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As part of the prototyping effort for the preparedness module
(PM) of the Fire Program Analysis (FPA) system that IBM
developed for five U.S. federal agencies, we designed and
implemented an optimization model for determining budgets
necessary for managing wildland fires during the initial response
period. For a given budget, the model uses a mixed-integer linear
optimization approach to maximize the number of acres managed
(i.e., land protected from fire damage as a result of the initial
response). The model is solved iteratively to establish a function
that maps best achievable effectiveness, in terms of acres managed,
at different budget levels. To handle the computationally
prohibitive size of the resulting model instances, we devised a
heuristic-based solution approach, and we reformulated the client’s
original model by switching to a continuous time domain and
introducing piecewise-linearized functions. As a result, we not
only built a tractable model, but also succeeded in delivering a
performance speedup of more than 150 fold. We also conducted
validation experiments for certain assumptions in the model to
assess their impact on the solution quality.

Introduction

Forest fires in the United States consume more than five

million acres of land and result in extensive loss of life,

property, and natural resources. Furthermore, the federal

government spends, on average, $800 million each year to

contain the fires. The deployment of firefighting resources

required to contain the fires (such as engines, bulldozers,

and helicopters) poses an immense challenge because of

the large number of resources, the unique requirements of

each geographical location, the multitude of resources

available to fight the fires, and the varying staffing level

associated with each resource. The issue is further

complicated because several agencies with different

interests and responsibilities manage the federal lands,

including the USDA (United States Department of

Agriculture) Forest Service, Bureau of Land

Management, Bureau of Indian Affairs, National Park

Service, and U.S. Fish and Wildlife Service. In the past,

each agency has used planning analysis models and

systems to determine the desired staffing and budget

required for wildland fire-management programs. Most

of these systems rely on economic theory that has played

a fundamental role in wildland fire management since

Headley [1] and Sparhawk [2] described tradeoffs

involved in establishing an optimal wildfire management

program. The theoretical framework used to identify the

most economically efficient level of fire management

expenditures has been the Cost Plus Net Value Change

model (CþNVC) [3], which minimizes the cost of wildland

fire management by minimizing the sum of the

preparedness cost (expenditures associated with

preparation for a fire season), suppression cost (direct

wildfire-suppression expenditures during a fire season),

and NVC (net wildfire damages). However, the CþNVC

model does not specify the strategies for deployment of

firefighting resources that are necessary to achieve the

minimum cost. For a model to be of operational value,

the solution must indicate the specific resource

deployment plan for any given wildfire and the

corresponding total budget requirement.

By using the CþNVC model, the USDA Forest Service

developed the National Fire Management Analysis

System (NFMAS), the first operational system in the

United States that computes the most efficient

deployment of firefighting resources. NFMAS allows its

users (wildfire management analysts and planners) to
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choose firefighting resources, resource dispatch rules, and

preparedness budgets; it then calculates the predicted

corresponding costs and damages for a given

geographical area and set of fire conditions. The user

may systematically change these input parameters in an

attempt to arrive at the best resource deployment plan

that minimizes the sum of the total cost and the net

wildfire damages. However, because NFMAS is a

simulation model and relies on the user to determine the

optimal strategy through trial and error, it cannot always

reliably identify the optimal resource deployment

strategy.

Other systems that are not based on criteria as broad as

those of NFMAS have also been developed. For example,

the CFES–IAM model [4] was developed for the

California Division of Forestry. It does not directly

consider the economic costs of wildfire damages, but

rather implements a California legislative mandate to

provide equal protection for lands of equal value. The

National Park Service uses a fire management model

called FIREPRO that was not designed to consider the

relative utility of firefighting resources, which we often

refer to as the ‘‘value’’ of such resources, or to solve

for the optimal deployment of firefighting resources.

As we have just noted, government agencies use

different systems to estimate their program needs,

including preparedness resource planning, yet no

one system has been able to adapt to the increasing

complexity of fire management. These challenges resulted

in the need for the standard, automated, interagency Fire

Program Analysis (FPA) system, with a preparedness

module (PM) as part of a first phase for fire preparedness

resource planning. Central to this resource planning

process is a linear optimization (mixed-integer

programming) model that maximizes acres managed for

a given level of cost. The model is solved iteratively across

a range of total cost constraints in order to establish a

function that maps the best achievable effectiveness, in

terms of acres managed, for each cost level in that range.

An interpretation of the mapping may provide a funding

authority with the means to select from a menu of

cost-efficient alternatives. A function known as the

effectiveness frontier indicates the amount of fire

protection that can be obtained at different levels of

appropriation and empowers the appropriator to make

informed decisions regarding alternative program levels.

The body of this paper covers the background,

formulation, and solution approach to the resource

planning problem in the FPA project. Following the

solution approach, we examine the modeling challenges,

present computational results and analyses, and discuss

our efforts in validating the model. Finally, the impact of

our work is summarized and some future directions are

discussed.

Fire program analysis—preparedness module
The strategic planning model for FPA–PM is a mixed-

integer program that optimally deploys firefighting

resources to maximize acres managed for a specified cost

level. This is done in a way that allows the generated

budgets to be accumulated nationally for program

analysis and budget requests. The scope may be

considered strategic in nature, and the model does

address the tactics of resource deployment at the

operational level, such as the specific sequence of resource

deployment. The model is a direct extension of the one

developed by Rideout and Kirsch [5], which is referred to

as the original model in this paper.

The model addresses the response requirements for two

types of fires, each entailing a different response strategy.

Initial response fires require suppression in the first 18

hours. Wildland fire use (WFU) fires [6] have a defined

management and workload associated with monitoring

the fire. WFU fires are fires proactively set by fire

planning units in order to reduce hazardous conditions at

locations that may result in a potential fire in the future.

The fire management team identifies such locations and

performs a controlled burning to eliminate the hazardous

conditions. Since these fires are set intentionally by the

firefighting crew, each fire has an estimated management

and monitoring workload. Correspondingly, each

resource that can be deployed to the WFU fire has two

numerical values, one associated with the management

capability and the other with the monitoring capability.

To help capture the variance in potential fire effects

across a fire season (i.e., a year) and across geographical

regions known as fire planning units, or FPUs (and

therefore to help capture the potential impact on natural,

cultural, and social resources), the year is divided into

26 two-week blocks called sensitivity periods. Two-week

periods are proposed as the minimum resolution needed

to capture the most important temporal differences in fire

effects on land management values. (The term land

management values relates to such factors as keeping air

and water clean, sustaining rural forest and economic

development, improving forest health, restoring

ecological balance, and enhancing wildlife habitat

and population). For any given FPU that requires

a budgeting analysis, a set of representative fires—

distributed throughout the FPU over the sensitivity

periods—are generated in our model on the basis of

historical fire data. A weight is assigned to each

representative fire to reflect the differences in the

management values of the land burned by that fire.

Unless otherwise noted in the paper, representative

fires are simply referred to as ‘‘fires.’’

Each type of firefighting resource has an associated

fireline production rate (rate of dissipation of fire

retardants), preparedness cost (fixed cost), and utilization
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cost (deployment cost). Many restrictions exist on the use

of fire resources within FPUs. A significant consideration

in determining an initial response to an unplanned

ignition must take into account the fire equipment or

strategies that may be applied to a particular place. This

consideration must incorporate agency-specific policy,

ensure compliance with applicable laws and legislation,

and provide protection for sensitive resources from

potentially damaging fire operations. Each resource may

also have operational constraints placed on its use that

are unrelated to management objectives. A constraint

in this context relates to the operational capability of

a particular piece of equipment to perform under the

necessary conditions. Examples include constraining the

use of a helicopter at high elevations if it is not rated

for high-altitude missions, or constraining the use of a

bulldozer on slopes that exceed the general capabilities

for that piece of equipment.

Containment of a fire is achieved if the sum of the

firelines constructed is at least equal to the fire perimeter

at any time for a given total cost. If the model is unable to

contain a fire within its cost allotment, the fire is assumed

to have escaped the initial response. The size and cost of

an escaped fire are estimated from statistical analysis

of historical fire and weather data. Given a total cost

constraint, the integer program deploys firefighting

resources in an attempt to contain the fires while

maximizing the number of weighted acres managed

(WAM), a measurement of overall fire management

effectiveness. WAM is defined as the sum of individual

fire management effectiveness over all of the fires in an

FPU. For each fire, the management effectiveness is

calculated by multiplying acres managed by the weight of

the fire. (The term weight is used to indicate the relative

importance of fires and is affected by characteristics

such as human and animal population density.)

In summary, given a set of fires and available resources

in an FPU, the optimization model

1. Maximizes the WAM.

2. Enforces fire containment constraints that determine

the final fire sizes.

3. Enforces the total budget constraint (i.e., the total of

preparedness and suppression costs).

Each execution of the optimization model determines

a single point on the effectiveness frontier. Each

point represents a combination of total cost and the

effectiveness that it can attain as measured by WAM. The

entire effectiveness frontier is mapped by iteratively

executing the optimization model across cost levels.

Mapping the effectiveness frontier allows the budget

planners to determine, for each FPU, the preparedness

staffing needs, the associated effectiveness, and the number

of acres that would be expected to burn for a given

budget level. Additionally, the model data for each

FPU and its corresponding model results (the entire

effectiveness frontier) populate the national FPA

database for all of the planning units in the nation.

This allows the national budget planners to assess

tradeoffs among planning units nationwide.

Model development
In this section, we describe the notation used in order to

present the model. We also list certain characteristics that

are central to the model formulation. We then provide the

actual formulation and its detailed explanation.

Parameters

Time parameters

Ti Maximum time (in minutes) considered for initial

response to fire i.

T 0
i Time at which fire i is considered to have escaped;

T 0
i is set to (Ti þ 1). (For example, the escape time

of the fire is one minute more than the maximum

containment time Ti.)

Fire parameters

I Set of all representative fires to be managed for

the year, indexed using i.

J Set of unique fire groups, indexed using j. A fire

group is a collection of simultaneous fires.

IS
j Set of unique initial response fires in fire group j.

IW
j Set of unique WFU fires in fire group j

ðIS
j [ IW

j ¼ IjÞ.
Wi Importance (i.e., weight) given to a land burned

by fire i.

PD
i Initial perimeter (in chains) of fire i at time

zero (t ¼ 0), when the fire is discovered. A

chain is a unit of measure in land surveys

(80 chains ¼ 1 mile).

Pi (t) Perimeter growth piecewise-linear (PWL)

function of fire i.

Pi Total perimeter of fire i at time Ti.

P0
i Total perimeter of escaped fire i at time T 0

i .

AD
i Initial area burned (in acres) by fire i at time zero,

when the fire is discovered.

Ai (t) Area growth PWL function of fire i.

Ai Total area burned by fire i at time Ti.

A0
i Total area burned by escaped fire i at time T 0

i :

T G
i Total growth or burning time of fire i.

WLG
i Management workload for WFU fire i.

WLT
i Monitoring workload for WFU fire i.

MG
ir Management capability of resource r on WFU

fire i, where i 2 IW
j :

M T
ir Monitoring capability of resource r on WFU

fire i, where i 2 IW
j :
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Resource parameters

R Set of all potential firefighting resources,

indexed using r.

Ru Set of resources that must be utilized, where

Ru � R.

Ri Set of all resources that may be deployed to fire

i, where Ri � R.

Ir When IR is defined as equal to
P

i2I jRij; IR is

the set of all fires that may be contained using

resource r, where Ir � I.

RWT Set of all water tenders, where RWT � R.

RWT
i Set of water tenders that may be deployed to

fire i, i.e., RWT
i ¼ RWT \ Ri:

R(W) Set of resources (engines) that can be supported

by a water tender, where R(W) � R.

R
ðWÞ
i Set of resources in R(W) that may be deployed

to fire i, i.e., R
ðWÞ
i ¼ RðWÞ \ Ri:

RGR
i Set of all ground resources that may be

deployed to fire i, where RGR
i � Ri � R:

RAT
i Set of all air tankers that may be deployed to

fire i, where RAT
i � Ri � R:

T a
ir Arrival time of resource r on fire i.

T d
ir Departure time of resource r from fire i.

Qir(t) Fireline production PWL function by resource

r when containing fire i.

rQir(t) Additional fireline production PWL function of

resource r when supported by a water tender in

containing fire i.

K Maximum number of air tankers that one

ground resource can support.

Fixed and variable cost parameters

TC Total cost ceiling (preparedness plus suppression

costs) for initial response.

Fr Fixed cost for using a resource r 2 R.

Ci Partial suppression costs of fighting escaped fire i

incurred during initial response.

Di(t) Resource-independent suppression cost PWL

function for fighting contained fire i.

DD
i Resource-independent suppression cost at the

time of discovery of fire i.

Hir Total variable cost for using resource r in

suppressing fire i at time Ti.

Hir(t) Hourly cost PWL function for using resource r in

suppressing fire i.

Penalty cost parameters

P Set of overhead resource groups, indexed using p.

Each overhead resource group is a collection of

resources in a corresponding program leadership

group. (Overhead resource groups share common

characteristics, such as belonging to a certain

resource type or dispatch location or having

similar training program requirements. A

program leadership group comprises a set of

resources requiring the same training program

for improving their effectiveness.)

S Set of station resource groups, indexed using s.

Each station resource group is a collection of

resources stationed at the same dispatch location.

E Set of equipment resource groups, indexed using

e. Each equipment resource group is a collection

of resources of the same type, e.g., engines or

helicopters.

Rp Set of resources in overhead group p, where

Rp � R.

Rs Set of resources in station group s, where Rs � R.

Re Set of resources in equipment group e, where

Re � R.

THp Threshold quantity of overhead group p beyond

which acquisition penalties are incurred.

(Acquiring resources beyond the threshold limit

accrues a penalty cost.)

Gp Penalty cost of using resources of overhead group

p beyond the threshold quantity THp.

Vsn Penalty cost of using n resources at dispatch

location s, where 0 � n � jRsj.
THe Threshold quantity of type-e resources beyond

which acquisition penalties are incurred.

Oe Unit penalty cost of using resources of type e

beyond the threshold quantity THe.

Objective parameters

B Total number of weighted acres burned (WAB).

W(0) Total WAB if no containment action is taken.

W Total WAM by initial response, i.e.,W¼W(0)�B.

Decision variables

In the previous section, we listed parameters—that is,

various entities that correspond to the input data used in

defining the model inputs. They define the characteristics

of the model. In this section, we list variables or decision

variables. These entities define the unknown values for

which an optimal value is desired. All variables in our

model are denoted in lower case.

d f
i 1 if fire i is contained during daytime; 0 otherwise.

n f
i 1 if fire i is contained during nighttime; 0 otherwise.

yr 1 if resource r is used on any fire; 0 otherwise.

uir 1 if resource r is used on fire i; 0 otherwise.

ur
i Length of duration of deployment of resource r on

fire i.

td
i Length of burning duration of fire i, if contained

during daytime.
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tn
i Length of burning duration of fire i, if contained

during nighttime.

dir Deployment cost of resource r on fire i.

lwir Additional line production by resource r on fire i in

presence of water tender w.

gp 1 if THp or more resources of overhead group p are

used; 0 otherwise.

vsn 1 if n resources at dispatch location s are used; 0

otherwise.

oe Non-negative penalty costs incurred by resources of

type e.

Characteristics of parameters and variables

In the previous sections we listed various parameters and

variables. Here we provide a list of notes that further

elucidate the meaning of some of these entities.

� The optimization model aims at allocating resources

to a set of deterministic, representative fires for which

there is perfect a priori knowledge for the entire

planning horizon.
� Ti is the maximum time during which the resources

can fight a fire i. A fire that escapes has a duration of

(Tiþ 1), also denoted as T 0
i .

� Both resource-deployment and fire-burning durations

are measured on the same time scale t between 0 and

Ti, which denotes the time elapsed after a fire event is

reported at time zero.
� Initial response fires can be contained either during

daytime or nighttime. This delineation is required,

since during nighttime the fires do not grow in size.

Hence d f
i ¼ 1 if fire is contained during daytime and

n f
i ¼ 1 for fires contained at night.

� The total fire perimeter Pi and the total area burned

Ai are defined for all fires. Escaped fires, i.e., fires with

d f
i ¼ n f

i ¼ 0; are assigned a final perimeter P0
i and an

area A0
i :

� Fire-suppression resources include attributes that may

limit their use in specific FPUs. This requirement is

implemented by introducing sets Ri and Ir.
� No resource is deployed to an uncontained fire. This

requirement was mandated by subject matter experts,

because any fire that escapes the initial attack will be

handled in a large-fire optimization. (The initial attack

is the process of fighting the fire for 18 hours or until

the fire covers more than 300 acres.)
� Simultaneous fires (concurrent fires) in one fire group

compete for exclusive use of initial response resources;

in other words, if a resource is deployed to one fire, it

cannot be deployed to any other fires in the same fire

group.

� Resource arrival times are accounted for in the fireline

production rates (rates of dissipation of fire

retardants). By adjusting the production rates in

the same manner, one can account for decreases

in production caused by fatigue or refill times.
� Fire-containment costs comprise fixed resource costs

Fr (also known as preparedness costs) and variable

suppression costs, which in turn are composed of

resource-independent suppression costs Di(t) (also

known as mop-up costs) and resource-dependent

suppression costs Hir(t). Mop-up costs are the costs

associated with cleanup after a fire has been contained.
� Fixed resource costs are incurred if a resource is

deployed as a result of the optimization. However,

fixed resource costs are incurred for all resources in

set Ru (must-use resources that usually have already

been paid for) whether or not they are deployed.
� Various penalty costs (e.g., overhead, station, and

equipment costs) associated with an optimal resource

organization should be accounted for within the

optimal model to ensure the optimality of the

solution. Applying penalty costs in the post-

optimization phase is not guaranteed to preserve

optimality of the solution. This requirement is

implemented by introducing new variables gp, vsn, and

oe, and corresponding penalty cost parameters Gp,

Vsn, and Oe. Note that overhead costs refer to

nondeployment-related costs associated with

acquiring additional resources above a threshold

number. These overhead costs are applied to a group

of resources belonging to a certain resource type,

dispatch location, or training program requirement.
� The penalty cost associated with any overhead

resource group p is a constant (Gp); it is independent

of number of resources n, for n . THp � 0, and is

zero for 0 � n � THp.
� The penalty cost associated with any resource group

of type e is linear in the number of resources n, for

n . THe � 0, and the cost is zero for 0 � n � THe.

Formulation

The optimization model may be presented as shown in

the equations that follow. The meaning of each equation

in this global problem optimization (GPO) is given in the

section on formulation details.

max W ¼Wð0Þ
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i2I
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Formulation details

A detailed explanation of the objective function

[Equation (1)] and each constraint [Equations (2)–(24)]

listed in the formulation in the previous section is

provided below:

1. The objective of the FPA model is to maximize the

WAM. Conversely, the model attempts to minimize

the weighted acres burned (WAB). The WAB for

each fire is the product of the weight assigned to

the fire and the final fire size. It is also subject to

the containment or escape of the fire. For fires

contained during daytime, the WAB is the sum

of the discovery size and size of the fire until the

time at which containment is achieved. For fires

contained during nighttime, the WAB is a sum

of the discovery size and the size of the fire until

nightfall. The size of the fires that escape the initial

attack is defined as the escape size.

2. Each resource deployed to a fire must remain

deployed until containment is achieved. Hence, the

containment duration of the fire is greater than or

equal to the deployment duration of the resources.

3. A resource cannot be deployed after the departure

time of the resource. This is relevant for aerial

resources that cannot fight fire during nighttime.

4. A resource can be deployed only after the arrival

time of the fire.

5. A fire is said to be successfully contained if the total

line produced by all deployed resources is greater

than or equal to the perimeter of the fire at the

containment duration. If the resource organization

contains engines and water tenders, additional line

production capability of engines in the presence

of water tenders is also taken into account.

6. The resource binary variable should be set to 1 for

each resource that has been deployed to a fire.
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7. The fire can be contained either during daytime or

nighttime.

8. If a fire is contained during daytime, the containment

time should be less than or equal to the nighttime.

9. If a fire is contained during nighttime, the

containment time should be less than or equal to

the nighttime end time of the fire.

10. Each ground resource deployed to a fire must

remain deployed until the fire is contained.

11. A fire cannot be contained in the absence of a

ground resource. This policy is adopted by

firefighters in the field to enable verification of

containment by a ground crew if aerial resources

are used to contain the fires.

12. The maximum additional line production capacity

of an engine resource in the presence of a water

tender is less than or equal to the product of the

additional line production rate of the engine

resource and the number of water tender resources

deployed to the fire.

13. The maximum additional line production capacity

of an engine resource in the presence of a water

tender is less than or equal to the maximum line

production capacity of the resource until the

maximum deployment duration of the resource.

14. The additional line production of an engine

resource is zero in the absence of a water tender.

15. Any must-use resource must form a part of the

resource organization (even if it is not deployed

to any fire).

16. The deployment cost of a resource is greater than

or equal to the product of the deployment cost

function and the deployment duration of the

resource.

17. The sum total of management capability of all

deployed resources is greater than or equal to

the management workload required for the fire.

18. The sum total of the monitoring capability of all

deployed resources is greater than or equal to the

monitoring workload required for the fire.

19. The resources in the overhead resource group must

be accounted for.

20. The total number of resources deployed from an

overhead group cannot exceed the overhead group

threshold limit.

21. The resources deployed from each dispatch location

must be accounted for.

22. If a resource has been deployed from a dispatch

location, the dispatch location flag must be

activated.

23. The total penalty cost for deploying more resources

than the penalty group threshold is greater than or

equal to the product of the penalty cost per resource

and the number of resources deployed from that

penalty group.

24. The total cost of resource organization (fixed

and deployment cost, fire-suppression cost, and

leadership, station, and equipment penalty cost)

should be less than or equal to the budget cost.

Solution approach
The optimization model formulated in the previous

section implicitly addresses two different problems:

resource acquisition, which deals with the problem of

generating the feasible initial response organization,

and resource deployment, which evaluates the maximum

effectiveness for a given proposal for an initial response

organization, within allowed budgets. While the resource

acquisition component of the model is fairly compact, the

deployment problem is associated with details pertaining

to numerous combinations of resources, fires, and

deployment time periods. Solving the global model as

is proves difficult and in most cases impossible because

of the computationally prohibitive size of the model

instances (especially for large FPUs) and the intrinsic

runtime complexity that arises from low-level resource

deployment decision-making.

Two-phase decomposition heuristic

Analysis of preliminary optimization results and available

historical data reveals that resource acquisition is the

overarching factor in the model because, on average, the

resource acquisition cost (fixed cost plus various penalty

costs) makes up more than 80% of the total initial

response cost. Therefore, we devised a solution approach

that is based on a two-phase decomposition crash heuristic

(DCH).

Resource deployment problem (RDP)

The first phase is formulated as a cost-unconstrained

resource deployment problem, which makes use of the

previously presented set of equations in the GPO without

the cost constraints in Equations (19)–(24).

Resource acquisition problem (RAP)

The second phase is formulated as a resource acquisition

problem that involves deciding which fire(s) to let escape

and which proposed resource(s) to give up so that

the original cost constraint can be satisfied, given

Equations (19)–(23) and with

maxW ¼ maxðWð0Þ � BÞ

¼Wð0Þ �min
X
i2I

WAB
i
z
i
þ
X
i2I

W
i
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i
Þ
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IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 G. PARIJA ET AL.

381



and

X
i2I

SC
i
z
i
þ
X
r2R

F
r
y
r
þ
X
p2P

G
p
g
p
þ
X
s2S

XjRs
j

n¼0

V
sn
v
sn

þ
X
e2E

o
e
� TC: ð26Þ

The new parameters and decision variables introduced

in RAP are defined as

WABi Total weighted acres burned by fire I in the

first-phase solution.

SCi Total suppression cost incurred to contain fire i

in the first-phase solution.

zi 1 if fire i is to be contained (as in the first

phase); 0 if fire i is allowed to escape.

The solutions resulting from the two subproblems are

then combined to construct a feasible integer solution

to hot-start the original mixed-integer programming

instance. Note that providing a feasible solution as a

starting point for an optimization problem is referred

to as ‘‘hot-starting’’ an optimization; this enables the

optimizer to search for alternate solutions that result

in an improvement in the objective function, thereby

reducing the solution time. Specifically, the solution to

the RDP gives values corresponding to fire containment

ðd f
i ; n

f
i Þ; resource preference (yr), and containment

duration ðtd
i ; t

n
i Þ: The RAP then maximizes the WAM

using the resource preferences (yr), final fire size (derived

from containment duration td
i or tn

i ), and fixed and

deployment costs given by RDP. The overall algorithm

is outlined in the next section.

WAM algorithm

[Step 0: Initialize budget level]

TC :¼ BudgetLOWER_BOUND.

[Step 1: Solve RDP] Obtain the preferred resource

organization and resource deployment results

ðd f
i ; n

f
i ; yr; t

d
i ; t

n
i ; uir; u

r
i ; dir; l

w
irÞ:

[Step 2: Solve RAP] Combine results from Step 1 with

total cost constraint to arrive at a feasible solution for

the budget point TC.

[Step 3: Solve GPO] Hot-start GPO with the feasible

solution from Step 2 to obtain a globally optimal

solution for the budget point TC. Hot-starting GPO

with the RAP solution allows the optimizer to reach

optimality more rapidly.

[Step 4: Iterate forward] TC :¼ TC þ BudgetSTEP; if

TC � BudgetUPPER_BOUND, go to Step 2; else STOP.

Given this algorithm, we note that the ability to produce

a globally optimal solution in Step 3 does not rely on the

decomposition heuristic. Even in the absence of DCH, the

GPO step could be cold-started in order to obtain an

optimal solution, albeit at a much higher computational

cost in terms of CPU cycles and memory. (Solving an

optimization problem without providing an initial

feasible solution as a starting point is referred to as a cold

start.) However, DCH exploits additional mathematical

structures underlying the optimization problem to

produce feasible solutions quickly, so that the GPO step

can be hot-started from the incumbent feasible solution to

converge to a global optimal solution at only a small

fraction of the original computational cost.

Strategies for solving RDP

In order to successfully solve RDP, we analyzed the

underlying model structure and data and also had

discussions with fire planners and tactical fire managers.

As a result, we gained two important insights. First, RDP

can be further decomposed into a set of subproblems,

each dealing with a single fire group. These subproblems

are much more tractable in terms of size and complexity

and can be solved independently. Also, since the

subproblems are separable, solving each subproblem

independently results in less memory requirement and

improved performance.

As part of our second insight, we note that implicit

consideration is given to the cost when selecting

resources, even if no explicitly imposed cost constraint

is considered during this first phase. This implicit

consideration allows us to obtain a more globally

balanced solution when the cost constraint is eventually

applied in the second phase. Specifically, the following

two strategies are adopted to ensure that the most cost-

effective firefighting resources are selected for the

proposed resource organization.

Strategy 1

Strategy 1 is most effective at low total cost levels; it is

focused on procuring and deploying the most efficient

resources to any given fire. Whether or not a resource

is added to the proposed firefighting organization is

dependent on its ‘‘efficiency,’’ which is calculated by

considering the following factors:

� The fireline production capacity of the resource for

the fire versus the costs associated with it (fixed cost,

variable resource cost, or penalty cost). The fireline

production capacity of a resource is the total length

of fireline created around the perimeter of the fire.
� The reusability of the resource, e.g., the degree of

closeness of the resource to most of the fires.
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� The versatility of the resource, i.e., the degree to

which it can be used productively on a large number

of fires.

A composite objective function is defined in order to

make the model focus on efficient resources that result in

fires being contained within a reasonable time interval:

min
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whereM is chosen such thatM �max (TC for containing

fire i ).

Strategy 2

Strategy 2 is most effective at high total cost levels, where

we are at liberty to pick more expensive resources,

thereby accruing higher fixed costs in order to contain

fires earlier. A ‘‘greedy approach’’ is used to deploy the

best resources to each fire, with ‘‘suitability’’ indicating

the ability to contain the fire at the earliest possible

time. (Note that the greedy approach or algorithm is a

heuristic-based approach used for selection of the most

effective resources for each fire.) The objective function

in this strategy minimizes WAB [see the objective in

Equation (l)]. The single-minded focus on WAB

reduction results in the best match between the fires

and the resources.

Modeling challenges

Although it is a strategic planning tool, the FPA

application still requires the modeling of fire growth and

resource deployment characteristics at a fairly detailed

level, which posed significant challenges to our modeling

efforts. We analyze these challenges in the following

subsections.

Computational performance

The computational performance of the optimizer on

model instances is affected by two factors: model

complexity and large model instance size. The number of

rows, columns, and nonzero matrix elements is also a

measure of the computational workload performed at

every node of the branch-and-bound tree. As background

for the more general reader, note that the set of

constraints and the objective function in an optimization

problem comprise a matrix. The rows of the matrix

include constraints and the columns include variables.

The most common algorithm used in solving an

optimization problem is the branch-and-bound

algorithm, which employs an iterative process to improve

the quality of the solution.

The number of 0/l integer variables determines the

number of nodes to be explored by the branch-and-bound

algorithm in its pursuit of the global optimum. The FPA

model reduces to a knapsack problem, a standard

problem in combinatorial optimization, by simplifying

the containment requirements so that a predetermined set

of resources are assigned to contain each fire—and by

removing all of the group penalties associated with

resources. With this simplification, the effectiveness

metric used in the objective function can be expressed

in terms of resource selection decisions. Hence, the

optimization problem formulated in this paper falls

into the class of NP-hard problems for which the

computational complexity is exponential with respect to

the size of the data set representing the model instance,

as was proved in Nemhauser and Wolsey [7].

The original model proposed by Rideout and Kirsch [5]

required that the resource deployment and fire burn

duration be measured on the discrete time scale described

by seven time intervals measured in minutes (30, 60, 120,

200, 300, 450, 1,080), which denote the time elapsed since

the point at which a fire ignition event is reported (t¼ 0).

As a result, the model instances became complex because

of the large number of deployment-specific 0/l variables

associated with the fireline production rate and variable

resource cost data for each set of deployable resources

for each fire for each time interval. Such a modeling

approach does not allow the interpolation of function

values for points lying strictly between the discretized

domain points. If a smaller number of time intervals is

used to keep the number of 0/1 variables small, the

quality of the solution often suffers because of a reduction

of the time domain.

A way around this problem is to model the time

domain as a continuous function with all time-dependent

parameters (e.g., fireline produced, variable resource

costs, acres, and perimeters) represented as piecewise-

linear (PWL) and continuous functions of time with

appropriate slopes and breakpoints. The PWL

representation of data offers two distinct advantages:

First, it allows for evaluation of the underlying function

at all points in the domain, which improves the quality of

the solution compared with the discrete time interval.

Second, the PWL representation introduces no new 0/l

variables because the function is convex, resulting in a

compact representation of the function which contributes

to the reduction of model instance size. Furthermore,

from a development perspective, current state-of-the-art

modeling and solver technology, such as AMPL (a

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 G. PARIJA ET AL.

383



modeling language for mathematical programming) [8],

CBC (available from COIN-OR, which stands for

COmputational INfrastructure for Operations Research),

and CPLEX** (available from ILOG, Inc.), include

readily available methods for modeling PWL functions

using an anchor, slopes, and breakpoints of the linear

segments of which the function is composed.

In analyzing initial data instances from Mississippi,

Oregon, and California, we observed that some

redundancies exist in input parameters such as the fire

perimeter, area burned, resource line production, and

variable resource cost. The line production and variable

resource cost data demonstrate a PWL characteristic that

is certainly over-determined by the use of discrete time

intervals in the original model. Figure 1 shows plots of

resource cumulative line production and variable cost

(deployment cost) as a function of time. The discrete

interval data in Figure 1 corresponding to seven time

intervals can be represented efficiently using PWL

representation. While the perimeter and area data for fires

demonstrates PWL features with few breakpoints, the line

production and variable resource cost data for resources

is almost linear and hence can be represented by the PWL

function with just one breakpoint (the breakpoint may

not be common among the resources).

The underlying optimization model instances could be

represented equivalently by a much smaller amount of

data containing only the slopes and the breakpoints of the

PWL functions, which would otherwise be represented

redundantly by the current data, based on seven

time intervals. These slopes and breakpoints can be

automatically discovered computationally by building a

data transformation component that extracts the slopes

and breakpoints from the discrete interval data. This

allows different functions (such as line production and

perimeter) for different fires and resources to have

different slope and breakpoint representations. This

approach has the added advantage of relaxing the implicit

assumption of using a common set of breakpoints along

the time dimension, shared by all time-dependent data.

Fire containment and resource deployment

characteristics existed that posed additional computation

challenges. One such challenge is discussed in the next

section.

Water tenders

Water tenders are special resources that do not contribute

to line production but support certain specific resources

(such as fire engines) by providing them with onsite

retardant replenishment capability. Also, since the water

tenders are available at multiple dispatch locations with

unique cost and capacity constraints, we use a binary

variable to represent the assignment of a water tender to

an engine fighting a specific fire. This results in m 3 n

integer variables for each combination of engines and

water tenders (m engines, n water tenders). Modeling

this requirement resulted in a significant decrease in the

tractability of the model. In order to incorporate this

business requirement for detailed modeling of the fireline

production capability of the water tender resource, we

proposed an innovative approximation algorithm that

would require only m additional integer variables

corresponding to m engines. Our approximation

introduces a continuous variable lwir corresponding to the

additional line-production capacity of an engine resource

in the presence of a water tender resource w on a fire i.

By studying historical data and also by consulting FPA

subject matter experts, we developed the average line

production support rate for a water tender resource.

Using this number, we were able to apply constraints

on the value of lwir to effectively model the additional

line production capacity of the resource. For details of

Figure 1

(a) Resource line production and (b) variable cost as a function of 

time for a simulated representative fire. In part (a), resource 

fireline production, each curve in the graph represents the fireline 

produced by the fire. The y axis represents resource fireline 

production (in chains). In part (b), resource deployment costs, 

each curve represents the cost incurred by resource (in dollars).
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the approximation we used, please refer to the constraint

equations (12) and (13).

Computational results
We tested the heuristic approach on data instances from

seven FPUs—Mississippi (MS), Alaska (AK), southern

California (SC), Washington (WA), Wyoming (WY),

Colorado (CO), and Arizona (AZ). Depending on the

analysis type selected by the user, a corresponding unique

set of data instances is generated for the FPU. For each

FPU, three types of analysis exist: 1) a user-selected

scenario (US), 2) an unconstrained or all potential

scenario (UC), and 3) a combination of the user-selected

scenario and the unconstrained scenario (USþUC).

A US scenario generates data corresponding to the

current organization of the FPU. This scenario is a good

starting point for the user in order to assess the efficiency

of the current resource organization in fighting fires. A

UC scenario generates all possible sets of resources that

can be deployed to each dispatch location in order to

generate a larger collection of deployable resources. In

addition to US and UC, each FPU contributes one

additional scenario data instance known as USþUC.

A USþUC scenario contains both user-selected (i.e.,

existing) and unconstrained (i.e., all possible) resources,

with each US resource explicitly marked as ‘‘must use’’ or

‘‘can use.’’ Must-use resources are those resources that

form part of the optimal resource organization regardless

of their productivity or efficiency; these are generally

resources that have already been paid for. Can-use

resources, on the other hand, are subject to the discretion

of the optimization model. Table 1 shows the numbers of

fires, resources, and sizes of model instances for all three

scenarios for Mississippi and Alaska FPUs. The contrast

between the two FPUs becomes obvious when the

corresponding data elements are compared. The

Mississippi FPU has fewer fires than the Alaska FPU

(about 119 compared with 480); hence, the resource

requirement for Mississippi is much smaller than that

for Alaska. As a result, the model instance size for

Mississippi is smaller than the instance size for Alaska.

We obtained encouraging results, with the DCH phase

consistently producing near-optimal feasible solutions for

each of the instances using a fraction of the available

computational resources. We also observed some

interesting patterns when analyzing and comparing the

US, UC, and USþUC results (Figure 2). For Mississippi

FPU datasets, the value for the WAM is of the order

of UC . USþUC . US. Mississippi has a maximum

resource capacity of 29, of which 11 are must-use

resources; in other words, 11 specific resources must be

procured regardless of their efficiency or effectiveness.

This leaves the optimizer with only 18 resources to choose

from the pool of resources. These 11 resources cost about

$2.6M; hence, we see that the Mississippi WAM curve for

USþUC follows the US curve very closely until $6M,

after which the WAM for USþUC improves substantially

over US. This observation results from the fact that, at

lower budget levels, the fixed costs incurred by must-use

resources bias the budget allocation and prevent USþUC

from achieving significantly higher WAM than the

corresponding US scenario. It also explains why the UC

scenario has a much higher WAM than US or USþUC,

since the former is not constrained by must-use resources

and may pick the most cost-effective candidates from the

pool of resources.

Another interesting observation we can make when

examining the results is that as the budget level increases,

the number of fires contained at the incremental budget

level decreases in some cases. In the Alaska UC data

instance (row 3 of Table 2), the number of fires that

escaped at a cost of $18M and $19M actually increases

from 243 to 267, but the WAM increases by 76K acres.

Upon further study of the results, we observe that adding

$1M to the budget enables the optimizer to procure more

efficient resources, thereby containing higher-intensity

fires. Recall that the objective function in the model

maximizes WAM; therefore, it is understandable that the

model must allow some low-intensity fires to escape in

Table 1 FPA optimization model instance characteristics for fire planning units of Alaska (AK) and Mississippi (MS).

FPU Resource

scenario

Fires Resources Fire resources Fire groups Variables 0/1 variables Columns Rows

AK UC 482 951 73,998 195 262,065 76,008 262,065 514,712

US 479 54 4,301 195 17,038 5,318 17,038 32,874

USþUC 482 953 73,998 195 262,069 76,010 262,069 515,721

MS UC 119 189 20,982 87 74,152 21,428 74,152 109,657

US 119 20 1,923 87 7,244 2,183 7,244 11,056

USþUC 119 189 20,982 87 74,154 21,428 74,154 109,780
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exchange for fire-suppression dollars that can be spent

otherwise to achieve higher WAM.

Model validation

The purpose of this validation exercise was to analyze the

impact of some of the key assumptions used in developing

the FPA model. Specifically, we relax the assumption

about having perfect knowledge of fire occurrences and

evaluate the sensitivity of the solution to multiple fire

occurrence scenarios. We also assess the effect of resource

redeployment among simultaneous fires on the

containment results.

Analysis of stochastic scenarios

The FPA model is deterministic and runs on a

representative fire season scenario generated from

historical data. Uncertainty exists with respect to the fire

season, the number of fires, time of ignition, and location

and growth of fires. Additional micro-parameters exist

that may alter the workload profile associated with the

realized fire season scenario. (The term micro-parameters

refers to additional fire characteristics and stochasticity

of the underlying data.) Uncertainty in the fire data

invalidates the optimality of the incumbent budgeting

and associated resource allocation decisions from

the FPA model. Therefore, we undertook a model

validation exercise to assess the gap between the results

of expected acreage burned from a multiple-scenario

version of the optimization model and the same

obtained from running the deterministic model

on a single scenario.

We defined the comprehensive multiple-scenario

budgeting problem as the recourse problem (RP). The

current approach is defined as the expected mean-value

problem (EEV), and the optimistic lower-bounding as the

wait-and-see problem (WS) [9]:

min zðv; nÞ ¼ c
T
vþminðqTyjWy ¼ h� Tv; y � 0Þ; ð28Þ

such that Av ¼ b; v � 0; ð29Þ

Define WS ¼ Enbminv½zðv; nÞ�c ¼ Enbzðv; nÞc; ð30Þ

Define RP ¼ minvEnbzðv; nÞc; ð31Þ

Define EEV ¼ En½zðN; nÞ�; where N ¼ EðnÞ: ð32Þ

In our attempt to characterize the gaps that result from

the process of overlooking uncertainty, we computed the

values of theoretical measures such as the expected value

of perfect information (EVPI) and the value of the

stochastic solution (VSS) by repeatedly utilizing the

deterministic optimization model.

Figure 3 depicts the results of the testing performed on

California and Alaska data instances. Each plot contains

the WAB obtained for different budget points for the

constrained and unconstrained scenarios. In analyzing

the results, we observed that WAB[unconstrained

scenario] is less than WAB[constrained scenario]. We also

observed that the difference between WAB[unconstrained

scenario] and WAB[constrained scenario] is not

monotonic across all scenarios.

We concluded that resource organization is critical in

scenarios having large and/or simultaneous fires. Also,

having resources with short response time (i.e., having an

early arrival) and high line production capability helps in

reducing the containment duration, which in turn reduces

the WAB. For scenarios having small fires (i.e., fires with

low growth rate or small escape size), resource selection is

less critical. Finally, we also concluded that having access

to more resources helps us to attack simultaneous fires

more effectively, since the optimization model does not

allow redeployment of resources to multiple fires in

the group.

Figure 2

Effectiveness frontiers (WAM vs. budget cost) for fire planning 

units of (a) Alaska (AK) and (b) Mississippi (MS).
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Analysis of resource redeployment using simulation

Another important assumption is that resources cannot

be shared (redeployed) among simultaneous fires in the

same fire group. In other words, the FPA model assumes

that simultaneous fires start at exactly the same time, and

hence it does not permit the use of a resource on more

than one fire. This assumption reduces the availability of

resources to other fires and is counter to the policies used

in the field to allocate resources. The assumption is based

upon the fact that the optimizer is a strategic planning

tool for determining preparedness budgets and not an

optimal resource deployment tool. Nonetheless, we are

interested in analyzing the impact of this assumption

on the optimal solution.

In performing the model validation, we followed a

process illustrated in Figure 4. We used a simulation

model that could generate a fire scenario and used a

predefined dispatch policy to contain the fires. The

simulation model also had the capability to redeploy

resources to simultaneous fires. The scenario generated

by the simulation model was then communicated to the

optimization engine, and the results of the simulation

engine were compared with those from the optimization

engine to assess the impact of redeployment of resources

on simultaneous fires. The simulation model we chose

was the California Fire Economics Simulator Version 2

(CFES2), a tool for stochastic simulation analysis of

the initial response system. CFES2 takes into account

resource reuse through an internal dispatch policy

that can deploy resources to one fire early in the day

and then redeploy them to other fires later in the

day [10].

To make a sensible comparison, we designed the

following experiment:

1. Configure CFES2 in such a way that it generates a

scenario comprising a large number of simultaneous

fire occurrences.

2. Run the scenario in CFES2 and collect results with

respect to the number of fires that are contained,

as well as containment durations, fire perimeters,

acres burned, resources deployed, and firelines

constructed.

3. Transform the CFES2 scenario input into the

optimizer input format while ensuring that the

optimizer accesses the same data as the simulator,

Table 2 Computation results at selected budget levels for fire planning units of Alaska (AK) and Mississippi (MS). The CPU time is

accumulated on an IBM xSeries* platform based on a 3.06-GHz Intel Xeon** CPU.

Data instance CPU time Budget level Budget used WAM WAB Fires escaped

AK US 11s $18,000,000 $12,412,462 2,252,215 7,967,910 179

$19,000,000 $12,412,462 2,252,215 7,967,910 179

$20,000,000 $12,412,462 2,252,215 7,967,910 179

AK USþUC 54 min $18,000,000 $18,000,000 4,657,698 5,572,375 263

$19,000,000 $18,999,863 4,739,459 5,490,615 227

$20,000,000 $20,000,000 4,814,443 5,415,630 283

AK UC 66 min $18,000,000 $17,999,728 4,727,455 5,502,618 243

$19,000,000 $18,999,989 4,803,763 5,426,310 267

$20,000,000 $19,999,957 4,888,055 5,342,019 224

MS US 3 min $5,000,000 $4,621,246 2,890,399 2,021,281 16

$5,500,000 $4,613,116 2,890,399 2,021,281 16

$6,000,000 $4,613,116 2,890,399 2,021,281 16

MS USþUC 4 min $5,000,000 $4,935,714 3,003,366 1,908,314 13

$5,500,000 $5,320,660 3,070,468 1,841,211 13

$6,000,000 $5,999,999 3,130,819 1,780,860 16

MS UC 9 min $5,000,000 $4,999,733 3,114,124 1,797,556 14

$5,500,000 $5,499,969 3,283,241 1,628,439 50

$6,000,000 $6,000,000 3,692,856 1,218,823 19
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including fire occurrences, fire growth behaviors,

available resources, resource fireline productivity,

and so on.

4. Run the optimizer with the transformed scenario

data and collect the results.

5. Repeat steps 1–4 for several different scenarios.

We use the experiment to estimate the conditional

probability q of the optimizer allowing a fire to

escape when the same fire is contained with the

larger set of resources in the simulator, i.e.,

q ¼ P(escapedFPAj containedCFES). If the value of q

approaches 1, the impact of reuse is significant and

should not be ignored; if the value of q approaches 0,

the impact is minimal, and there is no need to change

the current assumption. We ran the experiment with nine

different scenarios, and Table 3 shows the outcomes.

From Table 3, one can estimate q as

q ¼ 1

9

X9

i¼1

q̂
i
¼ 0:562:

Here, q denotes the expected or average value for the

probability of the optimizer allowing a fire to escape

when the same fire is contained using the larger set of

resources in the simulator; q̂ denotes the condition

probability value from each scenario.

A value of q � 0:5 explains the large deviations in the

WAB given by the optimizer and simulator. Hence, we

concluded that resource reuse is a crucial factor that

should not be neglected.

Conclusion

Summary

We have developed a robust strategic budgeting model

for managing the initial response for wildfires by

strengthening the model formulation of Rideout and

Kirsch [5] and then enhancing it so that it supports

interdependent resources such as air tankers and water

tenders. The model has been implemented within the FPA

PM prototype system. The richness of the model makes it

suitable for use in modeling initial response activities in

other natural disaster management areas such as

hurricanes, floods, and contagious diseases.

On the basis of our analysis of the field data from a set

of FPUs, we further reduced the size of the formulation

through automatic PWL representation of certain input

parameter data such as line production, perimeter

growth, and hourly cost. We developed a flexible PWL

function-generator method that is capable of generating

a hierarchy of model instances of different levels of

computational complexity for different levels of data

approximation. Even for the most accurate (i.e., least

approximate) PWL data representation, we obtain a

sixfold data reduction in the number of columns of

the matrix for the optimization model instance, and an

eightfold reduction in the number of 0/1 variables for the

Oregon and Mississippi instances. Similar reductions

were observed for other instances as well.

To solve the resulting model, we developed a scalable

heuristic DCH that forms the basis of the DCH–GPO

Figure 3

Scenario analysis results for fire planning units of California (a) 

and Alaska (b).
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Table 3 Model validation experiment results: CFES2

simulator vs. FPA optimizer.

Scenario Fires Fires contained q WAB

CFES2 FPA CFES2 FPA

1 1,100 1,027 416 0.595 120,422 189,682

2 1,023 949 403 0.575 107,102 161,525

3 822 785 354 0.549 102,327 152,012

4 873 827 369 0.554 68,507 115,563

5 1,178 1,127 483 0.571 73,444 127,340

6 1,166 1,104 450 0.592 116,962 172,528

7 901 856 423 0.506 56,546 100,770

8 1,095 1,042 418 0.599 100,309 148,595

9 737 713 339 0.525 28,909 54,378
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optimization approach that is amenable to multiple-

scenario (stochastic programming) versions of the

model. The DCH–GPO–S solution method consistently

ran to completion without exceeding the available

computational resource limitations (2 GB RAM, two

hours of CPU time) and resulted in a performance

improvement of a factor of more than 150 with respect to

the GPO method on representative problem instances.

The speedup factors were even more impressive for the

real datasets from the seven FPUs.

Future directions

In preparedness budgeting for wildfire management,

strategic decisions correspond to the determination of

which fire management resources to maintain for the

year, and tactical decisions correspond to how best to

deploy these resources. The strategic decisions must be

made before fires break out, and the tactical decisions

take place after these breakouts.

We plan to investigate the potential advantages of

applying the two-stage stochastic programming approach

in order to develop preparedness budgets for managing

wildland fires. (The term stochastic programming refers to

optimization problems for which part of the input is a

probability distribution that describes the likelihood of

each underlying scenario.) Stochastic programming is

especially suited for optimization in a setting with

distinctly different decisions, in which the strategic

decisions are made on the basis of uncertain information,

and the tactical decisions are made after learning the

outcome of the events that were uncertain at the time the

strategic decisions were made. For further details on

stochastic programming, see [9].

The strategic planning model developed in this paper

currently uses a single representative wildfire profile or

scenario. This scenario is likely to be different from

the actual wildfire scenarios. Two-stage stochastic

programming provides an appropriate and tractable

framework for obtaining more robust solutions by

simultaneously considering several scenarios. Preliminary

scenario-generation work is currently underway to

advance this line of investigation.

We are also considering a different paradigm of

modeling the strategic budgeting problem with the

simplified but rather pragmatic assumption that one need

consider only a finite collection of initial response

resource organizations and evaluate each such

organization for its effectiveness using appropriate

modeling of stochastic resource arrival and fire ignition,

size, and containment patterns. Once the cost and

effectiveness of each potential organization is computed

using a detailed stochastic modeling and analysis, a

simple high-level optimization can weigh the relative

benefits of each potential organization against its costs in

order to find an optimal initial resource organization.

We are also exploring the application of modeling and

solution approaches developed herein to other areas of

disaster management such as flood management and

disease control, for which better preparedness and

effective initial response are two key planning areas for

government agencies. These natural disasters, like

wildfires, require strategic national-level preparedness

planning that must be undertaken despite uncertainty

regarding the level of hazards and the number of events

that will require a quick response.
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Figure 4

FPA model validation process. The boxed graph at the right 

represents the effectiveness frontier in which the x axis is the 

budget in dollars and the y axis is WAM, like the graph in Figure 

2. The two lines indicate the effectiveness frontier from the 

optimization model and the simulation model. The dashed arrow 

indicates the validation of the optimization model assumptions 

using the comparison of results between optimization and simula-

tion. The green box indicates the underlying assumptions used in 

building the optimization model. (Verification is debugging to 

ensure that the model does what it is intended to do. Validation is 

the task of demonstrating that the model is a reasonable represen-

tation of the actual system, that is, that it reproduces system 

behavior with enough fidelity to satisfy analysis objectives.)
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