
Inventory allocation and
transportation scheduling
for logistics of network-
centric military operations

F. Barahona
P. Chowdhary

M. Ettl
P. Huang

T. Kimbrel
L. Ladanyi
Y. M. Lee

B. Schieber
K. Sourirajan

M. I. Sviridenko
G. M. Swirszcz

This paper describes a prototype inventory-placement and
transportation-scheduling solution developed in support of the
emerging military doctrine of Network-Centric Operations
(NCO). NCO refers to an unprecedented ability to share
information among cooperating forces, enabled by modern
communications and computing technology. The objective of the
Network-Centric concept is to collect, disseminate, and react to
real-time information in order to improve the performance of the
U.S. Army as a fighting force. One problem that arises in the
logistics domain involves the maintenance of combat vehicles.
We seek to determine the improvement, if any, made possible by
exploiting accurate information on the status of available repair
parts inventory, the current locations of mobile supply points,
and the demand for parts. We describe logistics algorithms for
maximizing the operational availability of combat vehicles by
producing flexible, optimized inventory and delivery plans that
decrease replenishment times and prioritize parts allocations
and repairs. Our algorithms are designed to leverage real-time
information available from modern communications and inventory
tracking technology by employing state-of-the-art mathematical
optimization models. Our simulations indicate that Network-
Centric Logistics (NCL) can significantly improve combat vehicle
availability in comparison with current practice.

1. Introduction

Military logistics systems face a dynamic and uncertain

environment. The United States and its allies are

confronted by increasing numbers of opportunistic

adversaries and insurgencies that use unconventional

fighting tactics to nullify an overwhelming force

advantage. The response must be agile, adaptive, and

flexible in both military operations and logistics. The

current logistics system works well in an environment of

relatively predictable demand, such as peacetime garrison

operations or traditional, highly planned force-on-force

operations. However, conventional logistics systems often

break down in modern military operations that involve

rapid force-structure change, extremely mobile forces,

and greatly varying demands.

In order to achieve greater flexibility, modern logistics

models require new analytical tools and execution models

with greater adaptability and agility. In 2005, the Defense

Advanced Research Projects Agency (DARPA)

sponsored a Network-Centric Logistics (NCL)

experiment to demonstrate the effectiveness of dynamic

configuration algorithms for tactical ground logistics

control. The objectives were to increase the flexibility of

tactical supply chains and to improve delivery speed by

treating tactical logistics as a dynamic configuration

problem and by controlling physical inventory and

distribution with proven techniques from adaptive

inventory-management systems.

In this paper, we demonstrate how a dynamic

multi-point supply approach can increase operational

availability in a volatile combat environment compared

with a traditional hierarchical logistics structure. (We
U.S. Department of Defense Distribution Statement: Approved for Public Release,
Distribution Unlimited.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

391

0018-8646/07/$5.00 ª 2007 IBM

define the term operational availability more rigorously in

the section on measures of performance and in other

sections that follow.) The logistics algorithms designed

to achieve our goal are based on state-of-the-art

mathematical optimization models. To evaluate the

concept, we have conducted a series of experiments in

which the logistics models are driven by a high-speed

logistics simulation platform, a topic that is beyond the

scope of the current paper. The simulator takes an

operations plan (OPLAN) and generates detailed

battlefield scenario data. The demonstration is driven

by a fictitious scenario lasting 30 days. The optimization

models produce a plan for the storage and delivery of

repair parts for maintenance support in a single

combat brigade.

The remainder of the paper is organized as follows.

Section 2 describes logistics challenges encountered in

military operations of today and introduces NCL

concepts. Section 3 describes the inventory allocation

problem and the mathematical algorithms we use to solve

it. Section 4 introduces the transportation scheduling

problem, and the next four sections describe our solution.

Section 9 contains numerical results, and Section 10

concludes the paper.

2. The logistics challenge
The setting for our problem is based on a projected Army

logistics scenario. We focus on the distribution of parts

inventories needed to repair combat vehicles in a combat

brigade. For the purpose of this study, only critical repair

parts (i.e., parts necessary to restore vehicles to

operational status) are considered. As shown in Figure 1,

the brigade consists of several combat battalions denoted

1BN, 2BN, and 3BN. [For our purposes, the cavalry

squadron (CavSqdrn) is also treated like a battalion.]

These are supplied by a central logistics depot called the

Brigade Support Battalion, or BSB. A battalion is

composed of a group of smaller operational units, most

of which are called companies; we simply refer to all of

these units as companies. These units require logistics

support to meet their demand for spare parts. This

support is provided by combined delivery and repair-

team trucks; however, some parts are crew-replaceable

and do not require the delivering truck to stay while its

mechanics carry out the repair. As indicated in the figure,

parts may be ‘‘cross-leveled’’ between companies or

battalions as defined in the next paragraph.

The brigade is network-enabled in the sense that it can

share information through modern communication

technologies. The network provides continuous visibility

of all repair parts inventory at the BSB, the companies,

and even in individual combat vehicles. Each company

can be considered to have a local stocking point (in

actuality representing on-board spare parts storage on the

combat vehicles themselves). The locations of the BSB

and the operational units change over time. NCL

responds to supply needs by continually fulfilling demand

as requested, allowing any truck to serve any battalion.

Widely distributed parts require intelligence to identify

where a needed supply part should come from and who

should supply it. It is possible to transfer materiel

between companies and across battalions. This is called

cross-leveling, and it may entail obtaining parts from

different, rapidly changing locations. In this system,

repair parts can be supplied from multiple sources,

including the BSB, pre-loaded stores on delivery and

repair-team trucks, and even other combat vehicles if they

carry on-board spare parts.

Although network-enabled logistics structures and

operating procedures do not currently exist, they are

under development as part of the future combat system of

the Army. Traditional brigade combat teams of today use

hierarchical distribution techniques in which repair parts

are located in the BSB, parts requests are consolidated by

the subordinate units, and a single daily replenishment

operation, called a logistics package, delivers parts to the

subordinate units. Each battalion is serviced only by

trucks dedicated to it. Table 1 lists the main features

of logistics operations, contrasting the traditional

Figure 1

Testing environment based on a U.S. Army logistics scenario.

Lines denote examples of possible movements of parts between

units. (BSB: brigade support battalion; BN: battalion; CavSqdrn:

cavalry squadron.)

BSB

CavSqdrn

3BN

2BN

1BN

Cross-leveling from

Battalion 1BN

to 2BN

Cross-leveling

from

Battalion 2BN

to 3BN

Pre-positioning

of supply in 1BN

Pre-positioning of

supply in CavSqdrn

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

392

hierarchical logistics structure (i.e., the baseline) and

NCL.

Measures of performance

The efficacy of the NCL approach was evaluated using

standard military utility testing and evaluation

methodologies. For this project, DARPA was interested

in increased operational availability of combat vehicles

and reduced customer wait time.

Operational availability (Ao) is a measure of the time

during which the capabilities of a system are available for

operational use. It takes into account failure and repair

information. This dependent variable is measured at

the vehicle level and summed over vehicles. Simple,

unweighted values of Ao equal the time a vehicle is

working divided by total time. The precise definition we

use is described later. It includes time-varying relative

priorities of combat units corresponding to their

operations; for instance, a unit engaged in battle is

considered to have high priority.

Customer wait time (CWT) is a measure of time from

request to delivery. In our case, the request time is defined

to be the time at which a part breaks. CWT comprises

the time for administrative processing, possibly the time

waiting for a part to arrive from outside the brigade, the

time waiting for transportation to begin, and the travel

time or total elapsed time spent in order to get the part

from the supplier’s location to the consumer’s location.

Solution overview

Our solution consists of two main components, an

inventory allocation module and a transportation

scheduler, as illustrated in Figure 2. The inventory

allocation module takes as input the available repair parts

inventory, forecasted breakages, and the future positions

of the operational units. It produces an allocation plan

for each repair part and operational unit in the brigade

over a future planning horizon of up to 72 hours. It

accounts for storage capacity constraints as well as

relative priorities of the combat units.

The transportation scheduling module uses as input the

current locations of the (immobilized) broken vehicles,

the projected future movements of other entities, and the

allocation plan generated by the inventory allocation

module. It produces a plan for delivering parts and

carrying out repairs. This schedule specifies the spare

parts to carry on each vehicle and the locations at which

to load and unload the parts. The primary objective is to

deliver the spare parts needed to repair currently broken

vehicles. The secondary objective is to replenish the parts

inventory at the logistics points in order to approach the

levels specified by the inventory allocation module. This

allows repairs to begin immediately upon breakage (if the

part is available in the same unit) or very soon thereafter

(if the part is available in the same battalion) in the case

of crew-replaceable parts that are carried on board.

The framework allows real-time adjustment of

schedules and resource allocation. The analytical modules

continually update the solutions in response to changing

conditions. At each time increment, which we call an

iteration, of a scenario simulation, the optimizers receive

the current state from the simulator and compute an

optimized delivery plan covering the next 72 hours. We

call an individual run with its own settings of input

parameters an experiment.

The simulator commits and executes the initial portion

of the plan. As the simulated scenario evolves and

operational plans change, vehicles break down,

and new repair parts become available, the simulator

communicates these changes to the optimizers, which

produce a new delivery plan optimized for the new state.

3. Inventory allocation
The goal of the inventory allocation module is to

determine pre-positioned levels of supplies to best

respond to future breakages. We develop a practical

heuristic allocation model that uses up-to-date

information on available inventory, supply points, and

demand forecast. The model recognizes cross-leveling

opportunities, accounts for movements of operational

Table 1 Logistics operations for the baseline case and NCL.

Baseline NCL

Locations of supplies Centralized at BSB Partially distributed—some part types are carried on

board

Supply network Top-down hierarchy Flexible: any truck can serve any battalion

Method of distribution Daily batches using only per-battalion

dedicated trucks

Flexible-size batches using any truck in brigade

Decision cycle 24 hours As often as one hour

Decision criteria First-come first-served Mathematical optimization used to maximize vehicle

availability

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

393

units within the brigade, and deals with short-term supply

shortfalls such as delayed deliveries or supply shortages

that could lead to longer-term degradation of capability.

The inventory allocation is performed in two stages; the

first stage strives to achieve high operational availability,

and the second stage attempts to further reduce customer

wait times through strategic placement of inventory. The

allocation procedure is based on assigning a preference

score computed from weighted fulfillment ratios and

transportation lead times to each company to identify

stocking points that can efficiently cross-fill demand at

neighboring companies. Allocating inventory on the basis

of the preference score minimizes customer wait time,

which in turn maximizes fleet availability. Although the

proposed inventory allocation solution is a practical

heuristic that is not in general optimal, we show in

Section 9 that a key performance utility commonly

used by the U.S. Army, operational availability, can

be improved by roughly ten percent when the solution

is applied under a realistic military force scenario.

The academic literature presents a large body of

research on inventory-service tradeoff models. However,

none of the traditional approaches deal with dynamic

supply chains or multiple sourcing in the context of

optimization. We therefore propose a heuristic algorithm

that leverages earlier work on service-level optimization

in commercial supply chains, implosion techniques for

manufacturing, and inventory allocation in service-after-

sales networks [1–6]. In contrast to conventional

inventory systems and methods, the proposed algorithm

can deal with mobile entities that may change locations

during a planning horizon. Furthermore, it does not rely

upon static sourcing relationships to allocate inventory,

but instead manages the allocation of inventory to each

entity dynamically by exploiting opportunities for

multiple sourcing, cross-leveling, and selecting suppliers

on the fly. A recent paper [7] deals with a related

inventory-allocation problem in a hierarchical repairable

service parts system with two levels. The system in

question consists of a central repair facility, a central

warehouse, and a number of field stocking locations that

service customers. The authors describe a repair and

inventory allocation model that determines the number

of parts to ship from the central warehouse to the field

stocking locations in order to minimize the total expected

inventory holding and back-order costs over a planning

horizon. Although their approach could be employed to

address the inventory allocation problem in a traditional

brigade with hierarchical distribution operations, it does

not capture the dynamic sourcing relationships found in

an NCL environment with cross-leveling of materiel

between combat units.

Before presenting our modeling and solution approach

for making inventory allocation decisions in a network-

enabled brigade, we summarize several key modeling

assumptions: a) theater-level logistics are not modeled

except for repair parts during operations; this excludes

other categories of materiel such as armament, fuels,

ammunitions, and communications subsystems; b) at

most one part failure can occur on any given combat

vehicle, so that each repair involves a single part type

needed to return a broken vehicle to an operational

condition; c) installation times are deterministic and

depend on the type of repair part delivered to a combat

vehicle; and d) the gathering of installed parts from

broken vehicles in order to repair other broken vehicles

(i.e., cannibalization) is not currently considered.

We now define the notation required to describe our

model. Here and elsewhere, t always refers to the time t

units from the current (simulated) time; that is, each time

we run our algorithms, we ‘‘reset the clock’’ so that the

current time is 0.

Logistics network

P : Set of repair part types indexed by p.

B : Set of battalions indexed by b.

Figure 2

Functional design of the NCL logistics optimization prototype.

Transportation

scheduling

Inventory

allocationInputs

Output

Inputs

Output

• Operational Plan

 (OPLAN)

• Forecasts

 (from OPLAN)

• Storage capacities

• Priorities

• Current inventories

• Current vehicle

 breakages

• Position of log

 points

• Supply

 replenishments

• Storage capacities

• Priorities

• Current inventories

• Positions of combat

 repair teams

• Positions of log

 points

• Positions of

 combat vehicles

• Range of operations

• Delivery time

 windows

• Delivery plan:

 - by combat

 repair team

 - by repair part

 - by combat unit

 - by time period

• Allocation plan:

 - by repair part

 - by combat unit

 - by time period

Allocate available

repair parts

inventories to

field stocking

locations driven

by information

about:

• Current state of

 combat brigade

• Demands likely

 to occur over

 planning horizon

Schedule delivery

of repair parts,

assign repair parts

to combat repair

teams, and

determine

locations for

parts transfer

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

394

C : Set of companies indexed by c.

wct : Relative importance of company c at time t.

wbt : Relative importance of battalion b at time t.

Lijt : Expected transit time between companies i and j

for transport initiated in time period t.

Qpc : Storage capacity of part p at company c.

Qpb : Overall storage capacity of part p at battalion b

where Qpb �
P

c2b Qpc; c 2 b denotes the set of all

companies c assigned to battalion b.

Note that the maximum storage capacity of a battalion,

Qpb, is at most the sum of the on-board spare capacities of

all of its combat vehicles. Further restrictions, such as

stocking limits, may also apply.

Demand and supply

Dpct : Expected demand for part p at company c at

time t (Dpc0 equals the demand backlog at time 0).

Upt : Quantity of part p expected to arrive from outside

the brigade at time t.

Wp0 : In-transit inventory of part p at time 0 (repair

parts stored on trucks).

Ipc0 : On-hand inventory of part p at company c at time

0 (current on-hand inventory).

Apt : Quantity of part p available in the brigade at time

t (supply available for allocation).

The demand for repair parts is assumed to be

deterministic. However, the demand intensity varies

on the basis of information about the mission type and

location provided in the OPLAN, thus accountng for

different scenario factors that have an impact on the

vehicle damage and repair parts requirements (e.g., low-

demand intensity exists during humanitarian assistance

missions; high-demand intensity exists during combat

operations).

Decision variables

Xpct : Number of parts of type p allocated to company c

at time t.

Xpbt : Number of parts of type p allocated to battalion b

at time t.

R�pct : Optimized cumulative receipts of part type p at

company c at time t.

R�pbt : Optimized cumulative receipts of part type p at

battalion b at time t.

The relative importance wct or wbt is a non-negative

weight representing the priority of a unit relative to other

units. A larger weight means higher priority. The transit

times are computed by a shortest-path algorithm that

takes into account the state of the road network and the

current movement plan. Expected demands are computed

from scenario data, including per-part breakage rates as

functions of combat vehicle activity (e.g., idle or engaged

in combat). Initial quantities and parts arriving from

outside the brigade are part of our scenario data, along

with brigade structure, storage capacities, etc. The

proposed algorithm proceeds in three steps, as described

in the following sections.

Step I: Allocate repair parts on the basis of relative
priorities

In this step, we attempt to maximize the fraction of

breakages that can be serviced immediately from pre-

positioned repair parts inventory, taking into account the

priorities of the various military units. We allocate parts

hierarchically, first to battalions and then to companies,

using a prorating scheme.

The first goal when allocating spare parts to a battalion

is to cover the breakages forecasted for all of its

companies. We do this in a way that takes into account

the relative priority of each company: The fraction of

spare parts allocated to a battalion is the priority-

weighted sum of the breakage forecasts of its companies

divided by the priority-weighted sum of the breakage

forecasts across all companies in all battalions. However,

the number of parts allocated will not exceed the storage

limit Qpb at the battalion. The following formula

expresses this rule:

X
pbt

:¼ min Q
pb
;

X
c2B

w
ct
D

pctX
c2B

w
ct
D

pct

A
pt

8>><
>>:

9>>=
>>; ; ð1Þ

where

A
pt
¼ A

p0
þW

p0
þ
X
c2B

I
pc0
þ
Xt
u¼0

U
pu
�
Xt�1

u¼0

X
c2B

D
pcu

" #

is the expected amount of available (unallocated) supply

of a part type p in the brigade at time t. Apt includes all of

the available supply in the brigade of part p in time period

t, not just the inventory at the BSB, and is computed as

the difference between the cumulative number of parts

that entered the brigade until time t and the cumulative

number of expected breakages until time (t � 1). Having

thus allocated parts to a battalion b, we further allocate

them to each company c in the battalion using a similar

prorating scheme,

X
pct

:¼ min Q
pc
;

w
ct
D

pctX
c2b

w
ct
D

pct

X
pbt

8>><
>>:

9>>=
>>; : ð2Þ

Denote qpct¼ (Xpct / wct Dpct) as the weighted fulfillment

ratio for an operational unit c. To improve operational

availability (as defined in Section 2), we try to stock

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

395

parts as much as possible at the demand point to satisfy

demand immediately. This can be achieved by having a

higher fulfillment ratio. The allocation scheme (1) and (2)

strives to balance the fulfillment ratios of all battalions

and companies while satisfying the stocking limits

Qpb and Qpc. Notice that the allocation in this step

may entail fractional quantities of inventory being

assigned to a company or battalion. Finally, we set

Apt :¼ Apt �
P

c2B Xpct.

Step II: Iteratively improve allocation to further reduce
CWT

If the storage capacity limit at some companies or

battalions is smaller than the desired allocation target

based on their weighted share as given in Equations (1)

and (2), leftover supply exists at the end of Step I. This

remaining supply is allocated among companies or

battalions that have not exceeded their capacity limit

in order to minimize the expected time to respond to

breakages that are not fixed immediately. The algorithm

gives preference to operational units that are centrally

located in order to maximize the benefit from cross-

leveling. This helps to minimize the CWT as defined

in Section 2.

For each time period t, the algorithm computes a

preference score M for each company c in the brigade,

ranks all companies by their preference scores, and

allocates one part from the remaining unallocated

available supply to the company with the highest score.

This step is repeated until all remaining stock is allocated,

or all companies reach their capacity limits. In cases in

which companies reach their capacity limits, all remaining

parts are allocated to the BSB.

Several scoring metrics (M) exist that we can use in the

first step. The simplest one is based on the expected

transit time Lcjt between any two companies c and j in the

brigade. We define Mct as the expected transit time to

other companies,

M
ct
¼
X
j2C

L
cjt
: ð3Þ

A low Mct indicates that a company is centrally located

and can therefore respond quickly to requests from other

companies in the brigades. The simple preference score

Mct considers transit times, but it does not consider the

inventory state. Thus, we enhance the score by defining

another preference score ~Mpct that simultaneously

considers transit times and inventory state:

~M
pct

:¼
X
j2C

max f0; ðq
pct
� q

pjt
ÞL

cjt
g : ð4Þ

~Mpct combines the expected transit time and the

difference in weighted fulfillment ratios, helping to balance

the fulfillment ratios across the brigade. We use ~Mpct to

allocate the remaining available supply using the algorithm

below. The company with a smallest ~Mpct score is given the

highest priority for allocation. Notice that the following

algorithm can assign fractional values in Step A2 as the

remaining (expected) supply, Apt, need not be an integer.

Algorithm A: Allocate remaining supply
� Step A1: Find c* :¼ argminc2C:Xpct,Qpct

f ~Mpctg.
� Step A2: Set Xpc*t :¼ Xpc*tþmin f1, Aptg and

Apt ¼ Apt � min f1, Aptg.
� Step A3: If Apt ¼ 0, stop. Otherwise, update ~Mpct on

the basis of the allocation in Step A2 and return to

Step A1.

Given that the values of expected demand are usually

fractional and the amount of expected supply available is

small, allocating one unit at a time incrementally can be

justified.

Step III: Determine allocation plan

Using the allocations obtained in Steps I and II, we

generate a parts allocation plan for the BSB and all

operational units in the brigade. The plan is expressed

in the form of cumulative net receipts targets R�pct
(cumulative net flow of parts into a company) for each

repair part p and operational unit c and time period t.

We have

R
�
pct

:¼ X
pct
þ
Xt�1

u¼0

D
pcu
� I

pc0
: ð5Þ

The allocation plan is always feasible in the sense

that the total number of parts delivered to an operational

unit is always equal to the number of parts that are taken

from other units (including the BSB). For example, if

company c is scheduled to receive ten parts at time t, there

are other companies that, in sum, provide these ten parts.

These are represented as negative receipts in the receipts

plan. Again, it is possible that the values of R�pct are
fractional. To make R�pct an integer, we set Xpct :¼
Xpct � ðR�pct � bR�pctcÞ and Apt :¼ Apt þ ðR�pct � bR�pctcÞ:
(Here the bracket symbols represent the floor function

and supply the nearest integer less than or equal to the

value within the brackets.) We then use Algorithm A to

allocate Apt to the companies and recalculate R�pct using
Equation (5). Note that at most one of the R�pct values
can be fractional after we apply Algorithm B1 in any

period t for every part p; this is unavoidable because the

expected demand can be fractional.

The operational decision as to where to source the

supply is provided by the transportation scheduler, which

is described in the following section.

1We refer to the aformentioned steps of setting values for Xpct and Apt, along with
allocating Apt, as Algorithm B.

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

396

4. Transportation scheduler

We now describe our solution for generating an

optimized plan for the trucks that load and deliver spare

parts. The primary goal is to determine a schedule for the

trucks to load parts at the supply locations (BSB and

companies) and deliver them to the combat vehicles that

must be repaired. The schedules of the trucks are also

given load and unload operations for parts that are not

required immediately, so that the inventory level at each

location approaches the target specified by the inventory

allocation module.

Inputs

One of the inputs to the transportation scheduler is the

output of the inventory optimization phase: namely, a list

of parts that must be delivered to each location and the

times at which to deliver them to achieve optimized pre-

placement of inventories.

Other inputs describe the number of available trucks

and their operational constraints, such as their ranges of

operation (e.g., the distances that they can travel before

they must return to the BSB for refueling) and their

capacities for storing parts. Our model for delivery can

incorporate a variety of other operational constraints,

such as load and delivery time windows, preferred

or prohibited assignments of trucks to routes, and

constraints on the total length and composition of a route

(such as limits on the number and type of deliveries in

each route). However, of these constraints, only the truck

capacity and delivery time window constraints were

applied in this prototype effort.

Outputs

For each available truck we either produce a route or

label the truck as idle. A route consists of a list of

locations to visit (BSB, company, or broken combat

vehicle) in sequential time order, and the sequence of

operations to perform at each location (load part, unload

part, or repair broken vehicle). A route may include

companies and broken vehicles that belong to different

battalions, in contrast to the traditional hierarchical

assignment of trucks. A route starts at the current

location of the truck. It ends at the BSB, a company, or a

broken vehicle. The duration of a route does not exceed

the planning horizon of 72 hours.

Objective function

We now formally describe the objective function used

by the optimizer as specified by DARPA. The function

contains two terms. The first measures the availability of

combat vehicles throughout the planning horizon. The

second term penalizes the schedule (reduces its score)

if the inventories at the various locations do not meet

or exceed the levels recommended by the inventory

allocator.

A good schedule prioritizes the repairs in order to

maximize the number of operational combat vehicles

across battalions and time, taking into account the

relative weights wbt of each battalion b at each time

period t, and striving to balance the availabilities

across battalions. To achieve this goal, we include in

the objective function a term fbt(rbt) that measures the

operational availability of vehicles at battalion b and time

t as a result of the repairs, where rbt denotes the number

of vehicles in battalion b that have been repaired before

or during period t. We wish to maximize the sum of these

availabilities, weighted over all battalions and time

periods; that is,X
b;t

w
bt
f
bt
ðr

bt
Þ: ð6Þ

This is the first term in our objective function, and it is

divided by a normalizing factor that is described later.

Three ranges of operational availability are defined for

the combat vehicles: up to 80%, from 80% to 90%, and

from 90% to 100%. Each one has a distinct priority; for

instance, if we ignore weighting of battalions due to

different activities such as ‘‘in combat’’ versus ‘‘idle,’’

a balanced solution with two battalions each at 80%

availability is considered by our customer, DARPA, to be

better than one battalion at 70% and one at 90%. (The

weights specified in the OPLAN for different battalions

are included in the overall objective function as defined

below.) The terms fbt(rbt) in the objective function capture

these three levels of priority as follows. Let Vb be the total

number of combat vehicles in battalion b, and let Nb

be the number of operational vehicles at time period 0.

Thus, the fraction of operational vehicles at period t in

the battalion (ignoring future breakages) is given by

(rbt þ Nb)/Vb. The primary priority in repairing is to

increase this fraction to 80%. The secondary priority is to

increase this fraction to 90%, and the tertiary priority is

to be fully operational, i.e., to bring the fraction up to

100%. In the objective function we give these levels of

priorities weights that reflect their relative importance:

4, 2, and 1, respectively. With these weights, each term

fbt(rbt) is a piecewise-linear concave function written as

f
bt
ðr

bt
Þ ¼ f

r
bt
þN

b

V
b

� �
;

where f(x)¼2 min (x, 0.8)þmin (x, 0.9)þx. Note that the

first 80% of operational vehicles are counted four times in

this expression, the next 10% twice, and the last 10%

once, as desired. Because (rbtþNb)/Vb is always between 0

and 1, the term fbt(rbt) yields a value between 0 and 3.5, as

can be seen by substituting x¼ 0 and x¼ 1, respectively.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

397

Recall that R�pct denotes the optimized cumulative

receipts for part p at company c as generated by the

inventory allocator, and that the initial inventory is Ipc0.

Denote by Rpct the actual cumulative receipts by time t

for part p at company c. It is defined as the number of

parts of type p unloaded from trucks up to and including

time t at company c, minus the number loaded at

company c and taken elsewhere. To penalize deviations

from the target receipts value R�pct; we apply the following

penalty term Zpct to the objective function:

Z
pct
¼

max 0;
R
�
pct
� R

pct

R
�
pct
þ I

pc0

()
if R
�
pct
þ I

pc0
. 0;

0 otherwise:

ð7Þ

8>><
>>:

Zpct measures the relative deviation of the actual

receipts plan from the target receipts plan established by

the inventory allocator. Rewriting

R
�
pct
� R

pct

R
�
pct
þ I

pc0

as

1�
R

pct
þ I

pc0

R
�
pct
þ I

pc0

;

we can interpret it as the fraction of inventory missing

at time t compared with the value suggested by the

inventory allocator. Note that Rpct and R�pct may be

negative. However, Rpct þ Ipc0 � 0 and R�pct þ Ipc0 � 0,

and thus the above penalty is less than 1 for all p, c, and t.

Taking the maximum of the fraction and zero ensures

that there is no benefit (negative penalty) from exceeding

the inventory requirements.

The composite function we seek to maximize, including

the weighted measure of availability and the terms

corresponding to pre-placement, is

1

3:5
X
b;t

w
bt

X
b;t

w
bt
f
bt
ðr

bt
Þ � a
jPj � jCj � T

X
c;p;t

Z
pct
; ð8Þ

where the normalizing factors 3.5 Rb,t wbt and jPj � jCj �T
convert each of the two sums in Equation (8) to numbers

between 0 and 1. Recall that P is the set of part types and

C is the set of companies. T denotes the planning horizon,

and a is a weight between 0 and 1 that denotes the relative

importance of meeting the inventory pre-placement

targets. In this prototype effort, we used a value of 0.05.

This value could be further tuned in a larger-scale

development effort. (We note that this particular

combination of including per-battalion weights for

availability but per-company weights for inventory

placement is not arbitrary; it was specified by our

customer, DARPA.)

Outline of solution approach

We have developed and experimented with three

approaches for producing optimized schedules. The first

approach uses integer programming (IP, defined below),

and is described in Section 5. The second approach uses

local search and is described in Section 6. The third

approach is a somewhat sophisticated greedy heuristic,

described in Section 7.

In the integer programming approach, we first produce

routes for the trucks in order to deliver parts to combat

vehicles to be repaired. Then we add load and unload

operations to these routes to deliver the spare parts

specified by the inventory allocator. The local search

and greedy approaches work to satisfy both goals

concurrently. In Section 8 we describe how the three

algorithms are combined.

5. Integer programming algorithm
Our first algorithm directly optimizes the first term of the

objective function, using integer linear programming

techniques. That is, it first seeks only to fix broken

combat vehicles and ignores inventory placement. It then

heuristically adds load and unload operations to the

schedule thus generated so far, attempting to satisfy the

recommended inventory placement produced by the

inventory optimizer.

To meet the primary objective (repairing vehicles), we

solve an integer programming mathematical model. This

model requires column generation, a technique to generate

possible routes for each truck. We use a specialized

technique we call fix and resolve to solve the integer

program and determine optimized routes for the trucks.

We then use these routes to transport the rest of the

inventory to the companies in addition to carrying out

as many repairs as possible.

Figure 3 is an overview illustrating the relationships

among the components of our algorithm, which are

described in detail in the following sections. The figure

shows the dataflows into and out of each component,

including the input from the inventory allocation module

described previously, and the final output, a set of routes

and associated operations on those routes.

Integer programming mathematical model

An integer programming mathematical problem is similar

to a linear programming problem, with the additional

restriction that some of the variables must take only

integer values. A linear programming problem is a

mathematical problem in which we seek to assign values

to numerical variables so that they satisfy a collection

of linear equalities and inequalities (the constraints) and

also maximize a linear function (the objective function).

Linear and integer programming models have been in

wide use since World War II in both military and

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

398

industrial operations research, to solve a variety of

problems in vehicle and personnel scheduling, facility

location, investment portfolio selection, distribution

network planning, and other practical applications.

Variables

For each route j to which a truck can be assigned, we

define a variable xj. This is a binary variable: A value of 1

indicates that the route j is to be used in the schedule

(a truck travels the route); 0 means that the route is

not used. Thus, we define

x
j
2 0; 1f g for all routes j: ð9Þ

The number of possible routes may be very large. If

we were to include all routes, we would have created an

unmanageable model with far too many variables xj.

(Later, we provide a detailed discussion of our heuristic

column-generation techniques used to generate just the

routes and variables we need.)

We define the variable rbt as the number of vehicles in

battalion b that will be fixed before or during period t.

This must be a non-negative number, i.e.,

r
bt
� 0 for each battalion b and each period t: ð10Þ

This variable must also take only integer values.

However, we do not need to enforce this constraint

directly, and we reap a computational benefit as a

consequence: By virtue of constraint (14) in the next

section, if each xj is an integer, each rbt will be an integer

as well.

Constraints

Each broken combat vehicle should be visited at most once

during each schedule. This ensures that the objective value

does not ‘‘take credit’’ for fixing any vehicle more than

once. To express this, let S(i) be the set of routes that

include a stop at a broken vehicle i. Then,X
j2SðiÞ

x
j
� 1 for each broken combat vehicle i: ð11Þ

Each available truck is either assigned to exactly one

route or sits idle. To express this, let T(v) be the set of

routes to which truck v can be assigned. Then,X
j2TðvÞ

x
j
� 1 for each repair truck v: ð12Þ

Two (or more) trucks can be candidates for the same

route or for a portion of the same route. To keep track of

such possible assignments, we label each candidate pair

of route and truck, and thus the pair is unique.

The quantity of a part type transported away from a

location on trucks visiting the location should not exceed

the quantity that has arrived at the location. To model this,

let P(p, t, l) be the set of routes on which the assigned

trucks transport away part p from location l up to and

including time period t. Let dpjl be the quantity of part p

that the truck on route j transports away from location l.

Let nptl be the quantity of part p that has arrived at

location l up to and including period t. Then the

constraint is expressed asX
j2Pðp;t;l Þ

d
pjl
x
j
� n

ptl

for each part p; each period t; and each location l: ð13Þ

The number of combat vehicles serviced by the trucks on

the routes equals the number of combat vehicles repaired.

Let U(b, t) be the set of routes for trucks that visit a

broken vehicle in battalion b before or during period t.

Let abjt be the number of vehicles in battalion b that

the truck on route j services up to and including period t.

This is a non-negative integer constant. Thus,X
j2Uðb;tÞ

a
bjt
x
j
¼ r

bt
for each battalion b and each period t: ð14Þ

In order to capture the function fbt(rbt) in the objective

function, we introduce three variables y1, y2, and y3.

Variable y1 measures the extent to which 80% of the

vehicles are operational; y2 measures the next 10%, and y3
measures the final 10%. Their sum must be the actual

operating fraction, and we include a constraint to capture

that. Thus, each term fb,t(rb,t) in the objective function is

f
bt
ðr

bt
Þ ¼ 4y

1
þ 2y

2
þ y

3
; ð15Þ

Figure 3

Components of the integer programming algorithm.

Integer

programming

mathematical

model

Fix-and-resolve

optimization

algorithm

Candidate

truck routes for

immediate demand

Recommended

truck routes and loads

for immediate demand

Column-

generation

algorithm

Spare parts

delivery

algorithm

Recommended

truck routes

and loads

for immediate

demand

and spares

Spare parts

allocation plan

Number of trucks

 available

Truck capacity

Location of breakages

Location of parts

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

399

and the additional variables and constraints needed to

represent it are defined by

y
1
þ y

2
þ y

3
¼ ðr

bt
þN

b
Þ=V

b
; ð16Þ

where

0 � y
1
� 0:8;

0 � y
2
� 0:1;

0 � y
3
� 0:1:

Column generation for truck routes

In integer programming models for scheduling vehicles,

too many routes usually exist to consider explicitly.

However, any feasible schedule contains relatively few

routes, that is, at most one per available vehicle. We use

a family of heuristics to produce good candidate routes,

i.e., routes that drive the optimization forward and have

the potential of being part of an optimal schedule. This

can be considered as a heuristic column-generation

procedure.

Recall that each possible route corresponds to a

variable in the mathematical model; thus, it defines

a column of the matrix that describes the model. The

ability to generate good columns quickly is the critical

test of a column-generation-based integer programming

approach. We have several methods in our tool set for

generating good routes. They are described in the sections

that follow.

Column-generating techniques are discussed in [8, 9].

For background on vehicle-routing problems and

solution approaches, see [10–14]. More recently,

researchers have considered a problem similar to ours,

including dynamic scheduling of both pickups and

deliveries, but their objective function was different from

ours [15].

Closest-neighbor algorithm

For a given truck, we pick at random a vehicle among the

k broken ones that are closest to the current location of

the truck and that require some part that is currently

carried by the truck. We add this vehicle as the next stop

to the route of the truck. Then, from this location of the

vehicle, we look for another broken vehicle to visit next

among the k closest ones, and so on. We repeat until no

more broken vehicles can be fixed with the spare parts

that the truck carries. The next stop on the route is then

the BSB, where the truck goes to load new spare parts.

Then we look again for a broken vehicle among the k

closest ones, as before. We add stops to the route in this

fashion until the truck on the route has visited all broken

vehicles or the route lasts longer than the planning

horizon. The truck capacity is taken into account when

choosing each stop, so that a broken vehicle requiring

a part that does not fit into the truck is ignored. Our

experiments indicate that one should give the value 3 or 4

to the parameter k. In this heuristic, only one truck is

considered at a time.

Clarke–Wright algorithm

The Clarke–Wright algorithm is a well-established

procedure used for vehicle routing [16]. We start with

elementary routes and then combine them to create

longer ones that are time-efficient, as follows.

We first create elementary routes, in which a truck

starts at the BSB (denoted b), visits a broken combat

vehicle i, and returns to the BSB. So, for each broken

vehicle i, we create the route fb, i, bg. The total number

of routes equals the number of broken vehicles, which

typically exceeds the number of trucks available. Thus, we

need to combine these routes to produce one route per

truck.

We then combine routes recursively, as follows. We

examine together a route that includes broken combat

vehicle i as a last stop before returning to the BSB,

fb, � � �, i, b), and a route that includes broken vehicle j

as a first stop after the BSB, fb, j, � � �, b). Let ci and cj
be the time length of each route, respectively. Now we

consider the combined route fb, � � �, i, j, � � �, b) where
the truck takes on the second route directly after

completing the first and skips the intermediate visit

to the BSB. Of course, we must reject combinations

that are infeasible, for instance because the truck cannot

obtain all necessary parts at the BSB. Let cij be the

length in time of this combined route. The time savings

of the combined route compared with the two single

ones is ci þ cj � cij. For every pair i and j of routes, we

calculate the time savings of their possible combinations,

and we combine the two routes with the largest

savings, breaking ties randomly. We repeat this until

the number of routes is equal to the number of trucks.

Cluster-and-route algorithm

Another procedure used to generate routes involves the

creation of a cluster of broken combat vehicles for each

truck and then the creation of a route that includes all

vehicles in the cluster.

The clustering algorithm is as follows. First mark as

‘‘available’’ all broken vehicles. Then move each truck to

a closest available vehicle and mark it as unavailable.

Continue until all broken vehicles have been assigned,

producing a cluster for each truck.

When defining the clusters, all trucks are treated in

parallel, each of them making one move at a time, in

contrast to the closest-neighbor procedure, in which the

trucks are treated sequentially. Once the clusters have

been defined, the routing of the truck is done in each

cluster as in the closest-neighbor algorithm.

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

400

After we schedule visits to all vehicles in a cluster using

parts available on the truck, we add additional stops to

the route, such as the BSB or a company where the truck

can pick up spare parts, and then further repairs may

be added to the route.

For the cases in our test set, we observed that

generating 700 to 1,000 possible routes with the three

methods provided good results. The input of the test case

specified a 72-hour horizon, 36 types of parts, seven

repair trucks, eight battalions, 19 companies, and

approximately 150 broken combat vehicles. From these

routes, seven were chosen by the solution method we

describe in the next section.

Solving the integer program with the fix-and-resolve

method

To solve the integer program, we first solve its linear

relaxation; that is, we allow the binary integer variables to

assume fractional values, and we solve the resulting linear

program using the simplex method [17] and the open-

source solver CLP (available from COIN-OR [18]). Next,

we examine the values of the relaxed binary variables xj
in the solution. Some of them have value 0 or 1, which

means that the solution respectively excludes or includes

them. Others have intermediate values: For example, the

solution may feature two routes for a truck, each with

a value of 0.5. This indicates that the solution does

not select one route over the other. This inconclusive

situation does not help us in selecting a route. On the

other hand, a route with value close to 1 suggests that this

route can be part of a good solution. We have designed

our iterative solution procedure around this concept,

as follows.

We first set the variables with a fractional value close to

1 to the value 1, thus ‘‘fixing’’ them. If any variables are at

least 0.999999, they are chosen for such fixing. Otherwise,

we choose the variable closest to 1 and fix only that

variable before the next iteration. However, if fixing

a variable to the value 1 makes the linear program

infeasible, it is fixed to 0. Next, we reduce the size of the

problem by removing all of the trucks, inventory, and

fixed combat vehicles associated with the routes that are

thus fixed. We then solve the linear relaxation again in

order to optimize the smaller problem. We repeat these

steps, fixing new variables close to 1, until no more

variables are assuming a fractional value. We call this

procedure fix and resolve. It is designed to produce a good

solution quickly. (As we fix more variables, the linear

programs become smaller, and we expect to solve them

faster.)

Delivering all spare parts

The solution of the integer program assigns each truck to

a repair route for broken combat vehicles and assigns

load operations for the spare parts required. We can

make additional use of this route to deliver to the

companies the parts specified by the inventory optimizer.

First, we mark all companies that have parts to be

delivered to them as ‘‘unfulfilled.’’ We then produce a

random ordering of the trucks that are non-idle, that is,

that have routes assigned to them. For each truck we

carry out the following steps:

1. For each part, we compute the total quantity to be

delivered to the companies on the route of the truck.

2. We examine whether the BSB has some or all of these

parts. We also check whether some other company

has excess quantities available for cross-leveling.

3. If some of the parts are available, we load the parts

on the truck, up to its capacity limit.

4. As truck travels its route and delivers parts to the

companies, we note whether or not the parts

delivered meet the total demand of each company.

In the first case, we mark the company as ‘‘fulfilled.’’

At the end of this algorithm, some companies may be

unfulfilled; that is, their demand may have been filled only

partially or not at all. For these companies, we reserve

one truck to run a special route: It starts from the BSB,

tours the unfulfilled companies delivering parts, and

returns to the BSB. We schedule this truck using a

closest-neighbor heuristic as follows. We greedily create

a route for the truck, which starts at the BSB, then visits

the unfulfilled company closest to the BSB, then the

unfulfilled company closest to that company, and so on.

Note that a greedy algorithm chooses the least expensive

or most profitable option at each step without regard to

cost or benefit in later steps. The last stop is the BSB. For

each company on the route, we calculate the quantity of

parts needed to reach ‘‘fulfilled’’ status. We create a load

plan for the truck, in which the truck loads the parts

needed at the BSB. If the BSB cannot supply the full

quantity needed, we then (if possible) add load operations

at companies that have excess inventory of the part

needed, and these companies are visited earlier by the

truck on the route. In all cases, we are careful not to

exceed the capacity of the truck.

6. Local search algorithm
In contrast to our integer programming algorithm,

our local search algorithm addresses both terms of the

objective function simultaneously. The general idea for a

local search algorithm is to start with a feasible schedule

and improve it in small (local) steps until no further

improvement can be found [19, 20]. At each step, we

attempt to improve the scheduling of trucks for combat

vehicle repair, as well as the overall distribution of

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

401

spare parts. This is accomplished by exploring the

neighborhood of the current solution and replacing

it with another, better solution in the neighborhood.

Solutions in the neighborhood are evaluated according

to the objective function in Equation (8). The process

stops when a local optimum is reached, that is, when

we have a schedule that cannot be improved by local

improvement steps.

To define a local search algorithm precisely, we must

specify how to find a feasible schedule that can be

used as a starting point and how to define the search

neighborhood, that is, the candidates for an improvement

step.

In choosing the neighborhood we balance two

opposing objectives. Since we need to improve the current

schedule, the neighborhood must be sufficiently large and

varied to contain a significantly better solution. However,

we must be able to explore the neighborhood quickly.

Techniques exist for exploring very large neighborhoods

[21]; we manage the search by keeping the size of the

neighborhood relatively small.

Several options also exist for choosing an improvement

in a neighborhood: For example, we can take the best

solution in the neighborhood, or we can take the first

solution that is better than the current one. The second

option decreases the running time of an iteration, but it

may also decrease the magnitude of the improvement.

Details of the local search algorithm

Initialization

The starting point can be the schedule generated by the

integer programming algorithm described above, a

schedule produced by any other algorithm (for instance, a

simple greedy algorithm), or no schedule at all. In the first

option we are motivated by the fact that the integer

programming method does not generate all possible

routes—just a small, manageable subset of good routes. It

is possible, at least in theory, that better routes exist, and

we can use the local search method to improve upon

the routes produced by integer programming. Sometimes

an improvement that is relatively small in terms of the

objective function, but obvious to the human analyst,

may be missed by the global view of the IP solution, and a

local search can find and correct this, which may increase

user confidence in the IP solution. Section 7 briefly

mentions another algorithm that could be used as a

starting point of the search algorithm. In our prototyping

effort, we implemented only the third option; that is, we,

simply start with the empty solution, in which each truck

stays idle, and make local improvement steps from there.

As described below, one of our local improvement steps

inserts a new action into a route; inserting into an empty

route is simply a special case. However, we use specialized

techniques, which we omit for brevity in this paper, to

greatly speed up the initial iterations until we have a

‘‘reasonable’’ schedule to use as a starting point.

Improvement steps

The set of feasible improvement steps that we explore

(i.e., the changes that define the neighborhood) are the

following:

1. Insert a previously unscheduled delivery/repair load

operation into one of the existing routes.

2. Perform a simple delete-and-reinsert swap as follows.

Pick a route and an unload or repair operation and

delete the operation. Delete the corresponding load

operation in this route. Insert the deliver/repair

operation into a different position in the same route,

or insert it into some other route. For the repair/

unload inserted operation, examine the route up to

that operation in order to find a location and time to

insert a corresponding load operation. Add the load

operation to the route.

3. If the algorithm cannot accommodate unscheduled

orders and insert them into a current schedule, delete

one of the scheduled orders and insert one of the

unscheduled ones. Although this action may seem

not to make progress, it may improve overall

availability, because it may repair a broken combat

vehicle sooner or repair a higher-priority broken

vehicle.

Our approach closely resembles that of work described in

[22], which addresses a similar problem but with deliveries

only rather than load/unload pairs.

7. Stabilized greedy algorithm
Our third transportation-scheduling algorithm can be

thought of as a sophisticated improvement on a natural

greedy strategy. The algorithm has three phases:

oscillation avoidance, allocation of trucks to battalions,

and routing of individual trucks. For brevity, the details

of this approach are omitted from this paper; however,

readers may contact the authors for more information.

8. Combining the algorithms
The algorithms described in the previous sections are

combined into a single inventory and transportation

optimizer as follows: On each incremental receipt of new

data, we run the inventory allocator and then all three

transportation algorithms in parallel. Each algorithm

produces its own schedule. Three-hour granularity is

typically used, but experiments were carried out with

values as small as one hour and as large as 24 hours. We

evaluate the quality of these schedules using the combined

objective function in Equation (8) over the full 72-hour

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

402

planning horizon. We choose the best of the three

schedules according to the objective function, and return

the first increment of this schedule to the simulator. The

first increment is executed, and the process repeats. The

previous schedule is discarded, and a new schedule is

derived using the updated snapshot of the situation.

Thus, we re-optimize at fine granularity and

continually incorporate the latest available data into

our solution. Below we refer to each such run of the

optimizers as an ‘‘iteration.’’ The 72-hour horizon is used

to find the best plan, assuming that nothing changes, at

each time increment. If new data becomes available at

the next time increment, a better solution for the new

situation may be possible.

Several benefits are derived from using multiple

transportation algorithms. The first is high solution

quality: We are able to choose the best of three available

solutions. Different algorithms may have better success in

different situations. Because we optimize at a fine time

granularity, we obtain the best performance of all of the

algorithms rather than having to use a solution from a

single algorithm. Another benefit is robustness. The

likelihood of all three algorithms failing or producing

low-quality solutions is small. Thus, we are likely to have

a high-quality solution at every time period.

9. Numerical results

The goal of our numerical experimentation was to

determine whether NCL capabilities result in a significant

increase in operational availability of the total force when

compared with the capability provided by a traditional

logistics distribution system, particularly under

conditions of high uncertainty and frequent change. We

also measured the computational resources required by

NCL and compared the performance of the three

different transportation scheduling algorithms.

Simulation scenario

The scenario used in this numerical study, provided by

our customer, was designed to evaluate and compare the

traditional and NCL approaches to logistics distribution

over a 30-day simulation. The simulated brigade

organization encompassed the headquarters and

headquarters company, brigade combat team, three

infantry battalions, a reconnaissance surveillance and

target acquisition squadron, and anti-armor and engineer

companies, together comprising 302 combat vehicles. The

brigade combat team was assumed to be network-enabled

on the basis of the emerging future combat system

capabilities of the U.S. Army. More specifically, repair

parts can be distributed to subordinate units carried on

combat vehicles and on combat repair team vehicles.

Combat vehicles are equipped with a sensor suite that

provides continuous and total visibility of brigade repair

parts inventory and parts requirements.

The operations plan of the brigade was based on

a hypothetical five-phased military operation. For

computer simulation purposes, the area of operations

terrain was converted to a map with nodes representing

key terrain features, cities, bridges, junctions, and arcs

that represented roads connecting the nodes. Repair part

delivery times from the external theater support base to

the BSB were calculated on the basis of actual distances

between the two locations and allowable ground

transportation speeds. Various perturbations were

introduced into the simulation in order to apply stresses

that affect the repair part delivery process. Demand

was increased by increased combat; inventory was lost

because of enemy action; communications were degraded;

and the road network was changed, for instance by the

destruction of bridges. Each of these stresses was varied

among three different levels of intensity.

Measures of performance (Ao and CWT)

The benefit of NCL with respect to the baseline

system was assessed in terms of increased operational

availability, Ao, and reduced customer wait time,

CWT, as described in Section 2. We executed more

than 700 experiments to gain insight and understanding

of how NCL, enabled by state-of-the-art optimization

algorithms, differs from and improves upon the

traditional logistics system. Each experiment used a 30-

day battlefield scenario, along with various combinations

of ‘‘stressors’’ such as increased breakage rates, inventory

losses, communications breakdowns, and road closures.

Again, for brevity, we omit detailed discussion of the

scenarios, which can be obtained from the authors.

We found that NCL capabilities result in a significant

increase in operational availability and reduction in

customer wait time compared with a traditional logistics

distribution system. Figure 4 shows the brigade-wide

operational availability that resulted from the baseline

and NCL logistics systems in an unstressed scenario.

Because the BSB is not deployed until day 4, a backlog

of parts requirements is created, and several days are

required to overcome the backlog in both the NCL and

the baseline cases. The value of Ao then becomes more

level in both cases, but at a much higher level under NCL.

The second dip in the baseline Ao value does not occur

in the NCL case because of the on-board spare parts

capability of the latter. In the unstressed scenario,

the average NCL Ao value for the brigade was 0.96,

compared with 0.86 for the baseline system. The average

CWT value for the brigade overall was 7 hours (NCL) vs.

52 hours (baseline).

In the fully stressed case, NCL was again superior, as

illustrated in Figure 5. The Ao value was 0.93 under NCL,

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

403

compared with 0.83 under the baseline system. Most

dramatic was the performance during the period of

highest stress, from day 24 to day 28, when combat units

were cut off from the BSB. Although the baseline system

recovered to its steady state a day sooner than the NCL

system and achieved a better Ao value on day 28, the

downward spike is much deeper for the baseline. The

overall brigade baseline Ao value dropped to 0.57 on

day 27 compared with the NCL Ao value of 0.78. The

CWT value for the fully stressed brigade averaged

8 hours (NCL) compared with 106 hours (baseline).

Performance comparisons of transportation

scheduling algorithms

To compare the solution quality performance of the three

transportation scheduling algorithms, we collected

statistics on a set of 75,300 iterations (about 2/5 of

the total number of iterations in all experiments).

Normalizing the objective function to a scale of 0 to 100,

the average winning (largest) score was 89.6. The average

gap between the best and worst of the three scores was

0.16, and the maximum gap was 14.4. Table 2 shows for

each algorithm the number of iterations on which the

solution provided by that algorithm was best among the

three (see the ‘‘Wins’’ row). It also shows the number of

times the score of each algorithm exceeded the others’

scores by more than 0.48, or three times the average

gap. These are denoted ‘‘Big wins.’’ The most frequent

outcome was that the three algorithms achieved the same

score, within a 0.01 margin. This was denoted ‘‘Three-

way tie’’ in Table 2. Integer programming is the most

frequent winner, but no algorithm dominated any other

algorithm—i.e., no algorithm was as good as or better

than the others in all cases.

Running time performance

In production-level testing, the running time of the

inventory allocation module was always less than one

second. In Table 3 we show the statistics on the running

times of the three transportation scheduling algorithms.

These are taken over all iterations of all experiments.

Each running time data point refers to one invocation of

the optimizer. For example, note that 240 invocations

correspond to a run of 720 hours at three-hour

granularity. We show the overall minimum, maximum,

and mean for each algorithm, and also the same statistics

with the highest and lowest 5% of values removed,

denoted by ‘‘no outliers’’ in Table 3. Our method for

measuring running times of the local search algorithm

differed slightly, and we have only upper bounds on

its running times. As can be seen from the table, the

computational requirements of the algorithms are quite

modest.

10. Summary and conclusions
The methods and results presented in this paper indicate

that mathematical optimization models have the potential

to significantly improve military logistics operations,

and in particular to increase operational availability of

combat vehicles. The simulations considered here were

Figure 5

NCL vs. baseline brigade-level availability in a stressed scenario.

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28
Time (days)

O
p
er

at
io

n
al

 a
va

il
ab

il
iy

,
A

o

 (
%

)

NCL, all stress, brigade

Baseline, all stress, brigade

• BSB isolated

• Battalion reports

 delayed

• Combat sparks demand

• Supply destroyed

NCL average Ao: 93%

BL average Ao: 83%

NCL Ao day 27: 78%

BL Ao day 27: 57%

Figure 4

NCL vs. baseline brigade-level availability in an unstressed

scenario.

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28

Time (days)

O
p
er

at
io

n
al

 a
va

il
ab

il
it

y,
 A

o

 (
%

)

NCL, no stress, brigade

Baseline, no stress, brigade

BSB not

deployed

until day 4

NCL average Ao: 96%

BL average Ao: 86%

Two large units arrive and

create demand that cannot be

immediately satisfied by the

baseline BSB

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

404

limited to a small class of supplies. The very modest

computational requirements suggest that problems of

much larger scale can be solved by the proposed

optimization techniques. We believe that further

investigation is warranted to expand the scope of the

problem in order to obtain greater insight and more

accurate results regarding the amount and types of

improvement, relative to different performance measures,

that can be achieved.

Acknowledgments
We wish to thank our many colleagues contributing to

this project: Marshall Brinn, Aaron Helsinger, John

Phelan, Ray Tomlinson, and Todd Wright of BBN

Technologies; Joseph Cross and Mark Greaves of

DARPA; John Kirzl and Dave Signori of Evidence Based

Research, Inc.; Steve Buckley, Igor Frolow, Spyros

Kontogiorgis, Yahong Gu, and John McCann of IBM;

Tony Rozga of LMI Government Consulting; Leo Pigaty

of Los Alamos Technical Associates, Inc.; and Mike

Dyson of the Schafer Corporation.

References

1. M. Ettl, G. Feigin, G. Lin, and D. Yao, ‘‘A Supply Network
Model with Base-Stock Control and Service Requirements,’’
Oper. Res. 48, No. 3, 216–232 (2000).

2. V. Deshpande, M. Cohen, and K. Donohue, ‘‘An Empirical
Study of Service Differentiation for Weapon System Service
Parts,’’ Oper. Res. 51, No. 4, 518–530 (2003).

3. S. Graves and S. Willems, ‘‘Supply Chain Design: Safety Stock
Placement and Supply Chain Configuration,’’ Supply Chain
Management: Design, Coordination and Operation, A. De Kok
and S. Graves, Editors, Handbooks in Operations Research and
Management Science 11, Elsevier, 2003, pp. 95–132.

4. J. Muckstadt, Analysis and Algorithms for Service Parts Supply
Chains, Springer Series in Operations Research and Financial
Engineering, Springer, New York, 2004.

5. F. Cheng, M. Ettl, G. Lin, and D. Yao, ‘‘Inventory-Service
Optimization in Configure-to-Order Systems,’’ Manuf.
Services & Oper. Manage. 4, No. 2, 114–132 (2002).

6. B. Dietrich, D. Connors, T. Ervolina, J. Fasano, R. Lougee-
Heimer, and R. Wittrock, ‘‘Applications of Implosion in
Manufacturing,’’ Supply Chain Management On Demand,
C. An and H. Fromm, Editors, Springer, New York, 2005,
pp. 97–115.

7. K. Caggiano, J. Muckstadt, and J. Rappold, ‘‘Integrated Real-
Time Capacity and Inventory Allocation for Repairable
Service Parts in a Two-Echelon Supply System,’’ Manuf.
Services & Oper. Manage. 8, No. 3, 292–319 (2006).

8. C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and
P. Vance, ‘‘Branch-and-Price: Column Generation for Solving

Huge Integer Programs,’’ Oper. Res. 46, No. 3, 316–329
(1998).

9. J. Desrosiers, F. Soumis, and M. Desrochers, ‘‘Routing with
Time Windows by Column Generation,’’ Networks 14, No. 4,
545–565 (1984).

10. J. Bramel and D. Simchi-Levi, ‘‘On the Effectiveness of Set
Covering Formulations for the Vehicle Routing Problem with
Time Windows,’’ Oper. Res. 45, No. 2, 295–301 (1997).

11. J. Desrosiers, Y. Dumas, M. Solomon, and F. Soumis, ‘‘Time
Constrained Routing and Scheduling,’’ Network Routing, M.
Ball, T. Magnanti, C. Monma, and G. Nemhauser, Editors,
Handbooks in Operations Research and Management Science 8,
North-Holland, Amsterdam, 1995, pp. 35–139.

12. M. Solomon and J. Desrosiers, ‘‘Time Window Constrained
Routing and Scheduling Problems,’’ Transport. Sci. 22, No.
11, 1–13 (1988).

13. H. Psaraftis, ‘‘Dynamic Vehicle Routing: Status and
Prospects,’’ Ann. Oper. Res. 61, 143–164 (1995).

14. M. Gendreau and J. Potvin, ‘‘Dynamic Vehicle Routing and
Dispatching,’’ Fleet Management Logistics, T. Crainic and
G. Laporte, Editors, Kluwer, Boston, 1998, pp. 115–226.

15. M. Gendreau, F. Guertin, J. Y. Potvin, and R. Séguin,
‘‘Neighborhood Search Heuristics for a Dynamic Vehicle
Dispatching Problem with Pick-Ups and Deliveries,’’
Transport. Res. Part C 14, 157–174 (2006).

16. G. Clarke and J. V. Wright, ‘‘Scheduling of Vehicles from a
Central Depot to a Number of Delivery Points,’’ Oper. Res.
12, No. 4, 568–581 (1964).

17. G. Dantzig, Linear Programming and Extensions, Princeton
University Press, Princeton, NJ, 1998.

18. COIN-OR, Computational Infrastructure for Operations
Research; see http://www.coin-or.org/Clp.

19. E. Aarts and J. Lenstra, Local Search in Combinatorial
Optimization, Princeton University Press, Princeton, NJ, 2003.

20. T. Ibaraki, K. Nonobe, and M. Yagiura, Editors,
‘‘Metaheuristics: Progress as Real Problem Solvers,’’
Operations Research/Computer Science Interfaces Series,
Vol. 32, Springer, New York, 2005.

21. R. Ahuja, O. Ergun, J. Orlin, and A. Punnen, ‘‘A Survey of
Very Large-Scale Neighborhood Search Techniques,’’ Discrete
Appl. Math. 123, Nos. 1–3, 75–102 (2002).

Table 3 Running times of the three transportation-scheduling

algorithms.

Algorithm min (s) max (s) mean (s)

IP 1.39 68.2 3.18

IP no outliers 1.62 6.01 2.97

LS ,1.0 ,84.3 ,1.60

LS no outliers ,1.0 ,2.10 ,1.06

SG 0.53 1.84 0.87

SG no outliers 0.63 1.00 0.87

Table 2 Comparison of win tallies, i.e., the number of iterations, as explained in the text, among the three transportation scheduling

algorithms.

IP LS SG IP and LS IP and SG LS and SG Three-way tie

Wins 23,476 5,418 11,085 3,641 3,970 1,345 26,374

Big wins 2,635 1,597 899 123 19 11 —

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

405

22. M. Dror and L. Levy, ‘‘A Vehicle Routing Improvement
Algorithm Comparison of ‘Greedy’ and a Matching
Implementation for Inventory Routing,’’ Computers & Oper.
Res. 13, No. 1, 33–45 (1986).

Received September 15, 2006; accepted for publication

Francisco Barahona IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (barahon@us.ibm.com). Dr. Barahona received
a Ph.D. degree in operations research from the University of
Grenoble, France. His research interests include combinatorial
optimization, integer programming, and mathematical
programming. He has been a professor at the University of Chile
and the University of Waterloo, Canada, and a visiting professor at
the University of Bonn, Germany. Dr. Barahona has received an
IBM Outstanding Technical Achievement Award, and he holds
two patents. He has been an associate editor of SIAM Journal on
Optimization, Operations Research, and Management Science.

Pawan Chowdhary IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (chowdhar@us.ibm.com). Mr. Chowdhary received his
bachelor’s degree in electronics engineering from Nagpur
University, India, in 1996. During his ten-year career, he has been
associated with various IBM divisions, where he has architected,
designed, and implemented complex, high-performance, and
scalable distributed object-oriented applications. Since joining the
IBM Research Division in 2004 as an Advisory Software Engineer
in the Analytic Models and Architecture Department, he has been
working on technologies related to Sense-and-Respond and
Business Performance Management (BPM), as well as model-
driven software development techniques. Mr. Chowdhary writes
extensively in the area of BPM and model-driven techniques.

Markus Ettl IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (msettl@us.ibm.com). Dr. Ettl is a Research Staff Member
at the IBM Thomas J. Watson Research Center. In 1995 he
received his doctoral degree in computer science from Friedrich-
Alexander University in Erlangen, Germany. Since joining IBM
in 1995, he has focused on advanced research in supply chain
management, and he holds several patents in this field. Dr. Ettl’s
current research interests lie in decision support for production
systems and logistics networks, and sense-and-respond business
management for adaptive organizations. In 1999 he received
the INFORMS Franz Edelman Award. His other awards
and commendations include two IBM Outstanding Technical
Achievement Awards and several IBM Research Division Awards.

Pu Huang IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(puhuang@us.ibm.com). Dr. Huang received his M.S. degree from
the School of Computer Science and his Ph.D. degree from the
Tepper School of Business, both at Carnegie Mellon University.
He is a Research Staff Member at the IBM Thomas J. Watson
Research Center. His current interests are in supply chain
management, stochastic optimization, machine learning, and data
mining. His work includes sense-and-respond systems that help
businesses quickly detect emerging risks and react with corrective
actions. Such systems typically integrate intelligent data mining
techniques and sophisticated decision support algorithms to
provide their functions. Recently, Dr. Huang has worked on
extending the same idea to support business decision making
in large-scale distributed environments.

Tracy Kimbrel IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (kimbrel@us.ibm.com). Dr. Kimbrel received B.S., M.S.,
and Ph.D. degrees in computer science from the University of
Washington, joining the IBM Research Division in 1997. His

F. BARAHONA ET AL. IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007

406

October 16, 2006; Internet publication May 22, 2007

research on the design of algorithms for optimization problems
includes theoretical, experimental, and applied efforts in areas such
as operating system scheduling, resource allocation in multi-server
systems, and vehicle routing. He has received an IBM Research
Division Award and two Research Division Technical Group
Awards, and he holds two patents.

Laszlo Ladanyi IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (ladanyi@us.ibm.com). Dr. Ladanyi received an M.S. degree
in mathematics from Eotvos Lorand University in Budapest,
Hungary, and a Ph.D. degree in operations research from
Cornell University. He joined the IBM Research Division in 1996.
Dr. Ladanyi’s main research areas are integer programming and
parallel programming, with a focus on computational aspects.

Young M. Lee IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (ymlee@us.ibm.com). Dr. Lee received B.S., M.S., and
Ph.D. degrees in chemical engineering from Columbia University.
In 2002 he joined the IBM Research Division, where he has been
working in the areas of supply chain simulation and optimization.
Before joining IBM, Dr. Lee worked for 14 years for BASF, where
he founded and managed the Mathematical Modeling Group and
led the development of numerous optimization and simulation
models for various logistics and manufacturing processes.

Baruch Schieber IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (sbar@us.ibm.com). Dr. Schieber is the manager of the
Optimization Center in the Mathematical Sciences Department
at the IBM Thomas J. Watson Research Center. In this capacity
he leads a group of computer scientists, mathematicians, and
operations researchers in activities combining world-class basic
research with the design and implementation of state-of-the-art
software in areas such as supply chain management, personnel and
vehicle scheduling, production planning, print technology, and
intrinsic function acceleration. Dr. Schieber received his Ph.D.
degree in computer science from Tel Aviv University, Israel,
in 1987 and joined IBM as a Postdoctoral Fellow. His main
interests are approximation algorithms, scheduling, and routing.
Dr. Schieber has published more than 50 papers in scientific
journals; he is a regular presenter at leading theoretical computer
science conferences.

Karthik Sourirajan IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (ksourira@us.ibm.com). Dr. Sourirajan is a
Research Staff Member in the Mathematical Sciences Department
at the IBM Thomas J. Watson Research Center. He received a
B.E.(Hons.) degree in mechanical engineering at the Birla Institute
of Technology and Science, Pilani, India, in 2000, followed by M.S.
(2002) and Ph.D. (2006) degrees in industrial engineering from
Purdue University. His research interests include the application
of operations research techniques to solving real-world problems
that are generally related to supply chains, such as forecasting,
inventory management, integrated facility location, and logistics.

Maxim I. Sviridenko IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (sviri@us.ibm.com). Dr. Sviridenko received
B.S., M.S., and Ph.D. degrees in applied mathematics and

computer science from the Novosibirsk State University, Russia.
He joined the IBM Research Division in 2000. He holds one
patent and has received an IBM Research Division Award
and a Research Division Technical Group Award for work
on the design of algorithms for various optimization problems.

Grzegorz M. Swirszcz IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (swirszcz@us.ibm.com). Dr. Swirszcz joined
IBM in 2003 after receiving M.S. and Ph.D. degrees from the
University of Warsaw, Poland, and spending three years as
a Marie Curie Postdoctoral Fellow at the Centre de Recerca
Matemática in Barcelona, Spain. He works on mathematical
methods in modeling, optimization, qualitative theory of
differential equations, and applications of mathematics in
signal analysis and business processes. Dr. Swirszcz is currently
working on fault-detection algorithms in electric networks.
He also continues his fundamental research in various areas
of pure and applied mathematics. His interests involve creative
and innovative applications of advanced mathematics and
problem solving.

IBM J. RES. & DEV. VOL. 51 NO. 3/4 MAY/JULY 2007 F. BARAHONA ET AL.

407

