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The IBM 374x Communication Controllers, and the NCP
(network control program) software that runs on them, have been
at the center of the IBM SNA (Systems Network Architecture)
for many years. However, the 374x hardware is no longer
being produced. In order to continue to offer IBM
customers various functions provided by the NCP
product, IBM has developed a Communication Controller for
Linuxt (CCL) for the IBM System ze. CCL is a software
program that emulates the 374x hardware, enabling the NCP
to function in Linux. IBM customers now have the ability to
migrate their NCP product to a Linux partition on System z. The
current NCP product, running on an IBM 374x Communication
Controller, supports both host channel and network attachment.
The channel protocol used for the host-channel support is referred
to as channel data link control (CDLC). In order to provide the
System z9e host operating systems with the ability to attach to the
new CCL NCP over a channel interface, a new channel adapter is
required. The new innovative Open Systems Adapter for NCP
(OSN) channel support provided by the OSA-Express2 allows
various operating systems on the same System z9 to attach
‘‘internally’’ to the CCL without using any external network or
channel fabric.

Introduction

A communication controller [1] manages data input and

output to a host computer or computer network. Such a

device converts parallel computer data to serial data for

transmission over communications lines. In 1973, IBM

introduced the IBM 3705 Communication Controller.

The IBM communication controllers serve as the

control point for multiplexing various types of

telecommunications equipment, and for providing host

connectivity for that equipment. The controllers have

served as a front-end processor for several generations

of IBM mainframes, and the technology has evolved

significantly over the last three decades, with important

additions in functionality, support for new

communication protocols, and various hardware

performance enhancements concerned with memory,

processor, and the adapter interface. This hardware

controller is managed by the network control program

(NCP). The NCP serves as the ‘‘operating system’’ for the

controllers.

For more than 30 years, several generations of the IBM

communication controllers have carried the bulk of the

world’s business traffic. After many years of service,

IBM shipped its last 374x Communication Controller

on December 31, 2002. A significant era in enterprise

systems and Systems Network Architecture (SNA)

communications, on which many large corporations

have based their information technology, may have

seemed to be approaching an end [2].

Although most IBM customers have migrated from

SNA-based solutions to solutions based on Internet

Protocol (IP), many corporations still depend on SNA and

NCP functions to run their critical business applications

[3]. One such key SNA function is SNA Network

Interconnect (SNI). The SNI function is jointly provided

by a Virtual Telecommunications Access Method
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(VTAM*) host and an NCP. Together, the two products

provide the SNI function, which allows two independent

business partners, such as a retailer and a supplier, to

communicate with each other and yet also remain

autonomous to each other. Many business partners built

their backbone networks on the basis of this technology.

For many years, AT&T provided a worldwide

communications service that provided SNI connectivity

to many independent business partners [4].

Figure 1 illustrates a typical example of how SNI is

exploited. Here, an IBM System z* host (at right) is

running VTAM with a channel-attached communication

controller running NCP. In this example, the NCP

is connected to the network using DLSw (data link

switching). Various business partners are connected using

the SNI technology, so that each partner is within its

unique network, identified by a network ID.

While most NCP functions could be replaced with

similar IP solutions, this was not true for SNI. Although

several contemporary alternatives to SNI exist [3],

attempts to replace SNI presented a unique set of

business challenges. Business partners had to agree on the

replacement technology and then carefully coordinate

the migration of those changes.

Although IBM had announced an end of production

for the 374x Communication Controllers, a clear

business need began to emerge to provide various

NCP functions, such as SNI, beyond the life of the

hardware platform provided by the communication

controller. Our team was challenged to solve this

in such a way as to avoid producing an entirely new

communication controller hardware platform.

The IBM Enterprise Networking Solutions (ENS) team

in Research Triangle Park, North Carolina, evaluated the

problem and proposed the creation of a new software

control unit. The software control unit would

transparently emulate the hardware control unit by

providing a new operating environment for the NCP.

Given that SNI required both a host and a control unit,

this new control unit would be tightly integrated with the

IBM System z host operating systems, which exploit

NCP. The new emulated control unit would reside inside

the System z within a Linux** operating system image.

It would leverage key strengths of System z, such as

virtualization (via z/VM* and logical partitions), the

Integrated Facility for Linux (IFL) processors, and all

of the critical quality-of-service attributes of z/OS*

and the System z platform.

In May 2005, the Enterprise Networking Solutions

team produced a new product called the IBM

Communication Controller for Linux (CCL) [5], which

serves as the new communication controller, emulating

the 374x architecture and instruction set [6]. The NCP

operates transparently in the new CCL environment.

That is, the NCP can be loaded into the new CCL and

then execute in the CCL environment without requiring

NCP software product changes. Given that the NCP is

a very large and complex product, this was a critical

objective [7]. Most NCP users will be required to make

some NCP configuration (e.g., definition) changes.

Figure 2 illustrates the new CCL operating environment.

With the communication controller moved inside the

System z, new host and network connectivity is required.

CCL host and network connectivity
Creating the CCL product required us to solve many

unique design problems. One general set of problems

Figure 1

Typical channel-attached communication controller providing SNI. 

(T/R: token ring.) 
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related to CCL connectivity. The hardware controllers

had two main types of connectivity—host and network.

Because the controller was to be used in the System z9,

the design team had to ensure that the host and network

connectivity of the controller could be provided in this

new hardware environment. As we have mentioned, the

solutions had to meet the key objective of avoiding

product changes to the NCP and the numerous host

operating systems that connect to the CCL NCP.

For host connectivity, the existing 374x controllers

supported both LAN (token ring) and ESCON* channel

connectivity. ESCON (Enterprise Systems Connection)

is an optical serial interface between IBM mainframe

computers and peripheral devices such as storage drives.

With channel connectivity being the most prevalent type,

we concluded that both forms of connectivity would be

required, with each type presenting a unique set of

challenges. Both forms of connectivity would require

either new System z hardware or changes to the existing

System z hardware. The LAN connectivity could be

provided with only minor changes to the existing OSA

(Open Systems Adapter), and a minor change to the host

networking subsystem (VTAM). However, if channel

support was deemed necessary, this support would

require a new version of old technology.

Channel connectivity offered various operational

advantages over LAN connectivity and was the only form

of connectivity that was supported by the TPF operating

system. Transactional Processing Facility (TPF) is the

IBM high-performance transactional processing monitor.

The combination of TPF and NCP products was still

critical for various IBM enterprise customers.

We concluded that LAN connectivity alone would not

be sufficient. In order to make CCL a viable solution, the

channel connectivity would ultimately be required.

Therefore, the host connectivity would have to be

incorporated in the product. The initial release of CCL

provided only LAN connectivity. The follow-on release

of CCL (October 2005) provided the channel support.

Designers concerned themselves with the type of

hardware that could be exploited to provide this new

version of ‘‘channel’’ support, and how this function

could be provided quickly for the System z.

When evaluating the host and CCL requirements along

with the critical time frame, we decided that the solution

must be based on current System z technology. The

channel solution presented a challenging set of

requirements:

1. The solution must remain transparent to the host

operating systems and NCP, where each host must

continue to use the existing channel protocol called

channel data link control (CDLC).

2. The solution cannot require adding new external

hardware such as adapters, cables, or fabric, and

switches.

3. The performance characteristics of the solution are

critical in terms of both throughput and instructions

per second.

A new OSN channel to support CDLC
We created a new channel type to enable all System z9

operating systems to communicate with NCP on the

Linux image by using the channel-attach (CDLC)

method. It was important to maintain the same CDLC

support for those operating systems that are currently

attached to IBM 374x Communication Controllers. This

channel support is necessary in order to enable those

operating systems that require management of loading,

dumping, controlling, and operating an NCP. These

functions are complicated and can only be supported over

the channel-attached CDLC interface. Our objective was

to maintain the current level of the software, along with

the use of this new channel type, so that neither the NCP

nor the host interface software has to change. Offering

this feature on the System z9 as a completely new

hardware interface would not be feasible. The new

channel type is called Open Systems Adapter for

NCP (OSN); its main function is to bridge an operating

system image using CDLC protocol to the CCL in

the Linux image using the queued direct I/O (QDIO)

architecture [8].

The OSN channel provides the CDLC channel with

connectivity between logical partitions (LPARs) or

virtual machines in the same mainframe system. OSN

CDLC support was critical for TPF users. TPF supports

only channel connectivity to an NCP. Therefore, as

discussed, TPF systems can connect to a CCL NCP only

through the new OSN. The communications server

(VTAM) can also leverage the OSN channel, which

provides a CDLC interface for internal connectivity to

CCLs. When CCLs are running in the same mainframe

system as a VTAM, OSN connectivity between that

VTAM and the CCLs is considerably more efficient

than using VTAM external communications adapter

(XCA) communications through an external LAN.

One additional advantage of using OSN for VTAM

connectivity to CCLs is that the CCL NCP is configured

and managed as a local, channel-attached NCP rather

than as a remote NCP. As a local NCP, the CCL NCP

can be loaded and managed in the same way as local 3745

Communication Controllers, further reducing the

changes required to migrate from 3745s to CCLs.

The bridging function must transport SNA frames

from a host operating system (e.g., z/OS) image internally

to the Linux image running CCL NCP on the same

mainframe using CDLC. In practice, multiple
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connections and instances of both the host OS and Linux

can be supported. Again, one of the major focuses was to

provide an identical CDLC interface to those operating

systems that use the channel-attach method to

communicate with the NCP, thereby avoiding updating

numerous operating systems software products. This can

provide a transparent and functionally equivalent option

that allows customers to migrate from the current IBM

3745 Communication Controllers.

Figure 3 illustrates the concepts that underlie an OSN

adapter, which appears to have two functional ‘‘sides’’

(interfaces)—the X side and the Y side. The two-part

description which follows refers to the CDLC (host) side

as the X side and the QDIO (CCL) side as the Y side. The

X- and Y-side roles are not negotiated; they are

permanently associated with the CDLC host image (X)

and QDIO Linux image (Y). The two sides are described

as follows:

1. CDLC X side: Here, the host (e.g., z/OS) image,

using the CDLC architecture, communicates with the

OSN CDLC ‘‘control unit.’’ The system device

support appears as a 374x-type device.

2. QDIO Y side: Here, the CCL image, using the QDIO

architecture [8], communicates with the OSN, which

connects to the host OS. The system device support

appears as an OSN device.

OSN forwards or ‘‘bridges’’ the SNA frames from the

source half of the interface to the target half. For each I/O

event, the OSN bridging functions do the following:

1. Find the corresponding X or Y half of the

connection.

2. Add or remove the 32-byte QDIO header.

3. Insert the proper identifier in the header when adding

(i.e., building) the 32-byte header that is inbound to

CCL.

4. Forward the frame or frames to the target host image

when necessary.

5. Respond to the originator of the I/O event.

The CDLC half (X side) performs both read and write

operations over the CDLC interface using the standard

CDLC channel programs. Each CDLC interface to the

host operating system requires the allocation of a single

3745 device. The QDIO half (Y side) uses the QDIO

interface for I/O operations between the OSN channel

and CCL. Each QDIO interface with the Linux image

requires the allocation of three OSN devices (two for

control and one for data devices). Because OSN performs

only a bridging function, it does not examine the SNA

frames and provides no SNA protocol logic or

functionalities.

Before bridging can take place between the host

operating system and the Linux NCP image, a logical

connection must be established between the X side and Y

side. Each logical connection is uniquely associated with

an OSN data device and the corresponding CDLC device.

The association is represented by a unique identifier

called a channel connection identifier (CCID), which

associates each host and the corresponding CCL instance

as a single logical connection. The complete CCID value

consists of the subsystem CSS (channel subsystem)

identifier, multiple image facility (MIF) identifier, and

unit address to the CDLC device. The unique pair of

devices can be correlated by OSN using the CCID.

To create a single logical connection, a minimum

of four devices are needed (three OSN devices and one

CDLC device). Each OSN can support a maximum of

180 CDLC (3745-type) devices and 480 OSN (QDIO)

control/data devices.

Inside CCL
The Communication Controller for Linux on the

System z is a software emulation of the IBM 3745/3746

M900 Communication Controller model 31 A. The CCL

runs as a Linux application in user space. The CCL

allows a network control program (NCP) to be executed

within the CCL as though the NCP were running on

actual 374x hardware. In order to provide continued

NCP support, an emulator solution had to be used in

order to move the NCP function to the System z. The

actual 374x is a specialized processor, with a specialized

instruction set, that prohibits the porting of the NCP

code directly to the System z.

Figure 3

Concepts underlying the OSN CDLC architecture. (CCW: channel 

command word; SIGA: signal adapter; SSCH: start subchannel 

instruction; SBALs: storage buffer access lists.)
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The CCL provides most, but not all, of the functions

provided by the 3745 hardware. Functions that are not

supported are the following: CCU (central control unit)

cycle utilization, 374x base frame adapters, start/stop,

BiSynch (binary synchronous), SDLC (synchronous data

link control), Frame Relay, EP (emulation program),

Ethernet, and 374x type-6 and type-7 channel adapters.

Multiple CCL NCPs can be run in a single Linux

partition. System resources, such as the amount of CPU

processing and memory consumed by each CCL, can

become limiting factors when the deployment of

multiple CCLs within the same Linux image is under

consideration. The option of running multiple CCLs

within the same Linux image permits the possible

migration of multiple 3745/NCP control units to the

new CCL environment.

Network communications to the CCL are provided

using emulated 3745 token-ring interface coupler

(TIC) 2 or 3746 M900 TIC 3-type token-ring adapters.

The underlying physical media can be either a token ring

or an Ethernet. Network communications between CCLs

can also be achieved using the Internet Protocol

transmission group (IPTG) function of CCL, which

allows connections between CCLs to be established over

a TCP/IP network. For this function, the connection

to NCP appears to the NCP as a token-ring connection

through the use of an emulated IBM 3746 M900 TIC3-

type adapter.

Network communications and CDLC connections are

provided by the network device handler (NDH). The

CCL opens a socket pair to the NDH for each physical

connection, and data subsequently passes over the CCL

to the NDH socket interface. For token-ring connections,

complete token-ring frames are passed. For CDLC

connections, the data consists of OSN primitives.

The IPTG function does not use the NDH for

connectivity, but instead opens a Linux TCP/IP socket.

The data is exchanged using standard API socket calls,

and then the data travels over the TCP/IP network.

As in the actual IBM 3745 hardware, the CCL provides

16 megabytes of memory for the NCP, as well as eight

general registers, 127 external registers, and five program-

interrupt levels. Many of the hardware functions are

emulated by the CCL. Most of the CCL is written in

C code, with the exception of the core CCU function,

which had to be written in assembly language to achieve

high-performance functioning. Because the CCL

performs its functions by emulating the 3745 instruction

set, performance would be degraded if the core CCU

functions were written in C.

The CCL is a multithreaded application, with the main

thread providing the CCU function, which is responsible

for executing the IBM 3745 instruction set. A thread also

exists for the maintenance and operator subsystem

(MOSS), as well as at least two threads for each adapter

[TIC2, TIC3, ESCON, X.25 NPSI (NCP Packet

Switching Interface), IPTG] that is activated. Most of the

time consumed by the CCL is consumed within the CCU

thread, which executes IBM 3745 instructions. As each

instruction is fetched, it is decoded and then executed as

390 instructions to perform the desired operation; hence,

the CCL is an emulator and interpreter. When a 3745

instruction is directed for an adapter operation, the

adapter thread is signaled and control is passed to the

appropriate threads in order to finish processing the

requests. The adapter thread operations are typically

done in parallel with the CCU thread operations.

For CCL-to-OSN communications, data and control

information is passed between the CCU and the adapter

threads in dynamic parameter/status areas (DPSAs),

which are structures that were defined for the IBM

3745/3746 interface based on the OSI (Open Systems

Interconnection) interface. (The OSI model is a layered

description for communications and computer network

protocol design.) The adapter thread code is then

responsible for translating DPSAs to OSN primitives,

or OSN primitives to DPSAs. Similar processing is

performed for network communications, except that

instead of involving OSN primitives, the DPSA

translation takes place between DPSAs and token-

ring frames.

CCL with CDLC support allows the loading or

dumping of an NCP over the CDLC interface. If the

CCL does not have CDLC connectivity, the loading and

dumping of an NCP can be performed only by using the

emulated 3745 disk functions. This means that when the

CCL is first used, the load module must be placed on the

Linux system using an FTP-type program in order to

transfer the load module from the host operating system

to the Linux system, and the CCL is then started with a

particular NCP name. With CDLC, however, the NCP

can be loaded over the CDLC connection. Unlike the

actual 3745, which can have multiple channel adapters

assigned for loading or dumping, the CCL provides only

one adapter interface. This adapter interface is defined

in both the NCP generation deck [9] and the CCL

configuration file [10].

Loading with CDLC has an obvious advantage

because the extra step of manually transferring the NCP

load module from the host operating system to the Linux

system can be avoided. Instead, the CCL can be started

with no load module, and then the load module can be

transferred over the CDLC connection and started

automatically.

The CCL provides an HTTP server that is used to

emulate some of the functions provided by the IBM 3745

MOSS. The MOSS is an easy-to-use interface that

permits a variety of functions to be performed by the
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operator, such as storage and register alteration, starting

and stopping of NCP and CCL traces, restarting the NCP

or CCL, or displaying various logs related to the CCL

and NCP. The MOSS also provides multiple load-module

support and timed IPL support functions that are

currently provided by the 3745 hardware. The MOSS

interface can also permit an IBM support service to

access a particular CCL if needed in order to provide

remote diagnostic support.

CCL network device handler (NDH)
The path traveled by a frame between the OSN device

and the CCL NCP within the Linux image consists of

multiple steps. The term steps here refers to the transfer

of the frame or control of the frame from one system

component to another, and this transfer may not be a

physical copying of the data. The direct connection

between OSN and Linux is implemented using the

existing Linux OSA-Express QETH (QDIO Ethernet)

device driver. The standard QDIO architecture serves as

the basis for OSN, which utilizes a single input (read-

control) device, a single output (write-control) device, and

a single data device. The Linux QETH device driver is the

enabler of the OSN communications to the Linux image.

We created the network device handler (NDH) to serve as

a transport layer between the CCL engine and the device

driver. Figure 4 illustrates how the NDH fits into the

CCL solution and the relationship of the NDH to the

other components.

With respect to QETH support, the role of the QETH

device driver is somewhat different in the OSN device

case. Because QDIO headers and OSN primitives

are based on CCID-level information, tasks directly

associated with the manipulation and creation of these

are not performed by the QETH Linux device driver.

The Linux driver maintains device-level information,

and multiple CCIDs can be associated with a single

OSN device. The QETH driver does not maintain any

individual sessions or CCID associations. Therefore,

the work required to manage the QDIO headers was

displaced from the QETH driver up a level to the NDH.

The NDH is a kernel module and has implemented a

direct interface with the QETH driver. This interaction

between the NDH and QETH is one of the multiple steps

that a frame traverses between OSN and the CCL NCP.

The NDH is an external loadable kernel module that

provides the interface between the CCL engine and the

Linux QETH device driver. The NDH maintains the

association between the Linux device, of which the QETH

driver has knowledge, and the CCID, of which the CCL

engine has knowledge. This association is enabled by

defining the OSN read-device subchannel address within

the NCP generation deck. The NDH registers a callback

function with QETH that is invoked to pass all frames

received over an individual OSN device. This registration

occurs on a per-Linux device basis. The NDH has a

connection on a per-CCID basis with the CCL engine

via AF_NDH (address family, network device handler)

sockets. This maintained association allows the NDH

to build and interpret the OSN QDIO headers. The

termination of this per-CCID socket connection with the

CCL engine causes the NDH to send the DEL_CCID

(delete CCID) primitive in order to terminate the session

connection. (A primitive may be considered as a

command or signal.) Neither the session level nor CCID

state data is maintained by the NDH. The CCID-level

state information is maintained only by the two farthest

endpoints (the CCL engine and the OSA) that interact

with the Linux part of this system. The passing of the

frame to and from the CCL engine via the AF_NDH

sockets is another one of the multiple steps traversed by

a frame in its path between OSN and the CCL NCP.

Inside the Open Systems Adapter for NCP (OSN)
The Open Systems Adapter-Express2 (OSA-Express2)

is used to provide connectivity to local area networks

(LANs). In order to configure an OSA-Express2 as an

OSN channel path ID (CHPID), the user must configure

the CHPID type and devices (e.g., CDLC and OSN)

by using the System z I/O configuration tools, HCD

(hardware configuration definition), or IOCP (I/O control

program) [11] input statements. (HCD serves as a tool

used to define I/O devices, and IOCP is part of the S/390*

Figure 4
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microcode that uses the output of those definitions.)

In order for the OSN to function properly, both 3745

devices (X-side CDLC) and OSN devices (Y-side QDIO/

Linux) must be configured. When the OSA is initialized

during power-on-reset, the I/O configuration definitions

(IOCDs) are loaded into the adapter. When an OSA-

Express2 channel is defined as an OSN CHPID type,

the new OSN code is loaded in the OSN memory, and

the OSA-Express2 is viewed by the system as an OSN

channel. Once configured online, OSN dynamically learns

about the 3745 devices in the I/O configuration and builds

an internal table entry for each one.

Figure 5 illustrates the dataflow between the CDLC

interface and the QDIO interface. To create an

association between a CCL instance and a 3745 device, a

registration process is required to exchange information

between the CCL instance and the VTAM or TPF in the

host image. During the registration process, the CCL uses

the configured values of NCP parameters and forms a

CCID (comprising the CSS ID, MIF ID, and unit address

[12]). The CCL registers with OSN to establish a logical

point-to-point connection using a SET_CCID primitive.

The SET_CCID primitive contains information that

identifies the target 3745 device that is to bind with the

CCL to subsequently form a connection. [Set, Delete, and

Modify are the three types of primitives (i.e., commands)

that we created for the OSN support. These are new

commands created to register (set) a CCID, deregister

(delete), and modify (mod) the CCID.] OSN examines the

request and validates the target 3745 device through its

internal table entries. If the target 3745 device is not

defined or it is currently in use, the SET_CCID primitive

is rejected with a negative reply by OSN. This is

considered to be a configuration error.

If the target 3745 device is found to be valid, a

table entry for this unique CCID is created to form a

relationship between the CCL and the 3745 device

specified by the unique CCID. Each table entry represents

a ‘‘bridged connection’’ between a 3745 device and an

OSN device. Negotiations continue between the CCL

in the Linux image and VTAM in the host OS image.

A pre-determined set of CCW commands—for example,

Write IPL, Dump/Load, Write/Read Start, Contact/

Discontact, Restart-Reset and Write/Read XID

(exchange identifier)—flow over the 3745 device in a

specified sequence, and the information is repackaged

and sent to the CCL in the Linux image using the

MOD_CCID primitive. The information flows from CCL

to host OS in a similar fashion.

The OSN has the responsibility to maintain a basic

‘‘state machine’’ for each connection, and a table entry

(CCID) is created for each connection. The initial

connection state is RESET and does not become

ACTIVE until XID parameters are successfully

negotiated by both sides. Once the registration process is

completed between CCL and OSN via the SET_CCID,

the control-type CCW commands (e.g., XID exchange or

dump/load) can flow from the host OS via the 3745 device

to reach the OSN CHPID. The OSN validates the CCID

table entry for every control CCW command sent and

received by the 3745 device. If the table entry is valid,

CCW commands and data are sent by the OSN control

devices to the CCL in the Linux image using the

MOD_CCID primitive.

Once the XID sequence completes successfully and the

CCL transfers the parameters to OSN, the connection is

considered to be ACTIVE. When the connection state is

ACTIVE, read and write I/O operations are permitted

through the OSN data device. For a 3745 write operation,

OSN has transferred all of the SNA PIUs (path

information units, which describe SNA messages) for

the entire write channel program into OSN memory

from the host OS via the 3745 device. OSN then

repackages the data (adding the QDIO header) and

transfers it to the Linux image using the OSN data

device via QDIO queue structures [8].

For a QDIO write operation, OSN receives a signal

from the Linux image. OSN copies all of the data frames

from Linux memory space into OSN memory space. If

the targeted 3745 device is not currently receiving input

data, OSN issues an attention to alert the operating

system in the targeted host image. As part of a

Figure 5

Inside OSA-Express2 OSN. (CCW: channel command word; SIGA: 

signal adapter; XID: exchange ID.)
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disassembling process, QDIO headers are removed and

the data frames are disassembled into individual PIUs

and transferred to the VTAM/TPF in the host OS via a

read channel program. This process continues until data

is exhausted. When the read program is completed, OSN

is required to hold the data until the host issues the

next read I/O instruction or reissues the previous read

I/O instruction. If the previous read I/O instruction is

reissued, OSN resends all of the PIUs that were buffered;

otherwise, all of the data is purged at the start of the new

read channel program. Any queuing logic managed by

OSN must preserve the original order of frames and not

allow the frames to be dropped.

In some networking environments, such as an

environment with TCP/IP, it is acceptable for packets to be

‘‘dropped,’’ for example in instances in which there are no

internal buffers available to data coming from the LAN or

from the sending host image. The higher-level architecture

forces the packets to be retransmitted, and eventually the

packets should reach the intended destination.

In the OSN design, packet dropping is not acceptable.

A channel connection for an SNA network is considered

a ‘‘reliable transport’’ in which packet loss or dropped

frames cannot be tolerated. Any lost frames over a

channel connection in an SNA network result in the SNA

connection being disconnected. To avoid this, a channel

protocol known as ‘‘slowdown’’ exists. This provides a

way of controlling dataflow between the host, OSN, and

CCL. Each side has the ability to indicate to the other

side that it is reaching its maximum utilization of buffer

resources. An ‘‘enter-slowdown’’ indicator is reported to

the sender of data when its buffer resources are about to

be depleted. When this indicator is received, the sender is

required to stop transmitting packets until the receiver of

data indicates that the out-of-buffer condition has been

resolved.

A delay may exist when the receiver realizes that it is

too backed up and before the sender can be notified of

this condition. We instituted an algorithm in the OSN

such that when its buffer pool is at 80% capacity, OSN

enters the abovementioned ‘‘slowdown’’ state. This state

tells the sending CCL that OSN is backed up and that

it should stop sending data frames. The sending CCL

then ‘‘holds back’’ and waits until an ‘‘exit slowdown’’

indicator is sent by OSN before it resumes sending data.

The exit slowdown is triggered when the OSN buffers

have dropped to 25% usage.

When an active connection must be terminated, CCL

sends a DEL_CCID primitive to OSN. Upon receiving the

DEL_CCID, OSN unbinds the X side and the Y side and

releases all of the associated resources for that connection.

The DEL_CCID primitive is designed to be used for

normal termination or abnormal termination of a

connection.

OSN—the final product

CDLC over OSN has been designed for high-

performance functioning. CDLC connections between

CCL NCP and an SNA host over OSN have a natural

advantage over LAN and even ESCON connections:

Data flowing through OSN is not limited by the speed

of the external physical media (e.g., because there is no

external channel fabric or wire). Data flows at bus speed

from the SNA host into the OSA, and again at bus speed

from the OSA into the Linux image in which CCL

resides. The SNA host uses CDLC to communicate with

the OSA. Despite certain inefficiencies of the CDLC

protocol compared with more modern technologies such

as QDIO, VTAM can communicate with adjacent NCPs

more efficiently over CDLC than over an LSA (link

services architecture) LAN. (LSA is an SNA-oriented

channel protocol.) Therefore, customers who deploy the

OSN support instead of LSA will reduce z/OS cycles and

gain efficiency.

On the Linux side, the CDLC data flows over a QDIO

interface to the Linux image, which is more efficient than

the process of LAN data flowing over LCS (LAN channel

station, an IP-oriented channel protocol). However, the

biggest performance savings come from the fact that CCL

NCP does not have to manage the CDLC protocols that

deal with such items as timers and channel status. The

NCP allows the (emulated) ESCON adapter to handle

such protocols, thus minimizing the number of emulated

374x instructions that have to be executed for data

transfer to and from the SNA host. In addition, the OSN

support has been designed so that the OSA adapter

manages the details of the CDLC protocols, minimizing

the processing in the Linux image. In contrast, for NTRI

(NCP token-ring interface) LAN connections, the NCP

manages all of the details of every LLC2 (link layer

control-2) connection, using 374x instructions. (The term

LLC2 refers to the upper portion of the OSI layer-2 data-

link control layer and is concerned with connection-

oriented traffic.) This is processor-intensive work in an

actual 3745, and the burden on the processor is magnified

because CCL has to emulate the 3745 instructions.

To determine the relative performance of CDLC over

OSN compared with 374x ESCON TIC3 adapters and

also with LAN connections over LSA and LCS, we took

a number of performance measurements in a controlled

environment, using dedicated processors and isolated

networking equipment. We set up two network

configurations that are representative of most of the SNA

traffic running through NCPs today: an SNA Network

Interconnect (SNI) back-to-back configuration with two

VTAMs and two NCPs, and a boundary network node

(BNN) configuration with one VTAM, one NCP, and

a number of peripheral (BNN) nodes.
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For each of the two network configurations, we set up

the following three SNI hardware configurations:

1. NCPs running in 3745s (with TIC3) that were

attached to VTAMs via ESCON channels

[Figure 6(a)].

2. NCPs running in CCLs that were attached via LAN

(100M Fast Ethernet) to their VTAMs [Figure 6(b)].

3. NCPs running in CCLs that were attached via OSN

to their VTAMs [Figure 7(a)].

We then performed a number of measurements in

each configuration, varying the number of sessions and

the think time (i.e., delay time) between transactions.

Figure 7(b) illustrates the traditional hardware BNN

configuration with one VTAM using an ESCON-

attached 3745 NCP, and a number of peripheral (BNN)

nodes.

In a manner similar to the SNI test environment, we

then replicated this BNN environment twice more. We

began by replacing the 3745 NCP with CCL NCP using

LAN connectivity between VTAM and CCL. Finally, we

replaced the LAN connectivity with the OSN connectivity

between VTAM and CCL. Note that for the BNN

environment we have provided only a single illustration

of the initial hardware configuration.

Next, we performed a number of measurements using

each configuration, varying the number of sessions and

the think time between transactions. Figure 8 illustrates

the average zLinux (or 374x) processor utilization

and throughput measurements for the different

configurations. Figure 8(a) provides the SNI

comparisons, and Figure 8(b) shows the BNN

comparisons.

Performance conclusions and summary

In both network configurations, the number of

transactions per second for the 3745 peaked at slightly

more than 400 transactions per second, and was far

outrun by CCL on the System z9. The most interesting

comparison is between the FE (Fast Ethernet) and CDLC

graphs in Figures 8(a) and 8(b). The only difference

between those two configurations is the connection

between the CCL NCP and the VTAM. The CDLC

configuration achieves more throughput using less

CPU than FE. For the purposes of comparing the

computational cost of the two solutions, we use these

graphs to calculate the CPU cost on a per-transaction

basis for each configuration. Using CDLC instead of

FE can reduce the CPU cost per transaction by 18% on

average, and as much as 30% in the Linux image running

CCL. In addition, using CDLC instead of FE results in a

z/OS CPU cost per transaction savings of 6% on average,

with savings as high as 18% in some cases [13].

Figure 6

(a) IBM 3745/46 SNI test environment. The term “transaction” 

refers to a transactional workload or test case. (AWM: application 

workload modeler, a test tool that is used to generate and simulate 

the application workload; LLC2: link layer control-2.) (b) IBM 

CCL SNI test environment, using a shared LAN between VTAM 

and CCL. (SUSE** is a major retail Linux distribution, and SLES9 

is a particular Linux release. CP: central processor.)
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System operations using OSN

The Open Systems Adapter for NCP (OSN) functions as a

CDLC-attached 3745 device to the SNA host systems in

the System z9 CPC (central processing complex). For the

3745 device, the OSAmicrocode supports the same CDLC

protocol used by the 3746 Model 900 ESCON adapter.

This means that there are no required software changes in

the SNA (VTAMor TPF) host to exploit the OSN support

to a CCL NCP [14]. In other words, VTAM operating in a

z/OS environment, or TPF, or VTAM operating in a VM

or VSE environment can communicate and operate with

an OSN-attached CCL NCP as if it were connected to a

3745 NCP over an ESCON CDLC connection.

Both subarea and peripheral CDLC connections are

supported through this OSN connection to CCL NCP.

The VTAM and TPF definitions for channel attachments

through OSN to CCL NCP are configured in the same

manner as VTAM and TPF definitions for channel

attachments through ESCON to a 3745 NCP. Similarly,

each SNA host OSN CDLC connection is defined in

the CCL NCP definitions as an ESCON logical PU

(processor unit). There is one ESCON logical PU

definition in NCP for each OSN CDLC connection

to an SNA host, just as there is for each 3745 ESCON

CDLC-attached SNA host.

CCL NCP load and dump operations over an OSN-

based CDLC connection are supported in the same

manner as they are for an ESCON-attached 3745 NCP.

The same VTAM commands and host utilities can be

used to manage CCL NCP load and dump operations.

Figure 8

(a) SNI FE vs. CDLC performance graph. (FE: Fast Ethernet; CP: 

central processor.) (b) BNN FE vs. CDLC performance graph.
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(a) IBM CCL SNI test environment using OSN between VTAM 

and CCL. (b) IBM traditional BNN test environment using actual 

3745 NCP.
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These operations over the OSN CDLC connection take

less than one third of the time that the corresponding

action takes over a 3745 ESCON CDLC connection.

In summary, our new System z9 OSN functionality

achieved all of the critical functional design and

performance objectives that were necessary in making

the CCL a complete solution. The OSN support is

tightly integrated into the CCL, complementing the

communications solutions provided by the CCL. The

innovative System z9 technology, such as IFLs, LPAR,

and OSN when combined with the CCL, creates a

powerful overall solution, allowing our customers to

continue to exploit NCP functionality for their mission-

critical applications for years to come [15].

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark service mark, or registered trademark of Linus
Torvalds, Novell, Inc., The Open Group, or Microsoft in the
United States, other countries, or both.
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