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We describe an optimization tool for a multistage production
process for rectangular steel plates. The problem we solve yields a
production design (or plan) for rectangular plate products in a steel
plant, i.e., a detailed list of operational steps and intermediate
products on the way to producing steel plates. We decompose this
problem into subproblems that correspond to the production stages,
where one subproblem requires the design of casts by sequencing
slabs which, in turn, have to be designed from mother plates. The
design of mother plates consists of a two-dimensional packing
problem. We develop a solution approach which combines
mathematical programming models with search techniques from
artificial intelligence. The use of these tools provides two types
of benefits: improvements in the productivity of the plant and an
approach to making the key business performance indicators, such
as available-to-promise at a production level, operational.

Introduction
Some items produced in the steel industry are steel coils

(e.g., for automobiles and appliances), rectangular steel

plates (e.g., for shipbuilding and construction), and steel

blooms (e.g., for beams). In this paper, we describe an

optimization model that captures many aspects of a

multistage, rectangular plate production process in a

major steel plant, and we describe a solution approach for

this optimization model. Solving this optimization model

yields a production design (PD), i.e., a detailed description

of the production steps and related intermediate

products, which yield a desired set of final plate products.

We describe an implementation of our solution in an

optimization tool intended for use at a plant operational

level.

This PD tool was deployed at a large East Asian steel

plant and is being used in daily production. Typical

inputs consist of realized orders with processing start

dates on each resource in a window of seven to ten days.

The PD tool is intended to design and schedule the daily

operations in the plant for a time horizon of one to two

days. The main considerations in generating this design

and schedule are the manufacturing constraints imposed

by the machinery and a set of desired objectives that

measure the productivity and efficiency of the operation

design and schedule. The main challenge in developing

this software system was to accurately model the very

large number of manufacturing constraints and

production-quality metrics, and to produce a feasible

design and schedule within 30 minutes on a standard

desktop computer.

Production process

We now describe the specific steel production process

modeled in this paper. The goal of the production process

is to satisfy orders for rectangular steel plates. Orders for

plates (usually given by customers) specify the size of

the rectangle, a thickness (usually between 10 mm and

100 mm), the steel grade, and the number of plates

desired. The steel production process and a sample

of its hierarchical elements are depicted in Figure 1.

Molten steel from the blast furnace is refined in the

basic oxygen furnace (BOF) in batches of about 250

to 300 tons, each batch resulting in steel with different

metallurgical properties. These batches of refined molten

steel are poured through a mold (or simultaneously

through two molds) with a rectangular cross section; this

process is called casting and is performed in a continuous

caster. The strand of metal emerging from a mold is cut

across its length to form a cast slab, which is again cut

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 S. DASH ET AL.

345

0018-8646/07/$5.00 ª 2007 IBM



across its length to form a slab of steel. Slabs and cast

slabs are cuboidal objects with the same width and

thickness as the mold used in making them. Slabs have a

width between one and two meters and a length between

two and five meters; a cast slab contains two or three

slabs. The slab thickness, and thus the mold thickness,

lies in a small set of allowable thicknesses in the

range 200 mm to 400 mm.

The slabs are processed further, for instance by

quenching or heat treatment, to impart different

properties to them; these properties are encoded as steel

grades. We refer to a sequence of slabs created from the

same mold (or pair of molds if two molds are used

simultaneously) as a cast, and a sequence of slabs from

a single mold as a strand. Thus, a cast can consist of one

or more (usually two) strands. If a single mold is used, a

cast and a strand are identical notions. A cast and the

strands in the cast satisfy certain geometry restrictions:

All slabs in a strand have the same width and thickness,

two strands in a cast have the same thickness, and the

length difference between them (the length of a strand is

the sum of the lengths of slabs in the strand) is restricted.

We refer to a batch of steel and the slabs produced from it

as a charge and the part of a strand associated with a

charge as a charge strand. A cast can thus be viewed as a

sequence of charges, and a strand as a sequence of charge

strands. As slabs in a charge have the same chemical

properties and are only modified mechanically later on,

the steel grades of slabs in a charge can take on only

limited sets of values. In addition, slabs in consecutive

charges are required to have similar grades. We call these

restrictions charge-grade constraints and grade-transition

constraints, respectively, and describe them in the section

on problem specification below. There are a number of

additional constraints for casting, which we describe

later.

A slab is subsequently rolled (thickness decreases and

area increases) into a mother plate with the same volume

and steel grade as the slab and a rectangular size of up to

5 m 3 50 m. Mother plates are finally cut across their

width and length into order plates—plates corresponding

to specific orders—with the same thickness and steel

grade. Thus, a mother plate can be viewed as a two-

dimensional pattern of order plates, though in our

application more than 95% of mother plates have order

plates arranged in one-dimensional patterns. Throughout

Figure 1
Steel plate production: (a) Production process; (b) example of the hierarchical relationship of the elements.
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this paper, we assume the previous simplified model of the

actual steel grade constraints.

The rolling machines have restrictions on the

dimension transformations they can perform in creating

mother plates from slabs, and slabs and mother plates

have minimum and maximum length and width

restrictions, discussed in the next section. Some slabs,

called surplus slabs, are produced without a target mother

plate in mind, but simply to satisfy the charge-weight

constraint, i.e., the condition that a charge consists of,

say, 250 to 300 tons of slabs. We call the other slabs order

slabs, because order plates are produced from them.

The different facilities and machines associated with the

above production steps—such as the casters, the rolling

mills on which mother plates are rolled, and the refining

facilities—have daily capacity limits, and, for some of the

facilities, minimum usage targets. The usage targets are

imposed for productivity reasons. There are some

additional manufacturing steps and constraints involved

in plate production; some we did not model, and some

we do not describe because of lack of space.

In Figure 1(b), we show the hierarchical relationships

among the different intermediate and final products of the

steel production process. We depict a cast with two

strands in cast 1 and one with a single strand in cast 2.

Each charge consists of one or two charge strands, each

charge strand being a sequence of cast slabs, where each

cast slab consists of two to three slabs. Each order slab

corresponds to a mother plate; the mother plate, shown at

the right side of Figure 1(b), consists of three order plates

that correspond to orders with the same thickness but

different widths. The differing widths, and the fact that

mother plates have minimum length requirements, result

in some waste, which is depicted by the light-colored

area on the mother plate. We define the PD problem

for plates as the problem of determining the following:

1. The number of order plates that will be

manufactured for each order.

2. The set of mother plates from which the order plates

will be cut, along with the position of the order plates

on the mother plates.

3. The set of slabs from which the mother plates will be

rolled, one per mother plate.

4. The set of charges along with the constituent cast

slabs and slabs in each charge, and the location of the

slabs in the charge strands.

5. The set of casts, and for each cast, its constituent

charges and their sequence in the cast.

These must be determined while satisfying all capacity

limits, targets, and manufacturing constraints, and

maximizing various objectives or production metrics.

For example, one objective is to maximize the number

of orders fulfilled by their due dates, another is to

minimize waste, and another is to maximize the average

number of charges per cast. We describe the objectives

and metrics in later sections. We refer to the above items

1 and 2 together as the mother-plate-design (MPD)

problem; 1, 2, and 3 together as the slab-design (SD)

problem; and 4 and 5 together as the cast-design (CD)

problem.

An additional manufacturing process we model is the

following. The plant usually has some plates, slabs, and

cast slabs in inventory. We define the inventory-allocation

problem as the problem of deciding which order plates

to manufacture from inventory, and assigning these to

specific inventory items (slabs are converted to order

plates by rolling and cutting).

In later sections, we give more detail while attempting

to abstract the most interesting constraints, objectives,

and computational issues in our application. We

emphasize that we describe a real-life model and

implementation in this paper and not just an abstract

model, and we deal with too many constraints and

objectives to be able to list them fully here.

Related work

We are not aware of any optimization model in the

literature that deals with the PD problem for plate

products in its full generality. In a survey on the use

of mathematical programming applications in the steel

industry, Dutta and Fourer [1] suggest that ‘‘cutting stock

optimization to maximize overall yield of multistage

production processes’’ in steel plants was not addressed

prior to their survey, and such work ‘‘would go beyond

most previous work on the cutting stock problem, which

has used single stage models.’’ In recent, related work,

Moreno et al.1 study a PD problem for steel billets and

use multiple mixed-integer programming models to solve

it. The problem they study can be viewed as a special case

of the PD problem defined in this paper. In their problem,

there is no distinction between slabs and order plates,

because the rolling and cutting steps are not performed

on slabs. Second, a cast slab contains slabs associated

with a single order, and finally, they generate a single cast

with a predetermined width. See also Menezes et al. [2]. In

other work, Harjunkoski and Grossman [3] and Chang,

Chang, and Hong [4] study variants of the PD problem

for coil products made using continuous casters. See

Pacciarelli and Pranzo [5] and Lee et al. [6] for other

production scheduling problems in the steelmaking

industry, and for solution techniques for these problems.

Some of the other subproblems defined above clearly

resemble well-known optimization problems. The MPD

1L. Moreno, M. Poggi de Aragão, O. Porto, and E. Uchoa, ‘‘A MIP Approach to the
Continuous Casting Production Planning,’’ manuscript available from the authors.
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problem is closely related to (though more general than)

the two-dimensional cutting stock problem (2D CSP). We

emphasize that mother plates do not resemble stock in

that they do not have prescribed dimensions, and their

dimensions have to be determined. In spite of this

difference, one can use the standard solution approach for

the 2D CSP, namely delayed column generation, where

columns represent 2D patterns of order plates. See

Gilmore and Gomory [7, 8] and Vanderbeck [9] for work

on the 2D CSP. Further, it is possible to relate the MPD

problem to the multiple-class integer knapsack problem

with setups described in Perrot and Vanderbeck [10]. In

that problem, the items belong to different classes, and

if a class is used, the weights of items chosen for a class lie

in a weight range. These constraints are similar to, though

a special case of, the grouping constraints described in

the next paragraph. Vonderembse and Haessler [11]

describe a problem related to the division of cast slabs

(‘‘master slabs’’ in their terminology) into slabs, and a

solution approach implemented at Bethlehem Steel.

The PD problem is fairly complex, as the MPD

subproblem already generalizes the 2D CSP. Further,

there is a nonlinear relationship between slab dimensions

and the corresponding mother-plate dimensions.

Modeling the entire problem as a single mixed-integer

linear program, which is practically solvable by exact

branch-and-bound methods, is not a realistic option.

We tackle the PD problem by decomposing it into an SD

problem and a CD problem. Our goal in the SD problem

is to create a collection of mother plates or 2D patterns of

orders whose properties meet the following restraints:

� Dimension constraint—The mother plates can be

rolled from slabs with a common thickness and width.
� Grouping (by grade) constraints—The collection can

be partitioned into subcollections, with two

conditions:
� Condition 1—Each subcollection of slabs satisfies

the charge-grade constraints.
� Condition 2—The weight of a subcollection allows

it to be further partitioned into an integral number

of charges.

Condition 2 is equivalent to saying that there is an

integer t . 0 such that the weight of a subcollection lies in

the range 250 t to 300 t. The MPD problem can be viewed

as the SD problem without the dimension constraint.

In the Solution overview section below, we explain how

we fix the thickness and width of slabs in the SD problem,

thereby eliminating the dimension constraint. Finally, our

goal in the CD problem is to use slabs generated in the

SD problem and generate a set of feasible casts. We

emphasize different objectives in the SD and CD

problems, though minimizing waste and maximizing

the number of orders fulfilled by their due dates are

important in every phase of our solution approach. We

essentially solve the SD and CD problems by means of

column generation; in CD, the columns correspond to

casts, and in SD, the columns correspond to mother-plate

patterns and slabs. To generate a single cast, we solve an

SD problem. We describe our solution approach in more

detail below.

The PD optimization tool in which we implemented

our solution approach consists of different modules

corresponding to the different subproblems defined

above. The typical flow of activities in planning daily

production using the PD tool is as follows. An updated

order book (list of orders) is provided as input. The order

book contains a set of realized or planned orders with

associated due dates—usually based on some available-

to-promise (ATP) analysis—and a processing date on

each machine or resource based on a rough capacity plan.

The first step is to match the order book to available

inventory using the inventory allocation (IA) module.

Typically less than 10% of the order book is handled from

inventory. To design the order book for manufacturing,

the PD problem is solved by iteratively invoking the

SD and CD modules.

The remainder of this paper is organized as follows. We

first give a detailed description of the PD problem, and

then an overview of our solution approach for this

problem emphasizing the interactions between the SD

and CD modules. We then discuss the SD module and

the IA module, followed by a description of the CD

module. We discuss some computational issues, provide

a summary of the efficiency gains that can be achieved

using the PD tool, and report results.

Problem specification
We now set out in more detail the specific problem we

solve in this paper in terms of inputs, outputs, and

constraints for production design. The inputs to the

problem are the following:

� An order book, i.e., a set O of orders.
� A set C of casters, and for each caster i 2 C, a set Ti

of mold thicknesses.
� A set R of rolling mills.
� A set G ¼ fgig of grades.
� A set H of mixable grade sets, where each grade set

Si 2 H is a subset of G.
� A directed graph GT ¼ (V, E) representing allowed

grade transitions between consecutive charges; each

node in V corresponds to a grade set in H, and an arc

(i, j) 2 E from node i to node j implies that a charge

with grade set i can be followed by a charge with

grade set j in a cast.
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� A set F of facilities (including the casters), and for

each facility f 2 F, an upper bound on its capacity Uf

and a minimum usage target Lf. The upper bounds

give the maximum amount of steel that can be

processed on these facilities. The usage targets

are usually zero except for the rolling mills. For

individual casters and refinement facilities within

casters, the bounds are given in numbers of charges

that can be processed.

Each order in the order book comes with a minimum

and maximum number of plates. If the number of

designed plates for an order lies within the specified

minimum and maximum values, the order is said to be

complete. Orders with due dates within a fixed number of

days of the current date (usually three) are designated as

rush orders. Each order has a grade from the set G, and

orders in a mother plate have the same grade. A mother

plate has the same grade as its order plates, and so

does the slab from which it is rolled. Orders in a mother

plate can have different widths and lengths and can be

packed in one-dimensional (simple) patterns, shown in

Figures 2(a)–(c), or two-dimensional (mosaic) patterns,

shown in Figure 2(d). The parameters Lmin and Lmax

specify the lower and upper bounds on the lengths of the

mother plates. These are not constant and depend on

the thickness, width, target slab geometry, and planned

route of the mother plate, but not on its one- or two-

dimensional nature. For simple patterns, the number

of order plates, the number of distinct orders, and the

difference in width between the widest and narrowest

orders are all bounded above by specified numbers.

Orders with different widths, as in Figure 2(b), result in

(vertical) waste. If the combined length of the orders is

less than Lmin, as in Figure 2(c), the region to the right of

the orders is treated as (horizontal) waste. One can add a

surplus plate, as in Figure 2(d), such that the length of the

surplus plate plus the combined order length is Lmin or

more, thus avoiding horizontal waste. A surplus plate

does not correspond to any current order, but to a

potential future order, and has a minimum and maximum

length derived from the expected future order. Surplus

plates also have a minimum and maximum length, which

comes from the expected minimum and maximum lengths

of future orders. We call a set of orders that can be placed

together on the same mother plate an order component.

Each caster i 2 C makes casts with at least li and at

most ui charges, with each charge weighing between wli
and wui tons. The thickness of a cast made in caster imust

lie in the set Ti, and all slabs in a cast must have the same

thickness. A cast can have one or two strands; we discuss

only double-strand casts in this paper. In such casts, all

slabs in a strand have the same width. The widths of the

two strands can be different, but here we discuss only

equal-width strands. Each charge in a double-strand cast

has two strands, and the width and thickness of a charge

strand are the same across all charges in the cast. The set

of slab grades in a charge must lie in H. Two charges

can be adjacent in a cast if and only if they have

compatible grade sets as given by the graph GT (i.e.,

there must be an arc between their grade sets in GT).

For a slab, its route stands for the combination of the

caster on which it is manufactured, the mold thickness

used, and the rolling mill where it is converted to a

mother plate. A mother plate has the same route as

the slab from which it is made. Each rolling mill has

restrictions on the minimum and maximum slab lengths

and widths it can handle. These restrictions vary with the

slab thickness. For a given slab thickness, a rolling mill

can handle any slab with lengths and widths between

the corresponding minimum and maximum widths

and lengths. In other words, for a given thickness, the

minimum and maximum slab lengths are independent of

its width. A slab and its corresponding mother plate have

the same mass and volume (because steel density does not

change). A mother plate has a width and length between

a minimum and a maximum value. These values are

functions of the dimensions and route of the slab from

which it is rolled and the thickness of the mother plate.

Further, the minimum and maximum lengths of a mother

plate are functions of its width. We give additional

constraints on casts, charges, slabs, and mother plates

when we discuss our solution modules.

Some important metrics are the following:

� Yield ratio—The ratio of the total weight of order

plates and surplus plates to the total weight of mother

plates.
� Surplus ratio—The ratio of the total weight of surplus

plates to the total weight of mother plates.

Figure 2

Possible arrangements of orders and surplus plates on a mother 

plate.
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� Average slab (or mother plate) weight—The total

weight of slabs (mother plates) divided by the number

of slabs (mother plates) manufactured.
� Surplus-slab ratio—Given by the total weight of

surplus slabs divided by the total weight of slabs.
� Rush-completion ratio—The ratio of completed rush

orders to the total number of rush orders.

The most important objectives for the PD problem are

maximizing the rush-completion ratio, the yield ratio, and

the average slab weight while minimizing the surplus

ratio and the surplus-slab ratio.

In our application, the inputs to the PD problem

consist of about 3,000 to 5,000 orders, each with a

demand for from one to 100 plates, with most orders

being for only one to five plates. There are about three or

four casters and about 15 to 20 different caster and mold

thickness combinations; i.e., the set T¼[i2CTi has about

15 elements. There are about three or four rolling mills.

The set G consists of 50 grades or so, and the setH has up

to 150 subsets of G. The solution of the PD problem

usually consists of about 1,000 mother plates of ten tons

weight on the average, arranged in five to ten casts, each

consisting of five to eight charges per cast, for a total

of about 10,000 to 15,000 tons of steel in a solution

(equivalent to a day’s production).

Solution overview
In this section, we provide an overview2 of the solution

approach and the flow of the engine in terms of how the

modules are invoked. Within this context, we provide a

description of how the geometry transformations among

a slab, a mother plate, and the geometry constraints at the

casts form a central thread of interaction between the

different modules.

Recall that the volume of a slab equals that of the

mother plate from which it is rolled. Let tp, wp, lp stand

for the thickness, width, and length of a mother plate,

respectively, and let ts, ws, ls stand for the corresponding

dimensions of the slab from which it is rolled. Clearly

tp 3wp 3 lp¼ ts 3ws 3 ls. For a given slab thickness t; let

[Wmin, Wmax] be the allowed slab width range, and let

[Lmin, Lmax] be the allowed slab length range. Suppose we

fix the desired slab thickness to ts: Then a slab can have

a volume in the range ½tsWminLmin; tsWmaxLmax�: Now

consider the possible mother-plate dimensions from slabs

with the above range of volumes and assume that we fix

the mother-plate thickness and width to that of some

order plate. Then a feasible mother plate has an allowed

length range contained in [kmin, kmax], where kmin and

kmax equal, respectively, the minimum and maximum slab

volume divided by the product of the mother-plate

thickness and width. Conversely, if we take a specific

mother plate with volume V, a slab with thickness ts can

be rolled to give the above mother plate if ws 3 ls¼ V/ts,

ws is contained in [Wmin, Wmax], and ls is contained in the

range [Lmin, Lmax]. In other words, the minimum allowed

width is the larger of V/(ts 3 Lmax) and Wmin, and the

maximum allowed width is the smaller of V/(ts 3 Lmin)

and Wmax. We depict this relationship between the slab

and mother-plate geometries in Figure 3. The x-axis

represents slab width Ws and the y-axis represents slab

length Ls. Each curve represents a mother plate of

constant weight and the possible geometries of the

associated slab; i.e., a slab with width and length given by

a point on a curve can be rolled into the corresponding

mother plate. Clearly S1 has the largest volume and S3 the

smallest volume. We depict Wmin and Wmax by vertical

lines and Lmin and Lmax by horizontal lines. The following

are a few useful observations from this graph:

� The width range for each slab can be represented

by an interval (intervals I1, I2, and I3 stand for

the allowed width ranges for the three slabs).
� Large (heavy) mother plates (in the upper right

corner) and small (light) mother plates (at the bottom

left corner) have little flexibility in their slab

geometries.
� The width range of a slab can be increased by

decreasing (for large mother plates) or increasing (for

small mother plates) the size of the mother plates.

Suppose we fix the desired slab thickness to ts and the

desired slab width to ws: The allowed slab length range

remains [Lmin, Lmax]. Therefore, a slab can have a volume

in the range ½tswsLmin; tswsLmax�; and a mother plate with

Figure 3

Slab width–length curves for mother plates with fixed volume.
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2Based on S. Dash, J. Kalagnanam, and C. Reddy, ‘‘Method for Production Design
and Operations Scheduling for Plate Design in the Steel Industry,’’ U.S. Patent
Application No. 20060100727, May 2006.
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thickness and width fixed, as in the previous paragraph,

has an allowed length range [lmin, lmax], where lmin is at

least kmin and lmax is at most kmax. Certain values of lmin

and lmax are not desirable in the sense that they may lead

to a lot of surplus plates or waste on the mother plates.

For example, if all order plates have a length of 10 m,

surplus plates are required to be at least 4 m in length,

and lmin and lmax are 12 m and 13 m respectively, then the

only feasible mother plates either have only surplus plates

or at least 2 m of waste. It is therefore clear that slab

width is a crucial parameter in our problem, and

identifying good slab widths (widths at which the surplus

or waste is minimal) is a central issue.

This suggests one possible mixed-integer programming

(MIP) approach to modeling the nonlinear relationship

between the slab and mother-plate dimensions:

Enumerate every possible slab thickness and width

combination. There are only about 15 possible values

of slab thickness, but about a thousand possible width

values, since slabs can have an integral width between 1 m

and 2 m, and therefore about 15,000 combinations. One

can then design a column-generation approach for the

CD problem based on this idea. Let the columns stand

for casts of different thicknesses and widths, and in the

pricing subproblem (finding casts with negative reduced

costs), solve an SD subproblem for each of the 15,000

combinations. This is clearly a wildly impractical

approach because, given the complexity of the SD

subproblem, we are able to approximately solve only a

few hundred SD subproblems in 30 minutes—the time

limit in our application.

Our approach is influenced by the above impractical

column-generation approach in that we work with a

formulation in which the columns are casts that overlap,

in the sense that they use some of the same orders.

However, we attempt to identify a small set of good

widths quickly, and we now describe how we do this.

Assume that we have fixed a caster and a slab thickness

for the caster, but no prescribed slab width. As discussed

earlier, this imposes a slab and mother-plate volume

range. We then solve the MPD problem (described in the

Introduction) to get a collection of mother plates, which

is, in a sense, the best possible collection of mother plates

if the grouping constraints are considered and the

dimension constraint ignored. We then compute the

width interval for the slab (as in Figure 3) from which

the mother plate can be rolled. We analyze these width

intervals to obtain good widths. For example, if the MPD

solution consists only of the mother plates in the figure,

any width in the interval I3 is good in the sense that

two mother plates in the solution can be rolled from

slabs with that width, whereas widths greater than the

maximum width in I2 are not so good, because either only

one or no mother plates can be rolled from slabs of those

widths.

We represent each slab with a node in a graph and

introduce an arc if slabs have an overlapping width

interval to obtain an interval graph. We can now easily

determine slab clusters that have a common width among

them by enumerating the maximal cliques3 in this graph.

As the CD problem focuses on generating a collection

of slabs with a common width, the interval graph

representation is very useful for identifying candidate

clusters of slabs to compose casts. For each slab cluster

corresponding to a maximal clique, we analyze the

number of good charges (i.e., charges where surplus slabs

do not have to be added to satisfy the charge weight

constraint) that can be formed from the slabs, and the

number of casts that can be formed from these charges.

This analysis yields a collection of good widths (more

precisely, width intervals). We call this process width

exploration. We then select a small set of widths from

these intervals, and for each of them, fix the slab width

and solve the MPD problem. We use these mother plates

to create candidate charges and casts, and thereby

columns of our CD problem MIP formulation (which

is a set-packing formulation). We iteratively select a

collection of casts, remove the orders used in these casts,

generate a few more casts, and select more casts until we

use up the casting capacity. The question naturally arises

whether the quality of the casts that are selected can be

improved by making use of the remaining casts (unused

slabs in these casts). Note that each invocation of the

MPD problem so far has taken into consideration only

the specific width for which we were generating a

candidate cast, and not the entire collection of widths.

We take the selected casts and treat them as templates;

i.e., we extract from each cast its thickness and width, and

the grade sets of the different charges, but throw away the

specific slabs in them. The quality of selected casts can be

improved (often substantially) by redesigning the mother

plates from scratch to the geometry and grade specified

by the templates. These geometry requirements for the

slabs can be translated into length ranges for the mother

plates to be designed. Observe that we can now solve an

MPD problem without the grouping constraints, as we

have already decided on the grade sets of the charges.

We call this process template filling.

Slab design

Mother-plate design

In the MPD problem, we take as input a list of orders

and a target slab geometry (specified by a caster, a

3A clique is a set of nodes in a graph such that there exists an edge between any two
nodes in the set. Another way of defining this is that each node shares an edge with
every other node in the set.
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slab thickness, and a slab width range) and output a list

of mother plates along with the locations of order plates

on each mother plate. Each output mother plate can be

rolled from slabs with the target geometry. We repeatedly

solve the MPD problem with different inputs and

different parameters. We first describe the general

problem we solve, and then the specific variations in

different invocations of mother-plate design. We model

this problem as a 2D CSP with capacity constraints and

the grouping constraints described above in the section

on related work.

Each order has an associated list of facilities at which

it requires chemical or mechanical processing. The

capacity constraints reflect the fact that the total weight

of order plates processed at a given facility cannot exceed

a given capacity for the facility.

In our application, we considered the following

objectives. Given a set of designed mother plates, the

order-completion ratio equals the number of completed

orders divided by the number of used orders. An order is

used if at least one plate for the order is designed. The five

requirements were the following:

a. Maximize number of completed rush orders.

b. Maximize order-completion ratio.

c. Maximize yield ratio.

d. Maximize average mother-plate weight.

e. Minimize surplus ratio.

Obviously one cannot handle all five of these

requirements simultaneously. Let yc (yu) be vector-valued

variables such that the ith component of yc (yu) is 1 if the

ith order is complete (used), and 0 otherwise. We can

model the first objective (let OR stand for the set of rush

orders) as

max
X

i2O
R

ðy
c
Þ
i
:

It is not clear how to model objectives b–e by means of

linear functions. However, if we do not want to optimize

the functions in those objectives, but just impose lower

and upper bounds on them, we can do this with linear

constraints. For example, if we want the average slab

weight to be at least ten tons, we can insist that the total

weight of mother plates designed is at least ten times the

number of mother plates used. For each of the objectives,

we imposed a bound on the objective function value using

soft or hard constraints based on an analysis of the

expected objective values. In our application, the surplus

ratio was expected to be 3% or lower, and we imposed

an upper bound of 3% on the surplus ratio as a hard

constraint. We imposed lower bounds on the values of

the other objective functions with soft constraints and

penalized the violation of these constraints. For example,

since we expected more than 90% of the rush orders to

be completed, we imposed the condition that the total

number of completed rush orders plus an integral slack

variable is at least 0.9 times the total number of rush

orders. We then penalized noncompletion of at least

90% of rush orders by using a nonzero coefficient for

the above slack variable in the model objective.

In addition to penalizing violation of the above

objective bounds, we also have an objective function

coefficient, or score, for each pattern based on how good

the pattern is with respect to each of the five objectives.

This score is a function of the weight of the mother plate,

the surplus weight on it, the associated waste, the fraction

of orders used in the mother plate that are completed by

the order plates therein, and the fraction of rush orders

completed by rush-order plates on the mother plate.

We create an integer program with integer variables xj
corresponding to one- or two-dimensional patterns of

order plates (the variables count the number of times

a pattern is used). A pattern is one possible way of

arranging order plates on a mother plate. We impose the

usual cutting stock constraints: The variables xj are non-

negative, the total number of designed plates of an order

cannot exceed the maximum demand for the order, and

the total capacity of any facility used for the designed

order plates cannot exceed the facility capacity. For

rolling mills, the total weight of mother plates processed

in them must lie in a range. In addition, we introduce

non-negative integer variables zi that count the number

of multiples of a charge weight that can be designed for

a grade set. Suppose the orders in a pattern have a grade

g, and g belongs to five different grade sets. We create

five copies of this pattern and assign each copy a distinct

grade set. We then add the constraint that the total

weight of patterns for a given grade set i roughly equals

the mean charge weight times zi.

Let A stand for the matrix of patterns, i.e., Aij gives the

number of plates of order i in pattern j. Let B be a matrix

in which Bij equals the weight of pattern j if it has grade

group i, and 0 otherwise. Let D be a matrix such that Dij

gives the weight of orders in pattern j that need processing

on facility i. If facility i stands for a rolling mill, Dij gives

the weight of the mother plate if the route of the mother

plate includes that rolling mill, and 0 otherwise. Let dL
and dU stand for the lower and upper bounds on the

demand for an order. Let the vectors L and U stand for

the lower and upper bounds on the weight that can be

processed at the different facilities. The components of L

are zero except for the rolling mills. Let diag(dL) and

diag(dU) stand for the diagonal matrices with dL and dU
arranged on the diagonal. Let yc and yu be as described

before. Let w, s, and v stand, respectively, for the vectors

of pattern weights, surplus weights, and waste weights.

Assume that there are m orders. Assume that we want
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the bounds on requirements a–e to be ka, � � �, ke, and
let sa, � � �, sd stand for the penalty terms associated with

requirements a–d. Let ~1 stand for a vector with all

components equal to one of appropriate dimension. Then
~1
T
x stands for the sum of the variables xi. The integer

program we solve is this:

max c
T
xþ~1T

z� s
a
� s

b
� s

c
� s

d
;

subject to the constraints

Ax � d
U
;

diagðd
L
Þy

c
� Ax � diagðd

U
Þy

u
;

�25 � Bx� 275z � 25;

L � Dx � U;

X

i2O
R

ðy
c
Þ
i
þ s

a
� k

a
;

~1
T
y

c
þ s

b
� k

b
~1
T
y

u
;

ðw� vÞTxþ s
c
� k

c
w
T
x;

w
T
xþ s

d
� k

d
~1
T
x;

s
T
x � k

e
w
T
x;

x; z � 0;

x; z integral;

and

y
c
; y

u
2 0; 1f gm:

A natural question is why we use two different ways

of handling the same objectives, i.e., why we have

mother-plate scores that take into account surplus

weight in addition to the surplus ratio constraint. The

bounds in the soft and hard constraints associated with

requirements a–e are only estimates based on data for

multiple days, but may not be suitable for a particular

day’s data. Suppose that an average surplus ratio of 3%

is expected, but on a particular day a solution with a

surplus ratio of 1% is easily obtained. In such a case, the

surplus ratio constraint plays no role, and a solution of

the MPD problem could be trivially non-optimal with

respect to surplus ratio. For example, a solution with a

surplus ratio of 1% could be made worse by taking a

mother plate and adding a surplus plate on it. Without

mother-plate scores, the second solution would be

treated as equal to the first.

As in the usual CSP, we (approximately) solve the

linear relaxation of the above integer program with

delayed column generation. We call the integer program

above with the entire set of patterns the master IP, and

the associated linear relaxation the master LP. We call the

IP (LP) defined by a partial set of patterns the partial

master IP (LP). We start off with an initial set of patterns

(or, more precisely, the copies of patterns with assigned

grade sets), the above constraints, and the variables

relaxed to be real numbers. The column-generation

subproblem consists of taking the optimum dual solution

of the partial master LP and finding one or more negative

reduced-cost patterns. The partial master LP is then

augmented with columns corresponding to the negative

reduced-cost patterns.

In our application, we have up to 5,000 orders. It is

clear that solving the master IP exactly is not feasible

in a reasonable amount of time, and we solve it only

approximately.

Column generation

To solve the column-generation subproblem (CGP), we

iterate through every combination of order component,

target route, and order width. Recall that mother-plate

lengths depend on the width of the mother plate (which

equals maximum order width for simple patterns), and

also on the target route. For each such combination, we

compute lmin and lmax (based on the target slab geometry)

and then find negative reduced-cost patterns and add

them to the master problem. Traditionally in cutting

stock, the CGP for simple patterns is modeled as a

knapsack problem. This is easy to do if the objective

function coefficient for each pattern in the master

problem is a linear function of the order plates, surplus

plates, and waste in the pattern, and the width and length

of the mother plates are fixed. Unfortunately, the

objective function coefficient for each pattern in our

application is a nonlinear function, and the usual

knapsack approach does not work.

Fortunately, most of the order components have very

few orders (two or three), with a few components having

up to 50 orders. Thus, for most of the components, simple

heuristics suffice. We use the following packing heuristics

for simple patterns:

� KPOG (knapsack with fixed orientation and

guillotine cuts): We assign weights to the orders and,

for each order as the maximum-width order in a

mother plate, we solve a knapsack problem. The

objective function value of a solution to this knapsack

is an approximation of the reduced cost of the

corresponding pattern.
� BFD (best-fit decreasing): We simply sort all orders

on the basis of the dual prices of orders and whether

or not orders are rush orders, and apply the BFD

bin-packing heuristic to create bins.
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For mosaic patterns, we use the following heuristics:

� FBS (first-best strip): See [12]. Many other algorithms

from the literature can be adapted to generate feasible

mosaic patterns.

� NBWM (non-bipartite weighted matching algorithm):

See [13].

Figure 4 illustrates the operation of the NBWM

algorithm in the context of mosaic pattern generation.

Groups of order plates placed adjacent to each other

represent partially built mother plates. A line (or edge)

joining a pair of order plates or partial mother plates

indicates that they can be packed together on a mother

plate. We assign such an edge a numeric weight that

reflects the desirability of packing the orders or partial

mother plates together. In each stage, we calculate a

maximum weight matching of partial mother plates,

join partial mother plates to get larger partial mother

plates, and continue until one or more complete mother

plates are available (stage 5).

Orders have dual values assigned to them by the master

problem. Typically, in initial invocations to the CGP, we

make these values identical for all orders, but later we

obtain them from the partial master LP, and thus they

vary by orders. When the dual values are identical, the

objective of the CGP is to create feasible mother-plate

patterns (which are also desirable with respect to various

criteria, such as the amount of wasted metal on the

mother plates). When the dual values are not identical,

the CGP involves creating mother plates such that the

reduced cost of the mother plates is as small as possible.

We designed dual-value-sensitive variations of our

heuristics by sorting on dual values of orders in FBS

or BFD or incorporating dual values into weights for

KPOG or NBWM. We do not explicitly use the dual

values associated with the capacity and grouping

constraints in our CGPs, but we do use them in testing

whether or not the columns returned by the subproblems

have negative reduced cost.

Solving the master IP

Various authors have solved CSPs by combining the

delayed column-generation scheme to get LP bounds

along with enumeration using a branch-and-bound tree

[14, 15], though usually with only a few hundred orders

(see also [16]). Our approach to solving our variant of the

Figure 4
Five stages in the operation of the NBWM algorithm (colored rectangular boxes are order plates).
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CSP can be viewed as diving down the branch-and-bound

tree to some leaf. We repeatedly do the following until we

have an acceptable integer solution to the MPD solution.

We perform delayed column generation until our partial

master LP solution value changes minimally from one

iteration to another, then solve the partial master IP.

Clearly this IP solution may not be a good approximation

to the optimal master IP solution. To improve the quality

of this solution, we fix a part of the IP solution; i.e., we set

the values of a number of variables to their IP solution

values. We then use the fixed variables to update the

right-hand sides and get a modified integer program.

Invocations of the MPD problem

The MPD subproblem is invoked many times by the CD

module. The different invocations can be grouped into

two distinct types: grade grouping and template filling.

In the grade-grouping invocation, the CD module

invokes the above subproblem first with no restriction on

the slab widths corresponding to the designed mother

plates (the CD width exploration phase), and then later

with the slabs restricted to specific widths. In either case,

the MPD module returns mother plates that can be

partitioned in different grade groups, with the weight per

grade group being an approximate multiple of the mean

charge weight. In these invocations, usually only a partial

list of orders is given as input. Further, these invocations

are for the design of slabs on a specific caster. Because

these invocations are for partial order books, where the

expected values of the different objective criteria are

not known, the mother-plate scores are the primary

determinant of the objective function.

With regard to the template-filling invocation, recall

that templates are descriptions of the charge layout in

casts, i.e., the charge-grade groups in a cast and their

sequence. When the CD module has made a final decision

regarding the cast templates, it removes all slabs from

these cast templates and invokes the MPD module with a

precise count of the number of charges to be designed for

each grade group. This type of invocation is performed

only once, as opposed to grade-grouping invocations.

This can be handled conceptually by fixing the variables

zi for the different grade groups.

Once a collection of mother plates have been designed,

a set of possible slab geometries is created for each

mother plate, as discussed above in the section on slab

design.

Inventory allocation

The inventory consists of surplus plates, slabs, and cast

slabs. The geometry of a surplus plate is inflexible, since

all dimensions (thickness, width, and length) are fixed.

Further, surplus plates are relatively small, which severely

restricts the orders that can be cut from them. Usually

only a single order plate can be cut from a surplus

plate. Slabs have moderate design flexibility, since the

associated MPD is not fixed. Cast slabs obviously have

higher design flexibility compared with slabs, because the

sizes of slabs on a cast slab can be chosen. One can vary

the number of slabs cut from cast slabs as well. The

inventory allocation module of the PD tool returns a list

of slabs to be cut from cast slabs, a list of mother plates

to be made from the slabs, and the location of order

plates on the mother plates.

The inventory allocation problem can be viewed as

a variant of the multiple-knapsack problem or as a

generalization of the 2D CSP. In the traditional multiple-

knapsack models in the steel industry, the decision

problem is to allocate orders directly to the existing stock

materials while maximizing the allocated profits (order

weights). Vasko et al. [17], Kalagnanam et al. [18],

Dawande et al. [19], and Forrest et al. [20] studied the

allocation problem of coil products in the steel industry

and proposed heuristics including matching and bin

packing. The inventory allocation problem we tackle is

different because of the dimension transformations from

slabs to mother plates. For example, in the cast-slab

allocation problem, the cast-slab materials are cut into

multiple bins (slabs) that are rolled into mother plates

and then cut into orders.

The main goal in the inventory allocation problem is

to maximize the weight of order plates designed from

inventory items while minimizing waste. The way we

model and solve this problem is very similar to our

approach for the MPD problem. We decompose the

problem into a master problem, which selects from

candidate allocation patterns for each inventory item

(surplus plate, slab, or cast slab) and a subproblem that

generates these patterns. An allocation pattern is an

MPD compatible with the geometry of the inventory

item. For example, an allocation pattern for a plate or

slab is a candidate mother plate, while that for a cast

slab is a collection of candidate mother plates, each of

which corresponds to a slab, with the total weight of

mother plates in the pattern equal to the cast-slab

weight. In a sense, we have one subproblem per

inventory item type.

There are two main differences with respect to the

MPD problem. The first is that only one allocation

pattern can be selected per inventory item, whereas a

pattern can be repeated any number of times in mother-

plate design. The second difference is that the grouping

constraints are not present in inventory allocation. As in

mother-plate design, we assign a score generated by a

complex calculation to each allocation pattern. The score

information is calculated as the weighted sum of multiple

attributes, such as due dates, allocated order weights, and

yield rates of the allocation patterns. Note that during
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pattern generation, orders can belong to multiple

allocation patterns. Order feasibility is resolved by the

master LP and IP.

Assume that we have generated multiple candidate

allocation patterns for each inventory item. The master

problem selects patterns by solving the integer

programming formulation CGMaster defined as

maximize
X

k2K

X

m2CAPðkÞ
c
km
� x

km
ð1Þ

subject to
X

k2K

X

m2CAPðkÞ
A

kmi
x
km
� ðd

U
Þ; 8i 2 O; ð2Þ

X

m2CAPðkÞ
x
km
� 1; 8k 2 K; ð3Þ

x
km
2 0; 1f g; ð4Þ

and some additional constraints.

Here K stands for the set of inventory items, CAP(k) is

the set of candidate allocation patterns for the inventory

item k, and xkm¼1 if the mth allocation pattern for item k

is selected, and 0 otherwise. Here Akmi stands for the

number of plates of order i in the mth allocation pattern

for item k, and ckm stands for the cost of the mth

allocation pattern for item k. Constraint (2) restricts the

number of plates of an order that can be allocated from

inventory to, at most, the upper bound on the demand for

order i. Constraint (3) states that only one candidate

allocation pattern can be selected per inventory item. If

we know all of the feasible candidate allocation patterns

beforehand, an optimal integer solution of CGMaster

defines the best collection of feasible allocation patterns

for the inventory materials.

The overall algorithmic flow implies that the success

of the algorithm strongly depends on generating good

allocation patterns within a reasonable time. The pattern-

generation subproblem for inventory plates is quite

simple: Check whether an order plate can be cut from

an inventory plate given the associated steel grades and

geometries. For an inventory slab, we design mother

plates compatible with the geometry of the slab using

the same ideas and pattern-generation code used in the

pattern-generation subproblem of the MPD problem.

The cast-slab allocation subproblem is a bit more

complicated. We need to decide how to cut an inventory

cast slab into slabs and then how to generate mother

plates compatible with these slabs. Our approach is to

generate mother-plate patterns compatible with the cast-

slab width and thickness (slabs cut from a cast slab have

the same width and thickness), and then to combine

mother plates to form a cast-slab allocation pattern using

a simple bin-packing algorithm.

Cast design
The CD problem is to design casts for the input orders

so that daily capacities are met and production

constraints are satisfied. In addition to the SD objectives,

some of the objectives emphasized during cast design are

maximizing the rush-completion ratio, minimizing the

surplus-slab ratio, and maximizing the average number

of charges per cast.

The four main steps in cast design—candidate cast

design, cast selection, cast template determination and

filling, and cast-slab design—are shown in Figure 5 and

described in the following sections.

Candidate cast design

In this step, several candidate casts are designed for the

given input order plates. This is done iteratively, once for

each combination of caster and mold thickness. Each

iteration starts with the determination of good widths at

which to design casts to fulfill as many rush orders as

possible while keeping the weight of surplus slabs or

plates low. This is followed by the design of candidate

casts at each of the selected widths.

Cast-width determination

At certain cast widths, only mother plates with a lot

of surplus plates or waste can be generated. Discarding

such poor-quality mother plates entails designing many

surplus slabs to satisfy the charge weight constraint and

requiring a minimum number of charges per cast. Even

if mother plates with minimal waste or surplus can be

designed, there may not be enough rush weight, i.e., the

weight of slabs whose constituent orders are rush orders.

We also want other slab design metrics such as average

slab weight to have desirable values.

First, a set of slabs is designed while optimizing the

metrics of the SD objectives by solving an SD problem

with grade-grouping constraints but no dimension

constraints. Note that each of the slabs has a range

of feasible widths and a slab grade. Using the grade-

transition property, as given by the graph GT, the

set of grades for the set of slabs is divided into grade

components. On the basis of grade components, a slab

component is constructed for each grade component by

collecting slabs belonging to the grades in the grade

component. Note that no cast can contain slabs from

different slab components. Grades in each grade

component correspond to the union of mixable grade

sets in H.

For each grade set Si present in a grade component,

slabs whose slab grade is in Si are collected in a slab set.

Slabs in a slab set can be put together in a charge. The

width ranges of the slabs in a slab set are represented by

an interval graph. By using a polynomial algorithm [21],

maximal cliques of the interval graph are determined. The
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slabs are collected for each of the maximal cliques. This

provides us with sets of slabs, each of which is related to a

grade-width clique. Note that a slab can belong to more

than one clique. By using a set-packing formulation with

the objective of minimizing surplus within a charge,

grade-width cliques are selected so that a slab belongs to,

at most, one grade-width clique. This formulation was

solved using ILOG CPLEX** 9.0.

So far, we have grade-transition components, each

of which has a set of grade-width cliques. Each grade-

width clique ci contains slabs that can go into a charge

and have a common width range, ri. Let r* be the

width range spanning all ri. Then, for each width

w 2 r* such that w is divisible by 10, the sum of

rush-potentials of all of the slabs present in the grade-

width cliques whose common width range contains w

is computed. The rush potential of a slab is defined as

max(0, rush-order weight in a slab � surplus in the slab).

The width that provides the most total rush-potential

(for all grade-transition components) is selected as the

width at which slabs are designed and cast. This step is

repeated MaxWidthIterations times—each time

excluding the widths that are selected in the previous

iterations. The value of MaxWidthIterations is

determined experimentally.

For each of the choices of width, the SD module is

given the chosen slab width as input. Further, slab design

is also given the capacity of each rolling mill. The rolling

mill capacity is determined by using the capacity limits for

each rolling mill multiplied by an external parameter,

capacityMultiplier. The value of this parameter

indicates the amount of flexibility that should be given

(consequently, the amount of runtime allowed) to the CD

phase. The set of slabs supplied by this SD step are next

used for designing candidate casts.

Design of candidate casts from slabs

The purpose of this step is to design several candidate

casts based on the given set of slabs for the subsequent

step of cast selection. This step contains three substeps:

making half-charges, pairing half-charges into charges,

and sequencing charges into casts.

The first step in cast design is building charge-strands

(or half-charges, because the casts in this problem are

restricted to have exactly two strands). For the given set

of slabs, grade-width cliques are determined in the same

way as described in the previous step of selecting widths,

except for where the interval-graph-based maximal

cliques are determined (because all slabs are trivially in a

maximum clique with the width range specified by the

chosen width). The list of slabs in each grade-width clique

is sorted by an externally specified sorting function. This

list is chopped into sublists, where each sublist contains

slabs whose cumulative weight is no more than half the

maximum charge weight.

The next step is to pair the set of half-charges into

charges such that the variation of attributes, e.g., the

number of grades in a charge and the number of possible

refinement routes, is minimized. This is accomplished by

computing a max-weight non-bipartite matching on a

Overview of cast design.
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graph with half-charges as nodes, edges between all pairs

of nodes, and an edge weight on each edge that is

inversely proportional to the variation of attributes in

the charge that results from pairing the half-charges

corresponding to the vertices of the edge.

CD problem

At this point, a cast is basically a sequence of charges with

two additional restrictions. The first restriction is that the

number of charges in a cast should be within a range

[lg, ug] that is dependent on the grade set g of the

constituent charges and the caster. The second restriction

is that the grades of any two consecutive charges must

be compatible according to the grade-transition graph.

The min limit lg on the number of charges is a soft

constraint in the sense that when the number of

charges in a cast n is below lg, the cast can be appended

with (lg� n) surplus charges. The CD problem is to

build casts for k charges from a given set of charges

so that (in the following order of priority) 1) the

quantity (rush weight � surplus weight) is maximized;

2) the number of charges per cast is maximized; and

3) the number of grade transitions between charges

per cast is minimized. In addition, the objectives are

calculated over c best casts so that the sum of numbers

of charges in these c casts is at least k, and the sum of

numbers of charges in the top c � 1 casts is less than k.

Charge sequencing

The algorithm used to solve the CD problem is called

the extended branch-and-bound (EBB) heuristic. (For a

detailed description, see [22].) EBB starts with a solution

in which each charge is a cast fragment. Different possible

ways of sequencing cast fragments result in different

solutions. The decision on whether two fragments can be

merged depends on CD constraints. EBB searches among

various possible solutions (Figure 6). Among the current

possible solutions, the best m solutions are chosen on the

basis of the objectives, where m is a parameter external to

the algorithm. Among the best solutions, each possible

merge is evaluated, and the top b best fragment merges

for each solution are chosen, where b is the beam width,

which is specified as a parameter to the algorithm. The

best merge is the one that results in the maximum value

of (rush weight � surplus weight) per charge among all

possible merges; ties are broken on the minimum number

of grade transitions per charge. This is similar to the

multifragment method for constructing initial solutions in

solving traveling salesman problems [23]. The crucial

difference here is that up to b choices of merges at

each level are simultaneously explored. Note that each

fragment is a linear sequence of charges with no forks.

Again, the best m solutions in the resulting b.m solutions

are chosen. This continues until no more merges are

possible or the time limit, which is specified as an external

parameter, is reached. EBB finally returns the m best

solutions.

A cast is created that corresponds to each fragment in

each solution. If the number of charges in a cast is less

than lg, surplus charges are created up to lg and appended

to the cast.

It turns out that sometimes creating long casts may not

be a good idea for reasons related to capacity. If the

remaining capacity of a resource is c charges, but the

demand of a cast on that resource is more than c charges,

that cast cannot be chosen, however good it may

otherwise be. However, a part of the cast whose demand

on the resource is no more than c can be chosen. To take

EBB algorithm for cast design.

Figure 6

Choose first edge

Draw transition graph

Find best edge(s)

Choose second edge

Cast 1

Cast 2

When no more edges are left for selection, the 

candidate cast can be designed by collecting 

transitions that have been selected so far

Charge

Transition

Best edges

Selected edge

Find best edge(s) 

again and repeat 

above procedure
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care of such situations, cast solutions with shorter casts

are created by running EBB r times, where r is the

difference between the maximum NCCmax over all grades

and widths and the minimum lg over all grades and

widths. In the ith run 0 � i � r, each fragment is limited

to being no bigger than max(lg, ug� i) charges.

Cast selection

The plant has daily capacity limits for each resource, such

as casters, rolling mills, and refining stations. Some of

these capacities are in the number of charges and some

are in tons of weight.

Among all of the casts designed in various solutions

through the various runs of EBB, the cast-selection

step chooses casts such that no resource capacity is

exceeded and no order plate is present in more than

one cast, while maximizing on the objective defined

in the following way. The objective function coefficient

of cast i is composed of the rush potential of the cast

(rush weight � surplus weight), denoted as Ci, and the

cumulative objective value of slabs in cast i, as calculated

during slab design, denoted as Di.

This is accomplished using a set-packing formulation

with side constraints to enforce capacity limitations. Let I

stand for the set of designed casts, and let the decision

variable xj denote whether cast j 2 I is selected. Let A be a

matrix such that Aij equals the number of plates of order i

present in cast j, and let D be a matrix such that Dfj stands

for the weight of slabs in cast j that require processing on

facility f 2 F.

Maximize
X

j2I
r
j
d
j
x
j

subject to

X

j2I
A

ij
x
j
� 1; for all orders i 2 O;

X

j2I
D

fj
x
j
� U

f
; for all facilities f 2 F;

x
j
2 0; 1f g; 8j 2 I:

Cast-template determination and filling

For each of the selected casts, a cast template is

constructed. A cast template consists of charge templates

corresponding to the charges in the cast. Each charge

template contains the salient information about the

corresponding charge, such as the set of grades in the

charge, the width and the thickness of the slabs in the

charge, the set of rolling mills to which the slabs in the

charge are assigned, the refinement processes a charge

uses, and the weight of the charge. The charge-template

specifications are grouped and indexed by tuples of

mixable-grade sets, width, thickness, rolling mill, and

refining process. For each template-specification tuple,

the corresponding list of charges and their weights are

collected.

This information is passed to slab design for designing

slabs. The output of slab design (template-filling mode) is

a set of slabs for each specification. One by one, each of

the charges corresponding to the specification is filled up

to its specified weight using the slabs from the set of slabs.

If the weight of a charge falls below the minimum, the

charge is filled with surplus slabs that are constructed

using one of the slabs in the charge as a replica.

Cast-slab design

All slabs in a cast slab must go to the same rolling mill.

Moreover, the total weight of cast slabs in a charge

should be within the minimum and maximum charge

weight limits. The number of cast slabs in a charge strand

of a charge can differ from that of the other charge strand

in the charge by at most 1. There is also a limit on the

maximum allowed difference in length of charge strands

in a charge. At the boundaries of charges of different

grades and at the beginning and the end of casts,

because of production issues such as grade mixing and

degradation, there are constraints on the grades of cast

slabs that can be placed in these areas. We solve this

problem for each charge separately using heuristics and

MIP formulations, where the problem of combining the

smaller slabs into cast slabs and the problem of selecting

cast slabs to satisfy charge-level constraints are solved

simultaneously.

Computational issues and results

A crucial limitation imposed by the real-life setting of our

application is that there are numerous constraints that

can only be approximately modeled either because they

are too complex or because their precise description is not

known. An example of the latter is the entire set of

feasibility constraints on mother-plate patterns. Every

mother-plate pattern is checked for manufacturing

feasibility (taking into account issues such as the rolling

and cutting precision) by a complex and time-consuming

software application at the client’s site, which we treat as

a black box. The approximate model of this black box

given to us allowed us to generate mother-plate patterns

that were feasible at least 95% of the time, but not always.

A time limit of 30 minutes was imposed on our code,

which runs on a desktop PC with an Intel P6 CPU and

4 GB RAM. Because a substantial portion of that time is

taken up by the feasibility-checking black box, the extent

of column generation we can perform to solve the MPD

subproblems is restricted. Further, the very large number

of constraints implies that in some cases there are no
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reasonable alternatives to simple heuristics or exhaustive

enumeration.

We use a combination of MIP models and heuristics

to solve the PD problem. We use CPLEX 9.0 to solve

the linear programming problems arising in different

contexts, and also a number of MIPs. For the MIPs, we

use different parameter settings depending on the specific

subproblem. We solve about four to six MPD problems

with grouping constraints (one with no slab width

specified during width exploration, and the rest

with specified slab widths) for each of the 15 or so

combinations of casters and thicknesses, for a total

of about 50 to 100 MPD problems. This implies a time

limit of about 30 seconds per subproblem of this type,

which is why we do not combine a branch-and-bound

enumeration with column generation. For these

problems, we are satisfied with approximately optimal

solutions, and we also use specialized rounding heuristics

that produce solutions whenever CPLEX cannot produce

a solution within the prescribed time limit. The EBB

heuristic runs quickly, and the set-packing formulation

for cast selection is relatively easy to solve to exact

optimality, since we usually generate at most a few

hundred casts before selecting from five to ten cast

columns from them.

The template-filling problem (mother-plate design with

grade groups fixed) is fairly time-consuming. We spend

up to a third of our budgeted time on this problem,

but this is justified because of the overall improvement

in the quality of the casts. In Table 1, we illustrate the

percentage of improvement in various objectives after

template filling is performed using the cast templates from

the final selection of casts. It is based on one specific data

set containing 3,815 orders with a total weight of about

38,000 tons, of which 626 of the orders are rush orders.

The solution after template filling in Table 1 consists of

eight casts and 720 mother plates (the number of casts

does not change in template filling). The rush-completion

ratio is the ratio of the number of completed rush orders

to the total number of rush orders. For reasons of

confidentiality, we cannot provide the exact values of the

different objectives before and after template filling, but

we give a range for these values. Before template filling,

around 1,000 orders and between 40% and 60% of the

rush orders are completed. The average slab weight lies

between eight and ten tons, the yield ratio is more than

85%, and the surplus ratio is at most 5%.

We are unable to give an exact comparison of the

values of the important objectives before and after the

deployment of our PD tool at our client’s plant, because

the production process was changed in anticipation of

efficiency gains resulting from the use of the tool. For

example, since our tool could generate solutions with a

higher average number of charges per cast, the minimum

number of charges per cast was increased when our tool

was used.

We are, however, able to present a comparison of

solutions obtained by the PD tool with a solution

obtained using the prior (semiautomated) method used by

our client (Table 2). The data set consisted of 2,315 orders

with a total weight of about 25,000 tons and 723 rush

orders. The objectives are the basically the same as

those in Table 1, except that we do not give the order-

completion ratio; instead, we give the surplus-slab ratio

in the last row. For Setting 1, we give the percentage of

improvement in objective values, as compared with the

client solution, by setting a high emphasis on completing

rush orders. The solution for Setting 2 is based on a

different set of parameters. In the first case, the PD tool

yields a solution with many more completed rush orders

and higher slab weight, but with more surplus plates and

slabs. In the second case, the PD tool returns a solution

that trades off reduced surplus slabs for reduced rush-

order completion.

Summary
This paper describes the use of optimization and analytic

tools to improve production design for plate products

in the steel industry. The use of these tools provides two

types of benefits: improvement in the productivity of a

plant and an approach to incorporate the key business

Table 1 Percentage of improvement in objectives as a result of

template filling.

Objectives Improvement (%)

Rush-completion ratio 22.3

Orders completed 13.7

Average slab weight 3.7

Surplus ratio 0.0

Yield ratio �0.2

Table 2 Comparison of PD tool results with results using prior

method.

Objectives PD tool

Setting 1

(% improvement)

PD tool

Setting 2

(% improvement)

Rush-completion ratio 19.0 �1.7

Average slab weight 8.7 6.5

Surplus ratio �17.9 �3.6

Yield ratio 1.4 1.5

Surplus-slab ratio �39.0 54.0
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performance indicators (such as available-to-promise)

into operations at a production level.

In our experience, the productivity gains achieved at

the plant level are of two types: improved yield and

reduced surplus in the design of slabs and casts.

Depending on the product mix and the grade mix, our PD

tool is effective in reducing the surplus to 3% to 5% of the

total production (measured in terms of the weight of the

designed slabs) while increasing the average slab weight

by about 3% to 5%. In tandem, yield improvements are

gained by increasing the average number of charges per

cast. This could improve the yield by up to 0.5%. For a

one-million-ton plant, these improvements could result in

direct cost savings of more than $2 million annually.

Another benefit of PD tools developed here is the

ability to integrate supply-chain-level planning (based

on a six-month horizon) to day-to-day scheduling (to

the level of ten minutes) that is feasible on the plant

floor. Since the production-design approach presented

in this paper is able to manage due dates for orders in

conjunction with such operational measures as yield and

surplus rates, it provides an explicit way to incorporate

key business-performance indicators (such as available-

to-promise and productivity) into operations. For

example, when customer satisfaction is the highest

priority (Setting 1 in Table 2), it provides a way to

improve on-time delivery (a strategic measure that is

reflected in the rush-completion ratio) by trading off a

little on the operational measure of surplus. Setting 2

provides a way to maximally improve operations (such

as the surplus-slab ratio) while achieving a desired

rush-completion ratio.

As manufacturing companies turn their attention from

planning to incorporating their plans into operations

to provide measurable benefits, optimization tools for

production design will play a key role in facilitating this

transition. This will have a tremendous impact on steel

companies and other manufacturing-centered industries.
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