was then communicated to the
optimization engine, and the results of the simulation
engine were compared with those from the optimization
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engine to assess the impact of redeployment of resources
on simultaneous fires. The simulation model we chose
was the California Fire Economics Simulator Version 2
(CFES2), a tool for stochastic simulation analysis of
the initial response system. CFES2 takes into account
resource reuse through an internal dispatch policy
that can deploy resources to one fire early in the day
and then redeploy them to other fires later in the
day [10].

To make a sensible comparison, we designed the
following experiment:

1. Configure CFES2 in such a way that it generates a
scenario comprising a large number of simultaneous
fire occurrences.

2. Run the scenario in CFES2 and collect results with
respect to the number of fires that are contained,
as well as containment durations, fire perimeters,
acres burned, resources deployed, and firelines
constructed.

3. Transform the CFES2 scenario input into the
optimizer input format while ensuring that the
optimizer accesses the same data as the simulator,
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Table 3 Model validation experiment results: CFES2
simulator vs. FPA optimizer.

Scenario Fires  Fires contained q WAB

CFES2 FPA CFES2 FPA

—_

1,100 1,027 416 0.595 120,422 189,682
1,023 949 403 0.575 107,102 161,525
822 785 354 0.549 102,327 152,012
873 827 369 0.554 68,507 115,563
1,178 1,127 483  0.571 73,444 127,340
1,166 1,104 450 0.592 116,962 172,528
901 856 423 0.506 56,546 100,770
1,095 1,042 418 0.599 100,309 148,595
737 713 339 0.525 28,909 54,378
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including fire occurrences, fire growth behaviors,
available resources, resource fireline productivity,
and so on.

4. Run the optimizer with the transformed scenario
data and collect the results.

5. Repeat steps 1-4 for several different scenarios.
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We use the experiment to estimate the conditional
probability ¢ of the optimizer allowing a fire to
escape when the same fire is contained with the
larger set of resources in the simulator, i.e.,

q = P(escapedgpa| containedcggs). If the value of ¢
approaches 1, the impact of reuse is significant and
should not be ignored; if the value of ¢ approaches 0,
the impact is minimal, and there is no need to change
the current assumption. We ran the experiment with nine
different scenarios, and Table 3 shows the outcomes.

From Table 3, one can estimate g as

Here, g denotes the expected or average value for the
probability of the optimizer allowing a fire to escape
when the same fire is contained using the larger set of
resources in the simulator; ¢ denotes the condition
probability value from each scenario.

A value of ¢ > 0.5 explains the large deviations in the
WAB given by the optimizer and simulator. Hence, we
concluded that resource reuse is a crucial factor that
should not be neglected.

Conclusion

Summary

We have developed a robust strategic budgeting model
for managing the initial response for wildfires by
strengthening the model formulation of Rideout and
Kirsch [5] and then enhancing it so that it supports
interdependent resources such as air tankers and water
tenders. The model has been implemented within the FPA
PM prototype system. The richness of the model makes it
suitable for use in modeling initial response activities in
other natural disaster management areas such as
hurricanes, floods, and contagious diseases.

On the basis of our analysis of the field data from a set
of FPUs, we further reduced the size of the formulation
through automatic PWL representation of certain input
parameter data such as line production, perimeter
growth, and hourly cost. We developed a flexible PWL
function-generator method that is capable of generating
a hierarchy of model instances of different levels of
computational complexity for different levels of data
approximation. Even for the most accurate (i.e., least
approximate) PWL data representation, we obtain a
sixfold data reduction in the number of columns of
the matrix for the optimization model instance, and an
eightfold reduction in the number of 0/1 variables for the
Oregon and Mississippi instances. Similar reductions
were observed for other instances as well.

To solve the resulting model, we developed a scalable
heuristic DCH that forms the basis of the DCH-GPO
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optimization approach that is amenable to multiple-
scenario (stochastic programming) versions of the
model. The DCH-GPO-S solution method consistently
ran to completion without exceeding the available
computational resource limitations (2 GB RAM, two
hours of CPU time) and resulted in a performance
improvement of a factor of more than 150 with respect to
the GPO method on representative problem instances.
The speedup factors were even more impressive for the
real datasets from the seven FPUs.

Future directions

In preparedness budgeting for wildfire management,
strategic decisions correspond to the determination of
which fire management resources to maintain for the
year, and tactical decisions correspond to how best to
deploy these resources. The strategic decisions must be
made before fires break out, and the tactical decisions
take place after these breakouts.

We plan to investigate the potential advantages of
applying the two-stage stochastic programming approach
in order to develop preparedness budgets for managing
wildland fires. (The term stochastic programming refers to
optimization problems for which part of the input is a
probability distribution that describes the likelihood of
each underlying scenario.) Stochastic programming is
especially suited for optimization in a setting with
distinctly different decisions, in which the strategic
decisions are made on the basis of uncertain information,
and the tactical decisions are made after learning the
outcome of the events that were uncertain at the time the
strategic decisions were made. For further details on
stochastic programming, see [9].

The strategic planning model developed in this paper
currently uses a single representative wildfire profile or
scenario. This scenario is likely to be different from
the actual wildfire scenarios. Two-stage stochastic
programming provides an appropriate and tractable
framework for obtaining more robust solutions by
simultaneously considering several scenarios. Preliminary
scenario-generation work is currently underway to
advance this line of investigation.

We are also considering a different paradigm of
modeling the strategic budgeting problem with the
simplified but rather pragmatic assumption that one need
consider only a finite collection of initial response
resource organizations and evaluate each such
organization for its effectiveness using appropriate
modeling of stochastic resource arrival and fire ignition,
size, and containment patterns. Once the cost and
effectiveness of each potential organization is computed
using a detailed stochastic modeling and analysis, a
simple high-level optimization can weigh the relative
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optimization model and the simulation model. The dashed arrow
indicates the validation of the optimization model assumptions
using the comparison of results between optimization and simula-
tion. The green box indicates the underlying assumptions used in
building the optimization model. (Verification is debugging to
ensure that the model does what it is intended to do. Validation is
the task of demonstrating that the model is a reasonable represen-
tation of the actual system, that is, that it reproduces system
behavior with enough fidelity to satisfy analysis objectives.)

benefits of each potential organization against its costs in
order to find an optimal initial resource organization.

We are also exploring the application of modeling and
solution approaches developed herein to other areas of
disaster management such as flood management and
disease control, for which better preparedness and
effective initial response are two key planning areas for
government agencies. These natural disasters, like
wildfires, require strategic national-level preparedness
planning that must be undertaken despite uncertainty
regarding the level of hazards and the number of events
that will require a quick response.

Acknowledgments

This work was supported by the Forest Service of the
U.S. Department of Agriculture under Contract No.
43-82X9-3-5073. We also thank Pranav Gupta and
Jeremy Fried for their contributions and valuable input
toward validating the optimization model using CFES2.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of ILOG, Inc.
or Intel Corporation in the United States, other countries, or both.

G. PARIJA ET AL.

389



390

References

1. R. Headley, Fire Suppression District 5, U.S. Department of
Agriculture, Forest Service, Washington, DC, 1916, 58 pages.

2. W. R. Sparhawk, “The Use of Liability Rating in Planning
Forest Fire Protection,” J. Agricult. Res. 30, 693-792 (1925).

3. J. K. Gorte and R. W. Gorte, “Application of Economic
Techniques to Fire Management: A Status Review and
Evaluation,” General Technical Report INT-53, Intermountain
Forest and Range Experiment Station, USDA Forest Service,
Ogden, UT, 1979.

4. J. S. Fried and J. K. Gilless, “Stochastic Representation of
Fire Occurrence in a Wildland Fire Protection Planning Model
for California,” Forest Sci. 34, No. 4, 948-959 (1988).

5. D. Rideout and A. Kirsch, “Fire Program Analysis (FPA)
Preparedness Module (PM) with Focus on Optimal
Deployment for Initial Response,” Working Paper, Colorado
State University, Fort Collins, 2003.

6. L. D. Gregory, “Wildland Fire Use: An Essential Fire
Management Tool,” Science and Policy Brief No. 8, Ecology
and Economics Department, The Wilderness Society, 2004;
see http://www.wilderness.org/Library/Documents/upload|
ScienceBrief-WildlandFireUseEssential Tool.pdf.

7. G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial
Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 1988.

8. R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL:

A Modeling Language for Mathematical Programming,
Duxbury Press, Brooks Cole Thomson Publishing Company,
Pacific Grove, CA, 2003.

9. J. Birge and F. Louveaux, Introduction to Stochastic
Programming, Springer-Verlag, New York, 1997.

10. J. S. Fried and J. K. Gilless, The California Fire Economics
Simulator Version 2 User’s Guide, Division of Agriculture and
Natural Resources, University of California at Berkeley, 1999.

Received September 22, 2006, accepted for publication
October 19, 2006; Internet publication May 22, 2007

G. PARIJA ET AL.

Gyana Parija IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (parija@us.ibm.com). Mr. Parija joined IBM in 1994 upon
receiving a Ph.D. degree in industrial engineering, with a major in
operations research, from Texas A&M University. His current
research and development interests include the application of
deterministic and stochastic integer programming modeling and
solution techniques to challenging real-world problems.

Tarun Kumar IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (ktarun@us.ibm.com). Mr. Kumar received his B.Tech.
degree in electronics and telecommunication in 1997 from
Jawaharlal Nehru Engineering College, India. After graduation, he
worked as an IT consultant for Covansys, joining IBM in 2000. At
IBM, he has worked on the design and delivery of innovative
solutions in the field of business value modeling, risk management,
and grid infrastructure capacity planning. Mr. Kumar’s current
interests include designing and delivering integrated end-to-end
applications incorporating optimization technology to provide
customers a competitive advantage.

Haifeng Xi  IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(haifengxi@us.ibm.com). Mr. Xi received his B.S. and M.S.
degrees in automation from Tsinghua University, China, in 1995
and 1997, respectively, and his M.S. degree in electrical and
computer engineering from the University of Maryland in 1999.
In 2002, following three years of IT consulting in enterprise
application integration and development, he joined the IBM
Thomas J. Watson Research Center to work in the areas of supply
chain management and business process management. Mr. Xi’s
current interests include service-oriented architecture, business
integration, supply chain management, and emerging business
solutions.

Dan Keller USDA Forest Service, Information Systems
Project Office, 740 Simms Street, Golden, Colorado 80401
(DKeller@fs.fed.us). Mr. Keller is the Senior Project Manager for
the Fire Program Analysis (FPA) project with the USDA Forest
Service. His background is in applied applications of operations
research and biometrics to natural resource management problems.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007



