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We describe an optimization tool for a multistage production
process for rectangular steel plates. The problem we solve yields a
production design (or plan) for rectangular plate products in a steel
plant, i.e., a detailed list of operational steps and intermediate
products on the way to producing steel plates. We decompose this
problem into subproblems that correspond to the production stages,
where one subproblem requires the design of casts by sequencing
slabs which, in turn, have to be designed from mother plates. The

design of mother plates consists of a two-dimensional packing
problem. We develop a solution approach which combines
mathematical programming models with search techniques from
artificial intelligence. The use of these tools provides two types
of benefits. improvements in the productivity of the plant and an
approach to making the key business performance indicators, such
as available-to-promise at a production level, operational.

Introduction

Some items produced in the steel industry are steel coils
(e.g., for automobiles and appliances), rectangular steel
plates (e.g., for shipbuilding and construction), and steel
blooms (e.g., for beams). In this paper, we describe an
optimization model that captures many aspects of a
multistage, rectangular plate production process in a
major steel plant, and we describe a solution approach for
this optimization model. Solving this optimization model
yields a production design (PD), i.e., a detailed description
of the production steps and related intermediate
products, which yield a desired set of final plate products.
We describe an implementation of our solution in an
optimization tool intended for use at a plant operational
level.

This PD tool was deployed at a large East Asian steel
plant and is being used in daily production. Typical
inputs consist of realized orders with processing start
dates on each resource in a window of seven to ten days.
The PD tool is intended to design and schedule the daily
operations in the plant for a time horizon of one to two
days. The main considerations in generating this design
and schedule are the manufacturing constraints imposed
by the machinery and a set of desired objectives that
measure the productivity and efficiency of the operation

design and schedule. The main challenge in developing
this software system was to accurately model the very
large number of manufacturing constraints and
production-quality metrics, and to produce a feasible
design and schedule within 30 minutes on a standard
desktop computer.

Production process
We now describe the specific steel production process
modeled in this paper. The goal of the production process
is to satisfy orders for rectangular steel plates. Orders for
plates (usually given by customers) specify the size of
the rectangle, a thickness (usually between 10 mm and
100 mm), the steel grade, and the number of plates
desired. The steel production process and a sample
of its hierarchical elements are depicted in Figure 1.
Molten steel from the blast furnace is refined in the
basic oxygen furnace (BOF) in batches of about 250
to 300 tons, each batch resulting in steel with different
metallurgical properties. These batches of refined molten
steel are poured through a mold (or simultaneously
through two molds) with a rectangular cross section; this
process is called casting and is performed in a continuous
caster. The strand of metal emerging from a mold is cut
across its length to form a cast slab, which is again cut
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across its length to form a slab of steel. Slabs and cast
slabs are cuboidal objects with the same width and
thickness as the mold used in making them. Slabs have a
width between one and two meters and a length between
two and five meters; a cast slab contains two or three
slabs. The slab thickness, and thus the mold thickness,
lies in a small set of allowable thicknesses in the

range 200 mm to 400 mm.

The slabs are processed further, for instance by
quenching or heat treatment, to impart different
properties to them; these properties are encoded as steel
grades. We refer to a sequence of slabs created from the
same mold (or pair of molds if two molds are used
simultaneously) as a cast, and a sequence of slabs from
a single mold as a strand. Thus, a cast can consist of one
or more (usually two) strands. If a single mold is used, a
cast and a strand are identical notions. A cast and the
strands in the cast satisfy certain geometry restrictions:
All slabs in a strand have the same width and thickness,
two strands in a cast have the same thickness, and the
length difference between them (the length of a strand is
the sum of the lengths of slabs in the strand) is restricted.
We refer to a batch of steel and the slabs produced from it
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as a charge and the part of a strand associated with a
charge as a charge strand. A cast can thus be viewed as a
sequence of charges, and a strand as a sequence of charge
strands. As slabs in a charge have the same chemical
properties and are only modified mechanically later on,
the steel grades of slabs in a charge can take on only
limited sets of values. In addition, slabs in consecutive
charges are required to have similar grades. We call these
restrictions charge-grade constraints and grade-transition
constraints, respectively, and describe them in the section
on problem specification below. There are a number of
additional constraints for casting, which we describe
later.

A slab is subsequently rolled (thickness decreases and
area increases) into a mother plate with the same volume
and steel grade as the slab and a rectangular size of up to
5 m X 50 m. Mother plates are finally cut across their
width and length into order plates—plates corresponding
to specific orders—with the same thickness and steel
grade. Thus, a mother plate can be viewed as a two-
dimensional pattern of order plates, though in our
application more than 95% of mother plates have order
plates arranged in one-dimensional patterns. Throughout
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this paper, we assume the previous simplified model of the
actual steel grade constraints.

The rolling machines have restrictions on the
dimension transformations they can perform in creating
mother plates from slabs, and slabs and mother plates
have minimum and maximum length and width
restrictions, discussed in the next section. Some slabs,
called surplus slabs, are produced without a target mother
plate in mind, but simply to satisfy the charge-weight
constraint, i.e., the condition that a charge consists of,
say, 250 to 300 tons of slabs. We call the other slabs order
slabs, because order plates are produced from them.
The different facilities and machines associated with the
above production steps—such as the casters, the rolling
mills on which mother plates are rolled, and the refining
facilities—have daily capacity limits, and, for some of the
facilities, minimum usage targets. The usage targets are
imposed for productivity reasons. There are some
additional manufacturing steps and constraints involved
in plate production; some we did not model, and some
we do not describe because of lack of space.

In Figure 1(b), we show the hierarchical relationships
among the different intermediate and final products of the
steel production process. We depict a cast with two
strands in cast 1 and one with a single strand in cast 2.
Each charge consists of one or two charge strands, each
charge strand being a sequence of cast slabs, where each
cast slab consists of two to three slabs. Each order slab
corresponds to a mother plate; the mother plate, shown at
the right side of Figure 1(b), consists of three order plates
that correspond to orders with the same thickness but
different widths. The differing widths, and the fact that
mother plates have minimum length requirements, result
in some waste, which is depicted by the light-colored
area on the mother plate. We define the PD problem
for plates as the problem of determining the following:

1. The number of order plates that will be
manufactured for each order.

2. The set of mother plates from which the order plates
will be cut, along with the position of the order plates
on the mother plates.

3. The set of slabs from which the mother plates will be
rolled, one per mother plate.

4. The set of charges along with the constituent cast
slabs and slabs in each charge, and the location of the
slabs in the charge strands.

5. The set of casts, and for each cast, its constituent
charges and their sequence in the cast.

These must be determined while satisfying all capacity

limits, targets, and manufacturing constraints, and
maximizing various objectives or production metrics.
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For example, one objective is to maximize the number
of orders fulfilled by their due dates, another is to
minimize waste, and another is to maximize the average
number of charges per cast. We describe the objectives
and metrics in later sections. We refer to the above items
1 and 2 together as the mother-plate-design (MPD)
problem; 1, 2, and 3 together as the slab-design (SD)
problem; and 4 and 5 together as the cast-design (CD)
problem.

An additional manufacturing process we model is the
following. The plant usually has some plates, slabs, and
cast slabs in inventory. We define the inventory-allocation
problem as the problem of deciding which order plates
to manufacture from inventory, and assigning these to
specific inventory items (slabs are converted to order
plates by rolling and cutting).

In later sections, we give more detail while attempting
to abstract the most interesting constraints, objectives,
and computational issues in our application. We
emphasize that we describe a real-life model and
implementation in this paper and not just an abstract
model, and we deal with too many constraints and
objectives to be able to list them fully here.

Related work
We are not aware of any optimization model in the
literature that deals with the PD problem for plate
products in its full generality. In a survey on the use
of mathematical programming applications in the steel
industry, Dutta and Fourer [1] suggest that “cutting stock
optimization to maximize overall yield of multistage
production processes” in steel plants was not addressed
prior to their survey, and such work “would go beyond
most previous work on the cutting stock problem, which
has used single stage models.” In recent, related work,
Moreno et al.! study a PD problem for steel billets and
use multiple mixed-integer programming models to solve
it. The problem they study can be viewed as a special case
of the PD problem defined in this paper. In their problem,
there is no distinction between slabs and order plates,
because the rolling and cutting steps are not performed
on slabs. Second, a cast slab contains slabs associated
with a single order, and finally, they generate a single cast
with a predetermined width. See also Menezes et al. [2]. In
other work, Harjunkoski and Grossman [3] and Chang,
Chang, and Hong [4] study variants of the PD problem
for coil products made using continuous casters. See
Pacciarelli and Pranzo [5] and Lee et al. [6] for other
production scheduling problems in the steelmaking
industry, and for solution techniques for these problems.
Some of the other subproblems defined above clearly
resemble well-known optimization problems. The MPD

'L. Moreno, M. Poggi de Aragio, O. Porto, and E. Uchoa, “A MIP Approach to the
Continuous Casting Production Planning,” manuscript available from the authors.
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problem is closely related to (though more general than)
the two-dimensional cutting stock problem (2D CSP). We
emphasize that mother plates do not resemble stock in
that they do not have prescribed dimensions, and their
dimensions have to be determined. In spite of this
difference, one can use the standard solution approach for
the 2D CSP, namely delayed column generation, where
columns represent 2D patterns of order plates. See
Gilmore and Gomory [7, 8] and Vanderbeck [9] for work
on the 2D CSP. Further, it is possible to relate the MPD
problem to the multiple-class integer knapsack problem
with setups described in Perrot and Vanderbeck [10]. In
that problem, the items belong to different classes, and
if a class is used, the weights of items chosen for a class lie
in a weight range. These constraints are similar to, though
a special case of, the grouping constraints described in
the next paragraph. Vonderembse and Haessler [11]
describe a problem related to the division of cast slabs
(“master slabs” in their terminology) into slabs, and a
solution approach implemented at Bethlehem Steel.

The PD problem is fairly complex, as the MPD
subproblem already generalizes the 2D CSP. Further,
there is a nonlinear relationship between slab dimensions
and the corresponding mother-plate dimensions.
Modeling the entire problem as a single mixed-integer
linear program, which is practically solvable by exact
branch-and-bound methods, is not a realistic option.
We tackle the PD problem by decomposing it into an SD
problem and a CD problem. Our goal in the SD problem
is to create a collection of mother plates or 2D patterns of
orders whose properties meet the following restraints:

* Dimension constraint—The mother plates can be
rolled from slabs with a common thickness and width.
* Grouping (by grade) constraints—The collection can
be partitioned into subcollections, with two
conditions:
® Condition I—Each subcollection of slabs satisfies
the charge-grade constraints.
e Condition 2—The weight of a subcollection allows
it to be further partitioned into an integral number
of charges.

Condition 2 is equivalent to saying that there is an
integer ¢ > 0 such that the weight of a subcollection lies in
the range 250 ¢ to 300 z. The MPD problem can be viewed
as the SD problem without the dimension constraint.

In the Solution overview section below, we explain how
we fix the thickness and width of slabs in the SD problem,
thereby eliminating the dimension constraint. Finally, our
goal in the CD problem is to use slabs generated in the
SD problem and generate a set of feasible casts. We
emphasize different objectives in the SD and CD
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problems, though minimizing waste and maximizing

the number of orders fulfilled by their due dates are
important in every phase of our solution approach. We
essentially solve the SD and CD problems by means of
column generation; in CD, the columns correspond to
casts, and in SD, the columns correspond to mother-plate
patterns and slabs. To generate a single cast, we solve an
SD problem. We describe our solution approach in more
detail below.

The PD optimization tool in which we implemented
our solution approach consists of different modules
corresponding to the different subproblems defined
above. The typical flow of activities in planning daily
production using the PD tool is as follows. An updated
order book (list of orders) is provided as input. The order
book contains a set of realized or planned orders with
associated due dates—usually based on some available-
to-promise (ATP) analysis—and a processing date on
each machine or resource based on a rough capacity plan.
The first step is to match the order book to available
inventory using the inventory allocation (IA) module.
Typically less than 10% of the order book is handled from
inventory. To design the order book for manufacturing,
the PD problem is solved by iteratively invoking the
SD and CD modules.

The remainder of this paper is organized as follows. We
first give a detailed description of the PD problem, and
then an overview of our solution approach for this
problem emphasizing the interactions between the SD
and CD modules. We then discuss the SD module and
the IA module, followed by a description of the CD
module. We discuss some computational issues, provide
a summary of the efficiency gains that can be achieved
using the PD tool, and report results.

Problem specification

We now set out in more detail the specific problem we
solve in this paper in terms of inputs, outputs, and
constraints for production design. The inputs to the
problem are the following:

e An order book, i.e., a set O of orders.

e A set C of casters, and for each caster i € C, a set T;
of mold thicknesses.

¢ A set R of rolling mills.

A set G = {g;} of grades.

* A set H of mixable grade sets, where each grade set
S; € H is a subset of G.

e A directed graph GT = (V, E) representing allowed
grade transitions between consecutive charges; each
node in V' corresponds to a grade set in H, and an arc
(i, j) € E from node i to node j implies that a charge
with grade set i can be followed by a charge with
grade set j in a cast.
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* A set F of facilities (including the casters), and for
each facility /'€ F, an upper bound on its capacity Uy
and a minimum usage target L, The upper bounds
give the maximum amount of steel that can be
processed on these facilities. The usage targets
are usually zero except for the rolling mills. For
individual casters and refinement facilities within
casters, the bounds are given in numbers of charges
that can be processed.

Each order in the order book comes with a minimum
and maximum number of plates. If the number of
designed plates for an order lies within the specified
minimum and maximum values, the order is said to be
complete. Orders with due dates within a fixed number of
days of the current date (usually three) are designated as
rush orders. Each order has a grade from the set G, and
orders in a mother plate have the same grade. A mother
plate has the same grade as its order plates, and so
does the slab from which it is rolled. Orders in a mother
plate can have different widths and lengths and can be
packed in one-dimensional (simple) patterns, shown in
Figures 2(a)—(c), or two-dimensional (mosaic) patterns,
shown in Figure 2(d). The parameters L, and L.«
specify the lower and upper bounds on the lengths of the
mother plates. These are not constant and depend on
the thickness, width, target slab geometry, and planned
route of the mother plate, but not on its one- or two-
dimensional nature. For simple patterns, the number
of order plates, the number of distinct orders, and the
difference in width between the widest and narrowest
orders are all bounded above by specified numbers.
Orders with different widths, as in Figure 2(b), result in
(vertical) waste. If the combined length of the orders is
less than L, as in Figure 2(c), the region to the right of
the orders is treated as (horizontal) waste. One can add a
surplus plate, as in Figure 2(d), such that the length of the
surplus plate plus the combined order length is L, or
more, thus avoiding horizontal waste. A surplus plate
does not correspond to any current order, but to a
potential future order, and has a minimum and maximum
length derived from the expected future order. Surplus
plates also have a minimum and maximum length, which
comes from the expected minimum and maximum lengths
of future orders. We call a set of orders that can be placed
together on the same mother plate an order component.

Each caster i € C makes casts with at least /; and at
most u; charges, with each charge weighing between wi/;
and wu; tons. The thickness of a cast made in caster i must
lie in the set T}, and all slabs in a cast must have the same
thickness. A cast can have one or two strands; we discuss
only double-strand casts in this paper. In such casts, all
slabs in a strand have the same width. The widths of the
two strands can be different, but here we discuss only
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plate.

equal-width strands. Each charge in a double-strand cast
has two strands, and the width and thickness of a charge
strand are the same across all charges in the cast. The set
of slab grades in a charge must lie in H. Two charges
can be adjacent in a cast if and only if they have
compatible grade sets as given by the graph GT (i.e.,
there must be an arc between their grade sets in GT).

For a slab, its route stands for the combination of the
caster on which it is manufactured, the mold thickness
used, and the rolling mill where it is converted to a
mother plate. A mother plate has the same route as
the slab from which it is made. Each rolling mill has
restrictions on the minimum and maximum slab lengths
and widths it can handle. These restrictions vary with the
slab thickness. For a given slab thickness, a rolling mill
can handle any slab with lengths and widths between
the corresponding minimum and maximum widths
and lengths. In other words, for a given thickness, the
minimum and maximum slab lengths are independent of
its width. A slab and its corresponding mother plate have
the same mass and volume (because steel density does not
change). A mother plate has a width and length between
a minimum and a maximum value. These values are
functions of the dimensions and route of the slab from
which it is rolled and the thickness of the mother plate.
Further, the minimum and maximum lengths of a mother
plate are functions of its width. We give additional
constraints on casts, charges, slabs, and mother plates
when we discuss our solution modules.

Some important metrics are the following:

e Yield ratio—The ratio of the total weight of order
plates and surplus plates to the total weight of mother
plates.

® Surplus ratio—The ratio of the total weight of surplus
plates to the total weight of mother plates.
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* Average slab (or mother plate) weight—The total
weight of slabs (mother plates) divided by the number
of slabs (mother plates) manufactured.

® Surplus-slab ratio—Given by the total weight of
surplus slabs divided by the total weight of slabs.

® Rush-completion ratio—The ratio of completed rush
orders to the total number of rush orders.

The most important objectives for the PD problem are
maximizing the rush-completion ratio, the yield ratio, and
the average slab weight while minimizing the surplus
ratio and the surplus-slab ratio.

In our application, the inputs to the PD problem
consist of about 3,000 to 5,000 orders, each with a
demand for from one to 100 plates, with most orders
being for only one to five plates. There are about three or
four casters and about 15 to 20 different caster and mold
thickness combinations; i.e., the set 7= U,cT; has about
15 elements. There are about three or four rolling mills.
The set G consists of 50 grades or so, and the set H has up
to 150 subsets of G. The solution of the PD problem
usually consists of about 1,000 mother plates of ten tons
weight on the average, arranged in five to ten casts, each
consisting of five to eight charges per cast, for a total
of about 10,000 to 15,000 tons of steel in a solution
(equivalent to a day’s production).

Solution overview

In this section, we provide an overview” of the solution

approach and the flow of the engine in terms of how the
modules are invoked. Within this context, we provide a

description of how the geometry transformations among
a slab, a mother plate, and the geometry constraints at the

Based on S. Dash, J. Kalagnanam, and C. Reddy, “Method for Production Design
and Operations Scheduling for Plate Design in the Steel Industry,” U.S. Patent
Application No. 20060100727, May 2006.
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casts form a central thread of interaction between the
different modules.

Recall that the volume of a slab equals that of the
mother plate from which it is rolled. Let #,, wp, /, stand
for the thickness, width, and length of a mother plate,
respectively, and let ¢, wy, [ stand for the corresponding
dimensions of the slab from which it is rolled. Clearly
tp X wp X [y =t X wy X [ For a given slab thickness 7, let
[Winin» Wiax] be the allowed slab width range, and let
[Liin, Lmax] be the allowed slab length range. Suppose we
fix the desired slab thickness to 7;. Then a slab can have
a volume in the range [Zs WinLmin, s WmaxLmax].- NOW
consider the possible mother-plate dimensions from slabs
with the above range of volumes and assume that we fix
the mother-plate thickness and width to that of some
order plate. Then a feasible mother plate has an allowed
length range contained in [k, Kmax]s Where kp,;, and
kmax €qual, respectively, the minimum and maximum slab
volume divided by the product of the mother-plate
thickness and width. Conversely, if we take a specific
mother plate with volume ¥, a slab with thickness 7, can
be rolled to give the above mother plate if wg X [y = V/t,,
wy 1s contained in [ Wi, Wiaxl, and [ is contained in the
range [Lmin, Lmax]- In other words, the minimum allowed
width is the larger of V/(ts X Ly.x) and Wy, and the
maximum allowed width is the smaller of V/(ts X Lyin)
and Wi.x. We depict this relationship between the slab
and mother-plate geometries in Figure 3. The x-axis
represents slab width W and the y-axis represents slab
length L. Each curve represents a mother plate of
constant weight and the possible geometries of the
associated slab; i.e., a slab with width and length given by
a point on a curve can be rolled into the corresponding
mother plate. Clearly Sy has the largest volume and S; the
smallest volume. We depict W,,;, and W,,.. by vertical
lines and L,;, and L, by horizontal lines. The following
are a few useful observations from this graph:

* The width range for each slab can be represented
by an interval (intervals Iy, I,, and I3 stand for
the allowed width ranges for the three slabs).

e Large (heavy) mother plates (in the upper right
corner) and small (light) mother plates (at the bottom
left corner) have little flexibility in their slab
geometries.

* The width range of a slab can be increased by
decreasing (for large mother plates) or increasing (for
small mother plates) the size of the mother plates.

Suppose we fix the desired slab thickness to 7y and the
desired slab width to ws. The allowed slab length range
remains [Liyin, Lmax]- Therefore, a slab can have a volume
in the range [75WsLmin, fsWsLmax], and a mother plate with
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thickness and width fixed, as in the previous paragraph,
has an allowed length range [/nin, lmaxl, Where [, is at
least ki, and [ax 1S at most kyax. Certain values of /i,
and /. are not desirable in the sense that they may lead
to a lot of surplus plates or waste on the mother plates.
For example, if all order plates have a length of 10 m,
surplus plates are required to be at least 4 m in length,
and /;, and /.« are 12 m and 13 m respectively, then the
only feasible mother plates either have only surplus plates
or at least 2 m of waste. It is therefore clear that slab
width is a crucial parameter in our problem, and
identifying good slab widths (widths at which the surplus
or waste is minimal) is a central issue.

This suggests one possible mixed-integer programming
(MIP) approach to modeling the nonlinear relationship
between the slab and mother-plate dimensions:
Enumerate every possible slab thickness and width
combination. There are only about 15 possible values
of slab thickness, but about a thousand possible width
values, since slabs can have an integral width between 1 m
and 2 m, and therefore about 15,000 combinations. One
can then design a column-generation approach for the
CD problem based on this idea. Let the columns stand
for casts of different thicknesses and widths, and in the
pricing subproblem (finding casts with negative reduced
costs), solve an SD subproblem for each of the 15,000
combinations. This is clearly a wildly impractical
approach because, given the complexity of the SD
subproblem, we are able to approximately solve only a
few hundred SD subproblems in 30 minutes—the time
limit in our application.

Our approach is influenced by the above impractical
column-generation approach in that we work with a
formulation in which the columns are casts that overlap,
in the sense that they use some of the same orders.
However, we attempt to identify a small set of good
widths quickly, and we now describe how we do this.

Assume that we have fixed a caster and a slab thickness
for the caster, but no prescribed slab width. As discussed
earlier, this imposes a slab and mother-plate volume
range. We then solve the MPD problem (described in the
Introduction) to get a collection of mother plates, which
is, in a sense, the best possible collection of mother plates
if the grouping constraints are considered and the
dimension constraint ignored. We then compute the
width interval for the slab (as in Figure 3) from which
the mother plate can be rolled. We analyze these width
intervals to obtain good widths. For example, if the MPD
solution consists only of the mother plates in the figure,
any width in the interval I5 is good in the sense that
two mother plates in the solution can be rolled from
slabs with that width, whereas widths greater than the
maximum width in 7, are not so good, because either only
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one or no mother plates can be rolled from slabs of those
widths.

We represent each slab with a node in a graph and
introduce an arc if slabs have an overlapping width
interval to obtain an interval graph. We can now easily
determine slab clusters that have a common width among
them by enumerating the maximal cliques® in this graph.
As the CD problem focuses on generating a collection
of slabs with a common width, the interval graph
representation is very useful for identifying candidate
clusters of slabs to compose casts. For each slab cluster
corresponding to a maximal clique, we analyze the
number of good charges (i.e., charges where surplus slabs
do not have to be added to satisfy the charge weight
constraint) that can be formed from the slabs, and the
number of casts that can be formed from these charges.
This analysis yields a collection of good widths (more
precisely, width intervals). We call this process width
exploration. We then select a small set of widths from
these intervals, and for each of them, fix the slab width
and solve the MPD problem. We use these mother plates
to create candidate charges and casts, and thereby
columns of our CD problem MIP formulation (which
is a set-packing formulation). We iteratively select a
collection of casts, remove the orders used in these casts,
generate a few more casts, and select more casts until we
use up the casting capacity. The question naturally arises
whether the quality of the casts that are selected can be
improved by making use of the remaining casts (unused
slabs in these casts). Note that each invocation of the
MPD problem so far has taken into consideration only
the specific width for which we were generating a
candidate cast, and not the entire collection of widths.

We take the selected casts and treat them as templates;
i.e., we extract from each cast its thickness and width, and
the grade sets of the different charges, but throw away the
specific slabs in them. The quality of selected casts can be
improved (often substantially) by redesigning the mother
plates from scratch to the geometry and grade specified
by the templates. These geometry requirements for the
slabs can be translated into length ranges for the mother
plates to be designed. Observe that we can now solve an
MPD problem without the grouping constraints, as we
have already decided on the grade sets of the charges.
We call this process template filling.

Slab design

Mother-plate design
In the MPD problem, we take as input a list of orders
and a target slab geometry (specified by a caster, a

3A cligue is a set of nodes in a graph such that there exists an edge between any two
nodes in the set. Another way of defining this is that each node shares an edge with
every other node in the set.
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slab thickness, and a slab width range) and output a list
of mother plates along with the locations of order plates
on each mother plate. Each output mother plate can be
rolled from slabs with the target geometry. We repeatedly
solve the MPD problem with different inputs and
different parameters. We first describe the general
problem we solve, and then the specific variations in
different invocations of mother-plate design. We model
this problem as a 2D CSP with capacity constraints and
the grouping constraints described above in the section
on related work.

Each order has an associated list of facilities at which
it requires chemical or mechanical processing. The
capacity constraints reflect the fact that the total weight
of order plates processed at a given facility cannot exceed
a given capacity for the facility.

In our application, we considered the following
objectives. Given a set of designed mother plates, the
order-completion ratio equals the number of completed
orders divided by the number of used orders. An order is
used if at least one plate for the order is designed. The five
requirements were the following:

Maximize number of completed rush orders.
Maximize order-completion ratio.

Maximize yield ratio.

Maximize average mother-plate weight.
Minimize surplus ratio.

oo o

Obviously one cannot handle all five of these
requirements simultaneously. Let y. (y,) be vector-valued
variables such that the ith component of y. (y,) is 1 if the
ith order is complete (used), and 0 otherwise. We can
model the first objective (let Og stand for the set of rush
orders) as

max Z(yc)[.

€0y

It is not clear how to model objectives b—e by means of
linear functions. However, if we do not want to optimize
the functions in those objectives, but just impose lower
and upper bounds on them, we can do this with linear
constraints. For example, if we want the average slab
weight to be at least ten tons, we can insist that the total
weight of mother plates designed is at least ten times the
number of mother plates used. For each of the objectives,
we imposed a bound on the objective function value using
soft or hard constraints based on an analysis of the
expected objective values. In our application, the surplus
ratio was expected to be 3% or lower, and we imposed
an upper bound of 3% on the surplus ratio as a hard
constraint. We imposed lower bounds on the values of
the other objective functions with soft constraints and
penalized the violation of these constraints. For example,
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since we expected more than 90% of the rush orders to
be completed, we imposed the condition that the total
number of completed rush orders plus an integral slack
variable is at least 0.9 times the total number of rush
orders. We then penalized noncompletion of at least
90% of rush orders by using a nonzero coefficient for
the above slack variable in the model objective.

In addition to penalizing violation of the above
objective bounds, we also have an objective function
coefficient, or score, for each pattern based on how good
the pattern is with respect to each of the five objectives.
This score is a function of the weight of the mother plate,
the surplus weight on it, the associated waste, the fraction
of orders used in the mother plate that are completed by
the order plates therein, and the fraction of rush orders
completed by rush-order plates on the mother plate.

We create an integer program with integer variables x;
corresponding to one- or two-dimensional patterns of
order plates (the variables count the number of times
a pattern is used). 4 pattern is one possible way of
arranging order plates on a mother plate. We impose the
usual cutting stock constraints: The variables x; are non-
negative, the total number of designed plates of an order
cannot exceed the maximum demand for the order, and
the total capacity of any facility used for the designed
order plates cannot exceed the facility capacity. For
rolling mills, the total weight of mother plates processed
in them must lie in a range. In addition, we introduce
non-negative integer variables z; that count the number
of multiples of a charge weight that can be designed for
a grade set. Suppose the orders in a pattern have a grade
g, and g belongs to five different grade sets. We create
five copies of this pattern and assign each copy a distinct
grade set. We then add the constraint that the total
weight of patterns for a given grade set i roughly equals
the mean charge weight times z;.

Let A stand for the matrix of patterns, i.e., 4; gives the
number of plates of order 7 in pattern j. Let B be a matrix
in which Bj; equals the weight of pattern j if it has grade
group i, and 0 otherwise. Let D be a matrix such that D;;
gives the weight of orders in pattern j that need processing
on facility 7. If facility 7 stands for a rolling mill, D; gives
the weight of the mother plate if the route of the mother
plate includes that rolling mill, and 0 otherwise. Let dp
and dy stand for the lower and upper bounds on the
demand for an order. Let the vectors L and U stand for
the lower and upper bounds on the weight that can be
processed at the different facilities. The components of L
are zero except for the rolling mills. Let diag(dy) and
diag(dy) stand for the diagonal matrices with d and dy
arranged on the diagonal. Let y. and y, be as described
before. Let w, s, and v stand, respectively, for the vectors
of pattern weights, surplus weights, and waste weights.
Assume that there are m orders. Assume that we want
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the bounds on requirements a—e to be k,, - -, ke, and
let s,, - -, sq stand for the penalty terms associated with
requirements a—d. Let 1 stand for a vector with all
components equal to one of appropriate dimension. Then
1" stands for the sum of the variables x;. The integer
program we solve is this:

T T
maxc x+1 z—s, —s, —5. —35

b d’

subject to the constraints

Ax < dy,

diag(d, )y, < Ax < diag(d,;)y

u’?
—25 < Bx — 275z <25,

L<Dx<U,

Z(yc)i + Sa 2 ka’

i€0y

—

T =T
Ly, +s,>k1 v,
(w— v)Tx +5, > kaTx,
T -T
wox+s, >kl x,

T T
s x <kw X,

X,z >0,
X, z integral,

and

Ve Vo €10, 1}

A natural question is why we use two different ways
of handling the same objectives, i.e., why we have
mother-plate scores that take into account surplus
weight in addition to the surplus ratio constraint. The
bounds in the soft and hard constraints associated with
requirements a—e are only estimates based on data for
multiple days, but may not be suitable for a particular
day’s data. Suppose that an average surplus ratio of 3%
is expected, but on a particular day a solution with a
surplus ratio of 1% is easily obtained. In such a case, the
surplus ratio constraint plays no role, and a solution of
the MPD problem could be trivially non-optimal with
respect to surplus ratio. For example, a solution with a
surplus ratio of 1% could be made worse by taking a
mother plate and adding a surplus plate on it. Without
mother-plate scores, the second solution would be
treated as equal to the first.

As in the usual CSP, we (approximately) solve the
linear relaxation of the above integer program with
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delayed column generation. We call the integer program
above with the entire set of patterns the master IP, and
the associated linear relaxation the master LP. We call the
IP (LP) defined by a partial set of patterns the partial
master IP (LP). We start off with an initial set of patterns
(or, more precisely, the copies of patterns with assigned
grade sets), the above constraints, and the variables
relaxed to be real numbers. The column-generation
subproblem consists of taking the optimum dual solution
of the partial master LP and finding one or more negative
reduced-cost patterns. The partial master LP is then
augmented with columns corresponding to the negative
reduced-cost patterns.

In our application, we have up to 5,000 orders. It is
clear that solving the master IP exactly is not feasible
in a reasonable amount of time, and we solve it only
approximately.

Column generation

To solve the column-generation subproblem (CGP), we
iterate through every combination of order component,
target route, and order width. Recall that mother-plate
lengths depend on the width of the mother plate (which
equals maximum order width for simple patterns), and
also on the target route. For each such combination, we
compute /i, and L. (based on the target slab geometry)
and then find negative reduced-cost patterns and add
them to the master problem. Traditionally in cutting
stock, the CGP for simple patterns is modeled as a
knapsack problem. This is easy to do if the objective
function coeflicient for each pattern in the master
problem is a linear function of the order plates, surplus
plates, and waste in the pattern, and the width and length
of the mother plates are fixed. Unfortunately, the
objective function coefficient for each pattern in our
application is a nonlinear function, and the usual
knapsack approach does not work.

Fortunately, most of the order components have very
few orders (two or three), with a few components having
up to 50 orders. Thus, for most of the components, simple
heuristics suffice. We use the following packing heuristics
for simple patterns:

e KPOG (knapsack with fixed orientation and
guillotine cuts): We assign weights to the orders and,
for each order as the maximum-width order in a
mother plate, we solve a knapsack problem. The
objective function value of a solution to this knapsack
is an approximation of the reduced cost of the
corresponding pattern.

* BFD (best-fit decreasing): We simply sort all orders
on the basis of the dual prices of orders and whether
or not orders are rush orders, and apply the BFD
bin-packing heuristic to create bins.
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Five stages in the operation of the NBWM algorithm (colored rectangular boxes are order plates).

For mosaic patterns, we use the following heuristics:

e FBS (first-best strip): See [12]. Many other algorithms
from the literature can be adapted to generate feasible
mosaic patterns.

e NBWM (non-bipartite weighted matching algorithm):
See [13].

Figure 4 illustrates the operation of the NBWM
algorithm in the context of mosaic pattern generation.
Groups of order plates placed adjacent to each other
represent partially built mother plates. A line (or edge)
joining a pair of order plates or partial mother plates
indicates that they can be packed together on a mother
plate. We assign such an edge a numeric weight that
reflects the desirability of packing the orders or partial
mother plates together. In each stage, we calculate a
maximum weight matching of partial mother plates,
join partial mother plates to get larger partial mother
plates, and continue until one or more complete mother
plates are available (stage 5).

Orders have dual values assigned to them by the master
problem. Typically, in initial invocations to the CGP, we
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make these values identical for all orders, but later we
obtain them from the partial master LP, and thus they
vary by orders. When the dual values are identical, the
objective of the CGP is to create feasible mother-plate
patterns (which are also desirable with respect to various
criteria, such as the amount of wasted metal on the
mother plates). When the dual values are not identical,
the CGP involves creating mother plates such that the
reduced cost of the mother plates is as small as possible.
We designed dual-value-sensitive variations of our
heuristics by sorting on dual values of orders in FBS

or BFD or incorporating dual values into weights for
KPOG or NBWM. We do not explicitly use the dual
values associated with the capacity and grouping
constraints in our CGPs, but we do use them in testing
whether or not the columns returned by the subproblems
have negative reduced cost.

Solving the master IP

Various authors have solved CSPs by combining the
delayed column-generation scheme to get LP bounds
along with enumeration using a branch-and-bound tree
[14, 15], though usually with only a few hundred orders
(see also [16]). Our approach to solving our variant of the
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CSP can be viewed as diving down the branch-and-bound
tree to some leaf. We repeatedly do the following until we
have an acceptable integer solution to the MPD solution.
We perform delayed column generation until our partial
master LP solution value changes minimally from one
iteration to another, then solve the partial master IP.
Clearly this IP solution may not be a good approximation
to the optimal master IP solution. To improve the quality
of this solution, we fix a part of the IP solution; i.e., we set
the values of a number of variables to their IP solution
values. We then use the fixed variables to update the
right-hand sides and get a modified integer program.

Invocations of the MPD problem

The MPD subproblem is invoked many times by the CD
module. The different invocations can be grouped into
two distinct types: grade grouping and template filling.

In the grade-grouping invocation, the CD module
invokes the above subproblem first with no restriction on
the slab widths corresponding to the designed mother
plates (the CD width exploration phase), and then later
with the slabs restricted to specific widths. In either case,
the MPD module returns mother plates that can be
partitioned in different grade groups, with the weight per
grade group being an approximate multiple of the mean
charge weight. In these invocations, usually only a partial
list of orders is given as input. Further, these invocations
are for the design of slabs on a specific caster. Because
these invocations are for partial order books, where the
expected values of the different objective criteria are
not known, the mother-plate scores are the primary
determinant of the objective function.

With regard to the template-filling invocation, recall
that templates are descriptions of the charge layout in
casts, i.e., the charge-grade groups in a cast and their
sequence. When the CD module has made a final decision
regarding the cast templates, it removes all slabs from
these cast templates and invokes the MPD module with a
precise count of the number of charges to be designed for
each grade group. This type of invocation is performed
only once, as opposed to grade-grouping invocations.
This can be handled conceptually by fixing the variables
z,; for the different grade groups.

Once a collection of mother plates have been designed,
a set of possible slab geometries is created for each
mother plate, as discussed above in the section on slab
design.

Inventory allocation

The inventory consists of surplus plates, slabs, and cast
slabs. The geometry of a surplus plate is inflexible, since
all dimensions (thickness, width, and length) are fixed.
Further, surplus plates are relatively small, which severely
restricts the orders that can be cut from them. Usually
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only a single order plate can be cut from a surplus
plate. Slabs have moderate design flexibility, since the
associated MPD is not fixed. Cast slabs obviously have
higher design flexibility compared with slabs, because the
sizes of slabs on a cast slab can be chosen. One can vary
the number of slabs cut from cast slabs as well. The
inventory allocation module of the PD tool returns a list
of slabs to be cut from cast slabs, a list of mother plates
to be made from the slabs, and the location of order
plates on the mother plates.

The inventory allocation problem can be viewed as
a variant of the multiple-knapsack problem or as a
generalization of the 2D CSP. In the traditional multiple-
knapsack models in the steel industry, the decision
problem is to allocate orders directly to the existing stock
materials while maximizing the allocated profits (order
weights). Vasko et al. [17], Kalagnanam et al. [18§],
Dawande et al. [19], and Forrest et al. [20] studied the
allocation problem of coil products in the steel industry
and proposed heuristics including matching and bin
packing. The inventory allocation problem we tackle is
different because of the dimension transformations from
slabs to mother plates. For example, in the cast-slab
allocation problem, the cast-slab materials are cut into
multiple bins (slabs) that are rolled into mother plates
and then cut into orders.

The main goal in the inventory allocation problem is
to maximize the weight of order plates designed from
inventory items while minimizing waste. The way we
model and solve this problem is very similar to our
approach for the MPD problem. We decompose the
problem into a master problem, which selects from
candidate allocation patterns for each inventory item
(surplus plate, slab, or cast slab) and a subproblem that
generates these patterns. An allocation pattern is an
MPD compatible with the geometry of the inventory
item. For example, an allocation pattern for a plate or
slab is a candidate mother plate, while that for a cast
slab is a collection of candidate mother plates, each of
which corresponds to a slab, with the total weight of
mother plates in the pattern equal to the cast-slab
weight. In a sense, we have one subproblem per
inventory item type.

There are two main differences with respect to the
MPD problem. The first is that only one allocation
pattern can be selected per inventory item, whereas a
pattern can be repeated any number of times in mother-
plate design. The second difference is that the grouping
constraints are not present in inventory allocation. As in
mother-plate design, we assign a score generated by a
complex calculation to each allocation pattern. The score
information is calculated as the weighted sum of multiple
attributes, such as due dates, allocated order weights, and
yield rates of the allocation patterns. Note that during
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pattern generation, orders can belong to multiple
allocation patterns. Order feasibility is resolved by the
master LP and IP.

Assume that we have generated multiple candidate
allocation patterns for each inventory item. The master
problem selects patterns by solving the integer
programming formulation CGMaster defined as

maximize Z E Com ™ Xkem M
k)

keK meCAP(k
subject to Z Z Api X < (dy), Vi€ O, (2)
keK meCAP(k)
> X, <1, VkeK, (3)
meCAP(k)
X, €10, 1}, )

and some additional constraints.

Here K stands for the set of inventory items, CAP(k) is
the set of candidate allocation patterns for the inventory
item k, and xy,,, = 1 if the mth allocation pattern for item k
is selected, and 0 otherwise. Here Ay,,; stands for the
number of plates of order 7 in the mth allocation pattern
for item k, and ¢y, stands for the cost of the mth
allocation pattern for item k. Constraint (2) restricts the
number of plates of an order that can be allocated from
inventory to, at most, the upper bound on the demand for
order i. Constraint (3) states that only one candidate
allocation pattern can be selected per inventory item. If
we know all of the feasible candidate allocation patterns
beforehand, an optimal integer solution of CGMaster
defines the best collection of feasible allocation patterns
for the inventory materials.

The overall algorithmic flow implies that the success
of the algorithm strongly depends on generating good
allocation patterns within a reasonable time. The pattern-
generation subproblem for inventory plates is quite
simple: Check whether an order plate can be cut from
an inventory plate given the associated steel grades and
geometries. For an inventory slab, we design mother
plates compatible with the geometry of the slab using
the same ideas and pattern-generation code used in the
pattern-generation subproblem of the MPD problem.
The cast-slab allocation subproblem is a bit more
complicated. We need to decide how to cut an inventory
cast slab into slabs and then how to generate mother
plates compatible with these slabs. Our approach is to
generate mother-plate patterns compatible with the cast-
slab width and thickness (slabs cut from a cast slab have
the same width and thickness), and then to combine
mother plates to form a cast-slab allocation pattern using
a simple bin-packing algorithm.
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Cast design

The CD problem is to design casts for the input orders
so that daily capacities are met and production
constraints are satisfied. In addition to the SD objectives,
some of the objectives emphasized during cast design are
maximizing the rush-completion ratio, minimizing the
surplus-slab ratio, and maximizing the average number
of charges per cast.

The four main steps in cast design—candidate cast
design, cast selection, cast template determination and
filling, and cast-slab design—are shown in Figure 5 and
described in the following sections.

Candidate cast design

In this step, several candidate casts are designed for the
given input order plates. This is done iteratively, once for
each combination of caster and mold thickness. Each
iteration starts with the determination of good widths at
which to design casts to fulfill as many rush orders as
possible while keeping the weight of surplus slabs or
plates low. This is followed by the design of candidate
casts at each of the selected widths.

Cast-width determination

At certain cast widths, only mother plates with a lot

of surplus plates or waste can be generated. Discarding
such poor-quality mother plates entails designing many
surplus slabs to satisfy the charge weight constraint and
requiring a minimum number of charges per cast. Even
if mother plates with minimal waste or surplus can be
designed, there may not be enough rush weight, i.e., the
weight of slabs whose constituent orders are rush orders.
We also want other slab design metrics such as average
slab weight to have desirable values.

First, a set of slabs is designed while optimizing the
metrics of the SD objectives by solving an SD problem
with grade-grouping constraints but no dimension
constraints. Note that each of the slabs has a range
of feasible widths and a slab grade. Using the grade-
transition property, as given by the graph GT, the
set of grades for the set of slabs is divided into grade
components. On the basis of grade components, a slab
component is constructed for each grade component by
collecting slabs belonging to the grades in the grade
component. Note that no cast can contain slabs from
different slab components. Grades in each grade
component correspond to the union of mixable grade
sets in H.

For each grade set S; present in a grade component,
slabs whose slab grade is in S; are collected in a slab set.
Slabs in a slab set can be put together in a charge. The
width ranges of the slabs in a slab set are represented by
an interval graph. By using a polynomial algorithm [21],
maximal cliques of the interval graph are determined. The
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slabs are collected for each of the maximal cliques. This
provides us with sets of slabs, each of which is related to a
grade-width clique. Note that a slab can belong to more
than one clique. By using a set-packing formulation with
the objective of minimizing surplus within a charge,
grade-width cliques are selected so that a slab belongs to,
at most, one grade-width clique. This formulation was
solved using ILOG CPLEX** 9.0.

So far, we have grade-transition components, each
of which has a set of grade-width cliques. Each grade-
width clique ¢; contains slabs that can go into a charge
and have a common width range, r;. Let r* be the
width range spanning all r;. Then, for each width
w € r* such that w is divisible by 10, the sum of
rush-potentials of all of the slabs present in the grade-
width cliques whose common width range contains w
is computed. The rush potential of a slab is defined as
max(0, rush-order weight in a slab — surplus in the slab).
The width that provides the most total rush-potential
(for all grade-transition components) is selected as the
width at which slabs are designed and cast. This step is
repeated MaxWidthIterations times—each time
excluding the widths that are selected in the previous
iterations. The value of MaxWidthIterations is
determined experimentally.

For each of the choices of width, the SD module is
given the chosen slab width as input. Further, slab design
is also given the capacity of each rolling mill. The rolling
mill capacity is determined by using the capacity limits for
each rolling mill multiplied by an external parameter,
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Select optimal cast considering
capacity and objectives

capacityMultiplier. The value of this parameter
indicates the amount of flexibility that should be given
(consequently, the amount of runtime allowed) to the CD
phase. The set of slabs supplied by this SD step are next
used for designing candidate casts.

Design of candidate casts firom slabs

The purpose of this step is to design several candidate

casts based on the given set of slabs for the subsequent
step of cast selection. This step contains three substeps:
making half-charges, pairing half-charges into charges,
and sequencing charges into casts.

The first step in cast design is building charge-strands
(or half-charges, because the casts in this problem are
restricted to have exactly two strands). For the given set
of slabs, grade-width cliques are determined in the same
way as described in the previous step of selecting widths,
except for where the interval-graph-based maximal
cliques are determined (because all slabs are trivially in a
maximum clique with the width range specified by the
chosen width). The list of slabs in each grade-width clique
is sorted by an externally specified sorting function. This
list is chopped into sublists, where each sublist contains
slabs whose cumulative weight is no more than half the
maximum charge weight.

The next step is to pair the set of half-charges into
charges such that the variation of attributes, e.g., the
number of grades in a charge and the number of possible
refinement routes, is minimized. This is accomplished by
computing a max-weight non-bipartite matching on a 357
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graph with half-charges as nodes, edges between all pairs
of nodes, and an edge weight on each edge that is
inversely proportional to the variation of attributes in
the charge that results from pairing the half-charges
corresponding to the vertices of the edge.

CD problem

At this point, a cast is basically a sequence of charges with
two additional restrictions. The first restriction is that the
number of charges in a cast should be within a range
[/, ug] that is dependent on the grade set g of the
constituent charges and the caster. The second restriction
is that the grades of any two consecutive charges must
be compatible according to the grade-transition graph.
The min limit /, on the number of charges is a soft
constraint in the sense that when the number of

charges in a cast n is below /,, the cast can be appended
with (/, — n) surplus charges. The CD problem is to
build casts for k charges from a given set of charges

so that (in the following order of priority) 1) the
quantity (rush weight — surplus weight) is maximized;

2) the number of charges per cast is maximized; and

3) the number of grade transitions between charges

per cast is minimized. In addition, the objectives are
calculated over ¢ best casts so that the sum of numbers
of charges in these ¢ casts is at least k, and the sum of
numbers of charges in the top ¢ — 1 casts is less than k.

Charge sequencing

The algorithm used to solve the CD problem is called
the extended branch-and-bound (EBB) heuristic. (For a
detailed description, see [22].) EBB starts with a solution
in which each charge is a cast fragment. Different possible
ways of sequencing cast fragments result in different
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candidate cast can be designed by collecting
transitions that have been selected so far

solutions. The decision on whether two fragments can be
merged depends on CD constraints. EBB searches among
various possible solutions (Figure 6). Among the current
possible solutions, the best m solutions are chosen on the
basis of the objectives, where m is a parameter external to
the algorithm. Among the best solutions, each possible
merge is evaluated, and the top b best fragment merges
for each solution are chosen, where b is the beam width,
which is specified as a parameter to the algorithm. The
best merge is the one that results in the maximum value
of (rush weight — surplus weight) per charge among all
possible merges; ties are broken on the minimum number
of grade transitions per charge. This is similar to the
multifragment method for constructing initial solutions in
solving traveling salesman problems [23]. The crucial
difference here is that up to b choices of merges at

each level are simultaneously explored. Note that each
fragment is a linear sequence of charges with no forks.
Again, the best m solutions in the resulting b.m solutions
are chosen. This continues until no more merges are
possible or the time limit, which is specified as an external
parameter, is reached. EBB finally returns the m best
solutions.

A cast is created that corresponds to each fragment in
each solution. If the number of charges in a cast is less
than /,, surplus charges are created up to /, and appended
to the cast.

It turns out that sometimes creating long casts may not
be a good idea for reasons related to capacity. If the
remaining capacity of a resource is ¢ charges, but the
demand of a cast on that resource is more than ¢ charges,
that cast cannot be chosen, however good it may
otherwise be. However, a part of the cast whose demand
on the resource is no more than ¢ can be chosen. To take
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care of such situations, cast solutions with shorter casts
are created by running EBB r times, where r is the
difference between the maximum NCC,,, over all grades
and widths and the minimum /, over all grades and
widths. In the ith run 0 < i < r, each fragment is limited
to being no bigger than max(/,, u, — i) charges.

Cast selection

The plant has daily capacity limits for each resource, such
as casters, rolling mills, and refining stations. Some of
these capacities are in the number of charges and some
are in tons of weight.

Among all of the casts designed in various solutions
through the various runs of EBB, the cast-selection
step chooses casts such that no resource capacity is
exceeded and no order plate is present in more than
one cast, while maximizing on the objective defined
in the following way. The objective function coefficient
of cast i is composed of the rush potential of the cast
(rush weight — surplus weight), denoted as C;, and the
cumulative objective value of slabs in cast i, as calculated
during slab design, denoted as D;.

This is accomplished using a set-packing formulation
with side constraints to enforce capacity limitations. Let 7
stand for the set of designed casts, and let the decision
variable x; denote whether cast j € /is selected. Let 4 be a
matrix such that 4; equals the number of plates of order
present in cast j, and let D be a matrix such that D; stands
for the weight of slabs in cast j that require processing on
facility f € F.

Maximize E r.d.x.
A
Jel

subject to

Z Al./,x/. <1, forallordersi € O,
jer

Z, D X <U s for all facilities f € F,
je

x; € {0,1}, Vje L

Cast-template determination and filling

For each of the selected casts, a cast template is
constructed. A cast template consists of charge templates
corresponding to the charges in the cast. Each charge
template contains the salient information about the
corresponding charge, such as the set of grades in the
charge, the width and the thickness of the slabs in the
charge, the set of rolling mills to which the slabs in the
charge are assigned, the refinement processes a charge
uses, and the weight of the charge. The charge-template
specifications are grouped and indexed by tuples of

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

mixable-grade sets, width, thickness, rolling mill, and
refining process. For each template-specification tuple,
the corresponding list of charges and their weights are
collected.

This information is passed to slab design for designing
slabs. The output of slab design (template-filling mode) is
a set of slabs for each specification. One by one, each of
the charges corresponding to the specification is filled up
to its specified weight using the slabs from the set of slabs.
If the weight of a charge falls below the minimum, the
charge is filled with surplus slabs that are constructed
using one of the slabs in the charge as a replica.

Cast-slab design

All slabs in a cast slab must go to the same rolling mill.
Moreover, the total weight of cast slabs in a charge
should be within the minimum and maximum charge
weight limits. The number of cast slabs in a charge strand
of a charge can differ from that of the other charge strand
in the charge by at most 1. There is also a limit on the
maximum allowed difference in length of charge strands
in a charge. At the boundaries of charges of different
grades and at the beginning and the end of casts,
because of production issues such as grade mixing and
degradation, there are constraints on the grades of cast
slabs that can be placed in these areas. We solve this
problem for each charge separately using heuristics and
MIP formulations, where the problem of combining the
smaller slabs into cast slabs and the problem of selecting
cast slabs to satisfy charge-level constraints are solved
simultaneously.

Computational issues and results

A crucial limitation imposed by the real-life setting of our
application is that there are numerous constraints that
can only be approximately modeled either because they
are too complex or because their precise description is not
known. An example of the latter is the entire set of
feasibility constraints on mother-plate patterns. Every
mother-plate pattern is checked for manufacturing
feasibility (taking into account issues such as the rolling
and cutting precision) by a complex and time-consuming
software application at the client’s site, which we treat as
a black box. The approximate model of this black box
given to us allowed us to generate mother-plate patterns
that were feasible at least 95% of the time, but not always.
A time limit of 30 minutes was imposed on our code,
which runs on a desktop PC with an Intel P6 CPU and
4 GB RAM. Because a substantial portion of that time is
taken up by the feasibility-checking black box, the extent
of column generation we can perform to solve the MPD
subproblems is restricted. Further, the very large number
of constraints implies that in some cases there are no
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Table 1 Percentage of improvement in objectives as a result of
template filling.

Objectives Improvement (%)
Rush-completion ratio 223
Orders completed 13.7
Average slab weight 3.7
Surplus ratio 0.0
Yield ratio —0.2

Table 2 Comparison of PD tool results with results using prior
method.

Objectives PD tool PD tool
Setting 1 Setting 2
(% improvement) (% improvement)

Rush-completion ratio 19.0 -1.7
Average slab weight 8.7 6.5
Surplus ratio —17.9 -3.6
Yield ratio 1.4 1.5
Surplus-slab ratio -39.0 54.0

reasonable alternatives to simple heuristics or exhaustive
enumeration.

We use a combination of MIP models and heuristics
to solve the PD problem. We use CPLEX 9.0 to solve
the linear programming problems arising in different
contexts, and also a number of MIPs. For the MIPs, we
use different parameter settings depending on the specific
subproblem. We solve about four to six MPD problems
with grouping constraints (one with no slab width
specified during width exploration, and the rest
with specified slab widths) for each of the 15 or so
combinations of casters and thicknesses, for a total
of about 50 to 100 MPD problems. This implies a time
limit of about 30 seconds per subproblem of this type,
which is why we do not combine a branch-and-bound
enumeration with column generation. For these
problems, we are satisfied with approximately optimal
solutions, and we also use specialized rounding heuristics
that produce solutions whenever CPLEX cannot produce
a solution within the prescribed time limit. The EBB
heuristic runs quickly, and the set-packing formulation
for cast selection is relatively easy to solve to exact
optimality, since we usually generate at most a few
hundred casts before selecting from five to ten cast
columns from them.

The template-filling problem (mother-plate design with
grade groups fixed) is fairly time-consuming. We spend
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up to a third of our budgeted time on this problem,

but this is justified because of the overall improvement
in the quality of the casts. In Table 1, we illustrate the
percentage of improvement in various objectives after
template filling is performed using the cast templates from
the final selection of casts. It is based on one specific data
set containing 3,815 orders with a total weight of about
38,000 tons, of which 626 of the orders are rush orders.
The solution after template filling in Table 1 consists of
eight casts and 720 mother plates (the number of casts
does not change in template filling). The rush-completion
ratio is the ratio of the number of completed rush orders
to the total number of rush orders. For reasons of
confidentiality, we cannot provide the exact values of the
different objectives before and after template filling, but
we give a range for these values. Before template filling,
around 1,000 orders and between 40% and 60% of the
rush orders are completed. The average slab weight lies
between eight and ten tons, the yield ratio is more than
85%, and the surplus ratio is at most 5%.

We are unable to give an exact comparison of the
values of the important objectives before and after the
deployment of our PD tool at our client’s plant, because
the production process was changed in anticipation of
efficiency gains resulting from the use of the tool. For
example, since our tool could generate solutions with a
higher average number of charges per cast, the minimum
number of charges per cast was increased when our tool
was used.

We are, however, able to present a comparison of
solutions obtained by the PD tool with a solution
obtained using the prior (semiautomated) method used by
our client (Table 2). The data set consisted of 2,315 orders
with a total weight of about 25,000 tons and 723 rush
orders. The objectives are the basically the same as
those in Table 1, except that we do not give the order-
completion ratio; instead, we give the surplus-slab ratio
in the last row. For Setting 1, we give the percentage of
improvement in objective values, as compared with the
client solution, by setting a high emphasis on completing
rush orders. The solution for Setting 2 is based on a
different set of parameters. In the first case, the PD tool
yields a solution with many more completed rush orders
and higher slab weight, but with more surplus plates and
slabs. In the second case, the PD tool returns a solution
that trades off reduced surplus slabs for reduced rush-
order completion.

Summary

This paper describes the use of optimization and analytic
tools to improve production design for plate products
in the steel industry. The use of these tools provides two
types of benefits: improvement in the productivity of a
plant and an approach to incorporate the key business
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performance indicators (such as available-to-promise)
into operations at a production level.

In our experience, the productivity gains achieved at
the plant level are of two types: improved yield and
reduced surplus in the design of slabs and casts.
Depending on the product mix and the grade mix, our PD
tool is effective in reducing the surplus to 3% to 5% of the
total production (measured in terms of the weight of the
designed slabs) while increasing the average slab weight
by about 3% to 5%. In tandem, yield improvements are
gained by increasing the average number of charges per
cast. This could improve the yield by up to 0.5%. For a
one-million-ton plant, these improvements could result in
direct cost savings of more than $2 million annually.

Another benefit of PD tools developed here is the
ability to integrate supply-chain-level planning (based
on a six-month horizon) to day-to-day scheduling (to
the level of ten minutes) that is feasible on the plant
floor. Since the production-design approach presented
in this paper is able to manage due dates for orders in
conjunction with such operational measures as yield and
surplus rates, it provides an explicit way to incorporate
key business-performance indicators (such as available-
to-promise and productivity) into operations. For
example, when customer satisfaction is the highest
priority (Setting 1 in Table 2), it provides a way to
improve on-time delivery (a strategic measure that is
reflected in the rush-completion ratio) by trading off a
little on the operational measure of surplus. Setting 2
provides a way to maximally improve operations (such
as the surplus-slab ratio) while achieving a desired
rush-completion ratio.

As manufacturing companies turn their attention from
planning to incorporating their plans into operations
to provide measurable benefits, optimization tools for
production design will play a key role in facilitating this
transition. This will have a tremendous impact on steel
companies and other manufacturing-centered industries.
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