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Meeting system-wide
service levels in practice

The work described in the literature on inventory and supply chain
management has advanced greatly over the last few decades and
now covers many aspects and challenges of applied supply chain
management. In this paper we describe an approach that combines
many of these academic aspects in a practical way to manage the
spare parts logistics at a German automobile manufacturer. The
basic problem is a single-echelon inventory problem with a system-
wide service-level requirement and the possibility of issuing
emergency orders. There exist two related optimization problems:
One is to maximize the system-wide service level under the
constraint of a given budget, the other is to minimize the budget for
a given system-wide service level. The most important requirements
and constraints considered are a detailed cost structure, different
packaging sizes, capacity constraints, several storage zones, the
decision whether or not to stock a product, stochastic lead times,
highly sporadic demands, and the stability of the optimization
result over time. Our approach has been implemented successfully
in an automotive spare parts planning environment. The complete
solution package integrates into the mySAP ERP®, the SAP
Enterprise Resource Planning system, and APO 4.0, the SAP

Advanced Planning and Optimization system. A detailed
description of the model is given and results are presented.

Introduction

Most literature on inventory and supply chain
management covers either single aspects of the supply
chain in detail or more general scenarios with many
simplifications. This paper describes an intermediate
approach that covers the supply chain from central
through regional storage to customers, and it models
many practical obstacles and restrictions in detail.
This is not a theoretical approach; it describes a real
implementation that successfully manages the spare
parts logistics of a German auto manufacturer.

The scenario we faced in the beginning was a serial
multi-echelon environment with one central distribution
center (CDC), one regional distribution center (RDC),
and many customers who are supplied by the RDC. At
a closer look, only the average service level to customers
mattered: The replenishment policy at the CDC was not
subject to further optimization because of dependencies

with other RDCs that were out of scope for this project.
This allowed us to reduce the optimization problem to
a single-echelon environment with no disadvantage.

Thus, our basic problem can be classified as a single-
echelon delivery structure with one specific multi-echelon
aspect (the integrated stocking decision at the RDC level).
The model allows for the following:

* Emergency orders between the CDC and the RDC.

¢ System-wide, customer-facing average service levels
that have to be met, where the individual service levels
per SKU (stock-keeping unit) can be optimized.

* Sparse and intermittent demand patterns.

* The decision whether or not to stock a SKU
regionally.

Any customer demand that is not available from stock
is delivered directly to the customer from the CDC at

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

P. KOREVAAR ET AL.

447



448

an additional cost. There exist two related optimization
problems:

1. Maximize the system-wide service level under the
constraint of a given total cost budget.

2. Minimize the total cost budget for a given system-
wide service level.

The setting at the automobile manufacturer required a
detailed cost structure comprising fixed and variable costs
for warehousing processes depending on the warehouse
zone, and fixed and variable costs for handling and
transportation of normal replenishment orders, planned
rush orders, and unplanned back orders. Moreover, other
factors were taken into account: different packaging sizes,
capacity constraints, the decision whether to stock a SKU
at the RDC, stochastic lead times, highly sporadic
demand, and the stability of the optimization result over
time.

This paper describes a heuristic solution to the outlined
scenario. The full optimization process consists of two
separate steps. In the first step, EOQ calculation
(EOQ = economic order quantity), the optimal order
quantity and optimal pack size are determined for each
SKU. In the second step, budget optimization, it is
decided whether or not each individual SKU should be
stocked at the regional warehouse. If the decision is yes,
the optimal safety stock (the planned stock level when
a replenishment order enters the warehouse) and reorder
points (the planned stock level at which a replenishment
order is placed) are derived for normal and planned rush
orders.

Our approach required the development of an
optimization module, called the IBM Inventory Budget
Optimizer, which was linked to the existing IBM Dynamic
Inventory Optimization Solution (DIOS). The complete
solution package, consisting of DIOS and the budget
optimizer, has been successfully integrated into the SAP
Enterprise Resource Planning system mySap ERP** and
the SAP Advanced Planning and Optimization system
APO 4.0 of the automobile manufacturer.

Business relevance and background

While restructuring the after-market logistics, a German
automotive manufacturer decided to replace its internally
developed ERP system with the standard mySAP ERP
and SAP APO 4.0 systems, with the necessary
adaptations and extensions. A detailed review of the
planning capabilities of SAP APO 4.0 showed that a
number of specific planning requirements could not be
satisfied, and it became clear that upcoming releases of
SAP APO would be unable to fill these gaps. As a result,
the automobile manufacturer decided to extend its
planning capabilities with specific planning components.
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IBM DIOS was well suited for this. In its standard form,
DIOS was already able to fulfill more than 50 percent
of the client’s planning requirements. The missing
functionality was developed specifically for this
manufacturer and added to DIOS as a customer-
specific plug-in. The plug-in serves two main tasks:
EOQ calculation and budget optimization. The EOQ
calculation is not discussed in detail in this paper. What is
relevant here is that the EOQ serves as an input to the
relationship between the safety stock and the service level,
described in the section below on input parameters for the
budget optimization.

Why needed in a SAP environment

A high-level comparison of functions shows that SAP
APO is able to determine an EOQ and a safety stock for
each stocked SKU. Therefore, it is justifiable to ask why
DIOS and a specific plug-in are needed to provide these
planning parameters instead. The answer is that a number
of critical requirements cannot be met by SAP APO:

¢ Calculation of an optimal pack size using real cost.
SKUs can be replenished in different pack sizes. For
each pack size, other handling costs apply, since
different pack sizes are stored in different warehouse
regions with different handling costs. Therefore, the
standard EOQ calculation requires various extensions
to properly model these issues. SAP APO does not
have such a detailed EOQ calculation.

¢ It must be decided whether each SKU should be
stocked regionally in the RDC or only centrally in the
CDC. Less than 30 percent of all required SKUs are
stocked in the RDC. This decision, referred to as the
Stock YN decision, must be updated continuously,
and a major issue is to keep available the optimal
parts assortment that yields the required service levels
at minimal cost. The stock decision for one SKU
cannot be taken independently of other SKUs
because of the system-wide cost and service-level
targets. As soon as a SKU is removed from stock,
the overall target service level is changed; as a result,
the stock levels for other SKUs change because
the system-wide service-level target must still be met.
Thus, the stocking decision must be an integral part of
the optimization process. SAP APO does not provide
such an integral stocking decision. It has been shown
that simple rules, such as Stock when more than four
picks have occurred in the last 12 months, lead to
solutions that are far from the cost optimum.

¢ Rush orders from an RDC to the CDC are placed for
two reasons. The first is to deliver unavailable SKUs.
In this case, an order has been placed by a dealer for a
SKU that is not available in the RDC. A rush order
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to the CDC then follows so that the dealer’s request
can be filled. These orders are called back orders.
Second, rush orders are placed to prevent out-of-
stock (stockout) situations in the RDC. This is
common practice. Planners recognize that the stock
levels are low and, although a normal order has
already been placed, it is not expected to arrive in
time. A rush order is then placed that will arrive
before the normal order, thus increasing availability.
These orders are called planned rush orders, or simply
rush orders. From a cost perspective, these rush orders
make sense because the safety stock levels in the RDC
can be kept at a lower level and the target service
levels can still be met. SAP APO does not offer any
function that makes it possible to set a second reorder
point, the rush order reorder point (ROROP). Like
the StockYN decision, the ROROP setting cannot
be computed independently for each SKU, nor
independently of the safety stock setting, since both
together determine the target service level. Therefore,
the determination of the ROROP must be an integral
part of the budget optimizer as well.

* For each SKU, a safety stock is required to ensure
that its service level is reached. The relationship
between the safety stock and the service level is
nonlinear and depends on many variables, such as
demand distribution, lead time, lead time variability,
service-level type, the EOQ, and the demand. In
practice, it is found that the demand distribution
for most spare parts cannot be represented by
the normally employed Gaussian or Poisson
distributions. DIOS enables the use of all common
types of demand distributions and takes into account
all of the above dependencies. Implementing any
textbook approach using predefined demand
distributions can lead to dramatic inaccuracies in the
relationship between safety stocks and service levels
[1]. SAP APO offers only Gaussian and Poisson
distributions. Details are explained below in the
section on service-level relations. For each SKU,
the relation is determined and passed to the
budget optimizer.

¢ Service-level differentiation is an important means of
cost reduction. For example, expensive SKUs may
receive a lower service level, less expensive SKUs a
higher one. The system-wide availability remains the
same, but total costs go down. This is the heart of
the budget optimizer module, from which the name
follows. Though SAP APO makes it possible to assign
service levels on an individual SKU basis, there are no
optimization capabilities that automatically find the
cost-optimal target service level for each SKU. The
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budget optimizer ensures that the target service level
of each group is fulfilled, while it reduces the cost by
leveraging the freedom of service-level differentiation.

The relationships among all required inventory
optimization variables are shown in Figure 1.

Market positioning
The need for inventory optimization is growing. As
reported by the Aberdeen Group (see Figure 1 in [2]),
many companies still use inferior techniques to plan
their inventories. Several advanced planning system
(APS) software vendors offer inventory optimization
packages, some of which also offer budget optimization
functionalities. The main vendors in this area are
i2 Technologies, GainSystems, and ToolsGroup. Although
all three offer software to optimize budgets, none explains
in detail the algorithms that are being used and the
kind of functionality that is implemented. Except for the
information each company has itself published on the
Web, we could find no independent evaluation in the
literature, which makes it difficult to compile a detailed
comparison. However, an analysis based on the
information available on their Web sites indicates that the
IBM Inventory Budget Optimization Solution provides
a combination of capabilities that are not offered by any
of these companies.

The 12 Service Budget Optimizer** [3] promises a rich
functionality and is similar to the inventory budget
optimization described in this paper. It performs a

P. KOREVAAR ET AL.

449



450

full-cost optimization and differentiates service levels,
still reaching the system-wide service-level targets. Key
differentiators of the IBM Inventory Budget Optimizer
are the integrated StockYN decision and the allowance
for arbitrary demand distributions.

The GainSystems Inventory Chain Optimization (ICO)
[4] allows for a StockYN decision and a service-level
differentiation. However, the service-level differentiation
is not an output of the optimization but an input entered
by the planners.

ToolsGroup offers a set of white papers [5, 6] and can
therefore be evaluated in somewhat more detail. Except
for the StockYN decision, their software offers the same
capabilities as the IBM Inventory Budget Optimizer.

The approach described in this paper unifies many aspects
of supply chain management that are addressed mainly
individually in the literature. Below we review the current
literature on those single supply chain management topics
that are significant for our model.

Multimodal replenishment

A key requirement in our project that has received
considerable attention is multimodal replenishment,
which was implemented as three modes: normal
replenishment orders, planned rush orders, and
unplanned back orders. Minner [7] distinguishes between
two major categories of multimodal replenishment. One
of the research streams assumes deterministic lead times
and models emergency situations when the inventory

is low. The far larger part of the research focuses on
stochastic lead times and the statistical benefit of splitting
orders, e.g., among several suppliers, to achieve a shorter
effective lead time (the time until the first order arrives).

Deterministic lead times

Neuts [8] gives an optimal periodical replenishment policy
with a critical stock level y* and a fixed order quantity g.
At the beginning of each period, ¢ units are ordered using
the slow delivery mode with a delay of one period. In
addition, if the current stock is below the critical level y*,
an emergency order is triggered that immediately brings
the stock back to y*.

Scarf [9] describes the fundamental results of the very
common (s, S) policy (when the stock level drops to s,
replenish up to S), which requires a known demand
distribution (which can change over time). It also assumes
linear ordering, holding, and backlog costs and allows
for fixed order costs. This standard (s, S) policy has
been extended to dual-mode (normal and emergency)
replenishment scenarios. For example, Veinott [10]
describes a three-parameter policy (s, 1°, S) in which,
at the beginning of each period, one or more orders
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are triggered if and only if the current stock x is below
the critical level s. An emergency order of max(0, y° — x)
units is immediately delivered, and a normal order with
[S— max(yo, x)] units is delivered one period later.

Fukuda [11] extends this approach to cases in which
arbitrary delivery delays are allowed for normal and
emergency orders. Whittemore and Saunders [12] describe
conditions sufficient for ordering nothing by the normal
or by the emergency channel, assuming arbitrary delivery
times.

These and related approaches issue a normal and
possibly an emergency order at the same point in
time, which is in most cases induced by the periodical
replenishment approach they follow. Triggering several
orders at once is called order splitting in the literature, but
it is usually related to stochastic lead times. Thus, the
discussed approaches can be regarded as a conditional
order-splitting policy with deterministic lead times, where
the number of selected suppliers is not fixed but depends
on the current stock level. In our case, these approaches
are not suitable, primarily because of large transportation
economies of scale and the wish of the customer for a
more flexible approach.

Moinzadeh and Nahmias [13] extend the (s, Q) policy,
in which a quantity Q is ordered whenever the current
stock falls below s, to an approximately optimal (sy, s,
01, 0») policy in which normal and emergency orders are
not necessarily triggered at the same time. This approach
assumes the usual linear cost factors, fixed ordering costs
for both delivery modes, stochastic demand, and two
arbitrary constant lead times 0 < A, < 4;. Whenever the
on-hand inventory falls below s;, a normal order of Q;
units is triggered and arrives after 4, time units. If at any
later point in time the on-hand stock falls even below s,,
an emergency order of Q, units is triggered as long as its
delivery (in A, time units) will be prior to the arrival of the
outstanding normal order. In addition to providing
separate reorder points, this approach also differs from
previous ones by considering only the on-hand inventory
and not the total inventory position consisting of on-hand
inventory plus ordered units minus backlogged items.
Therefore, they have to restrict the number of open
orders to one per type.

Moinzadeh and Nahmias [13] propose to first solve the
simple (s, Q) inventory model and provide approximate
formulas for the further procedure. Then an appropriate
emergency reorder point s, and its order quantity Q, are
found. Finally, they use s, 5,, and Q» to recalculate the
normal order quantity Q;. Their evaluation by extensive
simulation shows that the reorder point s; in the dual-
mode scenario is always lower than its counterpart in the
regular (s, Q) policy for all investigated cases. Most
benefits can be achieved if backlog costs are high. High
fixed ordering costs lead to larger order quantities and
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diminish the beneficial effect of this approach. Johansen
and Thorstenson [14] extend this approach by using
variable backlog costs in cases with Poisson distributed
demand.

Stochastic lead times

Sculli and Wu [15] were among the first to show that
splitting an order between two suppliers with
independently normal distributed lead times reduces
the reorder level and the buffer stock when compared
with replenishment with only one supplier. Since then,
many extensions and specializations have followed.

Ramasesh et al. [16] give a detailed comparison
between sole sourcing and order splitting in the case of a
regular (s, Q) replenishment policy with either uniformly
or exponentially distributed lead times. They find that
order splitting provides savings in holding and back-
ordering costs, which increase if the demand volatility
increases or the lead time distributions are skewed and
have a long tail.

Furthermore, they divide the order-splitting
approaches into two groups. First, macro studies analyze
the effect of order splitting on the whole replenishment
process, including the relation to the supplier. For
example, a competition among the suppliers (producers)
can lead to lower prices and better quality. Second, micro
studies focus on the inventory perspective and savings
induced by lower ordering, holding, and shortage costs.

Despite the attention given by the academic world to
the concept of reducing lead time risk by order splitting, it
has recently received considerable criticism by Thomas
and Tyworth [17]. Regarding the micro focus, they argue
that savings in holding and shortage costs are more than
compensated for by increased ordering costs in reality.
They see the gap between literature and reality mainly
in the neglected transportation economies of scale
and underestimated transporting costs. In a more
macroscopic view, they question whether or not the
savings from a reduced average cycle stock in one
inventory are still valid or significant for the whole supply
chain. Many approaches do not consider the in-transit
inventory, which can lead to additional costs.

Consequently, Thomas and Tyworth suggest that
future research should focus on other models of
dual-mode replenishment, e.g., the cost performance
differences in modes of transportation. With respect to
our scenario, we can support many statements of Thomas
and Tyworth, since the cost structure and practical
replenishment constraints, such as transportation
economies of scale, do not allow for an order-splitting
approach.

In fact, the (sy, 52, Q1, Q>) approach of Moinzadeh and
Nahmias [13], with its individual reorder point and order
quantity for each order type (normal and emergency)
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and deterministic lead times, seemed most promising both
to the experts at the customer and to us. Our model
can be seen as a heuristic approach that extends the

(s1, 82, Q1, Q) model by stochastic lead times.

System-wide service level

Even though many companies apply the same target
service level to all SKUs, they usually wish to achieve
only a specific system-wide service level and do have some
degree of freedom to set service levels for individual
SKUs, which may be used to save costs. This requires the
move from an isolated optimization for each SKU to an
integrated and complex system-wide approach. Mitchell
[18] developed an approximate model based on the
generalized knapsack duality algorithm with fixed lead
times, fixed and variable ordering and holding costs, and
a periodic replenishment policy. By evaluating several
32-item inventories, he found substantial savings for

the system approach for service levels of approximately
85 percent.

However, a system-wide approach still has to be
feasible, even with tens of thousands of SKUs.
Thonemann et al. [19] provide an easy-to-use
approximation to quantify the benefits of a system
approach when a system-wide service level should
be reached, with minimal inventory costs under the
assumption of (S — 1, S) replenishment policies for each
SKU, Poisson distributed demand, variable unit costs,
and identical constant lead times. They look at the
marginal increase of the service level per unit for each
SKU. Starting from a minimum service level, they
iteratively increase the stock level S by 1 for the SKU
with the currently highest service-level increment per unit
cost until the system-wide target service level is reached.
Their analyses show that a system-wide approach benefits
especially those inventories in which a small percentage of
all units makes up the major part of the demand.

Hopp et al. [20] developed a heuristic that relates to us
in many respects as it strives to cover a quite complex
real-world inventory problem with many practical pitfalls
and constraints. The inventory holds 30,000 SKUs,
customer demand is random, and several supply sources
exist. However, in their model they use a normal (r, Q)
policy with only one supplier and assume constant lead
times, Poisson distributed demand, and only fixed
ordering costs. The optimization goal is to minimize the
total inventory investment subject to constraints on the
overall service level and the order frequency. Hopp et al.
find simplified formulas for the inventory costs and the
service level that enable a straightforward calculation of
the two replenishment parameters r and Q once suitable
Lagrange multipliers are available. Unfortunately, they
could provide only numerical evaluations based on
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subsets of the customer data because the model had not
been operatively used by the company.

In our case, the overall service level of more than
100,000 SKUs has to be calculated, and a system-wide
service level greater than 95 percent has to be reached.
Moreover, additional complexity is encountered because
assumptions about a specific demand distribution and
constant lead times do not hold, and there is a need to
incorporate a complex cost structure and emergency
orders into the model.

Safety stock with sparse and intermittent demand
A primary challenge of spare parts replenishment is the
sparse and intermittent demand for them. While this fact
influences many facets of replenishment planning, it has a
particularly strong impact on the accurate calculation of
safety stock levels. Textbook approaches for calculating
the relationship between service levels and safety stocks
based on normal (Gaussian or Poisson) distributions
generally cause the measured service levels to deviate
significantly from the target service levels [1, 21].

Strijbosch et al. [22] compare two different (s, Q)
policies in which the main difference lies in the modeling
of the demand distribution during the lead time. Their
simple approach assumes the demand during the lead
time to be a normal distribution, while the advanced
approach differentiates between no demand and positive
demand during the lead time. The positive demand is
modeled by means of a gamma distribution. By adapting
the reorder point appropriately to the demand
distribution parameter, the advanced model is able to
match the desired service level in many situations in
which the simple approach is not consistent and leads
to stock levels that are too high.

Boedi and Schimpel [1] arrive at similar findings and
give a more general model in which all of the SKUs in an
inventory are clustered according to their normalized
positive demand distribution. For each cluster, a best-
fitting continuous distribution from a set of common
distribution types is calculated. This cluster-wide
distribution is rescaled for each SKU separately and
allows for an individualized safety stock. Extensive
evaluations with real data from ten different warehouses
show that the average service level is much closer to its
target value than for a model that assumes normal
distributed demands. Moreover, the variance of the
achieved service levels was significantly reduced. These
effects become especially apparent for service levels
greater than 95 percent.

Although these approaches have already been
successfully applied, our customer’s time constraint did
not allow for such a calculation-intensive solution. In
addition, the models given would have to be extended
to fit the dual-mode replenishment scenario, which
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would interfere even more with the time constraint given
by the customer. Hence, a less time-intensive simulation
technique is applied to determine the mapping between
service levels and safety stocks.

Stocking decision

A common problem for inventories in the spare parts
business is the extremely low demand for the majority of
SKUs; for some, the average demand can be less than one
unit per year. Keeping only one unit in stock for those
SKUs can, in total, lead to substantial inventory holding
costs. Here the question arises, When is it more beneficial
not to stock a SKU and instead have it delivered in a
special supply mode? The fundamental paper by Croston
[23] shows that, especially for a spare part with a high
coefficient of variation in demand or in a situation in
which unsatisfied demand is relatively inexpensive
compared with holding cost, it is preferable not to stock
this SKU. This effect is intensified by large time intervals
between successive demands. Croston’s model uses a
periodic replenishment policy with holding and ordering
costs and additional costs for nonsatisfied demand. There
exist several extensions and modifications of this model.
Our model is basically a modified version of this
approach, extended by a more complex cost structure.
Moreover, we make this stocking decision an integral part
of the budget optimization, and not an independent
decision for each SKU.

Several preliminary steps are necessary to enable fast and
efficient calculations by the core part of the optimization
described below in the budget optimization section.
These preparations are the subject of this section.

For each SKU, two relations are needed. One addresses
the normal orders and how the service level relates to the
safety stock. The other relation associates the service level
with the reorder point for the planned rush orders. We do
not assume certain demand patterns that would allow for
an analytic solution because this could lead to very
inferior results for spare parts, as discussed above.
Instead we use the DIOS built-in simulation engine to
generate these relations on the basis of the individual
demand patterns for each SKU.

First we derive the input parameters that are essential
for the budget optimization. We then describe the
procedure for obtaining good approximations of the two
service-level relations mentioned above with only limited
numbers of simulations.

Input parameters for the budget optimization

A typical regional warehouse sells more than n = 100,000
different SKUs. These SKUs are divided into several
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service-level groups. The objective is to reach a system-
wide service level for each service-level group with
minimal total cost, which is the sum of ordering,
warehousing, and transportation costs. Using these goals
and constraints, the budget optimizer optimally assigns
an individual target service level s/; and its associated total
costs ¢;(sl;) to each SKU i € {1, - - -, n} and balances them
with all other SKUs j € {1, - --, n}. The same holds for a
service-level maximization problem under a given budget
constraint. In both cases it is essential to know the cost
function c;(s/;) within the possible range (s/; min; $/; max) of
sl; for each SKU i € {1, - -+, n}.

The total costs ¢;(s/;) depend on the joint service level s/;
of normal and rush orders, which themselves depend on
one hand on given parameters, such as demand and lead-
time distributions, and on the other hand, on variable
replenishment parameters, such as order quantities
and reorder points. This issue is addressed now, as we
translate the total costs into parameters related to the
variable replenishment process.

While ordering costs depend only on the order quantity
and the (forecasted) demand, the back-order and stock-
holding costs are linked to the service level and thus to the
safety stock.

In summary, the calculation of the total costs for each
SKU is determined by four components: cost factors for
ordering (or back-ordering) and stock-holding, order
quantity, safety stock, and service level.

We assume that all cost factors are fixed exogenous
variables and that the order quantity has been calculated
beforehand on the basis of the fixed cost factors. Thus, all
of these parameters are not subject to change and are
forwarded directly to the budget optimizer as input
parameters. The only variable parameters left are the
safety stock and service levels for normal and rush orders.
Their relations must be calculated prior to the budget
optimization.

Service level and safety stock are related over the
demand distribution Dp and the lead-time distribution
Dy . Moreover, the safety stock ss can be expressed by
an equivalent reorder point p based on the average lead
time ppt and the average demand up by the equation
p=ss+ urt - Uup. In other words, the expected minimal
stock level (just before a new order arrives) is exactly ss.

While the parameters ppt and pup might be
approximated from historic data, in practice no analytic
formulas for the exact continuous distributions Dp and
D; 1 are known, and even suitable approximations to the
demand distributions are difficult to calculate accurately.
The complexity of the problem increases further when we
consider two types of orders—normal and rush. A rush
order differs from a normal order by different costs and
by a different lead time distribution with a smaller
average value. In such a dual-mode replenishment

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

scenario, neither the joint service level nor the relation
between safety stock and service level can be calculated
analytically in a reasonable amount of time. The main
challenge has been to find a fast and efficient algorithm
that obeys two constraints: The calculation time should
be less than 60 minutes for a typical warehouse (e.g.,
100,000 SKUs), and the output data size should be
small so that the result can be read rapidly by the
budget optimizer in order to allow analysis on a
regular desktop or laptop.

Algorithm to calculate the relationship between
safety stock and service level

The key task of the algorithm is to relate the safety stock
for normal and rush orders to their resulting joint service
level for each individual SKU. Analytic formulas for the
demand distributions are unknown; in principle they
can be of arbitrary type and shape. A possible solution
is to make analytical approximations of the demand
distributions from the historic data. However, first
experiments showed that the calculation of such
approximations is too time-consuming. The same is true
if the simulation is used to approximate the joint service
level for all combinations of reorder points of normal
and rush orders.

Thus, we decided to use two separate Monte Carlo
simulations to determine the safety-stock and service-
level pairs individually for normal and rush orders by
using the historic demand data. Logically, both service-
level components (for normal orders and for planned rush
orders) contribute to the target service level reached by
a SKU. The section below on the heuristic to combine
normal and rush order service levels describes how the
separate results are combined to achieve this joint service
level.

Note that a safety-stock and service-level pair is
completely equivalent to its associated reorder-point and
service-level pair because of the one-to-one relationship
between the reorder point and the safety stock of a SKU.
We refer to both pairs as result pairs. The entire
simulation process comprises three steps:

1. Simulation of the result pairs for normal orders.

2. Simulation of the result pairs for rush orders.

3. Calculation of the joint service level by a heuristic
formula.

All simulations are performed by the DIOS built-in
simulator. This simulation engine was developed by the
authors and is used in DIOS to simulate the expected
service levels on the basis of chosen replenishment
parameters. In the next three subsections, we describe the
simulation of a single result pair, show the control process
that determines the next safety stock (reorder point) to be
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Replenishment simulation: (a) Process of simulating a replenish-
ment policy; (b) control process for the replenishment simulation.

simulated, and show the calculation of the joint service
level.

Replenishment simulation

Applying an inventory simulation requires knowledge
about the warehouse replenishment policy. The standard
policies implemented in DIOS are the two continuous
(s, Q) and (s, S) policies and the periodical (7, S) policy.
Moreover, it must be specified whether unsatisfied
demand is backlogged or lost. The standard simulation
process is shown in Figure 2(a).

Initialization phase—During initialization, all
parameters (e.g., order quantity, reorder point, service
level, average lead time, and lead time fluctuation) are set.
The initial stock is set to the average expected stock
level (safety stock + 0.5 - order quantity). To make the
simulation as realistic as possible, outstanding orders are
created. The latter is especially important for long lead
times. Otherwise, the stockouts generated during the
simulation until the arrival of the first order (which would
then be triggered on the first day of the simulation) would
lead to a very poor service level and a correspondingly
high safety stock, which is unrealistic. For statistical
reasons, the simulation horizon covers a period of five
years on a daily basis, which leads to sufficiently stable
service levels. The demand time series are repeated if
the historical sales data covers less than five years.

Daily simulation phase—Whenever the simulated time
exceeds five years, finalizing calculations are done as
described below. Otherwise, a new day is started. For
each simulation day, possible incoming orders are first
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added to the available stock; then the demand for this day
is determined. The demand is next compared with the
available stock, and possible stockouts and backlogs

are remembered. Whenever the available stock plus

the SKUs from outstanding orders falls on or below the
reorder point, the succeeding step, trigger order, issues a
new order according to the defined replenishment policy
in the trigger order step, and an appropriate lead time is
generated using the lead time and lead time fluctuation
information.

Summary (end) phase—After the simulation has
reached the five-year simulation horizon, the defined
service level is calculated from the information about
stockouts and total demand or replenishment cycles.
There exist many different types of service levels (e.g., see
[24, 25]), most of which are available in DIOS as well. The
service level we use in this case is defined as the number of
customer order lines that can be satisfied without delay.
This is also referred to as the order line fill rate. The
calculated service level is returned to the control process
and associated with the reorder point used throughout
this five-year simulation run.

The multistage simulation process described above is
performed for each reorder point that has been
determined by the control process.

Control process for the replenishment simulation

Recall that we have to determine the result pairs with
each consisting of a safety stock level and its associated
service level. These are used by the budget optimizer to
quickly evaluate the effect that a changed reorder point
(or safety stock) of a specific SKU has on the system-wide
service level and total costs. Thus, a large sequence of
possible result pairs must be provided for each single
SKU.

The control process creates this sequence of result pairs
for each SKU individually by determining the sequence
of reorder points (or safety stocks) which serves as an
input to simulate the appropriate service levels. From a
theoretical view, the maximum safety stock ss,,,x for both
order types has to be restricted to a maximum service
level close to 100 percent (s/p.x=1—7), with 0 <y <1
when applying unbounded demand distributions.
However, in practice, using discrete historical demand
data, we can safely set s/, = 100 percent. Depending on
further restrictions, there are several possibilities for the
minimum value. Two intuitive examples are to simulate
the minimal service level s/,;, by setting the safety stock
SSmin = 0 or by setting the reorder point to 0 (equivalent
to a nonpositive safety stock). In our approach, we set
SSmin = 0 for normal orders and the minimum reorder
point to 0 for rush orders. Moreover, all safety stocks
or reorder points are integer values.
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The objective is to return the result pairs for the range
(SSmin; $Smax)- The process is shown in Figure 2(b).

Initialize and next SKU—In the initialization, all
SKUs are selected for which the result pairs should be
determined. Moreover, the array of pairs is reset. The
process terminates with a summary step after all SKUs
have been processed. Otherwise, the result pairs of the
next SKU are simulated.

Find safety stock maximum—The first two simulation
runs for each SKU use a safety stock of 55y, and sspin+ 1,
respectively. Intuitively, the service level should increase
monotonically with an increasing safety stock. Whenever
this is not the case (e.g., due to anomalies despite the long
simulation horizon), the current service level s/, is set to
sy, the service level of the previous simulation run.

The safety stock is doubled, i.e., $$pew = 285414, Dy €ach
simulation run until s/, is reached. For a safety stock
value ss > sspin + 1 there might exist a value ss’ < ss that
also leads to s/y.x. Thus, we try to find the smallest safety
Stock $Smin_max that still leads to s/,ax. This is done by the
well-known divide-and-conquer technique on the last
interval (sSo1d, SSnew), Where $Spew = 255014. When $Smin_max
is found, the process moves on to the next step.

All result pairs z;= (ss;, s/;) are stored in the result array
T= (tl, ty, -+, lm), where I € {1, BN m}, = (SSmin, Slmin)»
and 1, = (SSmin_max> S/max)- In our case, a significant
percentage of all SKUs (i.e., >20 percent) reaches
the maximum service level s/,,x with a safety stock
SSmin_max << 10. This is quite common for the spare-parts
business.

Find intermediate safety-stock/service-level pairs—To
speed up calculations and make analysis feasible on a
regular desktop or laptop, the number of result pairs
should be small. Knowing that the service level is
rising monotonically, we eliminate all pairs 7; with
Ie€{2,---, m— 1} that can be expressed by their
neighboring pairs #;_; and #;;; by linear interpolation
plus or minus a small allowed absolute deviation e.

Before pairs are eliminated, it has to be ensured that all
consecutive pairs t;, t; € T with i € {1, ---, m — 1} and
j =1+ 1 appropriately represent the pairs 7, ¢ T in the
interval (ss;, ss;) between them. Therefore, the service level
sl of pair ;. with ss; = 0.5(ss; + ss;) is simulated. If s/, lies
outside the linear interpolation line *¢, the pair ¢ is
added to T between the entries ¢; and ¢;. In addition, a
divide-and-conquer method is applied on the intervals
(ss;, ssx) and (ssg, ss;) until their subintervals are
appropriately represented or ss; and ss; are neighboring
integers.

Once all intervals (ss;, ss;) are represented appropriately
by their enclosing result pair (¢;, ¢;) € TX T with j=i+1,
all result pairs ¢, € T that lie within the e-range around
the regression line specified by their neighboring result
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pairs f;_1, t;;1 € T are eliminated from 7. In addition, all
pairs t; € Twith j € {2, ---, m} are eliminated from T that
have the same service level as their predecessor #,_; € T.
The output of this step is a compacted result array 7.
Note that with sparse and intermittent demand, the
safety-stock and service-level graph is much more a

step function than a strict monotonic function.

Scale safety stock—An open problem is how to adjust
the safety stock when the average historical demand
differs significantly from the forecasted value. Under such
a condition, the safety stock may not be sufficient for a
strongly increasing demand, or it is much too high for a
SKU at the end of its life cycle. This safety stock depends
strongly on the variance of the future demand. For
example, if the demand changes by a factor r, this can
lead to two extreme cases: In the first case, the units of
each single pick are scaled by r; in the second, the number
of picks is scaled by r. Both cases require a completely
different safety stock.

Because of the lack of insight (in practice) into the
details of the demand change, we used the simplified
approach to scale the safety stock for each SKU with the
square root of r, which proved to give acceptable results.

Summary (end)—All compacted and scaled arrays
containing the result pairs are written to a plain file and
serve as input for the budget optimizer calculations.

This process over all SKUSs is executed twice, first with
the parameters of the normal order and then with the
parameters of the rush order.

Heuristic to combine normal and rush ovder service levels
The budget optimizer retrieves the result pairs from the
simulation and calculates the expected service level (by
interpolation) separately for normal and rush orders.
However, the question remains how the budget optimizer
combines these two service levels, sly and s/, into an
expected joint service level s/iurger. Our heuristic to
calculate the combined service level s/i,qe( is described
below and shown in Figure 3. It works acceptably in
practice with the following assumptions and practical
restrictions:

® The reorder point for the rush order is below the
safety stock of the normal order.

* A rush order is triggered only if it arrives before
the next normal order.

* A rush order cannot be triggered before a normal
order has been issued.

® There are separate inbound order queues for normal
and rush orders.

* The probability of triggering a rush order is uniformly
distributed within the allowed time window (green
area).
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Heuristic used to approximate the joint service level.

Let us denote the event “rush order occurs” as RO and
the event “stockout occurs” as SO. This leaves a time
window Agr = LTN — LTg for triggering a rush order,
where LTy is the normal lead time and LTy is the lead
time of a rush order. Assuming a uniform distribution,
the probability p(RO) that a rush order will be triggered
during the remaining lead time of the last normal order is
2(RO) = LT, - LTy .

LT,

Thus, with a probability of p(RO), the rush order will
positively affect the stockout probability p(SO) of the
normal order. Knowing that p(SO) = (1 — sl\), where sly
denotes the service level of the normal order, and that the
positive effect of the rush order is related to its service
level s/, the approximated joint service level s/ireec can
be given by

Shorger = Sy + (1 =sly) - sl - p(RO)
LT, — LT,

=shy+ (1 —sly) - sl - IT
N

The question remains, How many units should be
delivered by a rush order? While there are many plausible
explanations (e.g., considering ordering and storing
costs), we use rush orders as a temporary support with the
intention of avoiding short-term stockouts. Thus, in our
interpretation, the rush order should simply cover the
expected demand that will occur during the average
(expected) time until the next normal order arrives.

Given the time window Agr with a uniform distribution
for the point at which a rush order will be triggered leads
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to an average expected time until the arrival of the
next outstanding normal order of 0.5 - (LTN — LTR).
Moreover, the minimum order quantity is 1, which is
important for SKUs with very little demand. As a
consequence, the rush order quantity is

max (1, [uy - 0.5 - (LT — LTy)).

Given the optimal order quantities, corresponding pack
size, and service-level relations for safety stock and
ROROPs, the budget optimizer can perform two different
tasks: It can minimize the budget for given group service
levels, and it can maximize service levels for a given
budget.

The first task is done automatically in the operational
system implemented at the automobile manufacturer,
where our system is used as a black-box optimizer. The
second task is used in what-if analyses to determine how
high the service level can be raised without overly
increasing costs.

The budget comprises the sum of all of the costs listed
in Table 1. This budget is part of the objective function to
be minimized. The objective function further contains
various penalties for not reaching certain goals (weak
restrictions). These are penalties for not reaching the
target service levels and penalties for the number of
SKUs that change their StockYN status and their safety
stock and rush order reorder points. The latter two are
important for stabilizing the solution over time. This is
described further in the section on solution stability.

Budget optimization influences

The goal of the budget optimization is to set an individual
target service level SLi,pge¢ for each SKU in such a way
that system-wide service-level targets are met. The term
system-wide can relate either to the warehouse as a whole
or to disjoint groups of SKUs. In the latter case, each
group has its own system-wide service-level target. The
individual target service level SLi,ree¢ is @ combination of
the safety stock and ROROP. The optimization is
influenced by planning when the following parameters are
set for each SKU:

1. StockYN decision: Whether or not to stock the
SKU.

2. The safety stock (only for stocked SKUs).

3. The ROROP (only for stocked SKUs).

These parameters are changed in the optimization
process described below. Each such change, like toggling
the Stock YN from “Stock” to “Do-not-Stock” for a SKU
or increasing the safety stock from 1 to 3 for a SKU, is
called a mutation.
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Mutation 1: Changing the stock status

For some SKUs, the Stock YN setting is fixed. This means
either that the SKU cannot be stocked or that it must
be stocked. In those cases, the budget optimizer is not
allowed to change this parameter. The parameter is
realized through the status variable StockYN for each
SKU, which can take the following values:

YA  Currently stocked and can be changed by the

optimizer.

YM  Currently stocked and cannot be changed by the
optimizer.

NA  Currently not stocked and can be changed by the
optimizer.

NM  Currently not stocked and cannot be changed by
the optimizer.

EMP A new SKU and the optimizer will determine its
initial stock status.

The SKUs with YM and NM cannot change their
Stock YN status. This is a hard restriction in the
optimization, which means that it will not be changed
during the optimization. For SKUs changing their
StockYN from YA to NA or from NA to YA, a penalty is
added for stability reasons (see the section on solution
stability below). This is not the case for SKUs with a
stock status StockYN equal to EMP. For these SKUs,
the status after the optimization will be YA or NA, but in
neither case does a penalty occur.

The change of the StockYN status is one of the three
mutations in the optimization process (see below). One
of the budget optimizer options is “do not change the
StockYN status” for any SKU. This is simply realized by
not calling that mutation during the optimization process.

Mutation 2: Changing the safety stock

Before the budget optimizer is called, the relation between
the safety stock and the service level is calculated for each
SKU (see the previous section). The relation is nonlinear
but monotonically increasing, so a higher safety stock
automatically means a higher service level. In particular,
the service level for a safety stock of zero units is known.
This is the minimum service level of a SKU. On the other
hand, the maximum safety stock is known for which the
SKU has a 100 percent service level (according to the
numerical simulation). The safety stock can take any
integer value from 0 to this maximum. If a SKU has a
minimum service-level requirement, the budget optimizer
determines the minimum safety stock for which this
minimum service level is reached and limits the safety-
stock range for that SKU. Thus, this minimum service-
level requirement is implemented as a hard restriction and
is automatically fulfilled. Since a minimum service level

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

Cost parameters used by the budget optimizer.

Budget cost component description Variable

For optimal pack size: Fixed handling a,
cost portion (per order line)

For optimal pack size: Variable handling a
cost portion (per order unit)

Extra handling cost for planned rush Crush
order (per order line)

Extra handling cost for back order Chack
handling (per order line)

Transport costs per kg for normal orders tnormal
Transport costs per kg for planned rush trush
orders

Transport costs per kg for back orders thack
Transport costs per m® for normal Dnormal
orders

Transport costs per m® for planned rush Vrush
orders

Transport costs per m® for back orders Vback
Stock holding rate including capital 1

interest rate

3
Warehouse space costs per m Cy

can be kept only for stocked SKUs, for such a SKU the
stock status is set to Y M during the optimization, even if
it was NM, so that a minimum service-level requirement
can overwrite the “don’t stock” requirement.

The change of the safety stock is another mutation in
the optimization process. This change is always allowed.
However, an overall penalty that is applied to the sum
of all safety-stock changes can be activated to limit the
total number of safety-stock changes compared with the
actual safety stock. This is implemented for stability
reasons and is described further in the section on
solution stability below.

Mutation 3: Changing the ROROP

As described above in the section on the algorithm for
calculating the relationship between the safety stock and
service level, the target service level for each SKU is
calculated from one portion representing normal orders
for which a safety stock is kept and a second portion
representing planned rush orders for which a ROROP is
set. Thus, changes in the ROROP will change the target
service level for a SKU. Like the relation between safety
stock and service level, a relation also exists between
ROROP and service level. This relation is monotonically
increasing as well. If the ROROP is not used at all, the
target service level is due solely to the safety stock. If a
RORORP is used, it can vary between zero and the safety
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Goals and constraints.

Set 1 (Meet service level)

Setl_Gl Total costs (budget) are minimized.

Setl C1 W Overall group service levels SLyrget
are met.

Setl_C2 W Number of SKUs that change
Stock YN status is limited.

Setl_ C3 W Changes in safety stock and/or
ROROP are limited.

Setl_C4 H Minimum values for certain SKUs
(SLin) are met.

Setl_C5 H ROROP is smaller than safety stock
for all SKUs.

Setl_C6 H SKUs with fixed StockYN status
keep the status during optimization.

Set 2 (Meet budget)

Set2_Gl Overall service level SLiyrge; is
maximized.

Set2_ C1 W Total costs (budget) is reached.

Set2_C2 W Number of SKUs that change
Stock YN status is limited.

Set2_C3 W Changes in safety stock and/or
ROROP are limited.

Set2_ C4 H Minimum values for certain SKUs
(SLn) are met.

Set2_C5 H ROROP is smaller than safety stock
for all SKUs.

Set2_C6 H SKUs with fixed StockYN status

keep the status during optimization.

stock of the normal order. Theoretically, this restriction
does not have to be employed. However, for practical
reasons (so that the people doing planning understand it
clearly), this has been set as a hard restriction. Changing
the RORORP is the third mutation in the optimization
process. It makes sense only for stocked SKUSs. When the
safety stock is changed and the ROROP is larger than the
safety stock, it is automatically reduced. The ROROP can
also be set to —1 during the optimization, which means
that no ROROP is used. (This is different from a ROROP
of 0, because in that case, a rush order is placed as soon as
the stock level reaches 0.)

Optimization process
Metaheuristic approach
Budget optimization is a nonlinear optimization problem,

as the relation between the safety stock and service
level is highly nonlinear. As such, linear or mixed-
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integer programming is not suitable for these types of
optimization problems. Instead, an evolution-type
optimization algorithm, the threshold-accepting
algorithm, was chosen (see [26]). This general-purpose
optimization algorithm was developed by the IBM
Science Center in Heidelberg in the late 1980s. The
algorithm is very similar to the well-known simulated
annealing algorithm described in [27] and [28], but its
acceptance rules are different, and the threshold accepting
leads to more stable results in a number of experiments,
as described in [26] and [29]. Threshold accepting has
been successfully applied to very different optimization
tasks ranging from simple traveling-salesman problems
through production and personal scheduling to
distribution planning. The generic optimization approach
works as follows:

Choose an initial configuration and threshold 7" > 0
Repeat
Choose a new configuration
Compute AE = quality(new configuration —
old configuration)
IF AE > —T THEN old configuration =
new configuration
Lower T
Until 7 is low enough.

The only difference from the simulated annealing
approach is the acceptance rule: In threshold accepting,
the new solution is accepted when its quality is reduced by
no more than 7. In simulated annealing, the new solution
is accepted with a probability of exp (—7).

Elements required for the optimization
A number of elements are required for the budget
optimization to be able to utilize this algorithm, as
described in the following paragraphs.

Modeling of goals and constraints—Depending on the
optimization mode (meet target service level or meet
budget), two sets of goals and constraints are used, as
shown in Table 2. The constraints are partly hard-coded
(H), which means that they are automatically fulfilled by
the implemented algorithm, and partly coded as weak
restrictions (W), which means that they can be violated
during the optimization process, but then a penalty of the
amount of the violation is imposed.

A comparison between the two sets shows that C2—-C6
are the same; only C1 and G1 are interchanged. This is
a multicriteria goal which is treated as a weighted sum
of the goal G1 and the weak constraints C1-C3. This
approach entails the problem of having to scale various
components of the objective function so that a system-
wide optimum is found. The scaling issues are nontrivial,
especially in the case of G1 and C1, where costs and
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service level compete. How this has been solved is
explained below in the section on the automatic scaling
of goals and constraints.

Data import and export—The budget optimizer is
designed as a separate module that is implemented as a
plug-in to DIOS. This means that an interface between
the DIOS core and the budget optimizer has been realized
which transfers the required master data and returns the
optimization results (Stock YN, safety stock, ROROP)
for each SKU from and to DIOS. This is an internal
interface; it is not visible to the user. The user calls the
budget optimizer from within DIOS, and the results are
shown in DIOS. Even during the optimization process,
a status window and progress bar show how the
optimization is advancing, and a user can cancel the
optimization at any time from within DIOS.

Mutations—All mutations are applied on single SKUs
and change the replenishment parameters of that SKU.
The three mutations are the following:

e Mutation 1: Change the StockNY status of a
randomly chosen SKU.

e Mutation 2: Change the safety stock of a randomly
chosen stocked SKU.

e Mutation 3: Change the ROROP of a randomly
chosen stocked SKU.

Some mutations interfere with others. For instance, if
the safety stock is reduced (Mutation 2) and it falls below
the ROROP, the latter must be reduced as well to account
for constraint C5. Similarly, if a SKU changes the
Stock YN status from YN to Y4 (Mutation 1), an
initial setting for safety stock and ROROP is required.
Experiments have shown that the solution is most stable
if this choice is made so that a cost minimum has already
been reached for that particular SKU. The alternative
would have been to choose safety stock and ROROP
randomly within the allowed ranges. However, this may
easily lead to inferior choices, which are likely to be
rejected by the metaheuristic. Consequently, the SKU will
not be stocked in the end, although it should be stocked
in the optimal case. These considerations are critical to
the success of local search metaheuristics, such as the
threshold accepting used here.

Optimization control—The heart of the optimization
using the threshold-accepting algorithm is the cooling
process. This is the control of the acceptance of
mutations. A mutation can lead to a better or worse
solution. In the beginning of an optimization run, a high
percentage of mutations that lead to a worse result is
accepted. This is required in order to avoid the situation
in which the optimization process finds a local optimum
from which it cannot escape to find the global optimum.
This is often compared with finding the highest point in a
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landscape: If one is only allowed to go up, one may
become stuck on a small hill, whereas finding the highest
mountain requires some descending between the peaks.
This is exactly the principle behind the acceptance of
worse results. During the optimization, this acceptance is
gradually reduced. For this cooling control and for the
control about “how often and when which mutation
should be called,” the IBM TOP-C optimization library
has been used. This is a subroutine library that contains
these control elements. The user enters only the number
of steps (after each step the value of the threshold T is
adjusted) and the number of mutations per step. Because
the required number of mutations per step turns out to
be roughly proportional to the number of SKUs, the
number is adjusted such that it automatically scales
with the number of SKUs.

The result of the optimization is the setting of the
Stock YN status for each SKU as well as a safety stock
and ROROP for all stocked SKUSs such that the goal
(G1) is reached and the constraints (C1-C6) are met. This
information is fed back into DIOS through the internal
interface.

Automatic scaling of goals and constraints
The multicriteria goal of the budget optimization
comprises four components:

1. Total costs, the budget (currency); range:
MIN_BG — MAX BG.

2. System-wide target service level (percentage); range:
MIN_SL% — MAX_SL%.

3. SKUs with changed stock status (integer); range:
0— MAX_SKU.

4. Changes in safety stock and ROROP (integer);
range: 0 — MAX_CHANGES.

Here M AX_BG is the maximum cost defined for the
case in which all SKUs that can be stocked would have
the maximum service level of 100 percent. MAX_SL is the
maximum service level that can be reached. In general,
this is not 100 percent, since SKUs that cannot be stocked
will reduce MAX_SL. MAX_SKU is the maximum
number of SKUs that can change the stock status, and
MAX_CHANGES is the maximum change allowed for
the safety stock and the ROROP. Further, a MIN_BG is
defined. This is the budget that would exist if each SKU
could be replenished in a cost-optimal way regardless
of the service level reached. And finally, a MIN_SL is
defined as the system-wide target service level reached at
MIN_BG. Although it is possible that the system-wide
target service level may temporarily drop below MIN_SL
during the optimization, this is not an optimal solution
because it will have a lower service level at higher
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costs, which does not make sense. The ranges can all be
determined before the optimization starts.

All of the goal ranges above are different. They depend
on the number of SKUs, the cost values, the currency,
and the number of SKUs that cannot be stocked or must
be stocked. However, the optimization is supposed to
work independently of these ranges. For this reason,
the components are all scaled so that they remain in
comparable ranges. The most straightforward way of
doing so would be to scale with the ranges. In that case,
all components would range from 0 to 1. However, this
does not work properly because the targets within the
range cannot be reached equally easily. For example, if
the target service level is just above the MIN_SL, it is easy
to reach. If the target service level is close to MAX_SL, it
is difficult to reach and leads to a large budget. Thus, the
scaling of the components must be chosen in a nonlinear
way. Several options were tested, and the following
scaling was finally implemented, leading to very good
results regardless of the target budget (7TGT_BG) or the
target service level (TGT_SL):

For the mode “Minimize budget, reach target service
level,”
Budget scale = max [(MAX_BG + MIN_BG) - 1074,
MAX_BG — MIN_BG];
Service-level scale=max [(MAX_SL+TGT _SL)-10~%,
MAX _SL — TGT_SL).
For the mode “Maximize target service level, reach
budget,”
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Budget scale = max [(TGT_BG + MIN_BG) - 1074,
TGT_BG — MIN_BG];

Service-level scale=max [(MAX_SL+ MIN SL)- 1074,
MAX_SL — MIN_SL].

The max limitation is needed in order to avoid division
by zero. The scaling for the other components is just set
as the number of SKUs that can be stocked. The user can
then still put an extra scaling in the range of 1 to 4 on top
of the automatic scaling to fine-tune the stability of the
optimization.

Solution stability

The optimization process using the threshold-accepting
method is very fast, which is one of its major advantages.
However, there is also a negative side: Solutions cannot
automatically reproduce themselves. If the same initial
data and parameters are taken but the optimization starts
with another randomly generated number for the choice
of a SKU, the final result will not be the same because of
the stochastic nature of the optimization algorithm. The
reason is not that the optimization result is inferior; on
the contrary, the results are amazingly good in terms of
how close they come to the optimum (see the results
section). The reason is the existence of symmetries
between SKUs. For example, given two SKUs A and B
with very similar characteristics in terms of demand and
value, in the optimal solution A is stocked but B is not. If
the optimization run is repeated, B may be stocked and A
may not. This type of behavior is correct in terms of the

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007



optimum reached, yet it is unacceptable because it would
cause too much stock movement and considerably reduce
the acceptance of the optimization results.

Two different types of stability are required. The first
states that the stock status should not change unless it
significantly decreases costs. The second one requires that
the safety stock and ROROP should change significantly
only if the demand variation or other parameter changes
justify it. These issues have been solved in an elegant way.
The data provided to the budget optimizer contains the
current Stock YN status as well as the current safety stock
and ROROP for each stocked SKU. Thus, it is possible
to calculate the number of stock status changes and safety
stock and ROROP changes. By putting a penalty on this,
the symmetry mentioned above is broken, and if A is
currently stocked but not B, this will remain so during the
next run. Only in cases of significant improvement will
the change be executed. It has been found that even a
moderate penalty reduces the number of changes
drastically.

There is a danger in this as well: A penalty that is too
high causes a freezing of the solution, and it slowly drifts
away from the true optimum. Such a penalty is actually
misdirected. For instance, if one wishes to restrict the
change of the stock status to two percent of the SKUs,
this can be reached by increasing the penalty for
Stock YN changes sufficiently. However, if in the long run
the natural fluctuation due to such elements as demand
changes, new products, and old products requires a
StockYN change at three percent of the SKUs, this
increases the number of SKUs with a wrong stock status
by one percent each time the optimization is executed.
These issues have been tested and discussed in detail with
the auto manufacturer, and a proper understanding and
use of the penalty parameters has been achieved.

The DIOS solution exchanges data with an existing SAP
R/3 and SAP APO system (Figure 4). Because there are
a number of data elements that cannot be found in a
standard R/3 or APO system (for example, the second
reorder point and various cost items), these were
incorporated into SAP as extension tables. There are two
different use cases for DIOS: an automatic run (AUT), in
which DIOS optimizes replenishment parameters on a
weekly schedule, and a manual run (MAN), in which
users can access DIOS at any given point in time
to perform what-if analyses or to obtain more detailed
optimization results than those DIOS transfers back to
SAP.

Each (AUT) optimization run is divided into the
following steps:
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Local DIOS

Microsoft Windows
operating system

file access
i —
Windows L‘

L IBM DIOS

IFile transfer

a

File transfer

’ SAPAPO 1\

, CIF
File transfer | (ApO Core Interface)

F mySAP ERP UNIX ‘

Data flow for the automatic run (AUT) use case.

A. Input data creation and export from SAP to DIOS.
a. Creation of demand forecast within SAP APO
DP.
b. Upload of master data and forecasts from SAP to
DIOS server.
c. Upload of demand transaction data since the last
upload (delta upload) from SAP to DIOS server.
d. Upload of data in extension tables to DIOS
server.
DIOS run.
a. Data loading into DIOS from DIOS server.
b. DIOS optimization run.
c. Generation of optimization results.
C. Data import from DIOS to SAP.
a. Export of the optimization results from DIOS.
b. Import of the optimization results (delta
download) into the SAP system.

w

For the (MAN) use case, steps A and C are not
executed. Figure 5 illustrates the data flow for the (AUT)
use case. All file transfers are done using handshakes.

The data that is exported from SAP is kept on the
DIOS Windows server so that authorized users can access
the latest data at any time by using an installation of
DIOS on their local machines (MAN use case). This
allows planners to browse through the data DIOS is
using and perform what-if analyses. However, for safety
reasons a user is prohibited from exporting the results of
such analyses and the associated optimization parameters
to the SAP system. Instead, some SAP forms have been
implemented that allow the alteration of many of these
parameters and settings. In this way, user authentication
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remains within SAP and need not be spread over several
systems.

Budget optimizer runtime

The runtime of the budget optimizer is relatively short.
For about 70,000 SKUs it requires less than 20 minutes
to finish the optimization on a T41 ThinkPad* running
under Microsoft Windows XP**. Roughly half of the
time is used for the preparation phase, which includes
the calculation of the service-level relations and the
calculation of the minimum and maximum budget. The
rest is required for the optimization itself. This runtime is
very short compared with the total planning process in
the SAP Advanced Planning and Optimization system.

Optimization quality

The quality of the optimizer can be tested for two
extreme cases: at the minimum budget and at the
maximum service level. For these two situations, the
budget and service level are known. The budget
optimizer finds these solutions and deviates less than
0.1 percent from the optimum. For example, if the
target service level is set to 99.999 percent, that target
service level is indeed reached, and the corresponding
budget is less than 0.1 percent away from the
precalculated maximum budget. For target service
levels between MIN_SL and MAX_SL, the real
optimum solution is not known, of course. However,
when the target service level is stepwise increased from
MIN_SL to MAX_SL, it is found that the budget
increases monotonically from MIN_BG to MAX_BG
so that for lower values of the target service level, the
budget increases only a little; for values of the target
service level close to MAX_SL, it then increases rapidly
to MAX_BG. This behavior is expected because of the
high nonlinearity of the service-level relations.

Business results
The budget optimizer has been used for about two years,
and the results are very satisfying. Here we discuss some
of the major business results.

Of the SKUs sold through the RDC to dealers,
30 percent are stocked in the RDC. Weekly, one percent
of those change their stock status. This leads to a
continuous cleansing of the assortment. In the beginning,
the customer was hesitant to follow the proposals
concerning changed stock statuses, but it was gradually
accepted as the positive influence on total costs and space
occupation was realized. Having too many wrong SKUs
in stock is an issue for most spare-parts warehouses. The
continuous assortment adjustment solved this issue.
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Service levels are measured continuously. It has been
found that the measured service levels are very close
to the target service levels: The differences are less than
0.2 percent. This confirms that the approach is correct,
and in particular that the service-level relations, as
described herein, give the correct availability results.
Before the implementation of this solution, the service
level was not met, yet stock was high and there were too
many rush and back orders.

A stock savings potential of 30 percent can be reached.
The customer has not yet fully realized this, since most
spare parts are sold in small quantities, and therefore
stock levels go down slowly, but it is expected that this
will be the case in the next 12 months.

Further, there are a number of soft results. Acceptance
of the solution continues to increase, because what-if
analyses with the DIOS system answer many questions
and thus remove many doubts. One example is given
below. Planning spare-parts inventory remains a complex
issue, and it is therefore important to work closely with
the planners and respond to their questions and the issues
they raise.

Here is one example of the strength and flexibility of
what-if analyses with DIOS and the budget optimizer:
The customer used to have simple rules for the StockYN
decision. All SKUs that were sold three times or less in
the last 12 months were not stocked, while all others were.
These simple rules neglected the influence of the price of
the SKU. Using the DIOS what-if analysis, it was shown
that in order to reduce costs, many inexpensive SKUs
with only one or two picks per year should be stocked.
The obsolete risk for those SKUs is low because they are
inexpensive, and the savings derive from avoiding back
orders. On the other hand, expensive SKUs should be
stocked only if the number of picks per year is much
higher than three. After the results had been discussed
in detail, the customer was convinced that the results of
the budget optimizer could be trusted, and that the old
stocking rule system should be replaced by the proposals
of the new planning system.

The IBM spare-parts planning solution created for its
automotive customer meets all of the requirements and
thus fills the planning gap of SAP R/3 and APO. Further,
it is much faster than originally expected, running in less
than 20 minutes while one to two hours was promised as a
maximum runtime. The specific requirements are typical
for spare-parts planning and are certainly not restricted
to this particular manufacturer. DIOS has good
references across the industry, and the IBM Inventory
Budget Optimizer is another important extension that
can be of great value to a wide range of customers.
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*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of SAP AG,
i2 Technologies US, Inc., Microsoft Inc., or The Open Group in
the United States, other countries, or both.
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