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We examine various aspects of modeling and solution via mixed-
integer nonlinear programming (MINLP). MINLP has much to
offer as a powerful modeling paradigm. Recently, significant
advances have been made in MINLP solution software. To
fully realize the power of MINLP to solve complex business
optimization problems, we need to develop knowledge and expertise
concerning MINLP modeling and solution methods. Some of this
can be drawn from conventional wisdom of mixed-integer linear
programming (MILP) and nonlinear programming (NLP), but
theoretical and practical issues exist that are specific to MINLP.
This paper discusses some of these, concentrating on an aspect of a
classical facility location problem that is well-known in the MILP
literature, although here we consider a nonlinear objective function.

Introduction
In a simplified view, business optimization involves

important aspects such as the identification of one or

more high-value opportunities, data collection and

analysis, modeling, mathematical optimization, and

solution delivery. None of these aspects can be fully

considered in isolation, because high-value applications

benefit from feedback among these exercises.

Nevertheless, we focus on the part of the larger challenge

that involves modeling and mathematical optimization.

Although many high-value opportunities exist for

which optimization-based solutions could in principle be

applied, a significant inhibiting factor for widespread use

is the custom nature of much of the modeling and

optimization. This customization arises primarily from a

mismatch between natural optimization models and

available optimization solvers. This mismatch is largely

due to the inherent complexity of applications and the

limited scope of efficient algorithms. This paper focuses

on recent efforts to ameliorate this situation through the

use of mixed-integer nonlinear programming (MINLP).

As general background to various optimization

approaches, linear programming is concerned with

methods for optimizing a linear function of many

variables, subject to bounds on a finite set of additional

linear functions. Nonlinear programming is associated

with optimization in instances in which some of the

relevant functions are nonlinear. The term mixed-integer

indicates that some of the variables can take only discrete

values, while others are continuous. Thus, the termmixed-

integer nonlinear programming refers to mathematical

programming with continuous and discrete variables and

nonlinearities in the objective function and constraints.

Practical applications of MINLP include portfolio

optimization, design of water distribution networks,

design of complex distillation systems, and optimization

of manufacturing and transportation logistics.

In the following, R denotes the real numbers and Z
denotes the integers. The form of our MINLP problem

is

P :
minimize fðxÞ
subject to gðxÞ � b
x 2 S;

where f : Rn 7! R and the g : Rn 7! Rm are twice

continuously differentiable functions, b is a real m-vector,

and S :¼ Rn�k 3 Zk (that is, the first n � k variables are

continuous, and the last k variables are integers). This is a

fairly general setting, accommodating both continuous

and discrete variables as well as inequality constraints

involving smooth functions. At two extremes, P reduces

to a standard smooth nonlinear programming (NLP)

model when k¼ 0, and to a standard mixed-integer linear

programming (MILP) model when the functions f and g
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are linear. When we have both of these extremes at the

same time, we have a standard linear programming (LP)

model. Figure 1 is a high-level encapsulation of many of

the concepts in this Introduction and highlights the

relationships between various model and solver types.

The figure is discussed in more detail toward the end of

the Introduction.

In recent years, there have been enormous advances in

solver technology for LP, MILP, and NLP. Commercial

tools such as ILOG CPLEX** [1] for LP and MILP, and

SNOPT** [2] for NLP are quite robust for problems that

even a decade ago were not tractable. Open-source tools

such as COIN-OR’s Clp for LP, Cbc for MILP, and

Ipopt [3] for NLP are attractive alternatives in many

situations. From a user’s perspective, the customizability

and lack of cost make the open-source tools an attractive

alternative to the commercial tools. All of these solvers

are accessible by modeling languages such as AMPL** [4]

and GAMS [5] and can also be called from languages

suitable for high-performance computing such as C/Cþþ.
Many high-value applications are naturally modeled as

MINLP problems. Aspects exist that are inherently

nonlinear (e.g., engineering aspects, such as pressure

loss due to friction), as well as other aspects that are

inherently discrete and of exponential complexity (e.g.,

in problems concerning simultaneous choices from

many small sets of alternatives).

Given such problems, what is the modeler to do when

confronted with a high-value application that is naturally

modeled as an MINLP? Aside from reformulating the

problem, the traditional approaches involve either

relaxing the integrality restrictions and using an NLP

solver, or judiciously replacing the nonlinear functions

with piecewise-linear ones. In the former case, it may be

difficult to use the solution of the NLP to find a good

solution satisfying the integrality restrictions. In the latter

case, the cost of this approximation is paid by an increase

in the number of discrete variables, which are used to

manage the linear pieces. The running time of MILP

solvers tends to increase, often dramatically, as the

number of discrete variables increases. Thus, this

approach can drastically limit the size of problems that

we can solve. If we artificially limit the number of pieces

in the approximation, we lose accuracy in the

approximation. Therefore, whether we use an NLP or

MILP approach, we must deal with solution methods

that may not yield even feasible solutions within

reasonable time limits.

Of course we can make some progress by using MILP

solvers. For example, in the case of piecewise-linear

approximation, fairly simple methods exist for separable

functions [i.e., f : Rn 7! R is separable if it has the form

fðxÞ ¼
Pn

j¼1 fjðxjÞ]. Here we can use some well-known

specialized techniques (so-called ‘‘SOS Type-2’’ methods;

see [6]) to handle these situations. Other specialized

techniques have been developed that are applicable in

situations involving partially separable functions, in

which a limited number of variables appear in summands

of the functions (see [7] and also [8], which develop

related techniques and apply them to gas-network

optimization problems). However, experience has shown

that these models have limited value for large instances

and those requiring accurate solutions. Moreover, the

successful application of these methods is currently far

from automatic.

On the other hand, MILP approaches to MINLP

problems have certain attractive aspects. With a

sufficiently fine piecewise-linear approximation, most

MILP methods work with good approximations to lower

and upper bounds on the optimum value and seek to

shrink the gap between the two. Moreover, the methods

are designed so that after a finite number of steps, which

may be quite large, an optimal solution to the

approximation is obtained and verified.

MILP is a very powerful paradigm, and the value of

MINLP is not limited to attacking piecewise-linear

approximations. For example, specialized heuristic

approaches based on MILP have been developed for

bilinear-programming models that are used for obtaining

good solutions to certain cutting-stock problems (see [9]).

The cutting-stock problem occurs in various industries,

such as in a paper mill where stock rolls of paper must be

cut to satisfy demand for rolls of various smaller widths

and in such a way as to minimize trim loss.

An NLP approach to MINLP problems has the virtue

of working with the correct nonlinear functions, but the

discrete nature of some of the variables is ignored. In

Figure 1

Business optimization and a solver hierarchy.
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many applications, no simple method exists to recover a

good solution to the underlying MINLP from a solution

of the NLP relaxation, and so an MINLP method must

be developed that will find a way to impose the discrete

restrictions. (The term NLP relaxation refers to an NLP

that arises as a result of allowing the integer variables of

the MINLP to assume continuous values.)

Another drawback of an NLP approach is that usually

the NLP relaxation does not have a convex feasible

region. (The feasible region of an optimization model is

the set of solutions that satisfies its constraints.) Since

most NLP methods seek a local optimum, it is virtually

impossible to verify the global quality of a solution to a

large and/or complex model.

In Figure 1, the vertical (piecewise-linear) zigzag arrow

pointing downward to MILP alludes to the modeling

compromises that MILP might demand—typified by

piecewise linearization. Similarly, the (curvilinear) arrow

pointing downward to NLP represents the modeling

compromises that NLP might demand—typified by

rounding variables that should be discrete. The arrows

pointing upward indicate the containment relationship

between the various paradigms and indicate how solution

technology from the more basic paradigms can be built

upon to develop a solution technology for MINLP—

which is the paradigm that requires the fewest modeling

compromises among the ones that we consider.

We have used much of the algorithmic wisdom gleaned

from research in MILP and NLP, and harnessed open-

source solvers for these two paradigms, in order to create

a new open-source solver, BONMIN (Basic Open-source

Nonlinear Mixed INteger programming), for MINLP

(see [10] and [11]) which is distributed under the Common

Public License (CPL) at COIN-OR (www.coin-or.org).

We have already observed some success on, for example,

difficult water-network optimization problems [12], as

well as portfolio optimization problems. Aside from

further developing BONMIN, we must now learn more

about MINLP modeling and how to tune codes such as

BONMIN to perform well on various MINLP models.

Some conventional wisdom for MILP
The theory and practice of MILP is a well-studied area

[13]. Nonetheless, fundamental results of computational

complexity delineate limitations on the potential for

success. The concept of tight formulation is extremely

important. We discuss this in some detail in the context

of a particular model, the uncapacitated facility location

(UFL) problem. The UFL problem involves satisfying the

demand of many customers for a single commodity by

opening production facilities from a finite set of potential

locations. Costs are associated with opening facilities, and

per-unit shipping costs are associated with moving the

commodity from facilities to customers. These costs

typically depend on the facility–customer pair involved.

The problem is uncapacitated in the sense that there is no

upper limit on the production capacity of any facility.

Next, we model this problem as an MILP. We focus on

the UFL problem because it is rather well understood

from the MILP viewpoint, but we observe that not all of

this MILP knowledge transfers to a very similar nonlinear

version of the UFL problem.

We have the discrete variables yi :¼ indicator variable

for facility i and continuous variables xij :¼ proportion of

customer j demand satisfied by facility i. Because we are

working with proportions, we obviously require that

x
ij
� 0 for i ¼ 1; 2; . . . ; m;

j ¼ 1; 2; . . . ; n:

Here we have potential locations for facilities numbered

i ¼ 1, 2, . . . , m and customers numbered j ¼ 1, 2, . . . , n.

Moreover, we require satisfaction of demand:

Xm
i¼1

x
ij
¼ 1 for j ¼ 1; 2; . . . ; n:

Implicit in the definition of the indicator variables yi is

that they are constrained to be integers from the interval

[0, 1]. In other words, the restriction that yi is binary is

trivially modeled in the context of MILP.

Finally, to enforce that we ship only commodities from

open facilities, we can use the weak forcing constraints:

Xn
j¼1

x
ij
� ny

i
for i ¼ 1; 2; . . . ; m:

In the simplest case, we seek to minimize the linear cost

function

Xm
i¼1

c
i
y
i
þ
Xm
i¼1

Xn
j¼1

d
ij
x
ij

specified by the following:

� Facility cost data: ci :¼ cost of operating facility i.
� Commodity-transportation cost data: dij :¼ cost of

satisfying all of the demand of customer j from

facility i.

An alternative to the set of weak forcing constraints is

the set of strong forcing constraints:

x
ij
� y

i
for i ¼ 1; 2; . . . ; m;

j ¼ 1; 2; . . . ; n:

Although the weak and strong forcing constraints

are equivalent on S :¼ f(y, x) 2 f0, 1gm 3 [0, 1]mng,
they are not equivalent on the relaxed domain

SR :¼ f(y, x) 2 [0, 1]m 3 [0, 1]mng, that is, with the

integrality restrictions on yi relaxed. It is easy to see
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that on SR the strong constraints imply the weak ones,

since the weak constraints arise by summing the strong

ones over j¼ 1, 2, . . . , n. On the other hand, for example

when m ¼ n, we can set xii ¼ 1 for i ¼ 1, 2, . . . , m and

0 otherwise, and set yi ¼ (1/n), and we see that the weak

constraints are all satisfied (at equality), but the strong

ones are violated (by quite a lot) for all i, j such that i¼ j.

Conventional MILP wisdom holds that strong

formulations are better for MILP solvers that use LP

relaxations (and these are the type that dominate the

MILP-solver space). Indeed, this is demonstrated with

simple computational experiments. Table 1 shows some

indicative results for a randomly generated linear-

objective UFL instance having m ¼ 30 and n ¼ 100. Our

solver is Cbc, which we accessed via AMPL (a modeling

language for mathematical programming), and

experiments were performed using a notebook computer

running Windows** XP. The column labeled Nodes

provides information on the number of search-tree nodes

considered in order to find and prove global optimality.

The column labeled Time indicates the number of seconds

of computation. The weak and strong formulations use

the weak and strong forcing constraints, respectively,

and we observe the expected result that the strong

formulation is vastly superior. The last row of the table

demonstrates that advanced algorithmics, in this case

constraint tightening and generation, can sometimes

achieve what a knowledgeable modeler can accomplish.

For that run, we used the weak formulation, but we

turned on the ‘‘integer preprocessing’’ and ‘‘cut-

generation’’ procedures of Cbc.

We can make a more detailed comparison of the

weak and strong forcing constraints. Because the

transportation cost is linear in the xij, once the facility

variables are fixed, each customer’s demand is fully

assigned to the ‘‘closest’’ open facility (that is, for each

customer j, all of its demand is satisfied from a facility i

that minimizes dij).

The weak relaxation is poor, since the yi variables can

‘‘cheat’’ the weak forcing constraints in the LP and

assume very small nonzero values. This does not happen

to the same extent with the strong forcing constraints.

(The term cheat suggests that the yi variables, by

assuming continuous values, can satisfy the weak

constraints that are meant to enforce logical restrictions.)

Figure 2 compares the LP minimum and the MILP

minimum as the number of facilities is fixed at each

possible value from one up through m. Clearly the strong

formulation is quite effective, and the weak one is quite

poor, except when the number of facilities is required to

be high. There are several noteworthy points:

� The LP bound based on the strong forcing constraints

is significantly better than the LP bound based on the

weak forcing constraints. Hence, it is recommended

that practitioners work with the strong formulation or

use a modern MILP solver that has constraint

tightening and generation. We emphasize, however,

that modern MILP solvers do not in general obviate

the need for strong MILP formulations.
� The weak relaxation predicts that the overall optimal

MINLP solution will involve only one facility. This is

in stark contrast to the fact that the overall MILP

optimum makes use of eight facilities.
� The weak relaxation predicts that the optimal MILP

has a solution cost that increases consistently with

the number of facilities. However, the MILP cost

consistently decreases as the number of facilities is

increased from one through nine.

Table 1 UFL MILP results.

Nodes Time (s)

Weak formulation 10,616 332.24

Strong formulation 0 0.17

Strong algorithmic 2 1.69

Figure 2

Quality of LP formulations of a linear-objective uncapacitated 

facility location problem.
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� The quality of the weak relaxation, as a lower bound,

is actually quite good for larger numbers of facilities.

For example, the MILP optimal value is within five

percent of the LP optimal value once the number

of facilities reaches twenty-two.

Many other issues are involved in the successful

modeling and solution of MILP problems. We do not

discuss them in any detail, but we list some of the key

issues together with representative pointers to relevant

literature:

� Preprocessing and coefficient improvement; for

example, see [14].
� Implicit formulations (i.e., generating constraints

and variables); see [15] for use in a business

application.
� Underlying LP methods and performance (including

such topics as interior point algorithms vs. simplex

methods; primal vs. dual; taking advantage of

sparsity; and warm-starting successive LPs); see [15].
� Difficulty of exploiting massively parallel

architectures; for example, see [16].
� Branching rules and strong branching; for example,

see [15, 17].
� Heuristics; for example, [18].

Some conventional wisdom for NLP
In NLP, we have the benefit of being able to accurately

model various nonlinear phenomena. This makes the

paradigm particularly attractive for applications with

complex engineering aspects. We quickly find that many

of the important applications do not lend themselves to

convex formulations, so we are able to guarantee only

local optimality. Nevertheless, significant value is possible

in such local optimization, and we can make more

progress than by using a completely naı̈ve approach if we

employ multiple starting points as well as methods that

may allow uphill steps.

Effective modeling pays attention to the need to

provide function evaluations and usually first derivatives

to solvers. Second derivatives should exist and should

probably be smooth, but the user is not normally required

to provide this. Sparsity has a key effect on performance.

Many different algorithmic choices can be made,

primarily interior point vs. active set, and many choices

exist for the underlying unconstrained NLP solver and

even for solving the basic linear systems that arise.

Scaling and moderating the degree of nonlinearity are

essential for numerical stability. Sometimes judicious

variable transformations can have an enormous impact

on the quality of solutions. An older reference which still

bears reading is Chapter 7 of [19].

Since MILP methods rely largely on LP relaxation,

such methods mostly inherit the robustness, i.e., the

stable numerical properties, of LP methods. However,

caution is required because the use of cutting planes may

introduce some numerical instability. NLP methods are

generally not nearly so robust as MILP methods. In fact,

some of this unstable behavior is inherent in particular

NLP methods. For example, so-called sequential

quadratic programming (SQP) methods of NLP solve a

sequence of linearized problems. These linearizations may

be infeasible, even when the original problem is feasible.

Toward the development of wisdom for MINLP

First, we prominently note that because MILP and NLP

are special cases of MINLP, we need to be aware of the

theoretical and practical knowledge associated with these

subdisciplines. However, we should seek to become more

knowledgeable if we hope to take full advantage of the

broader domain.

Associated with an MINLP model is its continuous

relaxation, obtained by relaxing S to SR :¼ Rn�k 3 Rk.

Thus, the continuous relaxation of an MINLP model

is an NLP model.

At one extreme, when f is concave and g is convex,

local optima are found as extreme points of the feasible

region of the relaxation. If we are sufficiently fortunate

that such a point is feasible for the underlying MINLP,

we have found a globally optimal solution to the

MINLP. If such a point is not feasible for the MINLP,

we may try to tighten the relaxation (by appending

inequalities designed to cut off such a point, but

preserving the feasible region of the underlying

MINLP). Unfortunately, it is not possible to reliably

find a global minimum of the NLP relaxation in this

case, because a local optimum need not be global.

At another important extreme, when the functions f

and g are all convex, a local optimum of the NLP model

is also a global optimum, and thus NLP algorithms that

seek local optima (all efficient NLP algorithms) in fact

find global optima. Unfortunately, local optima may be

on the interior of the feasible region, and these points are

likely to be infeasible for the underlying MINLP model.

Moreover, the NLP solution may also be quite far from

MILP optima. In addition, since an optimum may be

within the convex hull of the feasible solutions of

the MINLP, it is not possible to usefully tighten the

MINLP formulation. All of this is illustrated in the two-

dimensional example of Figure 3, where we see contours

of a convex objective function that we seek to optimize

on the lattice points of the shaded polygon. We see the

NLP optimum at the red point, while MINLP optima,

circled in blue, are at points that cannot be obtained by

rounding. At this stage, we must rely on some disjunctive
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algorithmic reasoning (i.e., branching, or subdividing the

feasible region).

The introduction of [20] discusses at some length a

small example focusing on aspects of the convexity and

concavity issue that we have just discussed.

Combining the previous two cases, we see that linear

objectives and convex constraints are particularly

attractive for MINLP. Linear constraints are even more

attractive from a computational standpoint, but then

we are in the realm of MILP.

Considerable literature exists on MINLP. Some of this

literature is focused on the case in which the continuous

relaxation is a convex optimization problem. For

this case, algorithmic approaches that we may use

include. NLP-based branch-and-bound [21], the outer-

approximation decomposition algorithm [22], the branch-

and-cut algorithm of Quesada and Grossmann [23], and

a hybrid outer-approximation-based branch-and-cut

algorithm [10]. All four of these methods are implemented

in BONMIN.

For the nonconvex case, conventional approaches

include various heuristic methodologies as well as global

optimization techniques. A central approach of global

optimization is ‘‘spatial branch-and-bound,’’ in which the

feasible region is repeatedly subdivided and the objective

function is bounded below, for each subproblem, by

solving a convex relaxation. The success of the approach

depends on the method being able to branch in such a

way as to improve the bounds. Some entry points to this

literature are [24–27]. Rather than following the approach

of global optimization, the NLP-based branch-and-

bound algorithmic option in BONMIN includes some

simple techniques to make the search robust in the

presence of nonconvexity, with the goal of finding a

feasible solution that only approximately minimizes the

objective function.

MINLP and the UFL
It is interesting to compare an optimization model with its

continuous relaxation. Lee and Morris [28], using a

‘‘volumetric’’ view, did this analytically for various

polytopes. They were concerned primarily with linear

constraints, but the motivation for using volume as

a measure of the quality of a model (relative to its

continuous relaxation) relates to nonlinear objective

functions. With this viewpoint, Lee and Morris

analytically compared the weak and strong forcing

constraints of the UFL problem and demonstrated that

when m grows slowly with n, the weak formulation is not

much weaker than the strong formulation.

As we have already seen, in the context of MILP, the

constraints of the UFL are particularly well understood.

Besides the favorable properties of the strong forcing

constraints, it is clear that once the facility variables are

fixed, the customers are just assigned to the ‘‘closest’’

open facility. We have performed some experiments

with instances of the UFL problem having a separable

convex quadratic objective function:

Xm
i¼1

c
i
y
i
þ
Xm
i¼1

Xn
j¼1

d
ij
x

2

ij
:

From the NLP point of view, this is an extremely useful

objective function. However, from the point of view of

MINLP, this particular objective function is disastrous.

Convexity here means dis-economies of scale. It is

advantageous to split each customer’s demand over

several facilities. Since transportation-cost minimization

encourages the xij variables to assume very small fractional

Figure 3

Geometry of a two-dimensional convex objective MINLP function. 

The axes represent two decision variables, x1 and x2.
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values, the yi variables ‘‘cheat’’ the forcing constraints,

weak or strong, in the NLP and assume small nonzero

values as well. Figure 4 compares the NLP minimum and

the MINLPminimum as the number of facilities is fixed at

each possible value from one up through m.

We can make several observations regarding Figure 4:

� The NLP bound is not significantly better using the

strong forcing constraints as compared with the weak

forcing constraints. Hence, it may be preferable to

work with the weak formulation because the NLPs

solve faster.
� Both NLP relaxations predict that the overall optimal

MINLP solution will involve only one facility. This is

in stark contrast to the fact that the overall MINLP

optimum uses eight facilities.
� Both NLP relaxations predict that the optimal

MINLP solution cost increases consistently with the

number of facilities, but the MINLP cost consistently

decreases as the number of facilities is increased from

one up through eight.
� The quality of both NLP relaxations (as a lower

bound) is actually quite good for larger numbers of

facilities. For example, the MINLP optimal value is

within five percent of the NLP optimal value once the

number of facilities reaches eighteen.

We have used BONMIN to solve this instance to

optimality, using both weak and strong formulations.

Note that a good branching rule was essential for

obtaining reasonable performance; branching with

priority given to facilities with higher costs is an effective

technique. Our results are summarized in Table 2. A few

points are clear when Tables 1 and 2 are compared:

� Even for the weak formulation, the time required to

solve each NLP subproblem is much greater than for

the corresponding LP subproblem.
� The number of nodes for either formulation is

significantly greater for the MINLP than for the

corresponding MILP.

None of this is surprising. The more interesting

comparison is between the weak and strong formulations

of the MINLP. In particular, the number of nodes for the

weak formulation of the MINLP is only modestly worse

than the number of nodes for the strong formulation

(very different from the MILP situation), but the running

time for the weak formulation is significantly lower for

the weak formulation (also very different from the MILP

situation).

Of course, it may be practical to consider heuristics

when solving business optimization problems. Borrowing

an idea from [9], we suggest a family of heuristics based

on solving smaller MINLP problems. The idea is also

closely related to [29].

Let S be a subset of the set of facilities f1, 2, . . . , mg.
Initially, we may take S :¼;, or f1, 2, . . . , mg, or perhaps
a known set of facilities yielding a feasible solution. We

choose a positive integer parameter k, which serves as a

Hamming radius around S. We append the following

inequalities to our MINLP:

X
i2S
ð1� y

i
Þ þ

X
i=2S

y
i
� k; ð1Þ

jSj � 1 �
Xm
i¼1

y
i
� jSj þ 1; ð2Þ

X
i=2S

y
i
� kþ 1

2

� �
; ð3Þ

Figure 4

Quality of NLP formulations of a quadratic-objective uncapaci-

tated facility location problem.
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Table 2 UFL MINLP results.

Nodes Time (s)

Weak formulation 45,901 16,697.46

Strong formulation 29,277 21,206.56
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X
i2S

y
i
� jSj � kþ 1

2

� �
: ð4Þ

Here, the bxc symbol denotes the greatest integer less than

or equal to x, and dxe denotes the least integer greater

than or equal to x. The inequality (1) forces the yi to select

a set of facilities that is not very different from S. The

inequality (2) further restricts the yi so that the number of

facilities chosen is within one of the number chosen by S.

The remaining inequalities (3, 4) are implied by (1, 2) and

the binary nature of the yi, and they strengthen the NLP

relaxation when k is even.

By repeatedly solving the MINLP, letting

S :¼ fi : yi ¼ 1g with respect to the yi from the previous

stage, we simply iterate until no improvement is found.

If we set k :¼ m, we are just solving the full MINLP

in one stage. Thus, we suggest setting the value of k

substantially smaller in order to limit the computational

effort expended at each stage. Even with k ¼ 1, this

heuristic found the MINLP minimum on our UFL data

set. An additional feature of the heuristic is that it is

completely generic for problems in which the integer

variables are constrained to be 0/1-valued; in fact, in

principle, it is easy to see how to adapt this to general

integer variables.

Conclusions and future directions

Tools currently being developed for MINLP problems

have tremendous potential for business optimization

problems. Realizing this potential will require unique

modeling wisdom for this domain in combination with

advances in MINLP solver technology.

Considerable work has to be done before MINLP

solvers will have the impact that MILP tools have had

for business optimization problems. We can highlight

a few areas of current investigation that should have

considerable impact on our ability to solve difficult

problems:

� Development of general-purpose and specialized

heuristics (see for example [9] and [30]).
� Development of effective branching rules.
� Development of effective ‘‘warm-starting’’ techniques

for rapidly solving children NLPs from the solution

of a parent NLP.
� Effective use of parallel computing.
� Development of algebraic approaches, generalizing

ideas such as those of [31].

Future versions of BONMIN should incorporate many

of these features and thus enable us to expand the

applicability of the MINLP paradigm.

**Trademark, service mark, or registered trademark of ILOG,
Inc., Stanford University, UC San Diego, AMPL Optimization
LLC, or Microsoft Corporation in the United States, other
countries, or both.
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