Workforce optimization:
|dentification and
assignment of professional
workers using constraint
programming

Matching highly skilled people to available positions is a
high-stakes task that requires careful consideration by experienced
resource managers. A wrong decision may result in significant
loss of value due to understaffing, underqualification or
overqualification of assigned personnel, and high turnover of poorly

Y. Naveh

Y. Richter

Y. Altshuler
D. L. Gresh
D. P. Connors

matched workers. While the importance of quality matching is
clear, dealing with pools of hundreds of jobs and resources in a
dynamic market generates a significant amount of pressure to
make decisions rapidly. We present a novel solution designed to
bridge the gap between the need for high-quality matches and
the need for timeliness. By applying constraint programming, a
subfield of artificial intelligence, we are able to deal successfully
with the complex constraints encountered in the field and reach
near-optimal assignments that take into account all resources
and positions in the pool. The considerations include constraints
on job role, skill level, geographical location, language, potential
retraining, and many more. Constraints are applied at both the
individual and team levels. This paper introduces the technology
and then describes its use by IBM Global Services, where large
numbers of service and consulting employees are considered when

forming teams assigned to customer projects.

Introduction

Employees are the most important asset of any
technology-based company. This statement is not a mere
slogan, but a genuine business reality that requires careful
consideration at all management levels in the company.
While this reality has been recognized for a long time, only
recently have rigorous processes, backed by automation,
become central in reaching workforce-related decisions.
One of the main reasons for this is the fact that
professional workers, being humans, are complex entities.
They each have individual skills, interests, expectations,
and limitations. They may live in a particular area, have
family-related constraints, prefer working solo, or
function best as team players. They may be more or

less susceptible to pressure, easy or difficult to retrain,
and motivated by completely diverse factors. Most
significantly, it is perceived that human professionals

cannot possibly be described as a mere set of attributes, no
matter how large the set. For example, most resumes—
formal documents designed to best describe the aspects of
people relevant to their hiring—contain lengthy textual
descriptions rather than a structured list of attributes and
values. Summarized eloquently, it is often maintained that
“people are not parts.”

While it is true that people are not parts, the situation
still exists in which a large number of professionals must
be matched and assigned to a similarly large number of
demanding jobs. In fact, this problem lies at the heart of
the execution phase of the workforce management (WM)
cycle [1]. The problem applies to many different business
cases in the technology industry, including assigning
service professionals to short-term maintenance tasks [2],
team-building for contracted projects [3], maintaining
staff with multiple skills [4], and more.

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Y. NAVEH ET AL.

263

264

In all of these cases, the consequences of failing to find
the best assignments for the jobs are extremely severe.
Less-than-optimal assignments can be manifested in three
general forms: underqualified professionals assigned to
highly demanding jobs, overqualified professionals
assigned to less-demanding jobs, and a total number of
assignments smaller than the maximum achievable. An
underqualified assignment may result in the need to
reperform the job without compensation, costly onsite
training, customer dissatisfaction with the job, eventual
loss of this customer, and loss of referrals from the
customer. In addition, qualification may refer to various
attributes, not necessarily the professional level of the
worker. For example, an underqualification may be
a travel distance that is too long, with direct travel
costs being incurred by the provider. The costs of an
overqualified assignment may relate directly to the
unrecovered high salary of the professional or indirectly
to the loss of a more profitable job assignment for the
employee, employee dissatisfaction, and eventual
employee attrition. A less-than-optimal number
of assignments may result in loss of revenue from
unassigned jobs, increased costs from subcontracting
external providers for the unassigned jobs, and the
general dissatisfaction of the customers ordering the
unassigned jobs.

The usual way of solving the general assignment
problem presented above is to examine the full list of
jobs in some predefined order and for each job find a
corresponding shortlist of best-fitting candidates, then
assign one of those candidates to the job. (An equivalent
option is to look at the full list of professionals in
a predefined order, find a shortlist of best-fitting jobs
for each professional, and then assign the professional
to one of those jobs.) This procedure is simple and
can be accomplished by a human resource deployment
professional (RDP), because at any one time the actual
fitting procedure looks only at a single job and a shortlist
of professionals. As part of this procedure, the RDP
may use search tools to search for an employee with
characteristics required by the job, provided that relevant
data for all professionals is stored in some database.
However, the procedure has the following significant
drawbacks:

e [t is tedious, repetitive, and time-consuming.

¢ Since the shortlist of matches is not prioritized within
itself, it requires further manual work to rank-order
the individuals in the shortlist and is thus likely to
result in a suboptimal choice, even for the single job
currently considered.

* The first job considered will likely be assigned the
best-found professional for the job (a greedy policy),
even though that professional may be better suited to

Y. NAVEH ET AL.

other jobs that have not yet been considered. This
may lead to fewer assignments to jobs because

the other jobs may not find another match, while
alternative professionals may exist for the current job.
It can also lead to possible overqualification of the
professional for the assigned job.

e Competition among jobs considered (or owned) by
different RDPs is even less likely to be resolved fairly,
because each RDP sees and applies only his or her
own criteria, and there is no mechanism for finding
a fair and optimal assignment among all RDPs.

* When the number of available jobs and professionals
is large, say a few dozen or more, it becomes
impossible to find the best matches manually. This
is true even when the matching criteria are stated
correctly and the RDPs are motivated to seek a
global best solution. The reason for this is that the
optimization problem is known mathematically
to be NP-hard, which means that beyond a certain
number of jobs, an exponentially large number of
comparisons between different candidates must be
done in order to reach the optimal assignment.

* Only the most simplistic types of matching rules, or
constraints, can be considered by human RDPs. One
example of a simple rule may be exact matches on
several searched attributes, such as skills, availability,
and pay rates. However, even a simple matching rule
that requires, e.g., a short travel distance between
work and the person’s location is difficult to enforce
manually, because this distance must be recalculated
for any job—candidate pair. Finding a good solution
that complies with rules that are inherently complex
(for example, team-building rules) is far beyond
the capacity of a human RDP.

* In searching for candidates who possess a number
of desired attributes, all attributes are viewed as
having the same importance. When some attributes
are of higher importance than others, finding the best
matches must be achieved manually by first searching
for candidates with the most important attribute,
then reducing the list to those also having the next
important attribute, and so on. In addition to the
slowness of this procedure, it will likely miss a
professional with many of the less-important required
attributes who lacks only one of the more-important
attributes.

Given the above drawbacks, the potential for large
amounts of data, and the need for a short response
time, an automatic procedure to optimize the set of
assignments could offer a significant benefit. However,
there are two major obstacles to using ordinary

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

operations research (OR) optimization techniques, such
as those used in supply chain management. First, we must
accept that people are not parts. One cannot assume
that a person can be modeled as a mathematical set of
attributes. This implies that the engagement and business
rules related to people are bound to be much more
complex than ordinary rules observed in mainstream OR.
Second, there is no meaningful way to define a rigorous
mathematical cost function for the WM optimization
problem. For example, one cannot seriously quantify the
cost associated with a dissatisfied overqualified employee,
nor the cost of a person with imperfect foreign-language
skills working at an offshore location. Without a good
cost function, much of the substance of OR techniques—
primarily linear programming and its derivatives, and
metaheuristics—is lost.

In this paper we present a completely different
optimization approach to the identification and
assignment (ID&Assign) WM problem described above.
Our approach is based on constraint programming (CP)
[5], a subdiscipline of artificial intelligence. We suggest
that using CP can bridge the gap between the fact that
people cannot be treated as pure mathematical objects
and the requirement for a mathematical procedure for
optimization. Indeed, one of the most compelling features
of CP is that rules are stated in a high-level language
derived from the domain of application, and not as a
mathematical formulation. Once the rules are stated,
there are rigorous mathematical algorithms that can
interpret the rules and optimize the solution according to
all rules defined. As we demonstrate, this approach
eliminates the drawbacks of manual handling that are
listed above. The only previous work we are aware of that
applied CP to the ID&Assign problem [6] considered only
the most simple matching rules; it was motivated by the
scheduling aspects when applied to a combination of full-
time and part-time employees. Our focus is on complex
rules and the large number of significantly different
individual professionals available for assignments. We
are also interested in the case in which people may be
assigned to highly specific jobs of relatively short duration
(a few weeks to a few months) and may need to move
from job to job quickly, without wasting time. The
technology presented here may not be as useful in a
context in which people are assigned to jobs only once or
infrequently.

The scope of this paper is the ID&Assign problem for
highly skilled employees. Early in the WM cycle, planning
and prediction of the expected future workforce is
performed. In that phase, the entities of interest are
aggregates of people and jobs, where the actual people
and jobs are not yet available or known. A well-defined
mathematical model can be built for the aggregates and
solved by traditional OR and supply chain techniques.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

The IBM Resource Capacity Planning tool [7] does just
that. The scheduling problem of low-level employees
can also be solved in an aggregate fashion, because the
entire workforce can be partitioned into a small set of
homogeneous groups, and OR techniques may be readily
applied to take into account the simple scheduling
constraints of each employee in the group. A typical
example of such a case is call-center scheduling, and the
IBM SWOPS tool [8], based on linear programming, is
designed to meet that need.

The next section provides a more detailed summary
of existing work in workforce optimization. We then
provide a short overview of constraint programming—in
particular, its modeling and algorithmic aspects. We go
on to describe a basic constraint satisfaction problem
(CSP) model for the ID&Assign problem and delve
deeper into the details of workforce management rules.
We present use cases and results related to IBM service
organizations and then conclude the paper.

Survey of existing work

Workforce scheduling problems are traditionally
classified into three types: shift scheduling, days-off
scheduling, and tour scheduling. Shift (or time-of-day)
scheduling determines each employee’s work and break
hours per day. Days-off (or days-of-week) scheduling
determines each employee’s workdays and off-days per
week or on a multiple-week work cycle. Tour scheduling
combines the shift and days-off scheduling problems by
determining each employee’s daily work hours and
weekly workdays. An introduction to the problem,
classification of its types, and the difficulty in solving

it can be found in [9, 10]. More recent reviews can

be found in [11, 12].

In general, most WM solutions can be divided into two
approaches: using a generic method to solve the problem
or using some specific algorithm created for a particular
problem. We are interested primarily in the first
approach. The second approach is often used for
problems that have complex or unique features, such
as discontinuous objective functions [13] or others [14].

Traditional OR approaches are often used for WM
[15]. Linear and integer programming techniques [16, 17]
are examples of such approaches. Another approach to
solving WM problems is trying to find reductions of those
problems to other OR domains (e.g., routing) [18].

Significant work is also being done to apply modern
metaheuristics techniques to WM. Tabu search is often
used [19, 20]. Genetic programming is sometimes used
with special features of the WM problem structure to
efficiently solve problems that are computationally hard
[21-23]. An interesting variant of WM problems is known
as mobile workforce management [24]. To solve this
problem, a special multi-agent information system 265

Y. NAVEH ET AL.

266

technology has been developed. Additional discussion of
metaheuristics and heuristics-oriented solutions for WM
appears in [25].

CP and constraint logic programming (CLP) have also
been used to solve WM problems. One case of a simple
real-life WM problem was noted by British Telecom [26].
This problem was later approached using simple CP [6]
and two local search methods [27]. Other uses of CP and
CLP for WM are presented in [28] and [29]. In all of these
cases, CP is used to solve traditional WM problems in
which the main difficulty is scheduling employees to shifts
under rules governing the work hours and workdays.
However, in these approaches, individual employees
are not well distinguished from one another and are
in general interchangeable with other employees. In
this paper we concentrate on the other extreme: Each
employee has unique attributes that are defined for
each individual. Similarly, each job has a unique set of
requirements. The objective is to fit as many employees to
as many jobs as possible while maintaining the best match
between the individual employees and the jobs to
which they are assigned. This ID&Assign problem is
significantly more difficult to automate. To the best of
our knowledge, it has not previously been studied
using traditional OR or CP techniques.

Constraint programming

CP deals with modeling and solving CSPs. A CSP is an
abstract problem that captures the relations between
some entities (variables) and the constraints that restrict
the values those entities can assume. For example, in an
exam-scheduling problem, the variables may be the time
and location of each exam in a given semester, and a
constraint may specify that no two four-hour exams may
be scheduled on consecutive days.

Mathematical formalism

Mathematically, a CSP P is a triplet (V, D, C) consisting
of a set of variables V/, a corresponding set of domains D,
and a set of constraints C. A solution to a CSP is an
assignment of a value to each variable out of the domain
of the variable such that all constraints are satisfied. A
CSP is satisfiable if it has at least one solution and
unsatisfiable otherwise. In the exam-scheduling example,
assuming there are N exams, we would have 2N variables:
one date variable and one location variable for each
exam. The domain of the date variables may be the list of
days in the exam period, while the domain of the location
variables may be the list of rooms in the building.
Constraints may specify such things as blackout days
for any particular exam, requirements on room sizes,
and mutual requirements on neighboring exams.
Mathematically, constraints are known as relations.

A relation on a set of k variables is the list of all legal

Y. NAVEH ET AL.

combinations of k values, each taken from the domain of
the corresponding variables. For example, consider three
variables a, b, ¢, with domains {1, 2}, {1, 2, 3}, {1, 2, 3},
respectively. A constraint requiring that the three
variables assume different values may be represented

by the mathematical relation

{(1,2,3),(1,3,2),(2,1,3),(2,3,1)}. (1)

CSP modeling

CSP modeling is the process of translating a real-world
constraint problem into a CSP. It involves identifying the
variables in the problem, the variable domains (i.e., the
values each variable can have before considering conflicts
due to the constraints), and the constraints. There is
usually more than one way to choose the variables and
domains. For example, in the exam-scheduling problem,
we could have chosen the variables to be all combinations
of dates and locations. Under this choice, the domains of
all variables may be the names of the exams plus “null,”
signifying that no exam is taking place at this particular
date and location.

Choosing an appropriate model is a crucial step in CP.
The most important aspect of choosing a model is to
make it simple. Variables should correspond to physical
entities that are easily identified in the real-world
problem. Auxiliary variables, sometimes added to make
the constraints appear simpler, should almost always be
avoided. Domains should be of the same type as in the
real-world problem. For example, if the possible colors of
a shoe in a shoe-manufacturing plant are white, black,
gray, yellow, and red, the domain of the variable shoe-
color should be {white, black, gray, yellow, red} and
not a numerical coding such as {0, 1, 2, 3, 4}. Finally,
the constraints should be specified in a language
understandable to the end user, which often excludes
sophisticated mathematical notations. Following these
guidelines allows simple maintenance of the model when
the problem evolves and when variables and constraints
are changed or added.

Constraint languages

The constraints in the CSP model should be specified in
a way that is close to the physical reality. Specifying the
mathematical relation of the constraint is almost always
out of the question because the intuition behind the
constraint is usually lost this way and because the relation
may become very large (i.e., a very large number of legal
combinations). The more common way to represent
constraints is to use some constraint language. A
constraint language may be generic, such as Numerica
[30] and the Optimization Programming Language [31],
or designed for a specific problem domain. Generic
constraint languages usually support arithmetic and logic

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

operators and comparators, so two constraints in the
shoe-plant model may be written as

(shoe-color = red) implies (lace-color = red

or lace-color = white)
and
number-of -boxes > (number-of -shoes

+ number-of -sandals) /2 .

Here, shoe-color, lace-color, number-of-boxes, number-
of-shoes, and number-of-sandals are all names of
variables; red and white are domain values; and the
reserved symbols (,), implies, or, =, >, /, and + are all
part of the generic constraint language.

In addition to simple expressions, constraint languages
contain operators (or global constraints), which are
known to be useful in many constraint problems. The
best known example of a global constraint is all-different,
which specifies that all variables in a given set must
assume different values. By using all-different, the
numerical constraint represented by Equation (1) may
be specified simply as

all-different(a, b, c). (2)

For any expression or global constraint, a constraint
propagator must be implemented. A propagator is an
algorithm that accepts n domains, where 7 is the number
of variables affected by the constraint, and outputs
the same domains after all unsupported values are
removed. A value of a domain is unsupported if it cannot
be extended into a legal combination of the constraint by
using any choice of n — 1 values, one from each of the
other domains. For example, consider the constraint
a+ b =c, where a, b, ¢ are variables with domains
{1, 2, 4}, {3, 5, 8}, and {0, 3, 6, 9}, respectively. When
a propagator for this constraint accepts these domains as
input, it returns as output the new domains: {1, 4}, {5, 8},
and {6, 9}, respectively. If all values of an input domain
are unsupported, the propagator returns an empty set for
all domains.

Algorithms

Maintain-arc-consistency (MAC) algorithms [32] accept
a CSP in which constraints are represented by their
propagators, and they output a solution to the CSP,

a proof that the CSP is unsatisfiable, or a timeout. They
do so by interleaving two types of steps: First, they
iteratively call each of the propagators to reduce the
domains of variables accepted by the propagator until no
domains can be further reduced; second, they instantiate
a variable with a value from the reduced domain of the
variable, as in a regular search. The propagation step may
greatly prune the underlying search tree, thus making the

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

problem tractable. In general, global constraints have a
greater pruning ability than an equivalent set of simple-
expression constraints.

Sometimes a specific problem calls for special
constraints that are not defined in a general-purpose
constraint language. In this case, the user must provide a
new propagator corresponding to this constraint. Once
the propagator is available, it can be used by the MAC
algorithm in conjunction with all other constraints. This
expandability of the constraint language allows both
simpler modeling of the problem at hand and better
pruning of the search tree, hence shorter runtimes of the
algorithm. In the next section, we discuss a new global
constraint that is extremely useful in the ID&Assign
problem.

When the best propagation algorithm for a constraint
either is intractable or has a weak pruning ability, MAC
algorithms become inefficient. In these cases, stochastic
local search [33] is often used. Stochastic local search is
also used for flexibility, i.e., to repair a solution obtained
by MAC when the problem is slightly perturbed and
when the solution of the perturbed problem is required
to be close enough to the original solution [34]. This is
usually the case with the ID&Assign problem, since a
small number of people or jobs are likely to leave or
change after the problem has been solved, and we do
not want to reshuffle the assignments of all other
professionals when this happens.

Soft CSP

Pure CSP deals with finding a satisfying solution to the
problem, i.e., an assignment to all variables out of the
variable domains such that all constraints are satisfied.
However, most real-world problems require an optimal
solution, not just any solution. There are many ways to
expand the CSP definition to incorporate optimality into
the problem [35]. One of the most appealing is the soft
CSP framework. A soft CSP is the list (V, D, C, C;, C,,
Cs, -+, Cy) where (V, D, C) is a regular CSP. The
constraints in C are called hard constraints, and C;
represents sets of prioritized, or soft, constraints. Roughly
speaking, a solution to the soft CSP is an assignment

to the variables out of the domains such that 1) all
constraints in C are satisfied, 2) as many constraints as
possible are satisfied in each C,, and 3) when conflicts
between constraints occur, the constraint with the highest
priority in the set of conflicting constraints (i.e., the one
belonging to C; with the smallest /) is satisfied [36].

This scheme allows us to specify the optimization
criteria in a natural way, as a set of prioritization rules,
rather than defining a rigid mathematical cost function
that attempts to associate a well-defined numerical cost
with the much laxer notion of business preferences. 267

Y. NAVEH ET AL.

268

Applications

Since its inception, CP has been used to solve many real-
world problems. This section includes a brief summary of
the most important applications. Reviews of practical
applications of CP can be found in [37, 38]. Interactive
graphics was one of the earliest applications to apply
computers to constraint problems. Sketchpad [39] and the
follow-on ThingLab [40] were interactive graphics
applications that allowed the user to draw and
manipulate constrained geometric objects. These systems
contributed to the development of local propagation
methods and constraint compiling. The scene-labeling
problem [41] is probably the first CSP that was formalized
as such. The goal was to recognize the objects in a three-
dimensional scene by interpreting lines in the two-
dimensional drawings.

Assignment and allocation problems were the first type
of industrial application solved with constraint tools [37].
Typical examples are counter allocation for departure
halls [42] and berth allocation to ships in a harbor [43].
Typical scheduling problems solved by constraint tools
are petroleum-well activity scheduling [44], forest
treatment scheduling [45], production scheduling in the
plastics industry [37], and production planning of military
and business jets [46]. Network management and
configuration problems include planning and
configuration of telecommunication or electric power
networks [47] and optimal placement of base stations
in wireless indoor telecommunication networks [48].
Database applications use related CP ideas [49, 50],
and CP methods are employed in relation to program
testing [51-53]. Hardware verification is a large modern
application field of CP. A full-fledged industrial
application based entirely on CP is presented in [54].

There have been many works aimed at reducing
problems from other domains of knowledge to the CP
framework in order to utilize existing powerful CP
algorithms. The two broadest cases are the reformulation
of optimization problems [35, 55] and satisfiability
problems [56] as CSPs.

CSP model for the ID&Assign problem
We model the most basic ID&Assign problem as a soft
CSP.

Variables: The set of variables J corresponds to the set
of job positions. For each job, there is a variable in V.

Domains: The domain of each variable in V' is the set
of professionals who can perform the job. This set of
professionals is found by iterating over all professionals,
checking each individual to see whether he or she can
perform the job according to the specifications of the job
and the credentials of the professional. For example, if
the only requirement specified by some job is for the
professional to be a C++ or a Java** programmer, the

Y. NAVEH ET AL.

domain of the variable corresponding to this job will
include all professionals skilled in either CH++ or Java.

Constraints: The only hard constraint in our basic
model is a some-different constraint applied to all
variables. The some-different constraint is discussed
below. It is used to ensure that the same professional is
not assigned to two jobs taking place at the same time.

Soft constraints: Any preference defined in the problem
is modeled as a set of soft constraints on any of the
variables. For example, if a job requires either a C4++ or a
Java programmer but prefers a C4++ programmer, a soft
constraint with priority 1 is added, and its propagator
removes all professionals without C4++ skills from the
input domain. This way, if a C44 programmer is
available, he or she will be matched by the constraint.
However, if no CH++ programmer is available, the
constraint will eventually drop out of the model (because
it is only a soft constraint and cannot be satisfied), and
a non-C+ programmer may be assigned to the job.
More complex is the case of a continuous preference.
For example, suppose there is a preference that the
professional live as close as possible to the job location.
In this case, the following set of soft constraints, with
their listed priorities and legal domain values, is added
to the model:

Priority 1:
Priority 2:

Person closest to the job location.
Two people closest to the job location.

Priority n — 1: n — 1 people closest to the job location.

In the case in which there are two (or more) preference
criteria (e.g., prefer both a C4++ programmer and a
professional living nearby), the problem should specify
which criterion is more important. The corresponding
soft constraints are then given the appropriate priority
number.

The some-different constraint

The all-different constraint is a fundamental primitive in
CSP [57]. This constraint is defined over a subset of the
variables and requires that they are assigned different
values. Many classical CSPs are modeled using this
constraint, the n-queen problem' being the canonical
example, along with air traffic management [58, 59],
rostering problems [60], and many more. The semantics
of a single all-different constraint over n variables may be
preserved by replacing it with n(n — 1)/2 binary not-equal
constraints. However, in the context of MAC algorithms,
the single all-different constraint is vastly more powerful
in pruning the search space, leading to a great reduction
"The n-queen problem is to find a configuration of n chess queens on an n X n board

so that no queen attacks any other queen; all-different constraints enforce that no
two queens are on the same row, column, and diagonal.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

in the number of backtracks, and hence reaching the
solution more rapidly.

For our ID&Assign problem, all-different is too
restrictive. In fact, we would like only some of the pairs of
variables to be assigned different values. For example,
suppose our list of job positions specifies that different
jobs start and end at different times or require only
partial availability of a worker. In these cases, the same
worker may be assigned, in general, to multiple jobs, thus
violating all-different on the full set of variables.

Within the framework of our basic model, one way to
model this type of behavior is to add a binary not-equal
constraint for any two jobs that overlap in their time of
execution (assuming for simplicity that all jobs require
full-time workers). However, this model suffers from the
same disadvantages of modeling an all-different problem
by multiple not-equal constraints. Partitioning the jobs
according to their periods of execution and adding an
all-different constraint for each partition does not help
because job B may overlap with both jobs 4 and C, even
though jobs 4 and C may not overlap and can therefore
be assigned the same professional. All of this calls for a
generalization of all-different.

We recently defined a new type of global constraint
that we call some-different [61]. This constraint was
designed to address the above modeling problem, but in
actuality its scope is wider and it is relevant to many other
real-world problems. The some-different constraint is
defined over a set of variables X' = x; - -+ x,, with domains
D =D, --- D, respectively, and an underlying graph
G = (X, E). That is, the nodes of the graphs are the set
of variables, and the edges are given explicitly. The legal
combinations allowed by the constraint are all values
out of the domains so that no two values of variables
connected by an edge are equal:

some-different(X, D, G) = [(a;, "+, a,): a, € D;, a, # q;

forall (i, j) € E(G)]. (3)

The all-different constraint is the special case of some-
different in the case in which G is a clique®.

For all-different, there exists a polynomial propagation
algorithm [62]. Its runtime is O(mn'/?), where n is the
number of variables and m the sum of all domain sizes.
Unfortunately, there is little hope of finding a similar
polynomial algorithm for some-different, since it contains
the NP-hard problem of graph three-colorability as a
special case. Nevertheless, we designed special heuristics
into the some-different propagator. This allowed us to
show that for all real ID&Assign problems we worked on,
the some-different propagator was not only tractable but
extremely fast.

2A clique is a set of nodes in a graph such that there exists an edge between any two
nodes in the set.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

In [61], a detailed theoretical analysis of the some-
different propagator was performed. The results can be
summarized thus: We introduced an exact propagation
algorithm for hyper-arc consistency of the some-different
constraint. The algorithm has time complexity of O(1*),
with f =~ 3.5, and depends on the domain sizes only for
unavoidable deletion operations. We implemented the
algorithm (with multiple additional heuristics) and tested
it on two kinds of data: our real-life WM instances and
synthetic data generated through a random graph model.
In both cases the implementation performed very well,
much better than expected from the theoretical bounds.
Specifically, the implementation propagated instances
that included 250 to 300 variables in less than a second.

The results of [61] that are relevant to this paper
are summarized in Figures 1(a)-1(c), which show the
potential efficiency of using some-different compared with
using the equivalent model composed of a multitude of
binary not-equal constraints. Figure 1(a) shows the
runtime of the some-different propagator on WM data
instances as a function of the some-different graph size.
Some of the instances shown were satisfiable, while others
were unsatisfiable. Figure 1(b) shows the runtime of the
CSP solver on the some-different model, and Figure 1(c)
shows the speedup factor relative to an equivalent model
composed of not-equal constraints on WM data instances.
The rising curve in Figure 1(b) is composed of satisfiable
instances, while the flat curve is composed of unsatisfiable
ones. Figure 1(c) shows that most instances are solved
much more rapidly using the some-different propagator.
However, some instances are up to a factor of 2.5 slower
with this model. Experiments were performed on a
Linux** machine running an Intel Pentium** 4 at
3.6 GHz. A more detailed discussion of Figures 1(a)—1(c)
can be found in [61].

Beyond the basic model

The basic model includes only two types of constraints.
One type is constraints on the match quality of a specific
professional to a given job. These are soft constraints,
because the hard constraints the professional must match
are taken into account implicitly by having the domain of
each job include only the legally matched professionals.
The other type is the some-different constraint, which
ensures that a professional is not simultaneously assigned
to two jobs.

The basic model is at the heart of all ID&Assign
problems with which we have dealt. However, in almost
all cases, there are additional, more-complex constraints
that are part of the model and coexist with the basic
constraints mentioned above. These additional
constraints reflect the set of business rules that govern

Y. NAVEH ET AL.

269

270

0.20
g (o]
0.15 F o a
@ 000
g 010 o ° 8393 jée
£ géo~° e
= o00s | . §85 ggent®’
(o] o ¢) 8 e 8 8
0 0o0go0f00¢Y 1 1 I I
0 50 100 150 200 250 300
Graph size (vertices)
(a)
3.0 S
23 r cQo
-~ 20 o
@ 18 Qe
E g®
= 10 F e
0.5 F geeg
e
0 | 00888~ cocoeccoeccoceeBegoccoo
0 50 100 150 200 250 300
Graph size (vertices)
(b)
10,000 F S
F ° gof %%oo
5 (o] =
_ 1,000 F &8 e
5 F
5 I
= 100 oo
= o ©
i I
g of Boggs o o oeoBgocoeggERgce
[7) L
1E &
i 88886800
0.1 L 1 1 1 1 1 1
0 50 100 150 200 250 300

Graph size (vertices)

(©

Using some-different compared with using the equivalent model
composed of a multitude of binary not-equal constraints: (a)
Runtime of the some-different propagator on workforce manage-
ment data instances as a function of the some-different graph
size; (b) runtime of the CSP solver on the some-different model;
(c) speedup factor relative to an equivalent model composed of
not-equal constraints on workforce management data instances.
From Figures 1 and 2 of [61], © 2006 Springer Science and
Business Media, reproduced with permission.

the assignments, as discussed below in the section on
workforce matching rules. The simplest example:

A team-forming rule which specifies that two specific
persons (Dave and Mary) cannot work on the same team
may be modeled as a constraint of the form at-most-
one(Dave, Mary) and applied to all variables forming a
single team. Similarly, all of the different rules discussed
in the section on workforce matching rules may be
modeled as constraints (either hard or soft) and applied
to the variables relevant to those rules.

Y. NAVEH ET AL.

Unsatisfiable problems
In general, a CSP may be unsatisfiable: i.e., two or more
constraints conflict. In many cases, a CSP solver can
identify that the problem is unsatisfiable. In this case it
reports “unsatisfiable” and stops. In fact, most complex
instances of the ID&Assign problem are bound to be
unsatisfiable. There are two explanations for this. First,
many conflicting rules can come from the various levels
and organizations in the business. Second, even without
any conflict in rules, for many job positions a single
professional who matches the requirements may not be
found. This means that the domain is left empty, and
technically this implies the unsatisfiability of the CSP.
Of course, any real ID&Assign application cannot just
report “unsatisfiable.” The user obviously prefers to see a
partial assignment to the set of jobs as opposed to no
assignments at all. We enhanced the original CSP model
so that it is always satisfiable. In addition to the regular
professionals, we define fictitious professionals who are
initially part of the domain of all variables. We also add
soft constraints favoring actual professionals over the
fictitious ones. There are no explicit constraints acting
on the fictitious values. Implicitly, the soft constraints
favoring actual professionals may be seen as acting on
the fictitious professionals and removing them from the
domain. However, all other matching constraints do not
remove any fictitious person from any domain. Under
this model, because of the soft constraints, a real
professional is chosen whenever possible, but a fictitious
professional is chosen when all real persons have been
removed by the regular constraints. Because the CSP
solver treats both real and fictitious professionals as legal
domain values, it does not report “unsatisfiable” when
the domain of a variable is left with only a fictitious
person and continues to solve the problem. After the
solver returns with a solution, a simple procedure
removes all fictitious persons and reports to the user only
the assignments of actual professionals.’

Workforce matching rules

This section presents the plethora of workforce matching
rules that are at the basis of the ID&Assign problem.
These rules can be classified according to several
characteristics:

® Rigidity—Are the rules mandatory or merely nice to
have?

* Scope—Do they apply to single individuals or to
whole teams?

3Another way to solve the “unsatisfiable” problem is to run the solver a few times,
each time removing all jobs whose domain became empty in the previous run until the
problem becomes satisfiable. This procedure is likely to result in fewer matches than
by using our fictitious persons scheme, because when the search is backtracked, jobs
that were removed in the previous iteration are no longer available to be filled.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

e Level of definition—Are they derived from corporate
strategy or from an RDP’s decision?

e Complexity—Are they a simple matching of attributes
or do they represent a complex process?

e FExplicitness—Are they defined explicitly by the user
or are they expected to be taken into account
implicitly?

Below we follow this classification and demonstrate it
with concrete examples. We also discuss the impact of the
various types of rules on the CSP model.

Rigidity of rules

Rules can be mandatory. For example, a job may require
a person with project management skills. However, rules
can also be nonmandatory, or nice to have. For example,
a job may have preference for a person with project
management skills, but will settle for one without such
skills if all mandatory rules are satisfied.

All mandatory rules are of the same importance, and
all should be satisfied equally. Nonmandatory rules
can be defined in a ladder of importance. For example,
it may be more important to live close to the place of
employment than to have experience in programming (or
vice versa). Whoever sets the nonmandatory rules should
also specify this ladder of importance between them.

Deciding on the relative importance of rules is a rather
intuitive task. This amounts to prioritization, which is
what people naturally do when they have to decide
informally among a few imperfect options. Once the
prioritization is known, the optimality of a solution can
be crudely defined as the solution that best satisfies the
prioritization scheme.

In contrast, other optimization schemes do not allow
the user to define the relative importance of rules but
require a numeric cost defined for any complete
assignment of professionals to all jobs. In many cases, it is
quite unnatural to quantify a violation of a rule with a
specific numeric cost. In the example given above, it
is unreasonable to assume that the user can actually
quantify the cost of living far away from the job, because,
in addition to the dollar cost of travel, the cost includes
such factors as the dissatisfaction of the worker and the
reduced likelihood of his or her working extra hours.

The natural scheme of specifying mandatory rules and
a prioritized list of nonmandatory rules fits nicely with
the formalism of soft CSP. Mandatory rules are mapped
to hard constraints, while the list of nonmandatory rules,
together with the prioritization of each such rule, is
mapped to the Borning hierarchy [36] of prioritized soft
constraints. This way, no cost function has to be defined.
Indeed, once we have a soft-CSP model of the problem, it
is up to the soft-CSP solver to produce an optimized
solution.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Scope of rules

Rules may apply to individuals or to teams. For example,
a skills rule may state that a particular job requires a
person with medical qualifications. However, it may also
state that for a given set of n jobs, at least two persons
filling the jobs should have medical qualifications, but

it need not specify which two.

Rules applied to sets of jobs may be used to form teams
or to find a suitable professional to fill a vacant position
in an already existing team. As with rules on individual
matches, team-matching rules can be either mandatory or
nonmandatory. For example, a nonmandatory rule may
be applied to a previously successful team to keep the
team together in the next assignment. However, if
the team as a whole cannot fit any of the new job
opportunities, this nice-to-have rule may be violated,
and the team can be spread to different projects.

As a CSP, rules on matching individuals may be
modeled as unary constraints on the jobs to which the
rule applies, whereas rules on matching teams to projects
can be modeled as k-ary constraints on the jobs
comprising the project, with k < n, where # is the number
of individual jobs in the project.

Definition level of rules

Rules can be defined at the lowest RDP level. For
example, an RDP who owns a particular job position
may impose rules derived directly from the specifications
of the job. The rules discussed above are all examples of
such rules (special requirements for skills or experience,
live near the job location, form a winning team by
combining certain individuals, and so on).

However, rules can also be imposed by higher authority
levels in the organization. For example, an organization
within the corporation may impose a reservation rule
stating that no more than 90 percent of top professionals
should be assigned at any given time. This implies the
constant availability of ten percent of the leading
professionals in case an emergency request from a
must-fill job arrives.

An example of a corporate-level team-building rule
may be that it is forbidden for spouses to be assigned to
the same team. Note that both of our examples of rules
defined at the higher level are in conflict with the low-level
RDP rules. In fact, the RDP would prefer to use the top
professional from the reserve if he or she fits the job
requirements and would also want to assign both spouses
if they are the best match for the team. This illustrates a
common phenomenon in which organization-level, or
strategic, rules often violate the decisions made by
RDPs—hence the importance of specifying those rules.
Without them, it is likely that low-level decisions would
violate many of the standards of the corporation and its
vision and strategy. Needless to say, the potential conflict

Y. NAVEH ET AL.

271

272

among rules at different levels is bound to generate some
level of friction among the various position holders.
Therefore, in addition to implementing robust practices
to ensure enforcement of the higher-level rules, it is
absolutely necessary to create a rewarding system for
RDPs that renders it in their own best interest to abide by
all levels of rules.

CSP modeling lends itself naturally to rules originating
from different levels or different organizations. The CSP
model is declarative, with constraints being added to the
model while the solution algorithm remains the same.
Therefore, it allows the seamless addition of constraints
from different sources. In fact, the different organizations
need not even know of the participation of all other
organizations in building the CSP model. Constraints
can be added in any order without affecting the solution
process as long as they are all added before the solver is
called to solve the model. Finally, within the soft-CSP
framework, it is easy to enforce the overriding of rules by
some level over another. This can be done by allocating
different ranges of priorities to soft constraints entered by
different organization levels. By applying a set of different
prioritization levels, we can define a complete hierarchy
of overriding rules that mirror the complete hierarchical
structure of the organization.

Complexity of rules

Rules can be as simple as matching a single attribute of a
job to a corresponding attribute of a professional. For
example, a rule for a job requiring a person with a pay
scale lower than an annual salary of $90K can be
implemented by comparing the max-pay-level attribute
of the job with the pay-level attribute of the person.

However, rules can also be quite complex and
sometimes require access to databases or elaborate
calculations. Note that this complexity can arise even
with rules defined on individual jobs. The complexity
we are addressing here is different from the implicit
complexity of rules defined on more than one job. We
illustrate this with two examples of complex rules.

The first example is the rule which states that the
professional must reside within a specific distance from
the place of employment. While easy to state, this rule is
difficult to enforce automatically, for two reasons. First,
in order to enforce this rule, the locations of the job and
the professional must be known. However, it is sometimes
difficult to obtain trusted information about this location.
In many cases, zip codes, longitude and latitude data, or
other well-defined location definers are not available as
part of the person or job descriptors. In these cases, the
location entry may be entered as street address, city,
county, state, and country. Since the number of cities is
huge and since many cities (especially in non-English-
speaking countries, and assuming that data is entered

Y. NAVEH ET AL.

in English characters) have alternative spellings, it is
possible that the same location may be spelled differently
for the job and the professional. A naive application will
then recognize the two locations as different. A more
reasonable application will invest in complex text analysis
as part of the matching algorithm. A second problem is
that even if two locations are recognized correctly, it is
not clear how to calculate the distance between them.
Here again, the problem may be solved by increasing the
complexity of deciding whether the rule is violated, e.g.,
by looking at huge interlocation-distance databases.
Another approach, which requires less computer space
but provides only an approximate result, is to calculate
the distance. Given the name of the location, we can
determine the longitude and latitude information by
searching existing databases. The shortest distance
between any two locations can then be calculated
according to the formula

Distance = Racos|sin @, sin ©,
+ cos ®, cos ©, cos(p, — ¢,)],

where ®; and ®, are the latitudes of the first and second
locations, respectively, and ¢, and ¢, are the longitudes
of those locations.

In practice, we multiply this number by a factor of 1.3
(found empirically for suburban areas) to estimate the
actual road distance. The rule must be made even more
complex if the area contains water barriers, such as rivers
or lakes.*

The second example is a rule stating that the skills
required by the job must be “close enough” to skills
attained by the professional. Here the problem is in the
definition of “close enough.” How can one obtain a
clear definition of the proximity between any two sets of
skills? In our initial model, we required that the job role
and skill set of an individual be an exact match to the
job requirements. As the model matured, our users
asked if we could incorporate the raising of personal
skill levels or retraining as matching factors. We
implemented a rule stating that skills required by the
job must be “close enough,” which was defined by our
human resources (HR) subject-matter experts. Figure 2
shows one approach to this problem. In this example,
our HR partners defined the distance between any two
job roles by the number of additional skills one would
have to acquire in order to raise one’s skill level from
one of the job roles to the other, and by color, which
specifies more crudely whether the transition is easy
(green), medium (yellow), or hard (orange). Our HR
partners continue to refine this distance matrix to
“Although there are popular Internet-based applications in various countries that
offer travel directions and distance calculators, there are a number of obstacles to

solving this problem on the basis of such applications. However, it is a good direction
for further exploration.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

A | B | ¢ | b JeE|[FlelHl1]JIK[LIM[N][O[P[a]R[s][T]u[v[w[X]Y]z]|aaAB[AC|AD|AE[AF|AG[AH] AI[AJZ]
o
=]
® | i
EIEIEIEE EIEIEIE EIEIBIE EBIEIBIEIEIEIEIEIEIE EIEBIEE| 8= LA
S22 B8 2228 2BEEBBEEE3EEBIAEEEIESE =
SliEE FiElElE ZEiala | Zliamigialzglzaigiz i g2l2la2ia 213 8 2 | sl sl 2 5|2
£ g geggegegeegegeegegeeeegeegeg g Es s seE=
Q O O 0O O 0 9 O 9 0 0O 0O O 0O O O O O O O =3 © 0 0o 0 90 o 9 B £ =1
3 I O OO0 00 000000000000 o0000o00oooowwic T b
E
= €
= = B
« a 5
3|8 |E g £
> 8 =, Elo =
Ela|@ =g = 5
2S|ElS 5 =8 []
g|C[Eg|o s 2 2§ = el] 8
HEE 5 | |8 315 | 13| | 18] |3 |3
o = o TlEl= § = | @
E|2|8|8|E SISIE|E2l=| | |=|8E] |5[3] |8 |2|E|& T
HEIPIE RS clo(Z|Z2|2e|=|Els|8|8| |B|l&| |&|ls| (2|2 |2
w|l®2l® P 06| o ® - s|l=2|c|2] =|lolu|o @ = " =
ElE|IE| 8|2 % E = E|5|5|xla|8|=|3|6|3 o|8l5|5|E|E|IT R 2= S
S|8|5|8|E|E|S| |=|8|S|8|2|5|8|2|2|<|8| |olE|5|B|5|E|2|2|5|8|=
zlglc|e|a|- 258 8|5 g/3|8|5|8|8|E|=|_|E|=|5|8|2|2|%|E|8|8|=|s
sl= glg|glgl8lsi5 |2 e|2 e elels =Ble st zlclaleslE e as2
o|Elglelg| e Q=5 5|E2clEl2l8 s BlelSlElel2E|lc|E|5|Elelald
AEHEEEEE R EEEEEEEE R R R EHEE
4 to profession to jobrole fromjobri < | < | @ |@ |@|m | |A |G |E|E|2|2|8|=|=|2|0|8|&|e|o|a|6|62|S|=|S|E|2|2
5 Consultant ADE Consultant 0 4 4 4 4 4 4 4 4 4 4 4 422 4 3 423 4 4 5 4 4 4 4 4 42323232323
6 | Consultant Application Consultant /# 05 5 5 5 5 535 5 5 9852 5 5 8P 558 H 5 585 5 5B2BMOBIE
7 Consultant Business Continuty &Recovery 7 5 0 5 5 5 5 5 5 5 5 5 525 5 5 526 5 5 6 5 5 5 5 5 5 26 26 26 26 26
8 Consultant Business Process Design Consu 12 10 10 0 10 10 8 10 10 10 10 10 10 30 10 10 10 31 10 10 11 10 10 10 10 10 10 31 31 31 31 AN
9 Consultant Business StralegyConsultant 11 9 8 8 0 7 4 8 8 9 6 9 9290 9 9 928 O 910 © & 9 9 9 9 30 30 30 30 30
10 Consultant Business TransformationConsult @ 7 7 7 5 0 5 7 6 7 6 7 727 7 7 728 7 7 8 7 7 7 7 7 7 2828282828
11 Consultant CRM Caonsultant 1210 10 8 5 8 010 9 10 7 10 10 30 10 10 10 31 10 10 11 10 10 10 10 10 10 31 31 31 31 31
| 12 Consultant Data Miner 8 772 Y 7T 72 QT T YT AEHTT BT TERTTTT T TAERIRAR IR
13 Consultant Engagement Manager 8 7T T T8 88 707 T T T2 T 7T T2 T 8 8B VT T T TV T22872828728
| 14 Consultant IT Management Consultant 12 10 10 10 10 10 10 10 10 0 10 10 10 30 10 10 10 31 10 10 11 10 10 1 9 10 10 31 31 31 31 31
15 Consultant IT Strategy Consultant 8 77 7 486 47V 7 7007 72 ¢ 7 7207 7 87 7 7 7 7V 72828282828
| 16 Consultant Knowledge Consultant 10 8 8 8 8 8 8 8 8 8 8 0 723 8 8 829 8 8 9 8 8 8 8 8 720292972929
17 Consultant Known Subject Matter Expert 8 6 6 6 6§ 686 66 6 6 5 02X 06 6 62/ 66 4 6 6 6 6 6 22722 272
18 Consultant Learning Consultant g 99 9 %9 99 9 9 99 99 09 9 9109 99 99 99 9987 BWVOMN
| 19 Consultant Method Exponent 7 58 53 55 53585 BB O SE I 4 E D H H B H 5 NIE
20 Consultant Metrics Consultant 9 8 8 8 8 88 8 8 8 8 8 828 8 0 820 8 8 9 8 8 8 8 8 8297202972929
21 Consultant Network Consultant PR T T I T VT I TT I T 7 0BT T 8T T VT 7 T2 25587878
22 Consultant OrganizationChange Consultant @ 3 3 3 1 8§ 3 3 3 3 3 3 3 3 3 3 3 0 383 33 33 333333333
| 23 Consultant Packaged SolutionIntegrationC¢ 7 65§ 5§ 5 5 5§ 656 5 5 5 5 5§ 6525 5 5 528 0 5 68 5 5 5 5 5§ 52828 28 26 28

Provisional distance to upgrade skills between any two job roles.

consider factors such as the cost of the course work
and the time required to complete the course. The
availability of this table permits rules to be defined that
relate to the fitness of the professional with respect to
the required job role. For example, it is now simple to
include individual preferences for career paths as an
additional matching factor.

Before building a CSP model, one must define and
implement the types of constraints required by that
model. A constraint is implemented by implementing its
propagator, which can be very simple or very complex.
Indeed, in the case of the complex rules defined above,
the propagator may become quite complex in itself,
performing such activities as analyzing text, accessing
databases, and using expert knowledge. However, the
complexity is localized in a single function in the model.
This ensures the simplicity of the design and the ease of
CSP model maintenance, even when the underlying logic
is complex.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Explicit and implicit rules

The rules discussed above were defined explicitly by a
person or persons whose responsibility is to find a good
assignment under the various conditions and regulations
in the company. However, there are other types of rules
that are not stated explicitly by anyone but should still be
enforced.

One such rule is the requirement that the same
professional not be assigned to two jobs that overlap in
time and that together require more total time than the
professional has available. This rule is mandatory. An
example of a nonmandatory implicit rule is that as many
job positions as possible will be assigned a professional.

Such rules can easily be enforced within the CSP
framework by having the application builder incorporate
constraints into the CSP model. These implicit
constraints are not seen by the application users who
define the explicit rules and run the solver to find the
assignments. However, since these constraints are part of

Y. NAVEH ET AL.

273

274

Table 1 Definitions of (a) rules and (b) priorities for the
Workforce Matching Tool. Table inputs are provided by a special-
purpose graphical user interface.

(a) Matching rules

Index Name Value

—_

Match on primary and secondary skill sets ~ Yes

2 Match on location Yes
3 Consider part-time jobs No
4 Consider part-time employees No
5 Minimum duration of job (in days) 30
6 Match on required languages No
7 Maximum travel distance (in kilometers) 50
8 Maximum upskilling allowed 10
9 Maximum slack in band 1
10 Maximum absolute slack in late arrival 14
(in days)
11 Maximum relative slack in late arrival 10
(percentage)
12 Late arrival determined by larger or larger
smaller between absolute and relative
forms
(b) Priorities

Index Category

1 Late arrival
2 Band in range
3 Criticality
4

Lowest band

the CSP model, they are enforced by the solver just like
any other constraint.

Use by IBM service organizations

Workforce matching tool

In 2005, we began implementing the concepts and
methods discussed here in the Workforce Matching Tool
(WMT) designed to solve the ID&Assign problem. The
tool is based on the IBM state-of-the-art constraint solver
[54]. We applied this tool to a series of assignment
problems encountered by IBM service organizations.
These organizations employ more than 100,000 highly
skilled professionals. The professionals are typically
assigned to jobs at customer locations and engage in
either information technology (IT) infrastructure work or
business consulting. A typical work assignment can last
from a few weeks to a few years. Teams of professionals
are commonly formed to address project needs. Many of

Y. NAVEH ET AL.

the examples of rules and constraints discussed above
were specified by actual users and were required in order
to resolve some real-world scenarios.

ID&Assign problem at IBM

Since the implementation of the WMT, we have
conducted many pilot projects, experiments, and actual
work with the various service organizations. Each such
experience was unique with respect to the type of data we
received and the set of rules and prioritization schemes
defined by the users. However, some common attributes
were the same in almost all of the experiments.

The common job attributes included in the open seats
table are unique-identifier, required job role, required
skill set, lowest pay rate, highest pay rate, start date, end
date, location (city, state, country), indication for the
possibility of working remotely, and contact e-mail.

The common attributes included in the professionals
table are unique identifier, name, primary job role,
secondary job roles, skill set, availability date, pay rate,
location (city, state, country), and contact e-mail.

Table 1(a) shows the definition of rules; here
mandatory rules are defined and parameters for those
rules are set. For example, rule number 10 states that a
person can still be considered for a job even if he or she is
not available to start working until up to 14 days after the
job has started. In Table 1(b), the prioritization scheme
is set; it shows that the first priority is to find the
professional who is least late to the job, the second
priority is to have the professional’s band (or pay rate)
be within the job specification range [note that a slack
of 1 in band is allowed by rule number 9 in Table 1(a)],
and so on. (We use the term slack to indicate the
allowed discrepancy from an exact match between the
professional and the job specification.) Users can change
the values of rules and add or remove prioritization
criteria before pushing “save and execute” to run the tool.

Results
The matching tool can work in two modes: prioritized
matching or assignment. In prioritized matching mode,
the output of the tool is a list of possible matches for any
job, prioritized according to the prioritization scheme
defined by the user. An example of the output of this
mode is shown in Figure 3(a). For any job, a list of
matching professionals is given in column J; the list
may be empty if no professional matches the job.
This list is prioritized so that in a typical use, an RDP
seeking to fill a job would start by considering the first
professional in the list for the job, then the second, and so
forth. A similar output is created for all professionals,
except that in the results column, all jobs matching
the professional are listed in order of priorities.
Technically, the lists are generated by reaching arc
consistency over all explicit mandatory constraints

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

) Fle Edt Vew Icert Format Tooks Data Window Hep

DFEY SGRY bR - T - Q-4 Dae1wos -0,

Arial 10 > B s EETEHOI-TFT %, B8 FE _-5-4-,

-lﬂ’ xl

forhep wie @ X

pe 2 gue

11 27 12347 8 package sc peoplesoft. pa nynew yorkusa

10 © 00~ ~ 00~ 0~ W~ 0 wW®

J10 - £ (total:3) 2d1455 (3 Miles) 0d2157 (25 Miles) 0d3215 (25 Miles)
R B v e | e L P B] G e] I | o Ig

L’ ID Open seat band low band high Job Role Skill Set Location Start Date Duration (Weeks) match primary skill
2& 18 12186 9 project mar unspecified undefinedundefined 17-Aug-06 32 (total:33) 038064 (Remote) 024911 (Remote) 2«
13 |19 12205 9 infrastructL unspecified tnchattanoogausa 17-Aug-06 -6
14 |20 12255 9 project mar complex proje mdbethesdamontgomery 17-Aug-08 54
15 | 12265 8 application unspecified bdallasusa 17-Aug-06 15
| 6 |22 12341 8 application peoplesoft nynew yorkusa 01-Nov-06 82 (total:1) 05974 (0 Miles)

L 23 12342 8 application peoplesoft nynew yorkusa 01-Nov-06 82 (total:2) 0d5974 (0 Miles) 0d9173 (16 Miles)
18 |24 12343 8 application peoplesoft nynew yorkusa 15-Oct-06 84 (total:1) 0d5974 (0 Miles)

8125 12344 7 application peoplesoft nynew yorkusa 01-Dec-06 69 _(total:1) 0d9173 (16 Miles

26 12346 8 package sc peoplesoft.hr nynew yorkusa 01-Oct-08 88

15-Nov-06 80 (total:2) 0d2718 (0 Miles) 0d2852 (20 Miles)

112128 12371 8 business aitechnical reqi dewashingtonusa 01-Sep-06 56 (total:1) 115879 (6 Miles)

|13 129 12300 8 test specialunspecified nysyracuseusa 02-Oct-06 5

14 30 12388 10 application content mane nccharlotteusa 17-Aug-06 17

11531 12399 9 application content mane nccharlotteusa 17-Aug-06 17

| 16| 32 12401 9 application content mane nccharlotteusa 17-Aug-06 9 &

W4 3" w\openseats_prioritized_matches / T4l £ | _’_ll_l
Ready 2

(a)

soft Excel ts_as s '—u—l‘ ol x
Fie Edt View [nsert Format Took Data Window Help Type a question v 8 X
 Arid 10 v B U EFEIEDN TR, 48 FE DA
DY SRY s RA-F|w-~- Q-4 DL100% -0,
J12 - A& 15333
7.3, T = ol o - 5] B o | E I E I G I H I ! = J_ ’Jg
| 1 |ID Open seat band low band high Job Role Skill Set Location Start Date Duration (Weeks) Assignee |D
12| 0 10259 7 7 package solution con sap.hr undefinedundefined 17-Aug-06 71 9215
a1 10561 6 7 business transformat national govt acctg dewashingtonusa 17-Aug-06 6
|4 | 2 10898 6 7 application develope sap.nw.abap alhuntsvilleusa 17-Aug-06 19
6 3 10744 7 8 package solution con sap.scm alhuntsvilleusa 17-Aug-06 19
| 6| 4 10936 7 8 business analyst technical requirements dewashingtondistrict of 17-Aug-06 119
L) 10971 8 9 industry specialist unspecified undefinedundefined 17-Aug-06 =17
18| 6 11044 7 8 package solution con sap.fin thoustonharrisusa 17-Aug-06 6
| 8| 7 11049 7 9 package solution con sap.fin undefinedundefined 17-Aug-06 -19
10| 8 11160 8 9 application develope jde casanta clarausa 17-Aug-06 28
11| 9 11356 6 7 application develope sap.nw abap undefinedundefined 17-Aug-06 -6
10 11536 9 9 project manager complex projects miypsilantiwashtenawus 17-Aug-06 176 15333
113 11 11774 6 7 application develope peoplesoft nynew yorkusa 01-Dec-06 65 17908
114 | 12 11775 6 7 application develope peoplesoft nynew yorkusa 01-Nov-08 82 4726
115 13 11930 9 10 business development unspecified labaton rougeusa 17-Aug-06 31
11614 11972 9 9 data architect database lichicagousa 11-Sep-06 29 =
i¥ "4+ nil\Openseats_assignments / 141 | LHJ
Ready ,é
(b)

Results for (a) prioritized matches; (b) assignments to jobs.

defined by the user and then ordering the lists by
considering all prioritization criteria defined by the user.
This approach ensures that only legal matches are listed
(otherwise, arc consistency is violated on some explicit
constraint) and that all such matches appear (because
no domain reduction was performed beyond arc
consistency). Implicit constraints, such as some-different
on all overlapping jobs, are not considered in this model
because they do not enforce user-defined rules, but rather
consistency of the full problem.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

In assignment mode we go one step further and let the
automation perform the actual assignments for the jobs.
An example of the output of this mode is shown in
Figure 3(b). For any job, at most one matching
professional is listed in column J. In contrast to the
prioritized matching case, a professional is never assigned
here to two jobs that overlap in time (assuming that all
jobs are full-time). Technically, the list of assignments is
just the solution of the soft CSP outlined in the constraint
programming section above, which takes into account
the user-defined rules, the prioritization scheme, and

Y. NAVEH ET AL.

275

276

the implicit built-in constraints. This ensures that the
assignments in Figure 3(b) are near-optimal in the sense
that the largest number of possible assignments is met
and the prioritization scheme is respected.

To provide concrete numbers, we report on a single use
case performed on a large set of service organizations that
can share professionals among them. Altogether, the
problem specified 24,480 professionals to be matched to
703 jobs under the set of rules specified in Table 1. The
results obtained showed that 218 jobs had at least one
matching professional, and 574 professionals were found
to match at least one job. Globally consistent assignments
were found between 176 jobs and professionals. This
number is high because the original 706 jobs came from
a source of jobs with particularly high demands. The
runtime to solve both prioritized matching and complete
assignment modes was 146 seconds on a Linux machine
running an Intel Pentium 4 processor at 3.6 GHz. Much
of this time is spent on input and output analysis,
including loading of databases. The runtime to solve
the CSP by itself was less than a second, which implies
the possibility of a real-time mode of operation.

To demonstrate the power of CP for this problem, we
also analyzed the case in which jobs are considered one at
a time, according to some predefined random order. For
each job considered, the best-matching professional is
found and assigned to the job. Once a professional is
assigned, he or she is no longer available to be assigned to
another job that overlaps in time with the first, even if this
professional is more suited for the second job. This
process of sequential assignment simulates the actual
process often deployed by RDPs when they find
assignments for jobs. With this process, and considering
the full data (24,480 professionals, 703 jobs), only 152
jobs were assigned. This is a reduction of 13 percent in
the number of assignments compared with the 176
assignments obtained by CP.

Feedback from RDPs within the service organizations
with which we worked gave us additional insight. First,
our match quality can be only as good as the data we
obtain. Sometimes the data was inaccurate or incomplete.
In such cases, the matching results were not of great
value, since the RDP may have had to check three or four
names listed before finding a professional that truly
matched.

Second, many of the rules should be defined by the
lowest-level person performing the match, i.e., the RDP.
The reason is that different RDPs have different ways of
looking at the data and therefore require different types
of rules. For example, some RDPs prefer that slack in the
availability of the professional be defined in absolute
numbers of days, while others prefer to express this value
in terms relative to the duration of the work—hence
the two types of rules (9 and 10) seen in Table 1.

Y. NAVEH ET AL.

Third, there was some uncertainty about the type
of output that is preferred: prioritized matches or
assignments. RDPs usually first preferred the prioritized
match format because they felt they had more control
over the actual choices performed. However, after
becoming familiar with the tool, some reported that
the assignments format was preferable because it made
their decision process simpler. Supporting this was the
fact that the number of false positives (i.e., suggestions
for assignments that were found to be wrong after
considering data not available to the tool) on the full
assignments reported was small enough to be tolerable,
especially in the cases in which the quality of data was
good.

Finally, after gaining some experience with the
tool, the RDPs recognized how they can work with
the tool in a robust interactive way by disabling,
enabling, and changing rules. This allowed for
overrides and exceptions to rigid rules, which
inevitably occur in this domain.

Summary and conclusions

This paper discusses a CP approach to the ID&Assign
problem of workforce management. This problem has
severe consequences if it is not solved properly, and it is
expected to be even more crucial as the IT industry shifts
toward services and as business requirements become
increasingly demanding.

For various reasons, CP is found to be highly
appropriate for modeling and solving this problem. First,
the rules of the ID&Assign problems are complex and are
changing over short time scales. This implies frequent
maintenance of the model, which in turn requires
modeling that is close to the problem domain and not
stated in mathematical form. CP provides exactly this
type of modeling construct. Second, CP, through the
notion of soft constraints, permits optimization of a
solution even without defining a rigid mathematical cost
function. Third, since powerful pruning algorithms and
search heuristics exist, in most cases runtime remains well
below the worst case of this NP-hard problem.

To provide the best assignments, input data must be
accurate and well defined. This statement is true of any
automated process, not just those that are CP-based.
Hence, data architects should make every effort to have
data provided in a trusted-source manner and not as free
text. For example, architects should always choose the
use of pull-down menus with enumerated options over
free-text description fields. It is also important to specify
geographical locations in terms of zip codes or work-
location codes, rather than city or street names, which
are bound to have multiple spellings and are natural
inhibitors of automation (e.g., entering “Northern
Georgia” for a city name). Once all data comes from

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

trusted sources, it is best to have as many data fields

as possible: the more the better. In contrast to human
agents, the automatic process is never overwhelmed by a
large number of fields, and adding more fields can only
make the definition of rules and prioritization closer to
what the user has in mind.

Finally, resumes should become much more structured
documents, possibly created by resume-building tools
with predefined options and pull-down menus as trusted
sources. We are beginning to see this trend, and it should
be highly encouraged. While this structuring may reduce
the personal touch somewhat, enabling automated
identification and assignment may greatly increase the
quality of the jobs found for the resume writer, and it can
speed up the process of finding jobs for them. Eventually,
professionals should understand that it is in their own
best interest to have at least one version of their resume
written in a precise machine-readable manner.

Acknowledgments

We are grateful to Dan Forno from the IBM Workforce
Management Initiative, who sponsored the research and
championed the work. We also thank Eric Andersen,
Steve Heise, Mike MclInnis, and numerous other
individuals in IBM service organizations who invested
much time in analyzing our technology and providing
valuable feedback. We thank Ari Freund for participating
in the study of the some-different constraint.

**Trademark, service mark, or registered trademark of Sun
Microsystems Inc., Linus Torvalds, or Intel Corporation in the
United States, other countries, or both.

References

1. R. Cerulli, M. Gaudioso, and R. Mautone, “A Class of
Manpower Scheduling Problems,” Math. Methods Oper. Res.
36, No. 1, 93-105 (1992).

2. D. Lesaint, C. Voudouris, N. Azarmi, I. Alletson, and B.
Laithwaite, “A Field Workforce Scheduling,” BT Technol. J.
21, No. 4, 23-26 (2004).

3. R. L. Kliem and H. B. Anderson, “Teambuilding Styles and
Their Impact on Project Management Results,” Project
Manage. J. 27, No. 1, 41-50 (1996).

4. G. Eitzen, D. Panton, and G. Mills, “Multi-Skilled Workforce
Optimisation,” Ann. Oper. Res. 127, No. 1/4, 359-372 (2004).

5. R. Dechter, Constraint Processing, Morgan Kaufmann
Publishers, San Francisco, CA, 2004.

6. R. Yang, “Solving a Workforce Management Problem with
Constraint Programming,” Proceedings of the 2nd
International Conference on the Practical Application of
Constraint Technology, London, U.K., 1996, pp. 373-387.

7. D. L. Gresh, D. P. Connors, J. P. Fasano, and R. J. Wittrock,
“Applying Supply Chain Optimization Techniques to
Workforce Planning Problems,” IBM J. Res. & Dev. 51, No.
3/4, 251-261 (2007, this issue).

8. D. Gilat, A. Landau, A. Ribak, Y. Shiloach, and S.
Wasserkrug, “SWOPS (Shift Work Optimized Planning and
Scheduling),” Proceedings of the 6th International Conference
on the Practice and Theory of Automated Timetabling, Brno,
Czech Republic, 2006, pp. 518-523.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

R. Nanda and J. Browne, Introduction to Employee Scheduling,
Van Nostrand Reinhold, New York, 1992.

J. P. van den Berg and D. M. Panton, “Personnel Shift
Assignment: Existence Conditions and Network Models,”
Networks 24, No. 7, 385-394 (1994).

. A.S. Appelblad and S. Lonn, “A Study of Workforce

Arrangement,” Master’s Thesis, Department of Informatics,
Goteborg University, Goteborg, Sweden, 2004.

A.T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier, “Staff
Scheduling and Rostering: A Review of Applications,
Methods, and Models,” Euro. J. Oper. Res. 153, No. 1, 3-27
(2004).

. E. K. Burke and E. Soubeiga, “A Real-World Workforce

Scheduling Problem in the Hospitality Industry: Theoretical
Models and Algorithmic Methods” see http://
webhost.ua.ac.beleume|workshops|reallife/burke.pdf.

T. H. Hultberg and D. M. Cardoso, “The Teacher Assignment
Problem: A Special Case of the Fixed Charge Transportation
Problem,” Euro. J. Oper. Res. 101, No. 3, 463-473 (1997).

S. E. Bechtold, M. J. Brusco, and M. Showalter, “A
Comparative Evaluation of Labor Tour Scheduling
Methods,” Decision Sci. 22, No. 4, 683-699 (1991).

H. K. Alfares, “Optimum Workforce Scheduling Under the
(14, 21) Days-Off Timetable,” J. Appl. Math. & Decision Sci. 6,
No. 3, 191-199 (2002).

A. Billionnet, “Integer Programming to Schedule a
Hierarchical Workforce with Variable Demands,” Euro. J.
Oper. Res. 114, No. 1, 105-114 (1999).

J. C. Beck, P. Prosser, and E. Selensky, “Vehicle Routing and
Job Shop Scheduling: What’s the Difference?,” Proceedings
of the 13th International Conference on Automated Planning
and Scheduling, Trenton, Italy, 2003; see http://
tidel.mie.utoronto.calpubsjicaps03.pdf.

B. Cao and G. Uebe, “Solving Transportation Problems with
Nonlinear Side Constraints with Tabu Search,” Computers &
Oper. Res. 22, No. 6, 593-603 (1995).

M. Sun, J. E. Aronson, P. G. McKeown, and D. Drinka,
“A Tabu Search Heuristic Procedure for the Fixed Charge
Transportation Problem,” Euro. J. Oper. Res. 106, No. 2,
441-456 (1998).

U. Aickelin and K. A. Dowsland, “Exploiting Problem
Structure in a Genetic Algorithm Approach to a Nurse
Rostering Problem,” J. Scheduling 3, No. 3, 139-153 (2000).
F. F. Easton and N. Mansour, “A Distributed Genetic
Algorithm for Employee Staffing and Scheduling Problems,”
Proceedings of the Sth International Conference on Genetic
Algorithms, Urbana-Champaign, IL, 1993, pp. 360-367.

A. Wren and D. O. Wren, “A Genetic Algorithm for Public
Transport Driver Scheduling,” Computers & Oper. Res. 22,
No. 1, 101-110 (1995).

D. K. W. Chiu, S. C. Cheung, and H.-F. Leung, “A Multi-
Agent Infrastructure for Mobile Workforce Management in a
Service Oriented Enterprise,” Proceedings of the 38th Annual
Hawaii International Conference on System Sciences, Big
Island, HI, 2005, p. 85.3.

P. Cowling, G. Kendall, and E. Soubeiga, “A Parameter-Free
Hyperheuristic for Scheduling a Sales Summit,” Proceedings
of the 4th Metaheuristics International Conference, Porto,
Portugal, 2001, pp. 127-131.

D. Munaf and B. Tester, “And/Or Parallel Programming in
Practice,” Technical Report WPI12:1203, British Telecom
Research Laboratory, Project 1251, London, U.K., 1993.

E. Tsang and C. Voudouris, “Fast Local Search and Guided
Local Search and Their Application to British Telecom’s
Workforce Scheduling Problem,” Oper. Res. Lett. 20, No. 3,
119-127 (1997).

F. Kokkoras and S. Gregory, “D-WMS: Distributed
Workforce Management Using CLP,” Proceedings of the

4th International Conference on the Practical Application of
Constraint Technology, London, U.K., 1998, pp. 129-146.

A. Meisels and N. Lusternik, “Experiments on Networks of
Employee Timetabling Problems,” Proceedings of the 2nd

Y. NAVEH ET AL.

277

278

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

International Conference on the Practice and Theory of
Automated Timetabling, selected papers, Toronto, Canada,
1997, pp. 130-141.

P. Van Hentenryck, L. Michel, and Y. Deville, Numerica:

A Modeling Language for Global Optimization, MIT Press,
Cambridge, MA, 1997.

P. Van Hentenryck, The OPL Optimization Programming
Language, MIT Press, Cambridge, MA, 1999.

A. Mackworth, “Consistency in Networks of Relations,”
Artif. Intell. 8, No. 1, 99-118 (1977).

H. H. Hoos and T. Stiitzle, Stochastic Local Search:
Foundations and Applications, Morgan Kaufmann Publishing,
San Francisco, CA, 2004.

G. Verfaillie and N. Jussien, “Constraint Solving in Uncertain
and Dynamic Environments: A Survey,” Constraints 10, No.
3, 253-281 (2005).

P. Meseguer, N. Bouhmala, T. Bouzoubaa, M. Irgens, and M.
Sanchez, “Current Approaches for Solving Over-Constrained
Problems,” Constraints 8, No. 1, 9-39 (2003).

A. Borning, B. Freeman-Benson, and M. Wilson, “Constraint
Hierarchies,” Lisp Symbol. Computation 5, No. 1, 223-270
(1992).

R. Bartak, “Constraint Programming: In Pursuit of the Holy
Grail,” Proceedings of the Week of Doctoral Students, Prague,
Czech Republic, June 1999, pp. 555-564.

M. Wallace, “Practical Applications of Constraint
Programming,” Constraints 1, No. 1/2, 139-168 (1996).

1. E. Sutherland, “Sketchpad: A Man-Machine Graphical
Communication System,” Proceedings of the SHARE Design
Automation Workshop, Annual ACM—IEEE Design
Automation Conference, 1964, pp. 6.329-6.346.

A. Borning, “The Programming Language Aspects of
ThingLab, a Constraint-Oriented Simulation Laboratory,”
ACM Trans. Programming Lang. & Syst. 3, No. 4, 252-387
(1981).

D. L. Waltz, “Understanding Line Drawings of Scenes with
Shadows,” Psychol. Computer Vision, P. H. Winston, Editor,
McGraw-Hill, New York, 1975.

K. P. Chow and M. Perrett, “Airport Counter Allocation
Using Constraint Logic Programming,” Proceedings of the 3rd
International Conference on Practical Application of Constraint
Technology, London, U.K., 1997.

M. Perett, “Using Constraint Logic Programming Techniques
in Container Port Planning,” ICL Tech. J. 7, No. 33, 537-545
(1991).

G. Hasle, R. C. Haut, B. S. Johansen, and T. S. @lberg,
“Well Activity Scheduling—An Application of Constraint
Reasoning™; see http.//www.ilog.com/products/optimization/
tech/custpapers/sintef.pdf.

J. Adhikary, G. Hasle, and G. Misund, “Constraint
Technology Applied to Forest Treatment Scheduling,”
Proceedings of the 3rd International Conference on the Practical
Application of Constraint Technology, London, U.K., 1997,
see http://www.cs.sfu.calresearch/groups/ISL/papers/|
adhikary-etal-PACT .pdf.

J. Bellone, A. Chamard, and C. Pradelles, “PLANE:

An Evolutive Planning System for Aircraft Production,”
Proceedings of the Ist International Conference on Practical
Application of Prolog, London, U.K., 1992.

T. Creemers, L. R. Giralt, J. Riera, C. Ferrarons, J. Rocca,
and X. Corbella, “Constraint-Based Maintenance Scheduling
on an Electric Power-Distribution Network,” Proceedings of
the 3rd International Conference on Practical Applications of
Prolog, Paris, France, 1995, pp. 135-144.

T. Frihwirth and P. Brisset, “Optimal Placement of Base
Stations in Wireless Indoor Telecommunication,” Proceedings
of Principles and Practices of Constraint Programming, Pisa,
Italy, 1998, pp. 476-480.

A. Brodsky, J. Jaffar, and M. J. Maher, “Toward Practical
Query Evaluation for Constraint Databases,” Constraints 2,
No. 3/4, 279-304 (1997).

Y. NAVEH ET AL.

50. P. C. Kanellakis and D. Q. Goldin, “Constraint Programming
and Database Query Languages,” Theoretical Aspects of
Computer Software, J. C. Mitchell and M. Hagiya, Editors,
Springer-Verlag, Berlin, Germany, 1994, pp. 96-120.

51. B. Beizer, Software Testing Techniques, Van Nostrand
Reinhold Co., New York, 1990.

52. C. Brzoska, “Temporal Logic Programming and Its Relation
to Constraint Logic Programming,” Proceedings of the
International Symposium on Logic Programming, San Diego,
CA, 1991, pp. 661-677.

53. A. P. Sistla, M. Y. Vardi, and P. Wolper, “The
Complementation Problem for Buchi Automata with
Applications to Temporal Logic,” Theoret. Computer Sci.

49, 217-237 (1987).

54. Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E.
Marcus, and G. Shurek, “Constraint-Based Random Stimuli
Generation for Hardware Verification,” Al Magazine, in press.

55. E. Tsang and C. Voudouris, “Constraint Satisfaction in
Discrete Optimisation,” presented at theUNICOM
Seminar, 1998; see http.//www.cs.essex.ac.uk|CSP/papers|
TsaVou-GLSOpt-Unicom98.pdf.

56. T. Walsh, “Reformulating Propositional Satisfiability as
Constraint Satisfaction,” Proceedings of the 4th International
Symposium on Abstraction, Reformulation, and Approximation,
Horseshoe Bay, TX, 2000, pp. 233-246.

57. W.-J. van Hoeve, “Operations Research Techniques in
Constraint Programming,” Ph.D. dissertation, University of
Amsterdam, Institute for Logic, Language, and Computation,
Amsterdam, The Netherlands, 2005.

58. N. Barnier and P. Brisset, “Graph Coloring for Air Traffic
Flow Management,” Proceedings of the International
Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimisation
Problems,” LeCroisic, France, 2002, pp. 133-147.

59. M. Gronkvist, “A Constraint Programming Model for Tail
Assignment,” Proceedings of the International Conference
on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimisation Problems,”
Nice, France, 2004, pp. 142-156.

60. E. Tsang, J. Ford, P. Mills, R. Williams, and P. Scott,
“ZDC-Rostering: A Personnel Scheduling System Based
on Constraint Programming,” Technical Report CSM-406,
University of Essex, Department of Computer Science, Essex,
U.K., 2004.

61. Y. Richter, A. Freund, and Y. Naveh, “Generalizing
AllDifferent: The SomeDifferent Constraint,” Proceedings of
the 12th International Conference on Principles and Practice of
Constraint Programming, Lecture Notes in Computer Science
4204, 468483 (2000).

62. J.-C. Régin, “A Filtering Algorithm for Constraints of
Difference in CSPs,” Proceedings of the 12th National
Conference on Artificial Intelligence, Seattle, WA, 1994,
pp. 362-367.

Received September 21, 2006, accepted for publication
December 15, 2006, Internet publication May 11, 2007

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Yehuda Naveh IBM Huifa Research Laboratory, Haifa
University Campus, Haifa 31905, Israel (naveh@il.ibm.com). Dr.
Naveh received a B.S. degree in physics and mathematics, an M.S.
degree in experimental physics, and a Ph.D. degree in theoretical
physics, all from the Hebrew University of Jerusalem, Israel. He
joined IBM Research in 2000 after working for four years as a
research associate at Stony Brook University in New York. His
current research interests include the theory and practice of
constraint programming and the theory and practice of workforce
optimization.

Yossi Richter IBM Haifa Research Laboratory, Haifa
University Campus, Haifa 31905, Israel (richter@il.ibm.com). Dr.
Richter received a B.A. degree in computer science and economics,
and M.S. and Ph.D. degrees in computer science specializing in
algorithms, all from Tel Aviv University, Israel. Since 2005, he
has been a Research Staff Member at the IBM Haifa Research
Laboratory, working on the theory and practice of constraint
programming.

Yaniv Altshuler IBM Haifa Research Laboratory, Haifa
University Campus, Haifa 31905, Israel (yanival@il.ibm.com).
Mr. Altshuler received a B.A. degree in computer science from
the Israeli Institute of Technology (IIT), the Technion, under the
framework of the Chais Family Foundation Technion Excellence
Program. He is currently a Ph.D. candidate in the computer science
department of IIT, where he specializes in multiagent systems

in dynamic environments and swarm intelligence. In 2004 Mr.
Altshuler joined the IBM Research Division, where he works

on constraint satisfaction and optimization problems.

Donna L. Gresh IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (gresh@us.ibm.com). Dr. Gresh received her B.S. degree in
engineering in 1983 from Swarthmore College and her M.S. and
Ph.D. degrees in electrical engineering in 1985 and 1990 from
Stanford University, where she studied the rings of Uranus using
data from the spacecraft Voyager. She joined the IBM Thomas J.
Watson Research Laboratory as a Research Staff Member in
1990 and spent twelve years conducting research in scientific

and information visualization. Since 1992, Dr. Gresh has been a
member of the Mathematical Sciences Department, with research
interests in the area of workforce optimization.

Daniel P. Connors IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (dconnors@us.ibm.com). Dr. Connors received his B.S.E.
degree in electrical engineering from the University of Michigan in
1982, and his M.S. and Ph.D. degrees in electrical engineering from
the University of Illinois in 1984 and 1988, respectively. Since 1988,
he has been a Research Staff Member at the IBM Thomas J.
Watson Research Center. Dr. Connors has worked on modeling,
simulating, and designing business processes and developing
decision support tools for manufacturing and supply chain
logistics. He is a member of the Mathematical Sciences Department
at the Research Center, where he is currently working on
developing business processes and workforce management
optimization tools.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Y. NAVEH ET AL.

279

