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The work described in the literature on inventory and supply chain
management has advanced greatly over the last few decades and
now covers many aspects and challenges of applied supply chain
management. In this paper we describe an approach that combines
many of these academic aspects in a practical way to manage the
spare parts logistics at a German automobile manufacturer. The
basic problem is a single-echelon inventory problem with a system-
wide service-level requirement and the possibility of issuing
emergency orders. There exist two related optimization problems:
One is to maximize the system-wide service level under the
constraint of a given budget; the other is to minimize the budget for
a given system-wide service level. The most important requirements
and constraints considered are a detailed cost structure, different
packaging sizes, capacity constraints, several storage zones, the
decision whether or not to stock a product, stochastic lead times,
highly sporadic demands, and the stability of the optimization
result over time. Our approach has been implemented successfully
in an automotive spare parts planning environment. The complete
solution package integrates into the mySAP ERPt, the SAP
Enterprise Resource Planning system, and APO 4.0, the SAP
Advanced Planning and Optimization system. A detailed
description of the model is given and results are presented.

Introduction

Most literature on inventory and supply chain

management covers either single aspects of the supply

chain in detail or more general scenarios with many

simplifications. This paper describes an intermediate

approach that covers the supply chain from central

through regional storage to customers, and it models

many practical obstacles and restrictions in detail.

This is not a theoretical approach; it describes a real

implementation that successfully manages the spare

parts logistics of a German auto manufacturer.

The scenario we faced in the beginning was a serial

multi-echelon environment with one central distribution

center (CDC), one regional distribution center (RDC),

and many customers who are supplied by the RDC. At

a closer look, only the average service level to customers

mattered: The replenishment policy at the CDC was not

subject to further optimization because of dependencies

with other RDCs that were out of scope for this project.

This allowed us to reduce the optimization problem to

a single-echelon environment with no disadvantage.

Thus, our basic problem can be classified as a single-

echelon delivery structure with one specific multi-echelon

aspect (the integrated stocking decision at the RDC level).

The model allows for the following:

� Emergency orders between the CDC and the RDC.
� System-wide, customer-facing average service levels

that have to be met, where the individual service levels

per SKU (stock-keeping unit) can be optimized.
� Sparse and intermittent demand patterns.
� The decision whether or not to stock a SKU

regionally.

Any customer demand that is not available from stock

is delivered directly to the customer from the CDC at
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an additional cost. There exist two related optimization

problems:

1. Maximize the system-wide service level under the

constraint of a given total cost budget.

2. Minimize the total cost budget for a given system-

wide service level.

The setting at the automobile manufacturer required a

detailed cost structure comprising fixed and variable costs

for warehousing processes depending on the warehouse

zone, and fixed and variable costs for handling and

transportation of normal replenishment orders, planned

rush orders, and unplanned back orders. Moreover, other

factors were taken into account: different packaging sizes,

capacity constraints, the decision whether to stock a SKU

at the RDC, stochastic lead times, highly sporadic

demand, and the stability of the optimization result over

time.

This paper describes a heuristic solution to the outlined

scenario. The full optimization process consists of two

separate steps. In the first step, EOQ calculation

(EOQ ¼ economic order quantity), the optimal order

quantity and optimal pack size are determined for each

SKU. In the second step, budget optimization, it is

decided whether or not each individual SKU should be

stocked at the regional warehouse. If the decision is yes,

the optimal safety stock (the planned stock level when

a replenishment order enters the warehouse) and reorder

points (the planned stock level at which a replenishment

order is placed) are derived for normal and planned rush

orders.

Our approach required the development of an

optimization module, called the IBM Inventory Budget

Optimizer, which was linked to the existing IBMDynamic

Inventory Optimization Solution (DIOS). The complete

solution package, consisting of DIOS and the budget

optimizer, has been successfully integrated into the SAP

Enterprise Resource Planning system mySap ERP** and

the SAP Advanced Planning and Optimization system

APO 4.0 of the automobile manufacturer.

Business relevance and background

While restructuring the after-market logistics, a German

automotive manufacturer decided to replace its internally

developed ERP system with the standard mySAP ERP

and SAP APO 4.0 systems, with the necessary

adaptations and extensions. A detailed review of the

planning capabilities of SAP APO 4.0 showed that a

number of specific planning requirements could not be

satisfied, and it became clear that upcoming releases of

SAP APO would be unable to fill these gaps. As a result,

the automobile manufacturer decided to extend its

planning capabilities with specific planning components.

IBM DIOS was well suited for this. In its standard form,

DIOS was already able to fulfill more than 50 percent

of the client’s planning requirements. The missing

functionality was developed specifically for this

manufacturer and added to DIOS as a customer-

specific plug-in. The plug-in serves two main tasks:

EOQ calculation and budget optimization. The EOQ

calculation is not discussed in detail in this paper. What is

relevant here is that the EOQ serves as an input to the

relationship between the safety stock and the service level,

described in the section below on input parameters for the

budget optimization.

Why needed in a SAP environment

A high-level comparison of functions shows that SAP

APO is able to determine an EOQ and a safety stock for

each stocked SKU. Therefore, it is justifiable to ask why

DIOS and a specific plug-in are needed to provide these

planning parameters instead. The answer is that a number

of critical requirements cannot be met by SAP APO:

� Calculation of an optimal pack size using real cost.

SKUs can be replenished in different pack sizes. For

each pack size, other handling costs apply, since

different pack sizes are stored in different warehouse

regions with different handling costs. Therefore, the

standard EOQ calculation requires various extensions

to properly model these issues. SAP APO does not

have such a detailed EOQ calculation.
� It must be decided whether each SKU should be

stocked regionally in the RDC or only centrally in the

CDC. Less than 30 percent of all required SKUs are

stocked in the RDC. This decision, referred to as the

StockYN decision, must be updated continuously,

and a major issue is to keep available the optimal

parts assortment that yields the required service levels

at minimal cost. The stock decision for one SKU

cannot be taken independently of other SKUs

because of the system-wide cost and service-level

targets. As soon as a SKU is removed from stock,

the overall target service level is changed; as a result,

the stock levels for other SKUs change because

the system-wide service-level target must still be met.

Thus, the stocking decision must be an integral part of

the optimization process. SAP APO does not provide

such an integral stocking decision. It has been shown

that simple rules, such as Stock when more than four

picks have occurred in the last 12 months, lead to

solutions that are far from the cost optimum.
� Rush orders from an RDC to the CDC are placed for

two reasons. The first is to deliver unavailable SKUs.

In this case, an order has been placed by a dealer for a

SKU that is not available in the RDC. A rush order

P. KOREVAAR ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

448



to the CDC then follows so that the dealer’s request

can be filled. These orders are called back orders.

Second, rush orders are placed to prevent out-of-

stock (stockout) situations in the RDC. This is

common practice. Planners recognize that the stock

levels are low and, although a normal order has

already been placed, it is not expected to arrive in

time. A rush order is then placed that will arrive

before the normal order, thus increasing availability.

These orders are called planned rush orders, or simply

rush orders. From a cost perspective, these rush orders

make sense because the safety stock levels in the RDC

can be kept at a lower level and the target service

levels can still be met. SAP APO does not offer any

function that makes it possible to set a second reorder

point, the rush order reorder point (ROROP). Like

the StockYN decision, the ROROP setting cannot

be computed independently for each SKU, nor

independently of the safety stock setting, since both

together determine the target service level. Therefore,

the determination of the ROROP must be an integral

part of the budget optimizer as well.
� For each SKU, a safety stock is required to ensure

that its service level is reached. The relationship

between the safety stock and the service level is

nonlinear and depends on many variables, such as

demand distribution, lead time, lead time variability,

service-level type, the EOQ, and the demand. In

practice, it is found that the demand distribution

for most spare parts cannot be represented by

the normally employed Gaussian or Poisson

distributions. DIOS enables the use of all common

types of demand distributions and takes into account

all of the above dependencies. Implementing any

textbook approach using predefined demand

distributions can lead to dramatic inaccuracies in the

relationship between safety stocks and service levels

[1]. SAP APO offers only Gaussian and Poisson

distributions. Details are explained below in the

section on service-level relations. For each SKU,

the relation is determined and passed to the

budget optimizer.
� Service-level differentiation is an important means of

cost reduction. For example, expensive SKUs may

receive a lower service level, less expensive SKUs a

higher one. The system-wide availability remains the

same, but total costs go down. This is the heart of

the budget optimizer module, from which the name

follows. Though SAP APO makes it possible to assign

service levels on an individual SKU basis, there are no

optimization capabilities that automatically find the

cost-optimal target service level for each SKU. The

budget optimizer ensures that the target service level

of each group is fulfilled, while it reduces the cost by

leveraging the freedom of service-level differentiation.

The relationships among all required inventory

optimization variables are shown in Figure 1.

Market positioning

The need for inventory optimization is growing. As

reported by the Aberdeen Group (see Figure 1 in [2]),

many companies still use inferior techniques to plan

their inventories. Several advanced planning system

(APS) software vendors offer inventory optimization

packages, some of which also offer budget optimization

functionalities. The main vendors in this area are

i2Technologies,GainSystems, andToolsGroup.Although

all three offer software to optimize budgets, none explains

in detail the algorithms that are being used and the

kind of functionality that is implemented. Except for the

information each company has itself published on the

Web, we could find no independent evaluation in the

literature, which makes it difficult to compile a detailed

comparison. However, an analysis based on the

information available on their Web sites indicates that the

IBM Inventory Budget Optimization Solution provides

a combination of capabilities that are not offered by any

of these companies.

The i2 Service Budget Optimizer** [3] promises a rich

functionality and is similar to the inventory budget

optimization described in this paper. It performs a

Figure 1

Interdependency among EOQ, safety stock, lead times, and 

reorder points. Minimum and maximum stock levels are not hard 

limits, but describe the planning targets without capacity 
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full-cost optimization and differentiates service levels,

still reaching the system-wide service-level targets. Key

differentiators of the IBM Inventory Budget Optimizer

are the integrated StockYN decision and the allowance

for arbitrary demand distributions.

The GainSystems Inventory Chain Optimization (ICO)

[4] allows for a StockYN decision and a service-level

differentiation. However, the service-level differentiation

is not an output of the optimization but an input entered

by the planners.

ToolsGroup offers a set of white papers [5, 6] and can

therefore be evaluated in somewhat more detail. Except

for the StockYN decision, their software offers the same

capabilities as the IBM Inventory Budget Optimizer.

Related work
The approach described in this paper unifies many aspects

of supply chain management that are addressed mainly

individually in the literature. Below we review the current

literature on those single supply chain management topics

that are significant for our model.

Multimodal replenishment

A key requirement in our project that has received

considerable attention is multimodal replenishment,

which was implemented as three modes: normal

replenishment orders, planned rush orders, and

unplanned back orders. Minner [7] distinguishes between

two major categories of multimodal replenishment. One

of the research streams assumes deterministic lead times

and models emergency situations when the inventory

is low. The far larger part of the research focuses on

stochastic lead times and the statistical benefit of splitting

orders, e.g., among several suppliers, to achieve a shorter

effective lead time (the time until the first order arrives).

Deterministic lead times

Neuts [8] gives an optimal periodical replenishment policy

with a critical stock level y* and a fixed order quantity q.

At the beginning of each period, q units are ordered using

the slow delivery mode with a delay of one period. In

addition, if the current stock is below the critical level y*,

an emergency order is triggered that immediately brings

the stock back to y*.

Scarf [9] describes the fundamental results of the very

common (s, S) policy (when the stock level drops to s,

replenish up to S), which requires a known demand

distribution (which can change over time). It also assumes

linear ordering, holding, and backlog costs and allows

for fixed order costs. This standard (s, S) policy has

been extended to dual-mode (normal and emergency)

replenishment scenarios. For example, Veinott [10]

describes a three-parameter policy (s, y0, S) in which,

at the beginning of each period, one or more orders

are triggered if and only if the current stock x is below

the critical level s. An emergency order of max(0, y0� x)

units is immediately delivered, and a normal order with

[S � max(y0, x)] units is delivered one period later.

Fukuda [11] extends this approach to cases in which

arbitrary delivery delays are allowed for normal and

emergency orders. Whittemore and Saunders [12] describe

conditions sufficient for ordering nothing by the normal

or by the emergency channel, assuming arbitrary delivery

times.

These and related approaches issue a normal and

possibly an emergency order at the same point in

time, which is in most cases induced by the periodical

replenishment approach they follow. Triggering several

orders at once is called order splitting in the literature, but

it is usually related to stochastic lead times. Thus, the

discussed approaches can be regarded as a conditional

order-splitting policy with deterministic lead times, where

the number of selected suppliers is not fixed but depends

on the current stock level. In our case, these approaches

are not suitable, primarily because of large transportation

economies of scale and the wish of the customer for a

more flexible approach.

Moinzadeh and Nahmias [13] extend the (s, Q) policy,

in which a quantity Q is ordered whenever the current

stock falls below s, to an approximately optimal (s1, s2,

Q1, Q2) policy in which normal and emergency orders are

not necessarily triggered at the same time. This approach

assumes the usual linear cost factors, fixed ordering costs

for both delivery modes, stochastic demand, and two

arbitrary constant lead times 0 , k2 , k1. Whenever the

on-hand inventory falls below s1, a normal order of Q1

units is triggered and arrives after k1 time units. If at any

later point in time the on-hand stock falls even below s2,

an emergency order of Q2 units is triggered as long as its

delivery (in k2 time units) will be prior to the arrival of the

outstanding normal order. In addition to providing

separate reorder points, this approach also differs from

previous ones by considering only the on-hand inventory

and not the total inventory position consisting of on-hand

inventory plus ordered units minus backlogged items.

Therefore, they have to restrict the number of open

orders to one per type.

Moinzadeh and Nahmias [13] propose to first solve the

simple (s1, Q1) inventory model and provide approximate

formulas for the further procedure. Then an appropriate

emergency reorder point s2 and its order quantity Q2 are

found. Finally, they use s1, s2, and Q2 to recalculate the

normal order quantity Q1. Their evaluation by extensive

simulation shows that the reorder point s1 in the dual-

mode scenario is always lower than its counterpart in the

regular (s, Q) policy for all investigated cases. Most

benefits can be achieved if backlog costs are high. High

fixed ordering costs lead to larger order quantities and
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diminish the beneficial effect of this approach. Johansen

and Thorstenson [14] extend this approach by using

variable backlog costs in cases with Poisson distributed

demand.

Stochastic lead times

Sculli and Wu [15] were among the first to show that

splitting an order between two suppliers with

independently normal distributed lead times reduces

the reorder level and the buffer stock when compared

with replenishment with only one supplier. Since then,

many extensions and specializations have followed.

Ramasesh et al. [16] give a detailed comparison

between sole sourcing and order splitting in the case of a

regular (s, Q) replenishment policy with either uniformly

or exponentially distributed lead times. They find that

order splitting provides savings in holding and back-

ordering costs, which increase if the demand volatility

increases or the lead time distributions are skewed and

have a long tail.

Furthermore, they divide the order-splitting

approaches into two groups. First, macro studies analyze

the effect of order splitting on the whole replenishment

process, including the relation to the supplier. For

example, a competition among the suppliers (producers)

can lead to lower prices and better quality. Second, micro

studies focus on the inventory perspective and savings

induced by lower ordering, holding, and shortage costs.

Despite the attention given by the academic world to

the concept of reducing lead time risk by order splitting, it

has recently received considerable criticism by Thomas

and Tyworth [17]. Regarding the micro focus, they argue

that savings in holding and shortage costs are more than

compensated for by increased ordering costs in reality.

They see the gap between literature and reality mainly

in the neglected transportation economies of scale

and underestimated transporting costs. In a more

macroscopic view, they question whether or not the

savings from a reduced average cycle stock in one

inventory are still valid or significant for the whole supply

chain. Many approaches do not consider the in-transit

inventory, which can lead to additional costs.

Consequently, Thomas and Tyworth suggest that

future research should focus on other models of

dual-mode replenishment, e.g., the cost performance

differences in modes of transportation. With respect to

our scenario, we can support many statements of Thomas

and Tyworth, since the cost structure and practical

replenishment constraints, such as transportation

economies of scale, do not allow for an order-splitting

approach.

In fact, the (s1, s2, Q1, Q2) approach of Moinzadeh and

Nahmias [13], with its individual reorder point and order

quantity for each order type (normal and emergency)

and deterministic lead times, seemed most promising both

to the experts at the customer and to us. Our model

can be seen as a heuristic approach that extends the

(s1, s2, Q1, Q2) model by stochastic lead times.

System-wide service level

Even though many companies apply the same target

service level to all SKUs, they usually wish to achieve

only a specific system-wide service level and do have some

degree of freedom to set service levels for individual

SKUs, which may be used to save costs. This requires the

move from an isolated optimization for each SKU to an

integrated and complex system-wide approach. Mitchell

[18] developed an approximate model based on the

generalized knapsack duality algorithm with fixed lead

times, fixed and variable ordering and holding costs, and

a periodic replenishment policy. By evaluating several

32-item inventories, he found substantial savings for

the system approach for service levels of approximately

85 percent.

However, a system-wide approach still has to be

feasible, even with tens of thousands of SKUs.

Thonemann et al. [19] provide an easy-to-use

approximation to quantify the benefits of a system

approach when a system-wide service level should

be reached, with minimal inventory costs under the

assumption of (S � 1, S) replenishment policies for each

SKU, Poisson distributed demand, variable unit costs,

and identical constant lead times. They look at the

marginal increase of the service level per unit for each

SKU. Starting from a minimum service level, they

iteratively increase the stock level S by 1 for the SKU

with the currently highest service-level increment per unit

cost until the system-wide target service level is reached.

Their analyses show that a system-wide approach benefits

especially those inventories in which a small percentage of

all units makes up the major part of the demand.

Hopp et al. [20] developed a heuristic that relates to us

in many respects as it strives to cover a quite complex

real-world inventory problem with many practical pitfalls

and constraints. The inventory holds 30,000 SKUs,

customer demand is random, and several supply sources

exist. However, in their model they use a normal (r, Q)

policy with only one supplier and assume constant lead

times, Poisson distributed demand, and only fixed

ordering costs. The optimization goal is to minimize the

total inventory investment subject to constraints on the

overall service level and the order frequency. Hopp et al.

find simplified formulas for the inventory costs and the

service level that enable a straightforward calculation of

the two replenishment parameters r and Q once suitable

Lagrange multipliers are available. Unfortunately, they

could provide only numerical evaluations based on
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subsets of the customer data because the model had not

been operatively used by the company.

In our case, the overall service level of more than

100,000 SKUs has to be calculated, and a system-wide

service level greater than 95 percent has to be reached.

Moreover, additional complexity is encountered because

assumptions about a specific demand distribution and

constant lead times do not hold, and there is a need to

incorporate a complex cost structure and emergency

orders into the model.

Safety stock with sparse and intermittent demand

A primary challenge of spare parts replenishment is the

sparse and intermittent demand for them. While this fact

influences many facets of replenishment planning, it has a

particularly strong impact on the accurate calculation of

safety stock levels. Textbook approaches for calculating

the relationship between service levels and safety stocks

based on normal (Gaussian or Poisson) distributions

generally cause the measured service levels to deviate

significantly from the target service levels [1, 21].

Strijbosch et al. [22] compare two different (s, Q)

policies in which the main difference lies in the modeling

of the demand distribution during the lead time. Their

simple approach assumes the demand during the lead

time to be a normal distribution, while the advanced

approach differentiates between no demand and positive

demand during the lead time. The positive demand is

modeled by means of a gamma distribution. By adapting

the reorder point appropriately to the demand

distribution parameter, the advanced model is able to

match the desired service level in many situations in

which the simple approach is not consistent and leads

to stock levels that are too high.

Boedi and Schimpel [1] arrive at similar findings and

give a more general model in which all of the SKUs in an

inventory are clustered according to their normalized

positive demand distribution. For each cluster, a best-

fitting continuous distribution from a set of common

distribution types is calculated. This cluster-wide

distribution is rescaled for each SKU separately and

allows for an individualized safety stock. Extensive

evaluations with real data from ten different warehouses

show that the average service level is much closer to its

target value than for a model that assumes normal

distributed demands. Moreover, the variance of the

achieved service levels was significantly reduced. These

effects become especially apparent for service levels

greater than 95 percent.

Although these approaches have already been

successfully applied, our customer’s time constraint did

not allow for such a calculation-intensive solution. In

addition, the models given would have to be extended

to fit the dual-mode replenishment scenario, which

would interfere even more with the time constraint given

by the customer. Hence, a less time-intensive simulation

technique is applied to determine the mapping between

service levels and safety stocks.

Stocking decision

A common problem for inventories in the spare parts

business is the extremely low demand for the majority of

SKUs; for some, the average demand can be less than one

unit per year. Keeping only one unit in stock for those

SKUs can, in total, lead to substantial inventory holding

costs. Here the question arises, When is it more beneficial

not to stock a SKU and instead have it delivered in a

special supply mode? The fundamental paper by Croston

[23] shows that, especially for a spare part with a high

coefficient of variation in demand or in a situation in

which unsatisfied demand is relatively inexpensive

compared with holding cost, it is preferable not to stock

this SKU. This effect is intensified by large time intervals

between successive demands. Croston’s model uses a

periodic replenishment policy with holding and ordering

costs and additional costs for nonsatisfied demand. There

exist several extensions and modifications of this model.

Our model is basically a modified version of this

approach, extended by a more complex cost structure.

Moreover, we make this stocking decision an integral part

of the budget optimization, and not an independent

decision for each SKU.

Service-level relations for normal
and rush orders
Several preliminary steps are necessary to enable fast and

efficient calculations by the core part of the optimization

described below in the budget optimization section.

These preparations are the subject of this section.

For each SKU, two relations are needed. One addresses

the normal orders and how the service level relates to the

safety stock. The other relation associates the service level

with the reorder point for the planned rush orders. We do

not assume certain demand patterns that would allow for

an analytic solution because this could lead to very

inferior results for spare parts, as discussed above.

Instead we use the DIOS built-in simulation engine to

generate these relations on the basis of the individual

demand patterns for each SKU.

First we derive the input parameters that are essential

for the budget optimization. We then describe the

procedure for obtaining good approximations of the two

service-level relations mentioned above with only limited

numbers of simulations.

Input parameters for the budget optimization

A typical regional warehouse sells more than n¼ 100,000

different SKUs. These SKUs are divided into several
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service-level groups. The objective is to reach a system-

wide service level for each service-level group with

minimal total cost, which is the sum of ordering,

warehousing, and transportation costs. Using these goals

and constraints, the budget optimizer optimally assigns

an individual target service level sli and its associated total

costs ci(sli) to each SKU i 2 f1, � � �, ng and balances them

with all other SKUs j 2 f1, � � �, ng. The same holds for a

service-level maximization problem under a given budget

constraint. In both cases it is essential to know the cost

function ci(sli) within the possible range (sli_min; sli_max) of

sli for each SKU i 2 f1, � � �, ng.
The total costs ci(sli) depend on the joint service level sli

of normal and rush orders, which themselves depend on

one hand on given parameters, such as demand and lead-

time distributions, and on the other hand, on variable

replenishment parameters, such as order quantities

and reorder points. This issue is addressed now, as we

translate the total costs into parameters related to the

variable replenishment process.

While ordering costs depend only on the order quantity

and the (forecasted) demand, the back-order and stock-

holding costs are linked to the service level and thus to the

safety stock.

In summary, the calculation of the total costs for each

SKU is determined by four components: cost factors for

ordering (or back-ordering) and stock-holding, order

quantity, safety stock, and service level.

We assume that all cost factors are fixed exogenous

variables and that the order quantity has been calculated

beforehand on the basis of the fixed cost factors. Thus, all

of these parameters are not subject to change and are

forwarded directly to the budget optimizer as input

parameters. The only variable parameters left are the

safety stock and service levels for normal and rush orders.

Their relations must be calculated prior to the budget

optimization.

Service level and safety stock are related over the

demand distribution DD and the lead-time distribution

DLT. Moreover, the safety stock ss can be expressed by

an equivalent reorder point p based on the average lead

time lLT and the average demand lD by the equation

p ¼ ss þ lLT � lD. In other words, the expected minimal

stock level (just before a new order arrives) is exactly ss.

While the parameters lLT and lD might be

approximated from historic data, in practice no analytic

formulas for the exact continuous distributions DD and

DLT are known, and even suitable approximations to the

demand distributions are difficult to calculate accurately.

The complexity of the problem increases further when we

consider two types of orders—normal and rush. A rush

order differs from a normal order by different costs and

by a different lead time distribution with a smaller

average value. In such a dual-mode replenishment

scenario, neither the joint service level nor the relation

between safety stock and service level can be calculated

analytically in a reasonable amount of time. The main

challenge has been to find a fast and efficient algorithm

that obeys two constraints: The calculation time should

be less than 60 minutes for a typical warehouse (e.g.,

100,000 SKUs), and the output data size should be

small so that the result can be read rapidly by the

budget optimizer in order to allow analysis on a

regular desktop or laptop.

Algorithm to calculate the relationship between

safety stock and service level

The key task of the algorithm is to relate the safety stock

for normal and rush orders to their resulting joint service

level for each individual SKU. Analytic formulas for the

demand distributions are unknown; in principle they

can be of arbitrary type and shape. A possible solution

is to make analytical approximations of the demand

distributions from the historic data. However, first

experiments showed that the calculation of such

approximations is too time-consuming. The same is true

if the simulation is used to approximate the joint service

level for all combinations of reorder points of normal

and rush orders.

Thus, we decided to use two separate Monte Carlo

simulations to determine the safety-stock and service-

level pairs individually for normal and rush orders by

using the historic demand data. Logically, both service-

level components (for normal orders and for planned rush

orders) contribute to the target service level reached by

a SKU. The section below on the heuristic to combine

normal and rush order service levels describes how the

separate results are combined to achieve this joint service

level.

Note that a safety-stock and service-level pair is

completely equivalent to its associated reorder-point and

service-level pair because of the one-to-one relationship

between the reorder point and the safety stock of a SKU.

We refer to both pairs as result pairs. The entire

simulation process comprises three steps:

1. Simulation of the result pairs for normal orders.

2. Simulation of the result pairs for rush orders.

3. Calculation of the joint service level by a heuristic

formula.

All simulations are performed by the DIOS built-in

simulator. This simulation engine was developed by the

authors and is used in DIOS to simulate the expected

service levels on the basis of chosen replenishment

parameters. In the next three subsections, we describe the

simulation of a single result pair, show the control process

that determines the next safety stock (reorder point) to be
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simulated, and show the calculation of the joint service

level.

Replenishment simulation

Applying an inventory simulation requires knowledge

about the warehouse replenishment policy. The standard

policies implemented in DIOS are the two continuous

(s, Q) and (s, S ) policies and the periodical (T, S ) policy.

Moreover, it must be specified whether unsatisfied

demand is backlogged or lost. The standard simulation

process is shown in Figure 2(a).

Initialization phase—During initialization, all

parameters (e.g., order quantity, reorder point, service

level, average lead time, and lead time fluctuation) are set.

The initial stock is set to the average expected stock

level (safety stockþ 0.5 � order quantity). To make the

simulation as realistic as possible, outstanding orders are

created. The latter is especially important for long lead

times. Otherwise, the stockouts generated during the

simulation until the arrival of the first order (which would

then be triggered on the first day of the simulation) would

lead to a very poor service level and a correspondingly

high safety stock, which is unrealistic. For statistical

reasons, the simulation horizon covers a period of five

years on a daily basis, which leads to sufficiently stable

service levels. The demand time series are repeated if

the historical sales data covers less than five years.

Daily simulation phase—Whenever the simulated time

exceeds five years, finalizing calculations are done as

described below. Otherwise, a new day is started. For

each simulation day, possible incoming orders are first

added to the available stock; then the demand for this day

is determined. The demand is next compared with the

available stock, and possible stockouts and backlogs

are remembered. Whenever the available stock plus

the SKUs from outstanding orders falls on or below the

reorder point, the succeeding step, trigger order, issues a

new order according to the defined replenishment policy

in the trigger order step, and an appropriate lead time is

generated using the lead time and lead time fluctuation

information.

Summary (end) phase—After the simulation has

reached the five-year simulation horizon, the defined

service level is calculated from the information about

stockouts and total demand or replenishment cycles.

There exist many different types of service levels (e.g., see

[24, 25]), most of which are available in DIOS as well. The

service level we use in this case is defined as the number of

customer order lines that can be satisfied without delay.

This is also referred to as the order line fill rate. The

calculated service level is returned to the control process

and associated with the reorder point used throughout

this five-year simulation run.

The multistage simulation process described above is

performed for each reorder point that has been

determined by the control process.

Control process for the replenishment simulation

Recall that we have to determine the result pairs with

each consisting of a safety stock level and its associated

service level. These are used by the budget optimizer to

quickly evaluate the effect that a changed reorder point

(or safety stock) of a specific SKU has on the system-wide

service level and total costs. Thus, a large sequence of

possible result pairs must be provided for each single

SKU.

The control process creates this sequence of result pairs

for each SKU individually by determining the sequence

of reorder points (or safety stocks) which serves as an

input to simulate the appropriate service levels. From a

theoretical view, the maximum safety stock ssmax for both

order types has to be restricted to a maximum service

level close to 100 percent (slmax¼ 1� c), with 0 , c , 1

when applying unbounded demand distributions.

However, in practice, using discrete historical demand

data, we can safely set slmax¼ 100 percent. Depending on

further restrictions, there are several possibilities for the

minimum value. Two intuitive examples are to simulate

the minimal service level slmin by setting the safety stock

ssmin ¼ 0 or by setting the reorder point to 0 (equivalent

to a nonpositive safety stock). In our approach, we set

ssmin ¼ 0 for normal orders and the minimum reorder

point to 0 for rush orders. Moreover, all safety stocks

or reorder points are integer values.

Figure 2

Replenishment simulation: (a) Process of simulating a replenish-

ment policy; (b) control process for the replenishment simulation.
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The objective is to return the result pairs for the range

(ssmin; ssmax). The process is shown in Figure 2(b).

Initialize and next SKU—In the initialization, all

SKUs are selected for which the result pairs should be

determined. Moreover, the array of pairs is reset. The

process terminates with a summary step after all SKUs

have been processed. Otherwise, the result pairs of the

next SKU are simulated.

Find safety stock maximum—The first two simulation

runs for each SKU use a safety stock of ssmin and ssminþ1,

respectively. Intuitively, the service level should increase

monotonically with an increasing safety stock. Whenever

this is not the case (e.g., due to anomalies despite the long

simulation horizon), the current service level slnew is set to

slold, the service level of the previous simulation run.

The safety stock is doubled, i.e., ssnew¼ 2ssold, by each

simulation run until slmax is reached. For a safety stock

value ss . ssminþ 1 there might exist a value ss0 , ss that

also leads to slmax. Thus, we try to find the smallest safety

stock ssmin_max that still leads to slmax. This is done by the

well-known divide-and-conquer technique on the last

interval (ssold, ssnew), where ssnew¼ 2ssold. When ssmin_max

is found, the process moves on to the next step.

All result pairs ti¼ (ssi, sli) are stored in the result array

T¼ (t1, t2, � � �, tm), where I 2 f1, � � �, mg, t1¼ (ssmin, slmin),

and tm ¼ (ssmin_max, slmax). In our case, a significant

percentage of all SKUs (i.e., .20 percent) reaches

the maximum service level slmax with a safety stock

ssmin_max , 10. This is quite common for the spare-parts

business.

Find intermediate safety-stock/service-level pairs—To

speed up calculations and make analysis feasible on a

regular desktop or laptop, the number of result pairs

should be small. Knowing that the service level is

rising monotonically, we eliminate all pairs ti with

I 2 f2, � � �, m � 1g that can be expressed by their

neighboring pairs ti�1 and tiþ1 by linear interpolation

plus or minus a small allowed absolute deviation e.
Before pairs are eliminated, it has to be ensured that all

consecutive pairs ti, tj 2 T with i 2 f1, � � �, m � 1g and
j ¼ I þ 1 appropriately represent the pairs tk =2 T in the

interval (ssi, ssj) between them. Therefore, the service level

slk of pair tk with ssk¼ 0.5(ssiþ ssj) is simulated. If slk lies

outside the linear interpolation line 6e, the pair tk is

added to T between the entries tj and ti. In addition, a

divide-and-conquer method is applied on the intervals

(ssi, ssk) and (ssk, ssj) until their subintervals are

appropriately represented or ssi and ssj are neighboring

integers.

Once all intervals (ssi, ssj) are represented appropriately

by their enclosing result pair (ti, tj) 2 T3T with j¼ iþ 1,

all result pairs tk 2 T that lie within the e-range around

the regression line specified by their neighboring result

pairs tk�1, tkþ1 2 T are eliminated from T. In addition, all

pairs tj 2 T with j 2 f2, � � �, mg are eliminated from T that

have the same service level as their predecessor tj�1 2 T.

The output of this step is a compacted result array T.

Note that with sparse and intermittent demand, the

safety-stock and service-level graph is much more a

step function than a strict monotonic function.

Scale safety stock—An open problem is how to adjust

the safety stock when the average historical demand

differs significantly from the forecasted value. Under such

a condition, the safety stock may not be sufficient for a

strongly increasing demand, or it is much too high for a

SKU at the end of its life cycle. This safety stock depends

strongly on the variance of the future demand. For

example, if the demand changes by a factor r, this can

lead to two extreme cases: In the first case, the units of

each single pick are scaled by r; in the second, the number

of picks is scaled by r. Both cases require a completely

different safety stock.

Because of the lack of insight (in practice) into the

details of the demand change, we used the simplified

approach to scale the safety stock for each SKU with the

square root of r, which proved to give acceptable results.

Summary (end)—All compacted and scaled arrays

containing the result pairs are written to a plain file and

serve as input for the budget optimizer calculations.

This process over all SKUs is executed twice, first with

the parameters of the normal order and then with the

parameters of the rush order.

Heuristic to combine normal and rush order service levels

The budget optimizer retrieves the result pairs from the

simulation and calculates the expected service level (by

interpolation) separately for normal and rush orders.

However, the question remains how the budget optimizer

combines these two service levels, slN and slR, into an

expected joint service level sltarget. Our heuristic to

calculate the combined service level sltarget is described

below and shown in Figure 3. It works acceptably in

practice with the following assumptions and practical

restrictions:

� The reorder point for the rush order is below the

safety stock of the normal order.
� A rush order is triggered only if it arrives before

the next normal order.
� A rush order cannot be triggered before a normal

order has been issued.
� There are separate inbound order queues for normal

and rush orders.
� The probability of triggering a rush order is uniformly

distributed within the allowed time window (green

area).
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Let us denote the event ‘‘rush order occurs’’ as RO and

the event ‘‘stockout occurs’’ as SO. This leaves a time

window DR ¼ LTN � LTR for triggering a rush order,

where LTN is the normal lead time and LTR is the lead

time of a rush order. Assuming a uniform distribution,

the probability p(RO) that a rush order will be triggered

during the remaining lead time of the last normal order is

pðROÞ ¼
LT

N
� LT

R

LT
N

:

Thus, with a probability of p(RO), the rush order will

positively affect the stockout probability p(SO) of the

normal order. Knowing that p(SO)¼ (1� slN), where slN
denotes the service level of the normal order, and that the

positive effect of the rush order is related to its service

level slR, the approximated joint service level sltarget can

be given by

sl
target
¼ sl

N
þ ð1� sl

N
Þ � sl

R
� pðROÞ

¼ sl
N
þ ð1� sl

N
Þ � sl

R
�
LT

N
� LT

R

LT
N

:

The question remains, How many units should be

delivered by a rush order? While there are many plausible

explanations (e.g., considering ordering and storing

costs), we use rush orders as a temporary support with the

intention of avoiding short-term stockouts. Thus, in our

interpretation, the rush order should simply cover the

expected demand that will occur during the average

(expected) time until the next normal order arrives.

Given the time window DR with a uniform distribution

for the point at which a rush order will be triggered leads

to an average expected time until the arrival of the

next outstanding normal order of 0.5 � (LTN � LTR).

Moreover, the minimum order quantity is 1, which is

important for SKUs with very little demand. As a

consequence, the rush order quantity is

maxð1; dl
D
� 0:5 � ðLT

N
� LT

R
ÞeÞ:

Budget optimization
Given the optimal order quantities, corresponding pack

size, and service-level relations for safety stock and

ROROPs, the budget optimizer can perform two different

tasks: It can minimize the budget for given group service

levels, and it can maximize service levels for a given

budget.

The first task is done automatically in the operational

system implemented at the automobile manufacturer,

where our system is used as a black-box optimizer. The

second task is used in what-if analyses to determine how

high the service level can be raised without overly

increasing costs.

The budget comprises the sum of all of the costs listed

in Table 1. This budget is part of the objective function to

be minimized. The objective function further contains

various penalties for not reaching certain goals (weak

restrictions). These are penalties for not reaching the

target service levels and penalties for the number of

SKUs that change their StockYN status and their safety

stock and rush order reorder points. The latter two are

important for stabilizing the solution over time. This is

described further in the section on solution stability.

Budget optimization influences

The goal of the budget optimization is to set an individual

target service level SLtarget for each SKU in such a way

that system-wide service-level targets are met. The term

system-wide can relate either to the warehouse as a whole

or to disjoint groups of SKUs. In the latter case, each

group has its own system-wide service-level target. The

individual target service level SLtarget is a combination of

the safety stock and ROROP. The optimization is

influenced by planning when the following parameters are

set for each SKU:

1. StockYN decision: Whether or not to stock the

SKU.

2. The safety stock (only for stocked SKUs).

3. The ROROP (only for stocked SKUs).

These parameters are changed in the optimization

process described below. Each such change, like toggling

the StockYN from ‘‘Stock’’ to ‘‘Do-not-Stock’’ for a SKU

or increasing the safety stock from 1 to 3 for a SKU, is

called a mutation.

Figure 3

Heuristic used to approximate the joint service level.

sltarget � slnorm � (1 � slnorm ) • slrush • � � = (LTN � LTR) / LTN
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Mutation 1: Changing the stock status

For some SKUs, the StockYN setting is fixed. This means

either that the SKU cannot be stocked or that it must

be stocked. In those cases, the budget optimizer is not

allowed to change this parameter. The parameter is

realized through the status variable StockYN for each

SKU, which can take the following values:

YA Currently stocked and can be changed by the

optimizer.

YM Currently stocked and cannot be changed by the

optimizer.

NA Currently not stocked and can be changed by the

optimizer.

NM Currently not stocked and cannot be changed by

the optimizer.

EMP A new SKU and the optimizer will determine its

initial stock status.

The SKUs with YM and NM cannot change their

StockYN status. This is a hard restriction in the

optimization, which means that it will not be changed

during the optimization. For SKUs changing their

StockYN from YA to NA or from NA to YA, a penalty is

added for stability reasons (see the section on solution

stability below). This is not the case for SKUs with a

stock status StockYN equal to EMP. For these SKUs,

the status after the optimization will be YA or NA, but in

neither case does a penalty occur.

The change of the StockYN status is one of the three

mutations in the optimization process (see below). One

of the budget optimizer options is ‘‘do not change the

StockYN status’’ for any SKU. This is simply realized by

not calling that mutation during the optimization process.

Mutation 2: Changing the safety stock

Before the budget optimizer is called, the relation between

the safety stock and the service level is calculated for each

SKU (see the previous section). The relation is nonlinear

but monotonically increasing, so a higher safety stock

automatically means a higher service level. In particular,

the service level for a safety stock of zero units is known.

This is the minimum service level of a SKU. On the other

hand, the maximum safety stock is known for which the

SKU has a 100 percent service level (according to the

numerical simulation). The safety stock can take any

integer value from 0 to this maximum. If a SKU has a

minimum service-level requirement, the budget optimizer

determines the minimum safety stock for which this

minimum service level is reached and limits the safety-

stock range for that SKU. Thus, this minimum service-

level requirement is implemented as a hard restriction and

is automatically fulfilled. Since a minimum service level

can be kept only for stocked SKUs, for such a SKU the

stock status is set to YM during the optimization, even if

it was NM, so that a minimum service-level requirement

can overwrite the ‘‘don’t stock’’ requirement.

The change of the safety stock is another mutation in

the optimization process. This change is always allowed.

However, an overall penalty that is applied to the sum

of all safety-stock changes can be activated to limit the

total number of safety-stock changes compared with the

actual safety stock. This is implemented for stability

reasons and is described further in the section on

solution stability below.

Mutation 3: Changing the ROROP

As described above in the section on the algorithm for

calculating the relationship between the safety stock and

service level, the target service level for each SKU is

calculated from one portion representing normal orders

for which a safety stock is kept and a second portion

representing planned rush orders for which a ROROP is

set. Thus, changes in the ROROP will change the target

service level for a SKU. Like the relation between safety

stock and service level, a relation also exists between

ROROP and service level. This relation is monotonically

increasing as well. If the ROROP is not used at all, the

target service level is due solely to the safety stock. If a

ROROP is used, it can vary between zero and the safety

Table 1 Cost parameters used by the budget optimizer.

Budget cost component description Variable

For optimal pack size: Fixed handling

cost portion (per order line)

a1

For optimal pack size: Variable handling

cost portion (per order unit)

a2

Extra handling cost for planned rush

order (per order line)

crush

Extra handling cost for back order

handling (per order line)

cback

Transport costs per kg for normal orders tnormal

Transport costs per kg for planned rush

orders

trush

Transport costs per kg for back orders tback

Transport costs per m3 for normal

orders

tvnormal

Transport costs per m3 for planned rush

orders

tvrush

Transport costs per m3 for back orders tvback

Stock holding rate including capital

interest rate

I

Warehouse space costs per m3 cv

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 P. KOREVAAR ET AL.

457



stock of the normal order. Theoretically, this restriction

does not have to be employed. However, for practical

reasons (so that the people doing planning understand it

clearly), this has been set as a hard restriction. Changing

the ROROP is the third mutation in the optimization

process. It makes sense only for stocked SKUs. When the

safety stock is changed and the ROROP is larger than the

safety stock, it is automatically reduced. The ROROP can

also be set to �1 during the optimization, which means

that no ROROP is used. (This is different from a ROROP

of 0, because in that case, a rush order is placed as soon as

the stock level reaches 0.)

Optimization process

Metaheuristic approach

Budget optimization is a nonlinear optimization problem,

as the relation between the safety stock and service

level is highly nonlinear. As such, linear or mixed-

integer programming is not suitable for these types of

optimization problems. Instead, an evolution-type

optimization algorithm, the threshold-accepting

algorithm, was chosen (see [26]). This general-purpose

optimization algorithm was developed by the IBM

Science Center in Heidelberg in the late 1980s. The

algorithm is very similar to the well-known simulated

annealing algorithm described in [27] and [28], but its

acceptance rules are different, and the threshold accepting

leads to more stable results in a number of experiments,

as described in [26] and [29]. Threshold accepting has

been successfully applied to very different optimization

tasks ranging from simple traveling-salesman problems

through production and personal scheduling to

distribution planning. The generic optimization approach

works as follows:

Choose an initial configuration and threshold T . 0

Repeat

Choose a new configuration

Compute DE :¼ quality(new configuration �
old configuration)

IF DE . �T THEN old configuration :¼
new configuration

Lower T

Until T is low enough.

The only difference from the simulated annealing

approach is the acceptance rule: In threshold accepting,

the new solution is accepted when its quality is reduced by

no more than T. In simulated annealing, the new solution

is accepted with a probability of exp (�T).

Elements required for the optimization

A number of elements are required for the budget

optimization to be able to utilize this algorithm, as

described in the following paragraphs.

Modeling of goals and constraints—Depending on the

optimization mode (meet target service level or meet

budget), two sets of goals and constraints are used, as

shown in Table 2. The constraints are partly hard-coded

(H), which means that they are automatically fulfilled by

the implemented algorithm, and partly coded as weak

restrictions (W), which means that they can be violated

during the optimization process, but then a penalty of the

amount of the violation is imposed.

A comparison between the two sets shows that C2–C6

are the same; only C1 and G1 are interchanged. This is

a multicriteria goal which is treated as a weighted sum

of the goal G1 and the weak constraints C1–C3. This

approach entails the problem of having to scale various

components of the objective function so that a system-

wide optimum is found. The scaling issues are nontrivial,

especially in the case of G1 and C1, where costs and

Table 2 Goals and constraints.

Set 1 (Meet service level)

Setl_Gl Total costs (budget) are minimized.

Setl_C1 W Overall group service levels SLtarget

are met.

Setl_C2 W Number of SKUs that change

StockYN status is limited.

Setl_C3 W Changes in safety stock and/or

ROROP are limited.

Setl_C4 H Minimum values for certain SKUs

(SLmin) are met.

Setl_C5 H ROROP is smaller than safety stock

for all SKUs.

Setl_C6 H SKUs with fixed StockYN status

keep the status during optimization.

Set 2 (Meet budget)

Set2_Gl Overall service level SLtarget is

maximized.

Set2_Cl W Total costs (budget) is reached.

Set2_C2 W Number of SKUs that change

StockYN status is limited.

Set2_C3 W Changes in safety stock and/or

ROROP are limited.

Set2_C4 H Minimum values for certain SKUs

(SLmin) are met.

Set2_C5 H ROROP is smaller than safety stock

for all SKUs.

Set2_C6 H SKUs with fixed StockYN status

keep the status during optimization.
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service level compete. How this has been solved is

explained below in the section on the automatic scaling

of goals and constraints.

Data import and export—The budget optimizer is

designed as a separate module that is implemented as a

plug-in to DIOS. This means that an interface between

the DIOS core and the budget optimizer has been realized

which transfers the required master data and returns the

optimization results (StockYN, safety stock, ROROP)

for each SKU from and to DIOS. This is an internal

interface; it is not visible to the user. The user calls the

budget optimizer from within DIOS, and the results are

shown in DIOS. Even during the optimization process,

a status window and progress bar show how the

optimization is advancing, and a user can cancel the

optimization at any time from within DIOS.

Mutations—All mutations are applied on single SKUs

and change the replenishment parameters of that SKU.

The three mutations are the following:

� Mutation 1: Change the StockNY status of a

randomly chosen SKU.
� Mutation 2: Change the safety stock of a randomly

chosen stocked SKU.
� Mutation 3: Change the ROROP of a randomly

chosen stocked SKU.

Some mutations interfere with others. For instance, if

the safety stock is reduced (Mutation 2) and it falls below

the ROROP, the latter must be reduced as well to account

for constraint C5. Similarly, if a SKU changes the

StockYN status from YN to YA (Mutation 1), an

initial setting for safety stock and ROROP is required.

Experiments have shown that the solution is most stable

if this choice is made so that a cost minimum has already

been reached for that particular SKU. The alternative

would have been to choose safety stock and ROROP

randomly within the allowed ranges. However, this may

easily lead to inferior choices, which are likely to be

rejected by the metaheuristic. Consequently, the SKU will

not be stocked in the end, although it should be stocked

in the optimal case. These considerations are critical to

the success of local search metaheuristics, such as the

threshold accepting used here.

Optimization control—The heart of the optimization

using the threshold-accepting algorithm is the cooling

process. This is the control of the acceptance of

mutations. A mutation can lead to a better or worse

solution. In the beginning of an optimization run, a high

percentage of mutations that lead to a worse result is

accepted. This is required in order to avoid the situation

in which the optimization process finds a local optimum

from which it cannot escape to find the global optimum.

This is often compared with finding the highest point in a

landscape: If one is only allowed to go up, one may

become stuck on a small hill, whereas finding the highest

mountain requires some descending between the peaks.

This is exactly the principle behind the acceptance of

worse results. During the optimization, this acceptance is

gradually reduced. For this cooling control and for the

control about ‘‘how often and when which mutation

should be called,’’ the IBM TOP-C optimization library

has been used. This is a subroutine library that contains

these control elements. The user enters only the number

of steps (after each step the value of the threshold T is

adjusted) and the number of mutations per step. Because

the required number of mutations per step turns out to

be roughly proportional to the number of SKUs, the

number is adjusted such that it automatically scales

with the number of SKUs.

The result of the optimization is the setting of the

StockYN status for each SKU as well as a safety stock

and ROROP for all stocked SKUs such that the goal

(G1) is reached and the constraints (C1–C6) are met. This

information is fed back into DIOS through the internal

interface.

Automatic scaling of goals and constraints

The multicriteria goal of the budget optimization

comprises four components:

1. Total costs, the budget (currency); range:

MIN_BG � MAX_BG.

2. System-wide target service level (percentage); range:

MIN_SL% � MAX_SL%.

3. SKUs with changed stock status (integer); range:

0 � MAX_SKU.

4. Changes in safety stock and ROROP (integer);

range: 0� MAX_CHANGES.

Here MAX_BG is the maximum cost defined for the

case in which all SKUs that can be stocked would have

the maximum service level of 100 percent.MAX_SL is the

maximum service level that can be reached. In general,

this is not 100 percent, since SKUs that cannot be stocked

will reduce MAX_SL. MAX_SKU is the maximum

number of SKUs that can change the stock status, and

MAX_CHANGES is the maximum change allowed for

the safety stock and the ROROP. Further, a MIN_BG is

defined. This is the budget that would exist if each SKU

could be replenished in a cost-optimal way regardless

of the service level reached. And finally, a MIN_SL is

defined as the system-wide target service level reached at

MIN_BG. Although it is possible that the system-wide

target service level may temporarily drop below MIN_SL

during the optimization, this is not an optimal solution

because it will have a lower service level at higher
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costs, which does not make sense. The ranges can all be

determined before the optimization starts.

All of the goal ranges above are different. They depend

on the number of SKUs, the cost values, the currency,

and the number of SKUs that cannot be stocked or must

be stocked. However, the optimization is supposed to

work independently of these ranges. For this reason,

the components are all scaled so that they remain in

comparable ranges. The most straightforward way of

doing so would be to scale with the ranges. In that case,

all components would range from 0 to 1. However, this

does not work properly because the targets within the

range cannot be reached equally easily. For example, if

the target service level is just above theMIN_SL, it is easy

to reach. If the target service level is close to MAX_SL, it

is difficult to reach and leads to a large budget. Thus, the

scaling of the components must be chosen in a nonlinear

way. Several options were tested, and the following

scaling was finally implemented, leading to very good

results regardless of the target budget (TGT_BG) or the

target service level (TGT_SL):

For the mode ‘‘Minimize budget, reach target service

level,’’

Budget scale ¼max [(MAX_BG þMIN_BG) � 10�4,
MAX_BG � MIN_BG];

Service-level scale¼max [(MAX_SLþTGT_SL) � 10�4,
MAX_SL � TGT_SL].

For the mode ‘‘Maximize target service level, reach

budget,’’

Budget scale ¼max [(TGT_BG þMIN_BG) � 10�4,
TGT_BG � MIN_BG];

Service-level scale¼max [(MAX_SLþMIN_SL) � 10�4,
MAX_SL� MIN_SL].

The max limitation is needed in order to avoid division

by zero. The scaling for the other components is just set

as the number of SKUs that can be stocked. The user can

then still put an extra scaling in the range of 1 to 4 on top

of the automatic scaling to fine-tune the stability of the

optimization.

Solution stability

The optimization process using the threshold-accepting

method is very fast, which is one of its major advantages.

However, there is also a negative side: Solutions cannot

automatically reproduce themselves. If the same initial

data and parameters are taken but the optimization starts

with another randomly generated number for the choice

of a SKU, the final result will not be the same because of

the stochastic nature of the optimization algorithm. The

reason is not that the optimization result is inferior; on

the contrary, the results are amazingly good in terms of

how close they come to the optimum (see the results

section). The reason is the existence of symmetries

between SKUs. For example, given two SKUs A and B

with very similar characteristics in terms of demand and

value, in the optimal solution A is stocked but B is not. If

the optimization run is repeated, B may be stocked and A

may not. This type of behavior is correct in terms of the

Figure 4
Integration of the IBM Inventory Budget Optimizer and DIOS in the SAP Advanced Planning and Optimization landscape.
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optimum reached, yet it is unacceptable because it would

cause too much stock movement and considerably reduce

the acceptance of the optimization results.

Two different types of stability are required. The first

states that the stock status should not change unless it

significantly decreases costs. The second one requires that

the safety stock and ROROP should change significantly

only if the demand variation or other parameter changes

justify it. These issues have been solved in an elegant way.

The data provided to the budget optimizer contains the

current StockYN status as well as the current safety stock

and ROROP for each stocked SKU. Thus, it is possible

to calculate the number of stock status changes and safety

stock and ROROP changes. By putting a penalty on this,

the symmetry mentioned above is broken, and if A is

currently stocked but not B, this will remain so during the

next run. Only in cases of significant improvement will

the change be executed. It has been found that even a

moderate penalty reduces the number of changes

drastically.

There is a danger in this as well: A penalty that is too

high causes a freezing of the solution, and it slowly drifts

away from the true optimum. Such a penalty is actually

misdirected. For instance, if one wishes to restrict the

change of the stock status to two percent of the SKUs,

this can be reached by increasing the penalty for

StockYN changes sufficiently. However, if in the long run

the natural fluctuation due to such elements as demand

changes, new products, and old products requires a

StockYN change at three percent of the SKUs, this

increases the number of SKUs with a wrong stock status

by one percent each time the optimization is executed.

These issues have been tested and discussed in detail with

the auto manufacturer, and a proper understanding and

use of the penalty parameters has been achieved.

Integration of the budget optimizer into the SAP
landscape

The DIOS solution exchanges data with an existing SAP

R/3 and SAP APO system (Figure 4). Because there are

a number of data elements that cannot be found in a

standard R/3 or APO system (for example, the second

reorder point and various cost items), these were

incorporated into SAP as extension tables. There are two

different use cases for DIOS: an automatic run (AUT), in

which DIOS optimizes replenishment parameters on a

weekly schedule, and a manual run (MAN), in which

users can access DIOS at any given point in time

to perform what-if analyses or to obtain more detailed

optimization results than those DIOS transfers back to

SAP.

Each (AUT) optimization run is divided into the

following steps:

A. Input data creation and export from SAP to DIOS.

a. Creation of demand forecast within SAP APO

DP.

b. Upload of master data and forecasts from SAP to

DIOS server.

c. Upload of demand transaction data since the last

upload (delta upload) from SAP to DIOS server.

d. Upload of data in extension tables to DIOS

server.

B. DIOS run.

a. Data loading into DIOS from DIOS server.

b. DIOS optimization run.

c. Generation of optimization results.

C. Data import from DIOS to SAP.

a. Export of the optimization results from DIOS.

b. Import of the optimization results (delta

download) into the SAP system.

For the (MAN) use case, steps A and C are not

executed. Figure 5 illustrates the data flow for the (AUT)

use case. All file transfers are done using handshakes.

The data that is exported from SAP is kept on the

DIOS Windows server so that authorized users can access

the latest data at any time by using an installation of

DIOS on their local machines (MAN use case). This

allows planners to browse through the data DIOS is

using and perform what-if analyses. However, for safety

reasons a user is prohibited from exporting the results of

such analyses and the associated optimization parameters

to the SAP system. Instead, some SAP forms have been

implemented that allow the alteration of many of these

parameters and settings. In this way, user authentication

Data flow for the automatic run (AUT) use case.
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remains within SAP and need not be spread over several

systems.

Results

Budget optimizer runtime

The runtime of the budget optimizer is relatively short.

For about 70,000 SKUs it requires less than 20 minutes

to finish the optimization on a T41 ThinkPad* running

under Microsoft Windows XP**. Roughly half of the

time is used for the preparation phase, which includes

the calculation of the service-level relations and the

calculation of the minimum and maximum budget. The

rest is required for the optimization itself. This runtime is

very short compared with the total planning process in

the SAP Advanced Planning and Optimization system.

Optimization quality

The quality of the optimizer can be tested for two

extreme cases: at the minimum budget and at the

maximum service level. For these two situations, the

budget and service level are known. The budget

optimizer finds these solutions and deviates less than

0.1 percent from the optimum. For example, if the

target service level is set to 99.999 percent, that target

service level is indeed reached, and the corresponding

budget is less than 0.1 percent away from the

precalculated maximum budget. For target service

levels between MIN_SL and MAX_SL, the real

optimum solution is not known, of course. However,

when the target service level is stepwise increased from

MIN_SL to MAX_SL, it is found that the budget

increases monotonically from MIN_BG to MAX_BG

so that for lower values of the target service level, the

budget increases only a little; for values of the target

service level close to MAX_SL, it then increases rapidly

to MAX_BG. This behavior is expected because of the

high nonlinearity of the service-level relations.

Business results

The budget optimizer has been used for about two years,

and the results are very satisfying. Here we discuss some

of the major business results.

Of the SKUs sold through the RDC to dealers,

30 percent are stocked in the RDC. Weekly, one percent

of those change their stock status. This leads to a

continuous cleansing of the assortment. In the beginning,

the customer was hesitant to follow the proposals

concerning changed stock statuses, but it was gradually

accepted as the positive influence on total costs and space

occupation was realized. Having too many wrong SKUs

in stock is an issue for most spare-parts warehouses. The

continuous assortment adjustment solved this issue.

Service levels are measured continuously. It has been

found that the measured service levels are very close

to the target service levels: The differences are less than

0.2 percent. This confirms that the approach is correct,

and in particular that the service-level relations, as

described herein, give the correct availability results.

Before the implementation of this solution, the service

level was not met, yet stock was high and there were too

many rush and back orders.

A stock savings potential of 30 percent can be reached.

The customer has not yet fully realized this, since most

spare parts are sold in small quantities, and therefore

stock levels go down slowly, but it is expected that this

will be the case in the next 12 months.

Further, there are a number of soft results. Acceptance

of the solution continues to increase, because what-if

analyses with the DIOS system answer many questions

and thus remove many doubts. One example is given

below. Planning spare-parts inventory remains a complex

issue, and it is therefore important to work closely with

the planners and respond to their questions and the issues

they raise.

Here is one example of the strength and flexibility of

what-if analyses with DIOS and the budget optimizer:

The customer used to have simple rules for the StockYN

decision. All SKUs that were sold three times or less in

the last 12 months were not stocked, while all others were.

These simple rules neglected the influence of the price of

the SKU. Using the DIOS what-if analysis, it was shown

that in order to reduce costs, many inexpensive SKUs

with only one or two picks per year should be stocked.

The obsolete risk for those SKUs is low because they are

inexpensive, and the savings derive from avoiding back

orders. On the other hand, expensive SKUs should be

stocked only if the number of picks per year is much

higher than three. After the results had been discussed

in detail, the customer was convinced that the results of

the budget optimizer could be trusted, and that the old

stocking rule system should be replaced by the proposals

of the new planning system.

Conclusion

The IBM spare-parts planning solution created for its

automotive customer meets all of the requirements and

thus fills the planning gap of SAP R/3 and APO. Further,

it is much faster than originally expected, running in less

than 20 minutes while one to two hours was promised as a

maximum runtime. The specific requirements are typical

for spare-parts planning and are certainly not restricted

to this particular manufacturer. DIOS has good

references across the industry, and the IBM Inventory

Budget Optimizer is another important extension that

can be of great value to a wide range of customers.
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*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of SAP AG,
i2 Technologies US, Inc., Microsoft Inc., or The Open Group in
the United States, other countries, or both.
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