Inventory allocation and
transportation scheduling
for logistics of network-
centric military operations

This paper describes a prototype inventory-placement and
transportation-scheduling solution developed in support of the
emerging military doctrine of Network-Centric Operations
(NCO). NCO refers to an unprecedented ability to share
information among cooperating forces, enabled by modern
communications and computing technology. The objective of the
Network-Centric concept is to collect, disseminate, and react to
real-time information in order to improve the performance of the
U.S. Army as a fighting force. One problem that arises in the
logistics domain involves the maintenance of combat vehicles.
We seek to determine the improvement, if any, made possible by
exploiting accurate information on the status of available repair
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parts inventory, the current locations of mobile supply points,
and the demand for parts. We describe logistics algorithms for
maximizing the operational availability of combat vehicles by
producing flexible, optimized inventory and delivery plans that
decrease replenishment times and prioritize parts allocations

and repairs. Our algorithms are designed to leverage real-time
information available from modern communications and inventory
tracking technology by employing state-of-the-art mathematical
optimization models. Our simulations indicate that Network-
Centric Logistics (NCL) can significantly improve combat vehicle
availability in comparison with current practice.

1. Introduction

Military logistics systems face a dynamic and uncertain
environment. The United States and its allies are
confronted by increasing numbers of opportunistic
adversaries and insurgencies that use unconventional
fighting tactics to nullify an overwhelming force
advantage. The response must be agile, adaptive, and
flexible in both military operations and logistics. The
current logistics system works well in an environment of
relatively predictable demand, such as peacetime garrison
operations or traditional, highly planned force-on-force
operations. However, conventional logistics systems often
break down in modern military operations that involve
rapid force-structure change, extremely mobile forces,
and greatly varying demands.
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In order to achieve greater flexibility, modern logistics
models require new analytical tools and execution models
with greater adaptability and agility. In 2005, the Defense
Advanced Research Projects Agency (DARPA)
sponsored a Network-Centric Logistics (NCL)
experiment to demonstrate the effectiveness of dynamic
configuration algorithms for tactical ground logistics
control. The objectives were to increase the flexibility of
tactical supply chains and to improve delivery speed by
treating tactical logistics as a dynamic configuration
problem and by controlling physical inventory and
distribution with proven techniques from adaptive
inventory-management systems.

In this paper, we demonstrate how a dynamic
multi-point supply approach can increase operational
availability in a volatile combat environment compared
with a traditional hierarchical logistics structure. (We
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Testing environment based on a U.S. Army logistics scenario.
Lines denote examples of possible movements of parts between
units. (BSB: brigade support battalion; BN: battalion; CavSqdrn:
cavalry squadron.)

define the term operational availability more rigorously in
the section on measures of performance and in other
sections that follow.) The logistics algorithms designed
to achieve our goal are based on state-of-the-art
mathematical optimization models. To evaluate the
concept, we have conducted a series of experiments in
which the logistics models are driven by a high-speed
logistics simulation platform, a topic that is beyond the
scope of the current paper. The simulator takes an
operations plan (OPLAN) and generates detailed
battlefield scenario data. The demonstration is driven
by a fictitious scenario lasting 30 days. The optimization
models produce a plan for the storage and delivery of
repair parts for maintenance support in a single

combat brigade.

The remainder of the paper is organized as follows.
Section 2 describes logistics challenges encountered in
military operations of today and introduces NCL
concepts. Section 3 describes the inventory allocation
problem and the mathematical algorithms we use to solve
it. Section 4 introduces the transportation scheduling
problem, and the next four sections describe our solution.
Section 9 contains numerical results, and Section 10
concludes the paper.
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The setting for our problem is based on a projected Army
logistics scenario. We focus on the distribution of parts
inventories needed to repair combat vehicles in a combat
brigade. For the purpose of this study, only critical repair
parts (i.e., parts necessary to restore vehicles to
operational status) are considered. As shown in Figure 1,
the brigade consists of several combat battalions denoted
IBN, 2BN, and 3BN. [For our purposes, the cavalry
squadron (CavSqdrn) is also treated like a battalion.]
These are supplied by a central logistics depot called the
Brigade Support Battalion, or BSB. A battalion is
composed of a group of smaller operational units, most
of which are called companies; we simply refer to all of
these units as companies. These units require logistics
support to meet their demand for spare parts. This
support is provided by combined delivery and repair-
team trucks; however, some parts are crew-replaceable
and do not require the delivering truck to stay while its
mechanics carry out the repair. As indicated in the figure,
parts may be “cross-leveled” between companies or
battalions as defined in the next paragraph.

The brigade is network-enabled in the sense that it can
share information through modern communication
technologies. The network provides continuous visibility
of all repair parts inventory at the BSB, the companies,
and even in individual combat vehicles. Each company
can be considered to have a local stocking point (in
actuality representing on-board spare parts storage on the
combat vehicles themselves). The locations of the BSB
and the operational units change over time. NCL
responds to supply needs by continually fulfilling demand
as requested, allowing any truck to serve any battalion.
Widely distributed parts require intelligence to identify
where a needed supply part should come from and who
should supply it. It is possible to transfer materiel
between companies and across battalions. This is called
cross-leveling, and it may entail obtaining parts from
different, rapidly changing locations. In this system,
repair parts can be supplied from multiple sources,
including the BSB, pre-loaded stores on delivery and
repair-team trucks, and even other combat vehicles if they
carry on-board spare parts.

Although network-enabled logistics structures and
operating procedures do not currently exist, they are
under development as part of the future combat system of
the Army. Traditional brigade combat teams of today use
hierarchical distribution techniques in which repair parts
are located in the BSB, parts requests are consolidated by
the subordinate units, and a single daily replenishment
operation, called a logistics package, delivers parts to the
subordinate units. Each battalion is serviced only by
trucks dedicated to it. Table 1 lists the main features
of logistics operations, contrasting the traditional
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Table 1  Logistics operations for the baseline case and NCL.

Baseline

NCL

Locations of supplies Centralized at BSB

Supply network Top-down hierarchy

Method of distribution

dedicated trucks
Decision cycle 24 hours

Decision criteria First-come first-served

Daily batches using only per-battalion

Partially distributed—some part types are carried on
board

Flexible: any truck can serve any battalion

Flexible-size batches using any truck in brigade

As often as one hour

Mathematical optimization used to maximize vehicle
availability

hierarchical logistics structure (i.e., the baseline) and
NCL.

Measures of performance

The efficacy of the NCL approach was evaluated using
standard military utility testing and evaluation
methodologies. For this project, DARPA was interested
in increased operational availability of combat vehicles
and reduced customer wait time.

Operational availability (A,) is a measure of the time
during which the capabilities of a system are available for
operational use. It takes into account failure and repair
information. This dependent variable is measured at
the vehicle level and summed over vehicles. Simple,
unweighted values of 4, equal the time a vehicle is
working divided by total time. The precise definition we
use is described later. It includes time-varying relative
priorities of combat units corresponding to their
operations; for instance, a unit engaged in battle is
considered to have high priority.

Customer wait time (CWT) is a measure of time from
request to delivery. In our case, the request time is defined
to be the time at which a part breaks. CWT comprises
the time for administrative processing, possibly the time
waiting for a part to arrive from outside the brigade, the
time waiting for transportation to begin, and the travel
time or total elapsed time spent in order to get the part
from the supplier’s location to the consumer’s location.

Solution overview

Our solution consists of two main components, an
inventory allocation module and a transportation
scheduler, as illustrated in Figure 2. The inventory
allocation module takes as input the available repair parts
inventory, forecasted breakages, and the future positions
of the operational units. It produces an allocation plan
for each repair part and operational unit in the brigade
over a future planning horizon of up to 72 hours. It
accounts for storage capacity constraints as well as
relative priorities of the combat units.
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The transportation scheduling module uses as input the
current locations of the (immobilized) broken vehicles,
the projected future movements of other entities, and the
allocation plan generated by the inventory allocation
module. It produces a plan for delivering parts and
carrying out repairs. This schedule specifies the spare
parts to carry on each vehicle and the locations at which
to load and unload the parts. The primary objective is to
deliver the spare parts needed to repair currently broken
vehicles. The secondary objective is to replenish the parts
inventory at the logistics points in order to approach the
levels specified by the inventory allocation module. This
allows repairs to begin immediately upon breakage (if the
part is available in the same unit) or very soon thereafter
(if the part is available in the same battalion) in the case
of crew-replaceable parts that are carried on board.

The framework allows real-time adjustment of
schedules and resource allocation. The analytical modules
continually update the solutions in response to changing
conditions. At each time increment, which we call an
iteration, of a scenario simulation, the optimizers receive
the current state from the simulator and compute an
optimized delivery plan covering the next 72 hours. We
call an individual run with its own settings of input
parameters an experiment.

The simulator commits and executes the initial portion
of the plan. As the simulated scenario evolves and
operational plans change, vehicles break down,
and new repair parts become available, the simulator
communicates these changes to the optimizers, which
produce a new delivery plan optimized for the new state.

3. Inventory allocation

The goal of the inventory allocation module is to
determine pre-positioned levels of supplies to best
respond to future breakages. We develop a practical
heuristic allocation model that uses up-to-date
information on available inventory, supply points, and
demand forecast. The model recognizes cross-leveling
opportunities, accounts for movements of operational
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Functional design of the NCL logistics optimization prototype.

units within the brigade, and deals with short-term supply
shortfalls such as delayed deliveries or supply shortages
that could lead to longer-term degradation of capability.
The inventory allocation is performed in two stages; the
first stage strives to achieve high operational availability,
and the second stage attempts to further reduce customer
wait times through strategic placement of inventory. The
allocation procedure is based on assigning a preference
score computed from weighted fulfillment ratios and
transportation lead times to each company to identify
stocking points that can efficiently cross-fill demand at
neighboring companies. Allocating inventory on the basis
of the preference score minimizes customer wait time,
which in turn maximizes fleet availability. Although the
proposed inventory allocation solution is a practical
heuristic that is not in general optimal, we show in
Section 9 that a key performance utility commonly
used by the U.S. Army, operational availability, can
be improved by roughly ten percent when the solution
is applied under a realistic military force scenario.

The academic literature presents a large body of
research on inventory-service tradeoff models. However,
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none of the traditional approaches deal with dynamic
supply chains or multiple sourcing in the context of
optimization. We therefore propose a heuristic algorithm
that leverages earlier work on service-level optimization
in commercial supply chains, implosion techniques for
manufacturing, and inventory allocation in service-after-
sales networks [1-6]. In contrast to conventional
inventory systems and methods, the proposed algorithm
can deal with mobile entities that may change locations
during a planning horizon. Furthermore, it does not rely
upon static sourcing relationships to allocate inventory,
but instead manages the allocation of inventory to each
entity dynamically by exploiting opportunities for
multiple sourcing, cross-leveling, and selecting suppliers
on the fly. A recent paper [7] deals with a related
inventory-allocation problem in a hierarchical repairable
service parts system with two levels. The system in
question consists of a central repair facility, a central
warehouse, and a number of field stocking locations that
service customers. The authors describe a repair and
inventory allocation model that determines the number
of parts to ship from the central warehouse to the field
stocking locations in order to minimize the total expected
inventory holding and back-order costs over a planning
horizon. Although their approach could be employed to
address the inventory allocation problem in a traditional
brigade with hierarchical distribution operations, it does
not capture the dynamic sourcing relationships found in
an NCL environment with cross-leveling of materiel
between combat units.

Before presenting our modeling and solution approach
for making inventory allocation decisions in a network-
enabled brigade, we summarize several key modeling
assumptions: a) theater-level logistics are not modeled
except for repair parts during operations; this excludes
other categories of materiel such as armament, fuels,
ammunitions, and communications subsystems; b) at
most one part failure can occur on any given combat
vehicle, so that each repair involves a single part type
needed to return a broken vehicle to an operational
condition; c) installation times are deterministic and
depend on the type of repair part delivered to a combat
vehicle; and d) the gathering of installed parts from
broken vehicles in order to repair other broken vehicles
(i.e., cannibalization) is not currently considered.

We now define the notation required to describe our
model. Here and elsewhere, ¢ always refers to the time ¢
units from the current (simulated) time; that is, each time
we run our algorithms, we “reset the clock™ so that the
current time is 0.

Logistics network

P : Set of repair part types indexed by p.
B : Set of battalions indexed by b.
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C : Set of companies indexed by c.

w.; : Relative importance of company c¢ at time ¢.

wy, : Relative importance of battalion b at time z.

L, : Expected transit time between companies i and j
for transport initiated in time period ¢.

O, : Storage capacity of part p at company c.

O, : Overall storage capacity of part p at battalion b
where 0, < > ccp Ope; ¢ € b denotes the set of all
companies ¢ assigned to battalion b.

Note that the maximum storage capacity of a battalion,
O,», is at most the sum of the on-board spare capacities of
all of its combat vehicles. Further restrictions, such as
stocking limits, may also apply.

Demand and supply
D,.; : Expected demand for part p at company ¢ at
time 7 (D, equals the demand backlog at time 0).
U, :Quantity of part p expected to arrive from outside
the brigade at time ¢.
W : In-transit inventory of part p at time 0 (repair
parts stored on trucks).
Lo : On-hand inventory of part p at company ¢ at time
0 (current on-hand inventory).
A, : Quantity of part p available in the brigade at time
t (supply available for allocation).

The demand for repair parts is assumed to be
deterministic. However, the demand intensity varies
on the basis of information about the mission type and
location provided in the OPLAN, thus accountng for
different scenario factors that have an impact on the
vehicle damage and repair parts requirements (e.g., low-
demand intensity exists during humanitarian assistance
missions; high-demand intensity exists during combat
operations).

Decision variables

X, - Number of parts of type p allocated to company ¢
at time 1.

X5 - Number of parts of type p allocated to battalion b
at time 7.

Ry, : Optimized cumulative receipts of part type p at
company c¢ at time 7.

R[’jb, : Optimized cumulative receipts of part type p at

battalion b at time ¢.

The relative importance w,, or wy, is a non-negative
weight representing the priority of a unit relative to other
units. A larger weight means higher priority. The transit
times are computed by a shortest-path algorithm that
takes into account the state of the road network and the
current movement plan. Expected demands are computed
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from scenario data, including per-part breakage rates as
functions of combat vehicle activity (e.g., idle or engaged
in combat). Initial quantities and parts arriving from
outside the brigade are part of our scenario data, along
with brigade structure, storage capacities, etc. The
proposed algorithm proceeds in three steps, as described
in the following sections.

Step I: Allocate repair parts on the basis of relative
priorities

In this step, we attempt to maximize the fraction of
breakages that can be serviced immediately from pre-
positioned repair parts inventory, taking into account the
priorities of the various military units. We allocate parts
hierarchically, first to battalions and then to companies,
using a prorating scheme.

The first goal when allocating spare parts to a battalion
is to cover the breakages forecasted for all of its
companies. We do this in a way that takes into account
the relative priority of each company: The fraction of
spare parts allocated to a battalion is the priority-
weighted sum of the breakage forecasts of its companies
divided by the priority-weighted sum of the breakage
forecasts across all companies in all battalions. However,
the number of parts allocated will not exceed the storage
limit Q,, at the battalion. The following formula
expresses this rule:

)
z : w (’IDpct

. €B

X, =min{Q, <5 (1)
pbt pb? pt
w(’IDpcz
ceB
where
t —1
APY - AI’O + Wp() + led) + Z Upu - Z ZDPCM
ceB u=0 u=0 ceB

is the expected amount of available (unallocated) supply
of a part type p in the brigade at time . 4,, includes all of
the available supply in the brigade of part p in time period
t, not just the inventory at the BSB, and is computed as
the difference between the cumulative number of parts
that entered the brigade until time ¢ and the cumulative
number of expected breakages until time (r — 1). Having
thus allocated parts to a battalion b, we further allocate
them to each company c in the battalion using a similar
prorating scheme,

. wchpct
cht = min Qpc, DTXPM . (2)
et pet
ceb

Denote ¢, = (Xper | Wer Dper) as the weighted fulfillment
ratio for an operational unit ¢. To improve operational
availability (as defined in Section 2), we try to stock
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parts as much as possible at the demand point to satisfy
demand immediately. This can be achieved by having a
higher fulfillment ratio. The allocation scheme (1) and (2)
strives to balance the fulfillment ratios of all battalions
and companies while satisfying the stocking limits

O,» and Q,,.. Notice that the allocation in this step

may entail fractional quantities of inventory being
assigned to a company or battalion. Finally, we set

Apt = Apt - ZCEB chr~

Step II: Iteratively improve allocation to further reduce
CwrT

If the storage capacity limit at some companies or
battalions is smaller than the desired allocation target
based on their weighted share as given in Equations (1)
and (2), leftover supply exists at the end of Step 1. This
remaining supply is allocated among companies or
battalions that have not exceeded their capacity limit
in order to minimize the expected time to respond to
breakages that are not fixed immediately. The algorithm
gives preference to operational units that are centrally
located in order to maximize the benefit from cross-
leveling. This helps to minimize the CWT as defined

in Section 2.

For each time period ¢, the algorithm computes a
preference score M for each company ¢ in the brigade,
ranks all companies by their preference scores, and
allocates one part from the remaining unallocated
available supply to the company with the highest score.
This step is repeated until all remaining stock is allocated,
or all companies reach their capacity limits. In cases in
which companies reach their capacity limits, all remaining
parts are allocated to the BSB.

Several scoring metrics (M) exist that we can use in the
first step. The simplest one is based on the expected
transit time L;, between any two companies ¢ and j in the
brigade. We define M, as the expected transit time to
other companies,

M,=>L,. (3)
jeC

A low M, indicates that a company is centrally located
and can therefore respond quickly to requests from other
companies in the brigades. The simple preference score
M, considers transit times, but it does not consider the
inventory state. Thus, we enhance the score by defining
another preference score M, pee that simultaneously
considers transit times and inventory state:

M, = ZC max {0, (¢, = @) Lo} - (4)
jeC

M., combines the expected transit time and the
difference in weighted fulfillment ratios, helping to balance
the fulfillment ratios across the brigade. We use M et 1O
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allocate the remaining available supply using the algorithm
below. The company with a smallest A pes SCOTE 1S given the
highest priority for allocation. Notice that the following
algorithm can assign fractional values in Step A2 as the
remaining (expected) supply, 4,,, need not be an integer.

Algorithm A: Allocate remaining supply

e Step Al: Find ¢* = argmin(,e(gXWKQp(’{]l;lp(,,}.

* Step A2: Set X+, = X, +min {1, 4,,} and
Ay = Ay — min {1, 4,,}. )

* Step A3: If A, =0, stop. Otherwise, update M, on
the basis of the allocation in Step A2 and return to
Step Al.

Given that the values of expected demand are usually
fractional and the amount of expected supply available is
small, allocating one unit at a time incrementally can be
justified.

Step III: Determine allocation plan

Using the allocations obtained in Steps I and II, we
generate a parts allocation plan for the BSB and all
operational units in the brigade. The plan is expressed
in the form of cumulative net receipts targets R;(,,
(cumulative net flow of parts into a company) for each
repair part p and operational unit ¢ and time period .

We have

1—1
%
Rp('t = cht + Z Dpcu - Ipc’O . (5)
u=0

The allocation plan is always feasible in the sense
that the total number of parts delivered to an operational
unit is always equal to the number of parts that are taken
from other units (including the BSB). For example, if
company c is scheduled to receive ten parts at time ¢, there
are other companies that, in sum, provide these ten parts.
These are represented as negative receipts in the receipts
plan. Again, it is possible that the values of R} , are
fractional. To make R, an integer, we set X),., ==
X[’(‘f - ( ;(?l - I.R;L/J) and AIH = AP/ + (R;cl - I.R;(/J)
(Here the bracket symbols represent the floor function
and supply the nearest integer less than or equal to the
value within the brackets.) We then use Algorithm A to
allocate 4, to the companies and recalculate R}, using
Equation (5). Note that at most one of the RI";C, values
can be fractional after we apply Algorithm B! in any
period ¢ for every part p; this is unavoidable because the
expected demand can be fractional.

The operational decision as to where to source the
supply is provided by the transportation scheduler, which
is described in the following section.

'We refer to the aformentioned steps of setting values for X),., and 4, along with
allocating 4,,, as Algorithm B.
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We now describe our solution for generating an
optimized plan for the trucks that load and deliver spare
parts. The primary goal is to determine a schedule for the
trucks to load parts at the supply locations (BSB and
companies) and deliver them to the combat vehicles that
must be repaired. The schedules of the trucks are also
given load and unload operations for parts that are not
required immediately, so that the inventory level at each
location approaches the target specified by the inventory
allocation module.

Inputs

One of the inputs to the transportation scheduler is the

output of the inventory optimization phase: namely, a list
of parts that must be delivered to each location and the
times at which to deliver them to achieve optimized pre-
placement of inventories.

Other inputs describe the number of available trucks
and their operational constraints, such as their ranges of
operation (e.g., the distances that they can travel before
they must return to the BSB for refueling) and their
capacities for storing parts. Our model for delivery can
incorporate a variety of other operational constraints,
such as load and delivery time windows, preferred
or prohibited assignments of trucks to routes, and
constraints on the total length and composition of a route
(such as limits on the number and type of deliveries in
each route). However, of these constraints, only the truck
capacity and delivery time window constraints were
applied in this prototype effort.

Outputs

For each available truck we either produce a route or
label the truck as idle. A route consists of a list of
locations to visit (BSB, company, or broken combat
vehicle) in sequential time order, and the sequence of
operations to perform at each location (load part, unload
part, or repair broken vehicle). A route may include
companies and broken vehicles that belong to different
battalions, in contrast to the traditional hierarchical
assignment of trucks. A route starts at the current
location of the truck. It ends at the BSB, a company, or a
broken vehicle. The duration of a route does not exceed
the planning horizon of 72 hours.

Objective function

We now formally describe the objective function used
by the optimizer as specified by DARPA. The function
contains two terms. The first measures the availability of
combat vehicles throughout the planning horizon. The
second term penalizes the schedule (reduces its score)

if the inventories at the various locations do not meet
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or exceed the levels recommended by the inventory
allocator.

A good schedule prioritizes the repairs in order to
maximize the number of operational combat vehicles
across battalions and time, taking into account the
relative weights w;, of each battalion b at each time
period ¢, and striving to balance the availabilities
across battalions. To achieve this goal, we include in
the objective function a term f;,(rs,) that measures the
operational availability of vehicles at battalion b and time
t as a result of the repairs, where r,, denotes the number
of vehicles in battalion b that have been repaired before
or during period 7. We wish to maximize the sum of these
availabilities, weighted over all battalions and time
periods; that is,

; Wbtsz(rhz)' (6)

This is the first term in our objective function, and it is
divided by a normalizing factor that is described later.
Three ranges of operational availability are defined for
the combat vehicles: up to 80%, from 80% to 90%, and
from 90% to 100%. Each one has a distinct priority; for
instance, if we ignore weighting of battalions due to
different activities such as “in combat” versus “idle,”
a balanced solution with two battalions each at 80%
availability is considered by our customer, DARPA, to be
better than one battalion at 70% and one at 90%. (The
weights specified in the OPLAN for different battalions
are included in the overall objective function as defined
below.) The terms f3,(r,) in the objective function capture
these three levels of priority as follows. Let V/, be the total
number of combat vehicles in battalion b, and let N,
be the number of operational vehicles at time period 0.
Thus, the fraction of operational vehicles at period ¢ in
the battalion (ignoring future breakages) is given by
(rps + Np)/ V. The primary priority in repairing is to
increase this fraction to 80%. The secondary priority is to
increase this fraction to 90%, and the tertiary priority is
to be fully operational, i.e., to bring the fraction up to
100%. In the objective function we give these levels of
priorities weights that reflect their relative importance:
4, 2, and 1, respectively. With these weights, each term
Jfud(rp:) is a piecewise-linear concave function written as

1) =),

Y

where f(x) =2 min (x, 0.8) + min (x, 0.9) + x. Note that the
first 80% of operational vehicles are counted four times in
this expression, the next 10% twice, and the last 10%

once, as desired. Because (5, + Ny)/V} is always between 0
and 1, the term f},(r;,) yields a value between 0 and 3.5, as
can be seen by substituting x =0 and x = 1, respectively.
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Recall that R}, denotes the optimized cumulative
receipts for part p at company ¢ as generated by the
inventory allocator, and that the initial inventory is Z,.
Denote by R, the actual cumulative receipts by time ¢
for part p at company c. It is defined as the number of
parts of type p unloaded from trucks up to and including
time ¢ at company ¢, minus the number loaded at
company ¢ and taken elsewhere. To penalize deviations
from the target receipts value R; ,, we apply the following
penalty term Z,., to the objective function:

{ R;Ct - Rpct} . *
maxg 0, —— if R, +1,,>0;

7 =

pct pct + pc0

0 otherwise.

Z,., measures the relative deviation of the actual
receipts plan from the target receipts plan established by
the inventory allocator. Rewriting

*

R —R
pet pet
*

Rpct + Ipz'()

as

Rpct + I[J(’O

* 9
Rpct + IpcO

we can interpret it as the fraction of inventory missing
at time ¢t compared with the value suggested by the
inventory allocator. Note that R, and R; , may be
negative. However, Ry, + Ipco > 0 and R}, + L0 > 0,
and thus the above penalty is less than 1 for all p, ¢, and ¢.
Taking the maximum of the fraction and zero ensures
that there is no benefit (negative penalty) from exceeding
the inventory requirements.

The composite function we seek to maximize, including
the weighted measure of availability and the terms
corresponding to pre-placement, is

1 o

355w, Zwmfm(’m)—m Zpet» (®)
bt

Wor byt et

where the normalizing factors 3.5 X, , wy, and |P|-|C|- T
convert each of the two sums in Equation (8) to numbers
between 0 and 1. Recall that P is the set of part types and
C is the set of companies. T denotes the planning horizon,
and o is a weight between 0 and 1 that denotes the relative
importance of meeting the inventory pre-placement
targets. In this prototype effort, we used a value of 0.05.
This value could be further tuned in a larger-scale
development effort. (We note that this particular
combination of including per-battalion weights for
availability but per-company weights for inventory
placement is not arbitrary; it was specified by our
customer, DARPA.)
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Outline of solution approach

We have developed and experimented with three
approaches for producing optimized schedules. The first
approach uses integer programming (IP, defined below),
and is described in Section 5. The second approach uses
local search and is described in Section 6. The third
approach is a somewhat sophisticated greedy heuristic,
described in Section 7.

In the integer programming approach, we first produce
routes for the trucks in order to deliver parts to combat
vehicles to be repaired. Then we add load and unload
operations to these routes to deliver the spare parts
specified by the inventory allocator. The local search
and greedy approaches work to satisfy both goals
concurrently. In Section 8 we describe how the three
algorithms are combined.

Our first algorithm directly optimizes the first term of the
objective function, using integer linear programming
techniques. That is, it first seeks only to fix broken
combat vehicles and ignores inventory placement. It then
heuristically adds load and unload operations to the
schedule thus generated so far, attempting to satisfy the
recommended inventory placement produced by the
inventory optimizer.

To meet the primary objective (repairing vehicles), we
solve an integer programming mathematical model. This
model requires column generation, a technique to generate
possible routes for each truck. We use a specialized
technique we call fix and resolve to solve the integer
program and determine optimized routes for the trucks.
We then use these routes to transport the rest of the
inventory to the companies in addition to carrying out
as many repairs as possible.

Figure 3 is an overview illustrating the relationships
among the components of our algorithm, which are
described in detail in the following sections. The figure
shows the dataflows into and out of each component,
including the input from the inventory allocation module
described previously, and the final output, a set of routes
and associated operations on those routes.

Integer programming mathematical model

An integer programming mathematical problem is similar
to a linear programming problem, with the additional
restriction that some of the variables must take only
integer values. A linear programming problem is a
mathematical problem in which we seek to assign values
to numerical variables so that they satisfy a collection
of linear equalities and inequalities (the constraints) and
also maximize a linear function (the objective function).
Linear and integer programming models have been in
wide use since World War II in both military and
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industrial operations research, to solve a variety of
problems in vehicle and personnel scheduling, facility
location, investment portfolio selection, distribution
network planning, and other practical applications.

Variables

For each route j to which a truck can be assigned, we
define a variable x;. This is a binary variable: A value of 1
indicates that the route j is to be used in the schedule

(a truck travels the route); 0 means that the route is

not used. Thus, we define

x; € {0, 1} forall routes /. 9)

The number of possible routes may be very large. If
we were to include all routes, we would have created an
unmanageable model with far too many variables x;.
(Later, we provide a detailed discussion of our heuristic
column-generation techniques used to generate just the
routes and variables we need.)

We define the variable r,, as the number of vehicles in
battalion b that will be fixed before or during period ¢.
This must be a non-negative number, i.c.,

r,,, = Ofor each battalion b and each period 7. (10)

This variable must also take only integer values.
However, we do not need to enforce this constraint
directly, and we reap a computational benefit as a
consequence: By virtue of constraint (14) in the next
section, if each x; is an integer, each r,, will be an integer
as well.

Constraints

Each broken combat vehicle should be visited at most once
during each schedule. This ensures that the objective value
does not “take credit” for fixing any vehicle more than
once. To express this, let S(i) be the set of routes that
include a stop at a broken vehicle i. Then,

Z X; < 1 for each broken combat vehicle i. (11)
JES(i)

Each available truck is either assigned to exactly one
route or sits idle. To express this, let T(v) be the set of
routes to which truck v can be assigned. Then,

Z x; < 1 for each repair truck v. (12)
JET()

Two (or more) trucks can be candidates for the same
route or for a portion of the same route. To keep track of
such possible assignments, we label each candidate pair
of route and truck, and thus the pair is unique.

The quantity of a part type transported away from a
location on trucks visiting the location should not exceed
the quantity that has arrived at the location. To model this,
let P(p, t, [) be the set of routes on which the assigned
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trucks transport away part p from location / up to and
including time period ¢. Let d,; be the quantity of part p
that the truck on route j transports away from location /.
Let n,, be the quantity of part p that has arrived at
location / up to and including period ¢. Then the
constraint is expressed as

dpjlx' < npll
JjeP(p,1,l)
for each part p, each period ¢, and each location/. ~ (13)

The number of combat vehicles serviced by the trucks on
the routes equals the number of combat vehicles repaired.
Let U(b, t) be the set of routes for trucks that visit a
broken vehicle in battalion b before or during period t.
Let a,;, be the number of vehicles in battalion 5 that
the truck on route j services up to and including period ¢.
This is a non-negative integer constant. Thus,

Z a,x; = ry, for each battalion b and each period 7. (14)

In order to capture the function f;(r,;) in the objective
function, we introduce three variables y;, y,, and ys.
Variable y; measures the extent to which 80% of the
vehicles are operational; y, measures the next 10%, and y3
measures the final 10%. Their sum must be the actual
operating fraction, and we include a constraint to capture
that. Thus, each term f; (r; ) in the objective function is

Jo(ry) =4y, + 29, + 35, (15)
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and the additional variables and constraints needed to
represent it are defined by

Yty =y +N)/Vy, (16)
where

0<y <038,

0<y, <0.1,

0<y,<0.1.

Column generation for truck routes

In integer programming models for scheduling vehicles,
too many routes usually exist to consider explicitly.
However, any feasible schedule contains relatively few
routes, that is, at most one per available vehicle. We use
a family of heuristics to produce good candidate routes,
i.e., routes that drive the optimization forward and have
the potential of being part of an optimal schedule. This
can be considered as a heuristic column-generation
procedure.

Recall that each possible route corresponds to a
variable in the mathematical model; thus, it defines
a column of the matrix that describes the model. The
ability to generate good columns quickly is the critical
test of a column-generation-based integer programming
approach. We have several methods in our tool set for
generating good routes. They are described in the sections
that follow.

Column-generating techniques are discussed in [8, 9].
For background on vehicle-routing problems and
solution approaches, see [10-14]. More recently,
researchers have considered a problem similar to ours,
including dynamic scheduling of both pickups and
deliveries, but their objective function was different from
ours [15].

Closest-neighbor algorithm

For a given truck, we pick at random a vehicle among the
k broken ones that are closest to the current location of
the truck and that require some part that is currently
carried by the truck. We add this vehicle as the next stop
to the route of the truck. Then, from this location of the
vehicle, we look for another broken vehicle to visit next
among the k closest ones, and so on. We repeat until no
more broken vehicles can be fixed with the spare parts
that the truck carries. The next stop on the route is then
the BSB, where the truck goes to load new spare parts.
Then we look again for a broken vehicle among the k
closest ones, as before. We add stops to the route in this
fashion until the truck on the route has visited all broken
vehicles or the route lasts longer than the planning
horizon. The truck capacity is taken into account when
choosing each stop, so that a broken vehicle requiring
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a part that does not fit into the truck is ignored. Our
experiments indicate that one should give the value 3 or 4
to the parameter k. In this heuristic, only one truck is
considered at a time.

Clarke—Wright algorithm

The Clarke—Wright algorithm is a well-established
procedure used for vehicle routing [16]. We start with
elementary routes and then combine them to create
longer ones that are time-efficient, as follows.

We first create elementary routes, in which a truck
starts at the BSB (denoted f), visits a broken combat
vehicle 7, and returns to the BSB. So, for each broken
vehicle 7, we create the route {f, i, f}. The total number
of routes equals the number of broken vehicles, which
typically exceeds the number of trucks available. Thus, we
need to combine these routes to produce one route per
truck.

We then combine routes recursively, as follows. We
examine together a route that includes broken combat
vehicle 7 as a last stop before returning to the BSB,

{B, ---, i, B), and a route that includes broken vehicle j
as a first stop after the BSB, {f, j, - --, p). Let ¢; and ¢;
be the time length of each route, respectively. Now we
consider the combined route {f, ---, i, j, - -+, §) where
the truck takes on the second route directly after
completing the first and skips the intermediate visit

to the BSB. Of course, we must reject combinations
that are infeasible, for instance because the truck cannot
obtain all necessary parts at the BSB. Let ¢; be the
length in time of this combined route. The time savings
of the combined route compared with the two single
ones is ¢; + ¢; — ¢;. For every pair i and j of routes, we
calculate the time savings of their possible combinations,
and we combine the two routes with the largest

savings, breaking ties randomly. We repeat this until
the number of routes is equal to the number of trucks.

Cluster-and-route algorithm

Another procedure used to generate routes involves the
creation of a cluster of broken combat vehicles for each
truck and then the creation of a route that includes all
vehicles in the cluster.

The clustering algorithm is as follows. First mark as
“available” all broken vehicles. Then move each truck to
a closest available vehicle and mark it as unavailable.
Continue until all broken vehicles have been assigned,
producing a cluster for each truck.

When defining the clusters, all trucks are treated in
parallel, each of them making one move at a time, in
contrast to the closest-neighbor procedure, in which the
trucks are treated sequentially. Once the clusters have
been defined, the routing of the truck is done in each
cluster as in the closest-neighbor algorithm.
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After we schedule visits to all vehicles in a cluster using
parts available on the truck, we add additional stops to
the route, such as the BSB or a company where the truck
can pick up spare parts, and then further repairs may
be added to the route.

For the cases in our test set, we observed that
generating 700 to 1,000 possible routes with the three
methods provided good results. The input of the test case
specified a 72-hour horizon, 36 types of parts, seven
repair trucks, eight battalions, 19 companies, and
approximately 150 broken combat vehicles. From these
routes, seven were chosen by the solution method we
describe in the next section.

Solving the integer program with the fix-and-resolve
method
To solve the integer program, we first solve its linear
relaxation; that is, we allow the binary integer variables to
assume fractional values, and we solve the resulting linear
program using the simplex method [17] and the open-
source solver CLP (available from COIN-OR [18]). Next,
we examine the values of the relaxed binary variables x;
in the solution. Some of them have value 0 or 1, which
means that the solution respectively excludes or includes
them. Others have intermediate values: For example, the
solution may feature two routes for a truck, each with
a value of 0.5. This indicates that the solution does
not select one route over the other. This inconclusive
situation does not help us in selecting a route. On the
other hand, a route with value close to 1 suggests that this
route can be part of a good solution. We have designed
our iterative solution procedure around this concept,
as follows.

We first set the variables with a fractional value close to
1 to the value 1, thus “fixing” them. If any variables are at
least 0.999999, they are chosen for such fixing. Otherwise,
we choose the variable closest to 1 and fix only that
variable before the next iteration. However, if fixing
a variable to the value 1 makes the linear program
infeasible, it is fixed to 0. Next, we reduce the size of the
problem by removing all of the trucks, inventory, and
fixed combat vehicles associated with the routes that are
thus fixed. We then solve the linear relaxation again in
order to optimize the smaller problem. We repeat these
steps, fixing new variables close to 1, until no more
variables are assuming a fractional value. We call this
procedure fix and resolve. It is designed to produce a good
solution quickly. (As we fix more variables, the linear
programs become smaller, and we expect to solve them
faster.)

Delivering all spare parts

The solution of the integer program assigns each truck to
a repair route for broken combat vehicles and assigns
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load operations for the spare parts required. We can
make additional use of this route to deliver to the
companies the parts specified by the inventory optimizer.
First, we mark all companies that have parts to be
delivered to them as “unfulfilled.” We then produce a
random ordering of the trucks that are non-idle, that is,
that have routes assigned to them. For each truck we
carry out the following steps:

1. For each part, we compute the total quantity to be
delivered to the companies on the route of the truck.

2. We examine whether the BSB has some or all of these
parts. We also check whether some other company
has excess quantities available for cross-leveling.

3. If some of the parts are available, we load the parts
on the truck, up to its capacity limit.

4. As truck travels its route and delivers parts to the
companies, we note whether or not the parts
delivered meet the total demand of each company.
In the first case, we mark the company as “fulfilled.”

At the end of this algorithm, some companies may be
unfulfilled; that is, their demand may have been filled only
partially or not at all. For these companies, we reserve
one truck to run a special route: It starts from the BSB,
tours the unfulfilled companies delivering parts, and
returns to the BSB. We schedule this truck using a
closest-neighbor heuristic as follows. We greedily create
a route for the truck, which starts at the BSB, then visits
the unfulfilled company closest to the BSB, then the
unfulfilled company closest to that company, and so on.
Note that a greedy algorithm chooses the least expensive
or most profitable option at each step without regard to
cost or benefit in later steps. The last stop is the BSB. For
each company on the route, we calculate the quantity of
parts needed to reach “fulfilled” status. We create a load
plan for the truck, in which the truck loads the parts
needed at the BSB. If the BSB cannot supply the full
quantity needed, we then (if possible) add load operations
at companies that have excess inventory of the part
needed, and these companies are visited earlier by the
truck on the route. In all cases, we are careful not to
exceed the capacity of the truck.

In contrast to our integer programming algorithm,

our local search algorithm addresses both terms of the

objective function simultaneously. The general idea for a

local search algorithm is to start with a feasible schedule

and improve it in small (local) steps until no further

improvement can be found [19, 20]. At each step, we

attempt to improve the scheduling of trucks for combat

vehicle repair, as well as the overall distribution of 401
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spare parts. This is accomplished by exploring the
neighborhood of the current solution and replacing

it with another, better solution in the neighborhood.
Solutions in the neighborhood are evaluated according
to the objective function in Equation (8). The process
stops when a local optimum is reached, that is, when
we have a schedule that cannot be improved by local
improvement steps.

To define a local search algorithm precisely, we must
specify how to find a feasible schedule that can be
used as a starting point and how to define the search
neighborhood, that is, the candidates for an improvement
step.

In choosing the neighborhood we balance two
opposing objectives. Since we need to improve the current
schedule, the neighborhood must be sufficiently large and
varied to contain a significantly better solution. However,
we must be able to explore the neighborhood quickly.
Techniques exist for exploring very large neighborhoods
[21]; we manage the search by keeping the size of the
neighborhood relatively small.

Several options also exist for choosing an improvement
in a neighborhood: For example, we can take the best
solution in the neighborhood, or we can take the first
solution that is better than the current one. The second
option decreases the running time of an iteration, but it
may also decrease the magnitude of the improvement.

Details of the local search algorithm

Initialization

The starting point can be the schedule generated by the
integer programming algorithm described above, a
schedule produced by any other algorithm (for instance, a
simple greedy algorithm), or no schedule at all. In the first
option we are motivated by the fact that the integer
programming method does not generate all possible
routes—just a small, manageable subset of good routes. It
is possible, at least in theory, that better routes exist, and
we can use the local search method to improve upon
the routes produced by integer programming. Sometimes
an improvement that is relatively small in terms of the
objective function, but obvious to the human analyst,
may be missed by the global view of the IP solution, and a
local search can find and correct this, which may increase
user confidence in the IP solution. Section 7 briefly
mentions another algorithm that could be used as a
starting point of the search algorithm. In our prototyping
effort, we implemented only the third option; that is, we,
simply start with the empty solution, in which each truck
stays idle, and make local improvement steps from there.
As described below, one of our local improvement steps
inserts a new action into a route; inserting into an empty
route is simply a special case. However, we use specialized
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techniques, which we omit for brevity in this paper, to
greatly speed up the initial iterations until we have a
“reasonable” schedule to use as a starting point.

Improvement steps

The set of feasible improvement steps that we explore
(i.e., the changes that define the neighborhood) are the
following:

1. Insert a previously unscheduled delivery/repair load
operation into one of the existing routes.

2. Perform a simple delete-and-reinsert swap as follows.
Pick a route and an unload or repair operation and
delete the operation. Delete the corresponding load
operation in this route. Insert the deliver/repair
operation into a different position in the same route,
or insert it into some other route. For the repair/
unload inserted operation, examine the route up to
that operation in order to find a location and time to
insert a corresponding load operation. Add the load
operation to the route.

3. If the algorithm cannot accommodate unscheduled
orders and insert them into a current schedule, delete
one of the scheduled orders and insert one of the
unscheduled ones. Although this action may seem
not to make progress, it may improve overall
availability, because it may repair a broken combat
vehicle sooner or repair a higher-priority broken
vehicle.

Our approach closely resembles that of work described in
[22], which addresses a similar problem but with deliveries
only rather than load/unload pairs.

Our third transportation-scheduling algorithm can be
thought of as a sophisticated improvement on a natural
greedy strategy. The algorithm has three phases:
oscillation avoidance, allocation of trucks to battalions,
and routing of individual trucks. For brevity, the details
of this approach are omitted from this paper; however,
readers may contact the authors for more information.

The algorithms described in the previous sections are
combined into a single inventory and transportation
optimizer as follows: On each incremental receipt of new
data, we run the inventory allocator and then all three
transportation algorithms in parallel. Each algorithm
produces its own schedule. Three-hour granularity is
typically used, but experiments were carried out with
values as small as one hour and as large as 24 hours. We
evaluate the quality of these schedules using the combined
objective function in Equation (8) over the full 72-hour
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planning horizon. We choose the best of the three
schedules according to the objective function, and return
the first increment of this schedule to the simulator. The
first increment is executed, and the process repeats. The
previous schedule is discarded, and a new schedule is
derived using the updated snapshot of the situation.

Thus, we re-optimize at fine granularity and
continually incorporate the latest available data into
our solution. Below we refer to each such run of the
optimizers as an “iteration.” The 72-hour horizon is used
to find the best plan, assuming that nothing changes, at
each time increment. If new data becomes available at
the next time increment, a better solution for the new
situation may be possible.

Several benefits are derived from using multiple
transportation algorithms. The first is high solution
quality: We are able to choose the best of three available
solutions. Different algorithms may have better success in
different situations. Because we optimize at a fine time
granularity, we obtain the best performance of all of the
algorithms rather than having to use a solution from a
single algorithm. Another benefit is robustness. The
likelihood of all three algorithms failing or producing
low-quality solutions is small. Thus, we are likely to have
a high-quality solution at every time period.

The goal of our numerical experimentation was to
determine whether NCL capabilities result in a significant
increase in operational availability of the total force when
compared with the capability provided by a traditional
logistics distribution system, particularly under
conditions of high uncertainty and frequent change. We
also measured the computational resources required by
NCL and compared the performance of the three
different transportation scheduling algorithms.

Simulation scenario

The scenario used in this numerical study, provided by
our customer, was designed to evaluate and compare the
traditional and NCL approaches to logistics distribution
over a 30-day simulation. The simulated brigade
organization encompassed the headquarters and
headquarters company, brigade combat team, three
infantry battalions, a reconnaissance surveillance and
target acquisition squadron, and anti-armor and engineer
companies, together comprising 302 combat vehicles. The
brigade combat team was assumed to be network-enabled
on the basis of the emerging future combat system
capabilities of the U.S. Army. More specifically, repair
parts can be distributed to subordinate units carried on
combat vehicles and on combat repair team vehicles.
Combat vehicles are equipped with a sensor suite that
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provides continuous and total visibility of brigade repair
parts inventory and parts requirements.

The operations plan of the brigade was based on
a hypothetical five-phased military operation. For
computer simulation purposes, the area of operations
terrain was converted to a map with nodes representing
key terrain features, cities, bridges, junctions, and arcs
that represented roads connecting the nodes. Repair part
delivery times from the external theater support base to
the BSB were calculated on the basis of actual distances
between the two locations and allowable ground
transportation speeds. Various perturbations were
introduced into the simulation in order to apply stresses
that affect the repair part delivery process. Demand
was increased by increased combat; inventory was lost
because of enemy action; communications were degraded;
and the road network was changed, for instance by the
destruction of bridges. Each of these stresses was varied
among three different levels of intensity.

Measures of performance (A, and CWT)
The benefit of NCL with respect to the baseline
system was assessed in terms of increased operational
availability, A4,, and reduced customer wait time,
CWT, as described in Section 2. We executed more
than 700 experiments to gain insight and understanding
of how NCL, enabled by state-of-the-art optimization
algorithms, differs from and improves upon the
traditional logistics system. Each experiment used a 30-
day battlefield scenario, along with various combinations
of “stressors” such as increased breakage rates, inventory
losses, communications breakdowns, and road closures.
Again, for brevity, we omit detailed discussion of the
scenarios, which can be obtained from the authors.
We found that NCL capabilities result in a significant
increase in operational availability and reduction in
customer wait time compared with a traditional logistics
distribution system. Figure 4 shows the brigade-wide
operational availability that resulted from the baseline
and NCL logistics systems in an unstressed scenario.

Because the BSB is not deployed until day 4, a backlog
of parts requirements is created, and several days are
required to overcome the backlog in both the NCL and
the baseline cases. The value of 4, then becomes more
level in both cases, but at a much higher level under NCL.
The second dip in the baseline 4, value does not occur
in the NCL case because of the on-board spare parts
capability of the latter. In the unstressed scenario,
the average NCL A, value for the brigade was 0.96,
compared with 0.86 for the baseline system. The average
CWT value for the brigade overall was 7 hours (NCL) vs.
52 hours (baseline).

In the fully stressed case, NCL was again superior, as
illustrated in Figure 5. The 4, value was 0.93 under NCL,
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compared with 0.83 under the baseline system. Most
dramatic was the performance during the period of
highest stress, from day 24 to day 28, when combat units
were cut off from the BSB. Although the baseline system
recovered to its steady state a day sooner than the NCL
system and achieved a better 4, value on day 28, the
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downward spike is much deeper for the baseline. The
overall brigade baseline 4, value dropped to 0.57 on

day 27 compared with the NCL 4, value of 0.78. The
CWT value for the fully stressed brigade averaged

8 hours (NCL) compared with 106 hours (baseline).

Performance comparisons of transportation
scheduling algorithms

To compare the solution quality performance of the three
transportation scheduling algorithms, we collected
statistics on a set of 75,300 iterations (about 2/5 of

the total number of iterations in all experiments).
Normalizing the objective function to a scale of 0 to 100,
the average winning (largest) score was 89.6. The average
gap between the best and worst of the three scores was
0.16, and the maximum gap was 14.4. Table 2 shows for
each algorithm the number of iterations on which the
solution provided by that algorithm was best among the
three (see the “Wins” row). It also shows the number of
times the score of each algorithm exceeded the others’
scores by more than 0.48, or three times the average
gap. These are denoted “Big wins.” The most frequent
outcome was that the three algorithms achieved the same
score, within a 0.01 margin. This was denoted “Three-
way tie” in Table 2. Integer programming is the most
frequent winner, but no algorithm dominated any other
algorithm—i.e., no algorithm was as good as or better
than the others in all cases.

Running time performance

In production-level testing, the running time of the
inventory allocation module was always less than one
second. In Table 3 we show the statistics on the running
times of the three transportation scheduling algorithms.
These are taken over all iterations of all experiments.
Each running time data point refers to one invocation of
the optimizer. For example, note that 240 invocations
correspond to a run of 720 hours at three-hour
granularity. We show the overall minimum, maximum,
and mean for each algorithm, and also the same statistics
with the highest and lowest 5% of values removed,
denoted by “no outliers” in Table 3. Our method for
measuring running times of the local search algorithm
differed slightly, and we have only upper bounds on

its running times. As can be seen from the table, the
computational requirements of the algorithms are quite
modest.

10. Summary and conclusions

The methods and results presented in this paper indicate
that mathematical optimization models have the potential
to significantly improve military logistics operations,
and in particular to increase operational availability of
combat vehicles. The simulations considered here were
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Table 2 Comparison of win tallies, i.e., the number of iterations, as explained in the text, among the three transportation scheduling

algorithms.
1P LS SG IP and LS IP and SG LS and SG Three-way tie
Wins 23,476 5,418 11,085 3,970 1,345 26,374
Big wins 2,635 1,597 899 19 11 —

limited to a small class of supplies. The very modest
computational requirements suggest that problems of
much larger scale can be solved by the proposed
optimization techniques. We believe that further
investigation is warranted to expand the scope of the
problem in order to obtain greater insight and more
accurate results regarding the amount and types of
improvement, relative to different performance measures,
that can be achieved.
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