Mixed-integer nonlinear
programming:

Some modeling

and solution issues

We examine various aspects of modeling and solution via mixed-
integer nonlinear programming (MINLP). MINLP has much to
offer as a powerful modeling paradigm. Recently, significant
advances have been made in MINLP solution software. To

fully realize the power of MINLP to solve complex business

optimization problems, we need to develop knowledge and expertise
concerning MINLP modeling and solution methods. Some of this
can be drawn from conventional wisdom of mixed-integer linear

programming (MILP) and nonlinear programming (NLP), but

theoretical and practical issues exist that are specific to MINLP.
This paper discusses some of these, concentrating on an aspect of a
classical facility location problem that is well-known in the MILP
literature, although here we consider a nonlinear objective function.

J. Lee

Introduction
In a simplified view, business optimization involves
important aspects such as the identification of one or
more high-value opportunities, data collection and
analysis, modeling, mathematical optimization, and
solution delivery. None of these aspects can be fully
considered in isolation, because high-value applications
benefit from feedback among these exercises.
Nevertheless, we focus on the part of the larger challenge
that involves modeling and mathematical optimization.
Although many high-value opportunities exist for
which optimization-based solutions could in principle be
applied, a significant inhibiting factor for widespread use
is the custom nature of much of the modeling and
optimization. This customization arises primarily from a
mismatch between natural optimization models and
available optimization solvers. This mismatch is largely
due to the inherent complexity of applications and the
limited scope of efficient algorithms. This paper focuses
on recent efforts to ameliorate this situation through the
use of mixed-integer nonlinear programming (MINLP).
As general background to various optimization
approaches, linear programming is concerned with
methods for optimizing a linear function of many
variables, subject to bounds on a finite set of additional
linear functions. Nonlinear programming is associated
with optimization in instances in which some of the

relevant functions are nonlinear. The term mixed-integer
indicates that some of the variables can take only discrete
values, while others are continuous. Thus, the term mixed-
integer nonlinear programming refers to mathematical
programming with continuous and discrete variables and
nonlinearities in the objective function and constraints.
Practical applications of MINLP include portfolio
optimization, design of water distribution networks,
design of complex distillation systems, and optimization
of manufacturing and transportation logistics.

In the following, R denotes the real numbers and Z
denotes the integers. The form of our MINLP problem
is

minimize f{x)
P: subjecttog(x) <bh
x €S,

where f: R” — R and the g : R" — R are twice
continuously differentiable functions, b is a real m-vector,
and S :=R"* x ZF (that is, the first n — k variables are
continuous, and the last k variables are integers). This is a
fairly general setting, accommodating both continuous
and discrete variables as well as inequality constraints
involving smooth functions. At two extremes, P reduces
to a standard smooth nonlinear programming (NLP)
model when k=0, and to a standard mixed-integer linear
programming (MILP) model when the functions f'and g

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

J. LEE

489

490

High-value
business
optimization

problem

MINLP

Business optimization and a solver hierarchy.

are linear. When we have both of these extremes at the
same time, we have a standard linear programming (LP)
model. Figure 1 is a high-level encapsulation of many of
the concepts in this Introduction and highlights the
relationships between various model and solver types.
The figure is discussed in more detail toward the end of
the Introduction.

In recent years, there have been enormous advances in
solver technology for LP, MILP, and NLP. Commercial
tools such as ILOG CPLEX** [1] for LP and MILP, and
SNOPT** [2] for NLP are quite robust for problems that
even a decade ago were not tractable. Open-source tools
such as COIN-OR’s C1p for LP, Cbc for MILP, and
Ipopt [3] for NLP are attractive alternatives in many
situations. From a user’s perspective, the customizability
and lack of cost make the open-source tools an attractive
alternative to the commercial tools. All of these solvers
are accessible by modeling languages such as AMPL** [4]
and GAMS [5] and can also be called from languages
suitable for high-performance computing such as C/C++.

Many high-value applications are naturally modeled as
MINLP problems. Aspects exist that are inherently
nonlinear (e.g., engineering aspects, such as pressure
loss due to friction), as well as other aspects that are
inherently discrete and of exponential complexity (e.g.,
in problems concerning simultaneous choices from
many small sets of alternatives).

Given such problems, what is the modeler to do when
confronted with a high-value application that is naturally
modeled as an MINLP? Aside from reformulating the
problem, the traditional approaches involve either
relaxing the integrality restrictions and using an NLP
solver, or judiciously replacing the nonlinear functions

J. LEE

with piecewise-linear ones. In the former case, it may be
difficult to use the solution of the NLP to find a good
solution satisfying the integrality restrictions. In the latter
case, the cost of this approximation is paid by an increase
in the number of discrete variables, which are used to
manage the linear pieces. The running time of MILP
solvers tends to increase, often dramatically, as the
number of discrete variables increases. Thus, this
approach can drastically limit the size of problems that
we can solve. If we artificially limit the number of pieces
in the approximation, we lose accuracy in the
approximation. Therefore, whether we use an NLP or
MILP approach, we must deal with solution methods
that may not yield even feasible solutions within
reasonable time limits.

Of course we can make some progress by using MILP
solvers. For example, in the case of piecewise-linear
approximation, fairly simple methods exist for separable
functions [i.e., /: R” — R is separable if it has the form

Sx) = 371 /i(x)]. Here we can use some well-known

specialized techniques (so-called “SOS Type-2” methods;
see [6]) to handle these situations. Other specialized
techniques have been developed that are applicable in
situations involving partially separable functions, in
which a limited number of variables appear in summands
of the functions (see [7] and also [8], which develop
related techniques and apply them to gas-network
optimization problems). However, experience has shown
that these models have limited value for large instances
and those requiring accurate solutions. Moreover, the
successful application of these methods is currently far
from automatic.

On the other hand, MILP approaches to MINLP
problems have certain attractive aspects. With a
sufficiently fine piecewise-linear approximation, most
MILP methods work with good approximations to lower
and upper bounds on the optimum value and seek to
shrink the gap between the two. Moreover, the methods
are designed so that after a finite number of steps, which
may be quite large, an optimal solution to the
approximation is obtained and verified.

MILP is a very powerful paradigm, and the value of
MINLP is not limited to attacking piecewise-linear
approximations. For example, specialized heuristic
approaches based on MILP have been developed for
bilinear-programming models that are used for obtaining
good solutions to certain cutting-stock problems (see [9]).
The cutting-stock problem occurs in various industries,
such as in a paper mill where stock rolls of paper must be
cut to satisfy demand for rolls of various smaller widths
and in such a way as to minimize trim loss.

An NLP approach to MINLP problems has the virtue
of working with the correct nonlinear functions, but the
discrete nature of some of the variables is ignored. In

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

many applications, no simple method exists to recover a
good solution to the underlying MINLP from a solution
of the NLP relaxation, and so an MINLP method must
be developed that will find a way to impose the discrete
restrictions. (The term NLP relaxation refers to an NLP
that arises as a result of allowing the integer variables of
the MINLP to assume continuous values.)

Another drawback of an NLP approach is that usually
the NLP relaxation does not have a convex feasible
region. (The feasible region of an optimization model is
the set of solutions that satisfies its constraints.) Since
most NLP methods seek a local optimum, it is virtually
impossible to verify the global quality of a solution to a
large and/or complex model.

In Figure 1, the vertical (piecewise-linear) zigzag arrow
pointing downward to MILP alludes to the modeling
compromises that MILP might demand—typified by
piecewise linearization. Similarly, the (curvilinear) arrow
pointing downward to NLP represents the modeling
compromises that NLP might demand—typified by
rounding variables that should be discrete. The arrows
pointing upward indicate the containment relationship
between the various paradigms and indicate how solution
technology from the more basic paradigms can be built
upon to develop a solution technology for MINLP—
which is the paradigm that requires the fewest modeling
compromises among the ones that we consider.

We have used much of the algorithmic wisdom gleaned
from research in MILP and NLP, and harnessed open-
source solvers for these two paradigms, in order to create
a new open-source solver, BONMIN (Basic Open-source
Nonlinear Mixed INteger programming), for MINLP
(see [10] and [11]) which is distributed under the Common
Public License (CPL) at COIN-OR (www.coin-or.org).
We have already observed some success on, for example,
difficult water-network optimization problems [12], as
well as portfolio optimization problems. Aside from
further developing BONMIN, we must now learn more
about MINLP modeling and how to tune codes such as
BONMIN to perform well on various MINLP models.

The theory and practice of MILP is a well-studied area
[13]. Nonetheless, fundamental results of computational
complexity delineate limitations on the potential for
success. The concept of tight formulation is extremely
important. We discuss this in some detail in the context
of a particular model, the uncapacitated facility location
(UFL) problem. The UFL problem involves satisfying the
demand of many customers for a single commodity by
opening production facilities from a finite set of potential
locations. Costs are associated with opening facilities, and
per-unit shipping costs are associated with moving the
commodity from facilities to customers. These costs

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

typically depend on the facility—customer pair involved.
The problem is uncapacitated in the sense that there is no
upper limit on the production capacity of any facility.
Next, we model this problem as an MILP. We focus on
the UFL problem because it is rather well understood
from the MILP viewpoint, but we observe that not all of
this MILP knowledge transfers to a very similar nonlinear
version of the UFL problem.

We have the discrete variables y; := indicator variable
for facility i and continuous variables x;; := proportion of
customer j demand satisfied by facility i. Because we are
working with proportions, we obviously require that

xil.zO fori=1,2, ..., m,
=12 ..., n

Here we have potential locations for facilities numbered
i=1,2, ..., mand customers numbered j=1, 2, ..., n.
Moreover, we require satisfaction of demand:

m

inj: 1 forj=1,2, ..., n.
i=1

Implicit in the definition of the indicator variables y; is
that they are constrained to be integers from the interval
[0, 1]. In other words, the restriction that y; is binary is
trivially modeled in the context of MILP.

Finally, to enforce that we ship only commodities from
open facilities, we can use the weak forcing constraints:

n
injgnyl. fori=1,2, ..., m.
J=1

In the simplest case, we seek to minimize the linear cost
function

m m n

Doyt Zl Zldi/xi/
i=1 j=

i=1

specified by the following:

e Facility cost data: ¢; := cost of operating facility 7.
¢ Commodity-transportation cost data: dj; := cost of
satisfying all of the demand of customer j from

facility i.

An alternative to the set of weak forcing constraints is
the set of strong forcing constraints:

X.

U.gyl. for i=1,2,...,m,

=12, ..., n
Although the weak and strong forcing constraints
are equivalent on S = {(y, x) € {0, 1} X [0, 1]™"},
they are not equivalent on the relaxed domain
Sr ={(, x) € [0, 17" X [0, 1]™"}, that is, with the
integrality restrictions on y; relaxed. It is easy to see 491

J. LEE

492

2,000

1,800

1,600

1,400

—
83
(=3
(=]

Total cost (arbitrary units)
k=)
S
(=}

800
L —o— LP weak
400 —=— LP strong
—A&— MILP
200
0IIIIIIIIIIIIIIIIIIIIIIIIIII

1 4 7 10 13 16 19 22 25 28
No. of facilities

Quality of LP formulations of a linear-objective uncapacitated
facility location problem.

that on Sr the strong constraints imply the weak ones,
since the weak constraints arise by summing the strong
ones over j=1, 2, ..., n. On the other hand, for example
when m =n, we can set x;=1fori=1,2, ..., m and
0 otherwise, and set y; = (1/n), and we see that the weak
constraints are all satisfied (at equality), but the strong
ones are violated (by quite a lot) for all 7, j such that i=}.
Conventional MILP wisdom holds that strong
formulations are better for MILP solvers that use LP
relaxations (and these are the type that dominate the
MILP-solver space). Indeed, this is demonstrated with
simple computational experiments. Table 1 shows some
indicative results for a randomly generated linear-
objective UFL instance having m = 30 and n = 100. Our
solver is Cbc, which we accessed via AMPL (a modeling
language for mathematical programming), and
experiments were performed using a notebook computer
running Windows** XP. The column labeled Nodes
provides information on the number of search-tree nodes
considered in order to find and prove global optimality.
The column labeled Time indicates the number of seconds
of computation. The weak and strong formulations use
the weak and strong forcing constraints, respectively,
and we observe the expected result that the strong
formulation is vastly superior. The last row of the table
demonstrates that advanced algorithmics, in this case

J. LEE

Table 1 UFL MILP results.

Nodes Time (s)
Weak formulation 10,616 332.24
Strong formulation 0 0.17
Strong algorithmic 2 1.69

constraint tightening and generation, can sometimes
achieve what a knowledgeable modeler can accomplish.
For that run, we used the weak formulation, but we
turned on the “integer preprocessing” and “cut-
generation” procedures of Cbc.

We can make a more detailed comparison of the
weak and strong forcing constraints. Because the
transportation cost is linear in the x;;, once the facility
variables are fixed, each customer’s demand is fully
assigned to the “closest” open facility (that is, for each
customer j, all of its demand is satisfied from a facility i
that minimizes dj;).

The weak relaxation is poor, since the y; variables can
“cheat” the weak forcing constraints in the LP and
assume very small nonzero values. This does not happen
to the same extent with the strong forcing constraints.
(The term cheat suggests that the y; variables, by
assuming continuous values, can satisfy the weak
constraints that are meant to enforce logical restrictions.)

Figure 2 compares the LP minimum and the MILP
minimum as the number of facilities is fixed at each
possible value from one up through m. Clearly the strong
formulation is quite effective, and the weak one is quite
poor, except when the number of facilities is required to
be high. There are several noteworthy points:

* The LP bound based on the strong forcing constraints
is significantly better than the LP bound based on the
weak forcing constraints. Hence, it is recommended
that practitioners work with the strong formulation or
use a modern MILP solver that has constraint
tightening and generation. We emphasize, however,
that modern MILP solvers do not in general obviate
the need for strong MILP formulations.

* The weak relaxation predicts that the overall optimal
MINLP solution will involve only one facility. This is
in stark contrast to the fact that the overall MILP
optimum makes use of eight facilities.

* The weak relaxation predicts that the optimal MILP
has a solution cost that increases consistently with
the number of facilities. However, the MILP cost
consistently decreases as the number of facilities is
increased from one through nine.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

* The quality of the weak relaxation, as a lower bound,
is actually quite good for larger numbers of facilities.
For example, the MILP optimal value is within five
percent of the LP optimal value once the number
of facilities reaches twenty-two.

Many other issues are involved in the successful
modeling and solution of MILP problems. We do not
discuss them in any detail, but we list some of the key
issues together with representative pointers to relevant
literature:

* Preprocessing and coefficient improvement; for
example, see [14].

e Implicit formulations (i.e., generating constraints
and variables); see [15] for use in a business
application.

¢ Underlying LP methods and performance (including
such topics as interior point algorithms vs. simplex
methods; primal vs. dual; taking advantage of
sparsity; and warm-starting successive LPs); see [15].

¢ Difficulty of exploiting massively parallel
architectures; for example, see [16].

* Branching rules and strong branching; for example,
see [15, 17].

® Heuristics; for example, [18].

In NLP, we have the benefit of being able to accurately
model various nonlinear phenomena. This makes the
paradigm particularly attractive for applications with
complex engineering aspects. We quickly find that many
of the important applications do not lend themselves to
convex formulations, so we are able to guarantee only
local optimality. Nevertheless, significant value is possible
in such local optimization, and we can make more
progress than by using a completely naive approach if we
employ multiple starting points as well as methods that
may allow uphill steps.

Effective modeling pays attention to the need to
provide function evaluations and usually first derivatives
to solvers. Second derivatives should exist and should
probably be smooth, but the user is not normally required
to provide this. Sparsity has a key effect on performance.
Many different algorithmic choices can be made,
primarily interior point vs. active set, and many choices
exist for the underlying unconstrained NLP solver and
even for solving the basic linear systems that arise.
Scaling and moderating the degree of nonlinearity are
essential for numerical stability. Sometimes judicious
variable transformations can have an enormous impact
on the quality of solutions. An older reference which still
bears reading is Chapter 7 of [19].

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Since MILP methods rely largely on LP relaxation,
such methods mostly inherit the robustness, i.e., the
stable numerical properties, of LP methods. However,
caution is required because the use of cutting planes may
introduce some numerical instability. NLP methods are
generally not nearly so robust as MILP methods. In fact,
some of this unstable behavior is inherent in particular
NLP methods. For example, so-called sequential
quadratic programming (SQP) methods of NLP solve a
sequence of linearized problems. These linearizations may
be infeasible, even when the original problem is feasible.

First, we prominently note that because MILP and NLP
are special cases of MINLP, we need to be aware of the
theoretical and practical knowledge associated with these
subdisciplines. However, we should seek to become more
knowledgeable if we hope to take full advantage of the
broader domain.

Associated with an MINLP model is its continuous
relaxation, obtained by relaxing S to Sg = R"* x R
Thus, the continuous relaxation of an MINLP model
is an NLP model.

At one extreme, when f'is concave and g is convex,
local optima are found as extreme points of the feasible
region of the relaxation. If we are sufficiently fortunate
that such a point is feasible for the underlying MINLP,
we have found a globally optimal solution to the
MINLP. If such a point is not feasible for the MINLP,
we may try to tighten the relaxation (by appending
inequalities designed to cut off such a point, but
preserving the feasible region of the underlying
MINLP). Unfortunately, it is not possible to reliably
find a global minimum of the NLP relaxation in this
case, because a local optimum need not be global.

At another important extreme, when the functions f
and g are all convex, a local optimum of the NLP model
is also a global optimum, and thus NLP algorithms that
seek local optima (all efficient NLP algorithms) in fact
find global optima. Unfortunately, local optima may be
on the interior of the feasible region, and these points are
likely to be infeasible for the underlying MINLP model.
Moreover, the NLP solution may also be quite far from
MILP optima. In addition, since an optimum may be
within the convex hull of the feasible solutions of
the MINLP, it is not possible to usefully tighten the
MINLP formulation. All of this is illustrated in the two-
dimensional example of Figure 3, where we see contours
of a convex objective function that we seek to optimize
on the lattice points of the shaded polygon. We see the
NLP optimum at the red point, while MINLP optima,
circled in blue, are at points that cannot be obtained by
rounding. At this stage, we must rely on some disjunctive 493

J. LEE

494

Geometry of a two-dimensional convex objective MINLP function.
The axes represent two decision variables, x, and x,.

algorithmic reasoning (i.e., branching, or subdividing the
feasible region).

The introduction of [20] discusses at some length a
small example focusing on aspects of the convexity and
concavity issue that we have just discussed.

Combining the previous two cases, we see that linear
objectives and convex constraints are particularly
attractive for MINLP. Linear constraints are even more
attractive from a computational standpoint, but then
we are in the realm of MILP.

Considerable literature exists on MINLP. Some of this
literature is focused on the case in which the continuous
relaxation is a convex optimization problem. For
this case, algorithmic approaches that we may use

J. LEE

include. NLP-based branch-and-bound [21], the outer-
approximation decomposition algorithm [22], the branch-
and-cut algorithm of Quesada and Grossmann [23], and
a hybrid outer-approximation-based branch-and-cut
algorithm [10]. All four of these methods are implemented
in BONMIN.

For the nonconvex case, conventional approaches
include various heuristic methodologies as well as global
optimization techniques. A central approach of global
optimization is “spatial branch-and-bound,” in which the
feasible region is repeatedly subdivided and the objective
function is bounded below, for each subproblem, by
solving a convex relaxation. The success of the approach
depends on the method being able to branch in such a
way as to improve the bounds. Some entry points to this
literature are [24-27]. Rather than following the approach
of global optimization, the NLP-based branch-and-
bound algorithmic option in BONMIN includes some
simple techniques to make the search robust in the
presence of nonconvexity, with the goal of finding a
feasible solution that only approximately minimizes the
objective function.

MINLP and the UFL

It is interesting to compare an optimization model with its
continuous relaxation. Lee and Morris [28], using a
“volumetric” view, did this analytically for various
polytopes. They were concerned primarily with linear
constraints, but the motivation for using volume as

a measure of the quality of a model (relative to its
continuous relaxation) relates to nonlinear objective
functions. With this viewpoint, Lee and Morris
analytically compared the weak and strong forcing
constraints of the UFL problem and demonstrated that
when m grows slowly with n, the weak formulation is not
much weaker than the strong formulation.

As we have already seen, in the context of MILP, the
constraints of the UFL are particularly well understood.
Besides the favorable properties of the strong forcing
constraints, it is clear that once the facility variables are
fixed, the customers are just assigned to the “closest”
open facility. We have performed some experiments
with instances of the UFL problem having a separable
convex quadratic objective function:

m m n)
E .y + E E dijxij .
i=1 =1 j=1

From the NLP point of view, this is an extremely useful
objective function. However, from the point of view of
MINLP, this particular objective function is disastrous.
Convexity here means dis-economies of scale. It is
advantageous to split each customer’s demand over
several facilities. Since transportation-cost minimization
encourages the x;; variables to assume very small fractional

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

values, the y; variables “cheat” the forcing constraints,
weak or strong, in the NLP and assume small nonzero
values as well. Figure 4 compares the NLP minimum and
the MINLP minimum as the number of facilities is fixed at
each possible value from one up through m.

We can make several observations regarding Figure 4:

e The NLP bound is not significantly better using the
strong forcing constraints as compared with the weak
forcing constraints. Hence, it may be preferable to
work with the weak formulation because the NLPs
solve faster.

* Both NLP relaxations predict that the overall optimal
MINLP solution will involve only one facility. This is
in stark contrast to the fact that the overall MINLP
optimum uses eight facilities.

* Both NLP relaxations predict that the optimal
MINLP solution cost increases consistently with the
number of facilities, but the MINLP cost consistently
decreases as the number of facilities is increased from
one up through eight.

e The quality of both NLP relaxations (as a lower
bound) is actually quite good for larger numbers of
facilities. For example, the MINLP optimal value is
within five percent of the NLP optimal value once the
number of facilities reaches eighteen.

We have used BONMIN to solve this instance to
optimality, using both weak and strong formulations.
Note that a good branching rule was essential for
obtaining reasonable performance; branching with
priority given to facilities with higher costs is an effective
technique. Our results are summarized in Table 2. A few
points are clear when Tables 1 and 2 are compared:

* Even for the weak formulation, the time required to
solve each NLP subproblem is much greater than for
the corresponding LP subproblem.

* The number of nodes for either formulation is
significantly greater for the MINLP than for the
corresponding MILP.

None of this is surprising. The more interesting
comparison is between the weak and strong formulations
of the MINLP. In particular, the number of nodes for the
weak formulation of the MINLP is only modestly worse
than the number of nodes for the strong formulation
(very different from the MILP situation), but the running
time for the weak formulation is significantly lower for
the weak formulation (also very different from the MILP
situation).

Of course, it may be practical to consider heuristics
when solving business optimization problems. Borrowing

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

2,000
A

1,800 |-

1,600
—o— NLP weak
—=— NLP strong

—&— MINLP

1,400

1,200

1,000

800

Total cost (arbitrary units)

600

400

200

1 4 7 10 13 16 19 22 25 28
No. of facilities

Quality of NLP formulations of a quadratic-objective uncapaci-
tated facility location problem.

Table 2 UFL MINLP results.

Nodes Time (s)
Weak formulation 45,901 16,697.46
Strong formulation 29,277 21,206.56

an idea from [9], we suggest a family of heuristics based
on solving smaller MINLP problems. The idea is also
closely related to [29].

Let S be a subset of the set of facilities {1, 2, ..., m}.
Initially, we may take S =0, or {1, 2, ..., m}, or perhaps
a known set of facilities yielding a feasible solution. We
choose a positive integer parameter k, which serves as a
Hamming radius around S. We append the following
inequalities to our MINLP:

Z(l_y[)+zyi§k7 (1)

icS i¢S

m
|S‘71S Zy1§|5‘+17 (2)

i=1

Sy, < ["%J , (3)

iZs

J. LEE

495

496

>Sorzis- |5 @
icS
Here, the | x| symbol denotes the greatest integer less than
or equal to x, and [x] denotes the least integer greater
than or equal to x. The inequality (1) forces the y; to select
a set of facilities that is not very different from S. The
inequality (2) further restricts the y; so that the number of
facilities chosen is within one of the number chosen by S.
The remaining inequalities (3, 4) are implied by (1, 2) and
the binary nature of the y;, and they strengthen the NLP
relaxation when k is even.

By repeatedly solving the MINLP, letting
S = {i: y;= 1} with respect to the y; from the previous
stage, we simply iterate until no improvement is found.
If we set k :=m, we are just solving the full MINLP
in one stage. Thus, we suggest setting the value of k
substantially smaller in order to limit the computational
effort expended at each stage. Even with k = 1, this
heuristic found the MINLP minimum on our UFL data
set. An additional feature of the heuristic is that it is
completely generic for problems in which the integer
variables are constrained to be 0/1-valued; in fact, in
principle, it is easy to see how to adapt this to general
integer variables.

Tools currently being developed for MINLP problems
have tremendous potential for business optimization
problems. Realizing this potential will require unique
modeling wisdom for this domain in combination with
advances in MINLP solver technology.

Considerable work has to be done before MINLP
solvers will have the impact that MILP tools have had
for business optimization problems. We can highlight
a few areas of current investigation that should have
considerable impact on our ability to solve difficult
problems:

* Development of general-purpose and specialized
heuristics (see for example [9] and [30]).

¢ Development of effective branching rules.

¢ Development of effective “warm-starting” techniques
for rapidly solving children NLPs from the solution
of a parent NLP.

e Effective use of parallel computing.

* Development of algebraic approaches, generalizing
ideas such as those of [31].

Future versions of BONMIN should incorporate many

of these features and thus enable us to expand the
applicability of the MINLP paradigm.

J. LEE

**Trademark, service mark, or registered trademark of ILOG,
Inc., Stanford University, UC San Diego, AMPL Optimization
LLC, or Microsoft Corporation in the United States, other
countries, or both.

1. ILOG-Cplex 9.0 User’s Manual, 2003; see http://
www.ilog.com|.

2. P. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP
Algorithm for Large-Scale Constrained Optimization,” STAM
Rev. 47, No. 1, 99-131 (2005).

3. A. Waechter and L. T. Biegler, “On the Implementation of an
Interior-Point Filter Line-Search Algorithm for Large-Scale
Nonlinear Programming,” Math. Program. 106, No. 1, 25-57
(2006).

4. R. Fourer, D. Gay, and B. Kernighan, AMPL: A Modeling
Language for Mathematical Programming, Brooks/Cole,
Stamford, CT, 2003.

5. A. Brooke, D. Kendrick, A. Meeraus, and R. Raman, GAMS:
A User’s Guide; see http:|lwww.gams.com/docs/document.htm.

6. E.M. L. BealeandJ.J. H. Forrest, “Global Optimization Using
Special Ordered Sets,” Math. Program. 10, 52—69 (1976).

7. J. Lee and D. Wilson, “Polyhedral Methods for Piecewise-
Linear Functions I: The Lambda Method,” Discrete Appl.
Math. 108, No. 3, 269-285 (2001).

8. A. Martin, M. Moller, and S. Moritz, “Approximation of
Non-Linear Functions in Mixed Integer Programming,”
presented at the workshop on Integer Programming and
Continuous Optimization, Chemnitz, Germany, November
7-9, 2004.

9. J. Lee, “In Situ Column Generation for a Cutting-Stock
Problem,” Computers & Oper. Res. 34, No. 8, 2345-2358
(2007); see www.sciencedirect.com.

10. P. Bonami, A. Waechter, L. T. Biegler, A. R. Conn,

G. Cornugjols, I. E. Grossmann, C. D. Laird, et al., “An
Algorithmic Framework for Convex Mixed Integer Nonlinear
Programs,” Research Report RC-23771, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 2005.

11. P. Bonami and J. Lee, BONMIN Users’ Manual; see http://
projects.coin-or.org/Bonmin.

12. C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth, “An
MINLP Solution Method for a Water Network Problem,”
Algorithms—ESA 2006, Y. Azar and T. Erlebach, Editors,
Proceedings of the 14th Annual European Symposium, Zurich,
Switzerland, Springer, New York, 2006, pp. 696-707.

13. G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial
Optimization, John Wiley & Sons, Hackensack, NJ, 1988.

14. M. W. P. Savelsbergh, “Preprocessing and Probing for Mixed
Integer Programming Problems,” ORSA J. Computing 6, No.
4, 445-454 (1994).

15. R. Anbil, R. Tanga, and E. L. Johnson, “A Global Approach
to Crew-Pairing Optimization,” IBM Syst. J. 31, No. 1, 71-78
(1992).

16. Q. Chen, M. Ferris, and J. T. Linderoth, “FATCOP 2.0:
Advanced Features in an Opportunistic Mixed Integer
Programming Solver,” Ann. Oper. Res. 103, 17-32 (2001).

17. J. T. Linderoth and M. W. P. Savelsbergh, “A Computational
Study of Branch and Bound Search Strategies for Mixed
Integer Programming,” INFORMS J. Computing 11, No. 2,
173-187 (1999).

18. L. Bertacco, M. Fischetti, and A. Lodi, “A Feasibility Pump
Heuristic for General Mixed-Integer Problems,” Discrete
Optimization 4, 63-76 (2007).

19. P. E. Gill, W. Murray, and M. H. Wright, Practical
Optimization, Academic Press, New York, 1981.

20. J. Lee, 4 First Course in Combinatorial Optimization,
Cambridge University Press, New York, 2004.

21. O. K. Gupta and V. Ravindran, “Branch and Bound
Experiments in Convex Nonlinear Integer Programming,”
Manage. Sci. 31, No. 12, 1533-1546 (1985).

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

22. M. Duran and I. E. Grossmann, “An Outer-Approximation
Algorithm for a Class of Mixed-Integer Nonlinear Programs,”
Math. Program. 36, No. 3, 307-339 (1986).

23. 1. Quesada and I. E. Grossmann, “An LP/NLP Based Branch
and Bound Algorithm for Convex MINLP Optimization
Problems,” Computers & Chem. Eng. 16, No. 10/11, 937-947
(1992).

24. L. Liberti and N. Maculan, Global Optimization: From Theory
to Implementation, Chapter: “Nonconvex Optimization and Its
Applications,” Springer, New York, 2006.

25. C. Audet, P. Hansen, and G. Savard, Essays and Surveys in
Global Optimization, GERAD 25th Anniversary Series,
Springer, New York, 2005.

26. M. Tawarmalani and N. V. Sahinidis, Convexification and
Global Optimization in Continuous and Mixed-Integer
Nonlinear Programming, Kluwer Academic Publishing,
Dordrecht, The Netherlands, 2002.

27. C. A. Floudas, Deterministic Global Optimization, Kluwer
Academic Publishing, Dordrecht, The Netherlands, 2000.

28. J. Lee and W. D. Morris, Jr., “Geometric Comparison of
Combinatorial Polytopes,” Discrete Appl. Math. 55, No. 2,
163-182 (1994).

29. M. Fischetti and A. Lodi, “Local Branching,” Math. Program.
98, 23-47 (2003).

30. P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, “A
Feasibility Pump for Mixed Integer Nonlinear Programs,”
Research Report RC-23862, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, 2006.

31. J. A. De Loera, D. Haws, R. Hemmecke, P. Huggins, and R.
Yoshida, “A Computational Study of Integer Programming
Algorithms Based on Barvinok’s Rational Functions,”
Discrete Optimization 2, No. 2, 135-144 (2005).

Received April 6, 2006; accepted for publication
September 22, 2006, Internet publication May 23, 2007

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Jon Lee IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(jonlee@us.ibm.com). Dr. Lee manages the Discrete Optimization
group, which is in the Optimization Center of the Mathematical
Sciences Department. He received his B.S. (1981), M.S. (1984), and
Ph.D. (1986) degrees from Cornell University. From 1985 to 1993,
he was on the faculty of Yale University, and from 1993 to 2000 on
the faculty of the University of Kentucky. Dr. Lee was a research
visitor at the Center for Operations Research and Econometrics,
Université Catholique de Louvain, Belgium, for the academic years
1991-1992 and 1999-2000, and an Adjunct Professor in the
Industrial Engineering and Operations Research Department at
Columbia University in 2003. He has worked at IBM since 2000.
Dr. Lee is the author of A First Course in Combinatorial
Optimization (Cambridge University Press) and was founding
Managing Editor of the journal Discrete Optimization. He is
currently Associate Editor of the journal Discrete Applied
Mathematics, an Adjunct Professor at the Leonard N. Stern School
of Business, New York University (since 2002), a Permanent
Member of DIMACS, a Full Member of the COIN-OR
Foundation, and an external member of the Computational
Optimization Research Center (CORC) of Columbia University.

J. LEE

497

