IBM System z9

Open Systems Adapter
for Communication
Controller for Linux

The IBM 374x Communication Controllers, and the NCP
(network control program) software that runs on them, have been
at the center of the IBM SNA (Systems Network Architecture)
for many years. However, the 374x hardware is no longer

being produced. In order to continue to offer IBM

customers various functions provided by the NCP

product, IBM has developed a Communication Controller for
Linux® (CCL) for the IBM System z™. CCL is a software
program that emulates the 374x hardware, enabling the NCP

to function in Linux. IBM customers now have the ability to
migrate their NCP product to a Linux partition on System z. The
current NCP product, running on an IBM 374x Communication
Controller, supports both host channel and network attachment.
The channel protocol used for the host-channel support is referred
to as channel data link control (CDLC). In order to provide the
System z9™ host operating systems with the ability to attach to the
new CCL NCP over a channel interface, a new channel adapter is

M. Zee

J. W. Stevens

B. L. Thompson
J. A. Fowler

J. Goldman

P. T. Chan

T. P. McSweeney

required. The new innovative Open Systems Adapter for NCP
(OSN) channel support provided by the OSA-Express2 allows
various operating systems on the same System z9 to attach
“internally” to the CCL without using any external network or

channel fabric.

Introduction

A communication controller [1] manages data input and
output to a host computer or computer network. Such a
device converts parallel computer data to serial data for
transmission over communications lines. In 1973, IBM
introduced the IBM 3705 Communication Controller.
The IBM communication controllers serve as the
control point for multiplexing various types of
telecommunications equipment, and for providing host
connectivity for that equipment. The controllers have
served as a front-end processor for several generations
of IBM mainframes, and the technology has evolved
significantly over the last three decades, with important
additions in functionality, support for new
communication protocols, and various hardware
performance enhancements concerned with memory,
processor, and the adapter interface. This hardware
controller is managed by the network control program

(NCP). The NCP serves as the “operating system” for the
controllers.

For more than 30 years, several generations of the IBM
communication controllers have carried the bulk of the
world’s business traffic. After many years of service,
IBM shipped its last 374x Communication Controller
on December 31, 2002. A significant era in enterprise
systems and Systems Network Architecture (SNA)
communications, on which many large corporations
have based their information technology, may have
seemed to be approaching an end [2].

Although most IBM customers have migrated from
SNA-based solutions to solutions based on Internet
Protocol (IP), many corporations still depend on SNA and
NCP functions to run their critical business applications
[3]. One such key SNA function is SNA Network
Interconnect (SNI). The SNI function is jointly provided
by a Virtual Telecommunications Access Method

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

M. ZEE ET AL.

119

120

Wide-area network Business System z
to other business partner “A”
partners via SNI Network ID “X”

Business
partner “B”

Network ID “Y” IBM
3745-31A

LPAR1
z/OS

SNA
ESCON | | application(s)

- channel

S Network \ Host

connection connection
T/R to DLSw CDLC

Business
partner “C”
Network ID “Z”

Typical channel-attached communication controller providing SNI.
(T/R: token ring.)

System z

LPAR 1 LPAR 2
Linux z/OS
IBM CCL
SNA

application(s)

New connectivity required

New CCL operating environment.

(VTAM™) host and an NCP. Together, the two products
provide the SNI function, which allows two independent
business partners, such as a retailer and a supplier, to
communicate with each other and yet also remain
autonomous to each other. Many business partners built
their backbone networks on the basis of this technology.

For many years, AT&T provided a worldwide
communications service that provided SNI connectivity
to many independent business partners [4].

Figure 1 illustrates a typical example of how SNI is
exploited. Here, an IBM System z* host (at right) is
running VTAM with a channel-attached communication
controller running NCP. In this example, the NCP

M. ZEE ET AL.

is connected to the network using DLSw (data link
switching). Various business partners are connected using
the SNI technology, so that each partner is within its
unique network, identified by a network ID.

While most NCP functions could be replaced with
similar IP solutions, this was not true for SNI. Although
several contemporary alternatives to SNI exist [3],
attempts to replace SNI presented a unique set of
business challenges. Business partners had to agree on the
replacement technology and then carefully coordinate
the migration of those changes.

Although IBM had announced an end of production
for the 374x Communication Controllers, a clear
business need began to emerge to provide various
NCP functions, such as SNI, beyond the life of the
hardware platform provided by the communication
controller. Our team was challenged to solve this
in such a way as to avoid producing an entirely new
communication controller hardware platform.

The IBM Enterprise Networking Solutions (ENS) team
in Research Triangle Park, North Carolina, evaluated the
problem and proposed the creation of a new software
control unit. The software control unit would
transparently emulate the hardware control unit by
providing a new operating environment for the NCP.
Given that SNI required both a host and a control unit,
this new control unit would be tightly integrated with the
IBM System z host operating systems, which exploit
NCP. The new emulated control unit would reside inside
the System z within a Linux** operating system image.
It would leverage key strengths of System z, such as
virtualization (via z/VM™* and logical partitions), the
Integrated Facility for Linux (IFL) processors, and all
of the critical quality-of-service attributes of z/OS*
and the System z platform.

In May 2005, the Enterprise Networking Solutions
team produced a new product called the IBM
Communication Controller for Linux (CCL) [5], which
serves as the new communication controller, emulating
the 374x architecture and instruction set [6]. The NCP
operates transparently in the new CCL environment.
That is, the NCP can be loaded into the new CCL and
then execute in the CCL environment without requiring
NCP software product changes. Given that the NCP is
a very large and complex product, this was a critical
objective [7]. Most NCP users will be required to make
some NCP configuration (e.g., definition) changes.
Figure 2 illustrates the new CCL operating environment.
With the communication controller moved inside the
System z, new host and network connectivity is required.

CCL host and network connectivity

Creating the CCL product required us to solve many
unique design problems. One general set of problems

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

related to CCL connectivity. The hardware controllers
had two main types of connectivity—host and network.
Because the controller was to be used in the System z9,
the design team had to ensure that the host and network
connectivity of the controller could be provided in this
new hardware environment. As we have mentioned, the
solutions had to meet the key objective of avoiding
product changes to the NCP and the numerous host
operating systems that connect to the CCL NCP.

For host connectivity, the existing 374x controllers
supported both LAN (token ring) and ESCON* channel
connectivity. ESCON (Enterprise Systems Connection)
is an optical serial interface between IBM mainframe
computers and peripheral devices such as storage drives.
With channel connectivity being the most prevalent type,
we concluded that both forms of connectivity would be
required, with each type presenting a unique set of
challenges. Both forms of connectivity would require
either new System z hardware or changes to the existing
System z hardware. The LAN connectivity could be
provided with only minor changes to the existing OSA
(Open Systems Adapter), and a minor change to the host
networking subsystem (VTAM). However, if channel
support was deemed necessary, this support would
require a new version of old technology.

Channel connectivity offered various operational
advantages over LAN connectivity and was the only form
of connectivity that was supported by the TPF operating
system. Transactional Processing Facility (TPF) is the
IBM high-performance transactional processing monitor.
The combination of TPF and NCP products was still
critical for various IBM enterprise customers.

We concluded that LAN connectivity alone would not
be sufficient. In order to make CCL a viable solution, the
channel connectivity would ultimately be required.
Therefore, the host connectivity would have to be
incorporated in the product. The initial release of CCL
provided only LAN connectivity. The follow-on release
of CCL (October 2005) provided the channel support.
Designers concerned themselves with the type of
hardware that could be exploited to provide this new
version of “channel” support, and how this function
could be provided quickly for the System z.

When evaluating the host and CCL requirements along
with the critical time frame, we decided that the solution
must be based on current System z technology. The
channel solution presented a challenging set of
requirements:

1. The solution must remain transparent to the host
operating systems and NCP, where each host must
continue to use the existing channel protocol called
channel data link control (CDLC).

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

2. The solution cannot require adding new external
hardware such as adapters, cables, or fabric, and
switches.

3. The performance characteristics of the solution are
critical in terms of both throughput and instructions
per second.

A new OSN channel to support CDLC

We created a new channel type to enable all System z9
operating systems to communicate with NCP on the
Linux image by using the channel-attach (CDLC)
method. It was important to maintain the same CDLC
support for those operating systems that are currently
attached to IBM 374x Communication Controllers. This
channel support is necessary in order to enable those
operating systems that require management of loading,
dumping, controlling, and operating an NCP. These
functions are complicated and can only be supported over
the channel-attached CDLC interface. Our objective was
to maintain the current level of the software, along with
the use of this new channel type, so that neither the NCP
nor the host interface software has to change. Offering
this feature on the System z9 as a completely new
hardware interface would not be feasible. The new
channel type is called Open Systems Adapter for

NCP (OSN); its main function is to bridge an operating
system image using CDLC protocol to the CCL in

the Linux image using the queued direct 1/O (QDIO)
architecture [8].

The OSN channel provides the CDLC channel with
connectivity between logical partitions (LPARs) or
virtual machines in the same mainframe system. OSN
CDLC support was critical for TPF users. TPF supports
only channel connectivity to an NCP. Therefore, as
discussed, TPF systems can connect to a CCL NCP only
through the new OSN. The communications server
(VTAM) can also leverage the OSN channel, which
provides a CDLC interface for internal connectivity to
CCLs. When CCLs are running in the same mainframe
system as a VITAM, OSN connectivity between that
VTAM and the CCLs is considerably more efficient
than using VTAM external communications adapter
(XCA) communications through an external LAN.

One additional advantage of using OSN for VTAM
connectivity to CCLs is that the CCL NCP is configured
and managed as a local, channel-attached NCP rather
than as a remote NCP. As a local NCP, the CCL NCP
can be loaded and managed in the same way as local 3745
Communication Controllers, further reducing the
changes required to migrate from 3745s to CCLs.

The bridging function must transport SNA frames
from a host operating system (e.g., z/OS) image internally
to the Linux image running CCL NCP on the same
mainframe using CDLC. In practice, multiple

M. ZEE ET AL.

121

122

CDLC QDIO
X side Y side .
z/0OS CDLC Linux NCP QDIO
interface interface
—_—| -------}---- >
SNA frames
(“layer 2” mode)
-~ - - - -—
CDLC SSCH and SIGA and SBALs
CCWs

Single subchannel
device

QDIO data device

Concepts underlying the OSN CDLC architecture. (CCW: channel
command word; SIGA: signal adapter; SSCH: start subchannel
instruction; SBALSs: storage buffer access lists.)

connections and instances of both the host OS and Linux
can be supported. Again, one of the major focuses was to
provide an identical CDLC interface to those operating
systems that use the channel-attach method to
communicate with the NCP, thereby avoiding updating
numerous operating systems software products. This can
provide a transparent and functionally equivalent option
that allows customers to migrate from the current IBM
3745 Communication Controllers.

Figure 3 illustrates the concepts that underlie an OSN
adapter, which appears to have two functional “sides”
(interfaces)—the X side and the Y side. The two-part
description which follows refers to the CDLC (host) side
as the X side and the QDIO (CCL) side as the Y side. The
X- and Y-side roles are not negotiated; they are
permanently associated with the CDLC host image (X)
and QDIO Linux image (Y). The two sides are described
as follows:

1. CDLC X side: Here, the host (e.g., z/OS) image,
using the CDLC architecture, communicates with the
OSN CDLC “control unit.” The system device
support appears as a 374x-type device.

2. QDIO Y side: Here, the CCL image, using the QDIO
architecture [8], communicates with the OSN, which
connects to the host OS. The system device support
appears as an OSN device.

OSN forwards or “bridges” the SNA frames from the

source half of the interface to the target half. For each I/O
event, the OSN bridging functions do the following:

M. ZEE ET AL.

1. Find the corresponding X or Y half of the
connection.

2. Add or remove the 32-byte QDIO header.

3. Insert the proper identifier in the header when adding
(i.e., building) the 32-byte header that is inbound to
CCL.

4. Forward the frame or frames to the target host image
when necessary.

5. Respond to the originator of the I/O event.

The CDLC half (X side) performs both read and write
operations over the CDLC interface using the standard
CDLC channel programs. Each CDLC interface to the
host operating system requires the allocation of a single
3745 device. The QDIO half (Y side) uses the QDIO
interface for I/O operations between the OSN channel
and CCL. Each QDIO interface with the Linux image
requires the allocation of three OSN devices (two for
control and one for data devices). Because OSN performs
only a bridging function, it does not examine the SNA
frames and provides no SNA protocol logic or
functionalities.

Before bridging can take place between the host
operating system and the Linux NCP image, a logical
connection must be established between the X side and Y
side. Each logical connection is uniquely associated with
an OSN data device and the corresponding CDLC device.
The association is represented by a unique identifier
called a channel connection identifier (CCID), which
associates each host and the corresponding CCL instance
as a single logical connection. The complete CCID value
consists of the subsystem CSS (channel subsystem)
identifier, multiple image facility (MIF) identifier, and
unit address to the CDLC device. The unique pair of
devices can be correlated by OSN using the CCID.

To create a single logical connection, a minimum
of four devices are needed (three OSN devices and one
CDLC device). Each OSN can support a maximum of
180 CDLC (3745-type) devices and 480 OSN (QDIO)
control/data devices.

Inside CCL

The Communication Controller for Linux on the
System z is a software emulation of the IBM 3745/3746
M900 Communication Controller model 31 A. The CCL
runs as a Linux application in user space. The CCL
allows a network control program (NCP) to be executed
within the CCL as though the NCP were running on
actual 374x hardware. In order to provide continued
NCP support, an emulator solution had to be used in
order to move the NCP function to the System z. The
actual 374x is a specialized processor, with a specialized
instruction set, that prohibits the porting of the NCP
code directly to the System z.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

The CCL provides most, but not all, of the functions
provided by the 3745 hardware. Functions that are not
supported are the following: CCU (central control unit)
cycle utilization, 374x base frame adapters, start/stop,
BiSynch (binary synchronous), SDLC (synchronous data
link control), Frame Relay, EP (emulation program),
Ethernet, and 374x type-6 and type-7 channel adapters.

Multiple CCL NCPs can be run in a single Linux
partition. System resources, such as the amount of CPU
processing and memory consumed by each CCL, can
become limiting factors when the deployment of
multiple CCLs within the same Linux image is under
consideration. The option of running multiple CCLs
within the same Linux image permits the possible
migration of multiple 3745/NCP control units to the
new CCL environment.

Network communications to the CCL are provided
using emulated 3745 token-ring interface coupler
(TIC) 2 or 3746 M900 TIC 3-type token-ring adapters.
The underlying physical media can be either a token ring
or an Ethernet. Network communications between CCLs
can also be achieved using the Internet Protocol
transmission group (IPTG) function of CCL, which
allows connections between CCLs to be established over
a TCP/IP network. For this function, the connection
to NCP appears to the NCP as a token-ring connection
through the use of an emulated IBM 3746 M900 TIC3-
type adapter.

Network communications and CDLC connections are
provided by the network device handler (NDH). The
CCL opens a socket pair to the NDH for each physical
connection, and data subsequently passes over the CCL
to the NDH socket interface. For token-ring connections,
complete token-ring frames are passed. For CDLC
connections, the data consists of OSN primitives.

The IPTG function does not use the NDH for
connectivity, but instead opens a Linux TCP/IP socket.
The data is exchanged using standard API socket calls,
and then the data travels over the TCP/IP network.

As in the actual IBM 3745 hardware, the CCL provides
16 megabytes of memory for the NCP, as well as eight
general registers, 127 external registers, and five program-
interrupt levels. Many of the hardware functions are
emulated by the CCL. Most of the CCL is written in
C code, with the exception of the core CCU function,
which had to be written in assembly language to achieve
high-performance functioning. Because the CCL
performs its functions by emulating the 3745 instruction
set, performance would be degraded if the core CCU
functions were written in C.

The CCL is a multithreaded application, with the main
thread providing the CCU function, which is responsible
for executing the IBM 3745 instruction set. A thread also
exists for the maintenance and operator subsystem

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

(MOSS), as well as at least two threads for each adapter
[TIC2, TIC3, ESCON, X.25 NPSI (NCP Packet
Switching Interface), IPTG] that is activated. Most of the
time consumed by the CCL is consumed within the CCU
thread, which executes IBM 3745 instructions. As each
instruction is fetched, it is decoded and then executed as
390 instructions to perform the desired operation; hence,
the CCL is an emulator and interpreter. When a 3745
instruction is directed for an adapter operation, the
adapter thread is signaled and control is passed to the
appropriate threads in order to finish processing the
requests. The adapter thread operations are typically
done in parallel with the CCU thread operations.

For CCL-to-OSN communications, data and control
information is passed between the CCU and the adapter
threads in dynamic parameter/status areas (DPSAs),
which are structures that were defined for the IBM
3745/3746 interface based on the OSI (Open Systems
Interconnection) interface. (The OSI model is a layered
description for communications and computer network
protocol design.) The adapter thread code is then
responsible for translating DPSAs to OSN primitives,
or OSN primitives to DPSAs. Similar processing is
performed for network communications, except that
instead of involving OSN primitives, the DPSA
translation takes place between DPSAs and token-
ring frames.

CCL with CDLC support allows the loading or
dumping of an NCP over the CDLC interface. If the
CCL does not have CDLC connectivity, the loading and
dumping of an NCP can be performed only by using the
emulated 3745 disk functions. This means that when the
CCL is first used, the load module must be placed on the
Linux system using an FTP-type program in order to
transfer the load module from the host operating system
to the Linux system, and the CCL is then started with a
particular NCP name. With CDLC, however, the NCP
can be loaded over the CDLC connection. Unlike the
actual 3745, which can have multiple channel adapters
assigned for loading or dumping, the CCL provides only
one adapter interface. This adapter interface is defined
in both the NCP generation deck [9] and the CCL
configuration file [10].

Loading with CDLC has an obvious advantage
because the extra step of manually transferring the NCP
load module from the host operating system to the Linux
system can be avoided. Instead, the CCL can be started
with no load module, and then the load module can be
transferred over the CDLC connection and started
automatically.

The CCL provides an HTTP server that is used to
emulate some of the functions provided by the IBM 3745
MOSS. The MOSS is an easy-to-use interface that
permits a variety of functions to be performed by the 123

M. ZEE ET AL.

124

79
Linux
MOSS NCP load
console module
CCL engine QDIO protocol
2
Kernel OSN control
Y read device
Network
OSA-
device (?ETH OSN control Express2
handler A deche write device
(NDH) river > OSN
OSN data device
A
CCL engine NDH to QETH QETH to OSN
to NDH socket connection per connection per
connection Linux QETH 1/0 QDIO MPC
per CCID device group (triple)

NDH interfaces with CCL and QETH. The term “triple” indicates
a group of three devices. (MPC: multipath channel.)

operator, such as storage and register alteration, starting
and stopping of NCP and CCL traces, restarting the NCP
or CCL, or displaying various logs related to the CCL
and NCP. The MOSS also provides multiple load-module
support and timed IPL support functions that are
currently provided by the 3745 hardware. The MOSS
interface can also permit an IBM support service to
access a particular CCL if needed in order to provide
remote diagnostic support.

CCL network device handler (NDH)

The path traveled by a frame between the OSN device
and the CCL NCP within the Linux image consists of
multiple steps. The term steps here refers to the transfer
of the frame or control of the frame from one system
component to another, and this transfer may not be a
physical copying of the data. The direct connection
between OSN and Linux is implemented using the
existing Linux OSA-Express QETH (QDIO Ethernet)
device driver. The standard QDIO architecture serves as
the basis for OSN, which utilizes a single input (read-
control) device, a single output (write-control) device, and
a single data device. The Linux QETH device driver is the
enabler of the OSN communications to the Linux image.
We created the network device handler (NDH) to serve as
a transport layer between the CCL engine and the device
driver. Figure 4 illustrates how the NDH fits into the
CCL solution and the relationship of the NDH to the
other components.

M. ZEE ET AL.

With respect to QETH support, the role of the QETH
device driver is somewhat different in the OSN device
case. Because QDIO headers and OSN primitives
are based on CCID-level information, tasks directly
associated with the manipulation and creation of these
are not performed by the QETH Linux device driver.
The Linux driver maintains device-level information,
and multiple CCIDs can be associated with a single
OSN device. The QETH driver does not maintain any
individual sessions or CCID associations. Therefore,
the work required to manage the QDIO headers was
displaced from the QETH driver up a level to the NDH.
The NDH is a kernel module and has implemented a
direct interface with the QETH driver. This interaction
between the NDH and QETH is one of the multiple steps
that a frame traverses between OSN and the CCL NCP.

The NDH is an external loadable kernel module that
provides the interface between the CCL engine and the
Linux QETH device driver. The NDH maintains the
association between the Linux device, of which the QETH
driver has knowledge, and the CCID, of which the CCL
engine has knowledge. This association is enabled by
defining the OSN read-device subchannel address within
the NCP generation deck. The NDH registers a callback
function with QETH that is invoked to pass all frames
received over an individual OSN device. This registration
occurs on a per-Linux device basis. The NDH has a
connection on a per-CCID basis with the CCL engine
via AF_NDH (address family, network device handler)
sockets. This maintained association allows the NDH
to build and interpret the OSN QDIO headers. The
termination of this per-CCID socket connection with the
CCL engine causes the NDH to send the DEL_CCID
(delete CCID) primitive in order to terminate the session
connection. (A primitive may be considered as a
command or signal.) Neither the session level nor CCID
state data is maintained by the NDH. The CCID-level
state information is maintained only by the two farthest
endpoints (the CCL engine and the OSA) that interact
with the Linux part of this system. The passing of the
frame to and from the CCL engine via the AF_NDH
sockets is another one of the multiple steps traversed by
a frame in its path between OSN and the CCL NCP.

Inside the Open Systems Adapter for NCP (OSN)
The Open Systems Adapter-Express2 (OSA-Express2)

is used to provide connectivity to local area networks
(LANS). In order to configure an OSA-Express2 as an
OSN channel path ID (CHPID), the user must configure
the CHPID type and devices (e.g., CDLC and OSN)

by using the System z I/O configuration tools, HCD
(hardware configuration definition), or IOCP (I/O control
program) [11] input statements. (HCD serves as a tool
used to define I/O devices, and IOCP is part of the S/390*

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

microcode that uses the output of those definitions.)

In order for the OSN to function properly, both 3745
devices (X-side CDLC) and OSN devices (Y-side QDIO/
Linux) must be configured. When the OSA is initialized
during power-on-reset, the I/O configuration definitions
(IOCDs) are loaded into the adapter. When an OSA-
Express2 channel is defined as an OSN CHPID type,
the new OSN code is loaded in the OSN memory, and
the OSA-Express2 is viewed by the system as an OSN
channel. Once configured online, OSN dynamically learns
about the 3745 devices in the I/O configuration and builds
an internal table entry for each one.

Figure 5 illustrates the dataflow between the CDLC
interface and the QDIO interface. To create an
association between a CCL instance and a 3745 device, a
registration process is required to exchange information
between the CCL instance and the VTAM or TPF in the
host image. During the registration process, the CCL uses
the configured values of NCP parameters and forms a
CCID (comprising the CSS ID, MIF ID, and unit address
[12]). The CCL registers with OSN to establish a logical
point-to-point connection using a SET_CCID primitive.
The SET_CCID primitive contains information that
identifies the target 3745 device that is to bind with the
CCL to subsequently form a connection. [Set, Delete, and
Modify are the three types of primitives (i.e., commands)
that we created for the OSN support. These are new
commands created to register (set) a CCID, deregister
(delete), and modify (mod) the CCID.] OSN examines the
request and validates the target 3745 device through its
internal table entries. If the target 3745 device is not
defined or it is currently in use, the SET_CCID primitive
is rejected with a negative reply by OSN. This is
considered to be a configuration error.

If the target 3745 device is found to be valid, a
table entry for this unique CCID is created to form a
relationship between the CCL and the 3745 device
specified by the unique CCID. Each table entry represents
a “bridged connection” between a 3745 device and an
OSN device. Negotiations continue between the CCL
in the Linux image and VTAM in the host OS image.

A pre-determined set of CCW commands—for example,
Write IPL, Dump/Load, Write/Read Start, Contact/
Discontact, Restart-Reset and Write/Read XID
(exchange identifier)—flow over the 3745 device in a
specified sequence, and the information is repackaged
and sent to the CCL in the Linux image using the
MOD_CCID primitive. The information flows from CCL
to host OS in a similar fashion.

The OSN has the responsibility to maintain a basic
“state machine” for each connection, and a table entry
(CCID) is created for each connection. The initial
connection state is RESET and does not become
ACTIVE until XID parameters are successfully

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Host
(0N OSA- QDIO MPC Linux
LP Express2 group (CCL)LP
___ Cccw Channel : Data
commands | connections . device :
s . : : OSN data
. ' CCID ; i| Queue |! (SIGA)
ert_e Start | 1, o e >structures [*
w | write(s) . . ' | SNA: i 3
~ 7 o L : :)
= | Read Start . ' | PIUs : 35
; read(s) 3 v ;' Control] g g
< 3745 3 Lo : devices : a
=] R = I 3 o
> device o !l Read
Write PL | @ 1 [yqpy L oSN
WA Dump/: D assist
ReadXID | v | | 154 ! |- primitives
— Contact e - Write (<
Discontact | '------ | LI a LE) a
Restart-reset g % g
338

X side [Y side
I

Inside OSA-Express2 OSN. (CCW: channel command word; SIGA:
signal adapter; XID: exchange ID.)

negotiated by both sides. Once the registration process is
completed between CCL and OSN via the SET_CCID,
the control-type CCW commands (e.g., XID exchange or
dump/load) can flow from the host OS via the 3745 device
to reach the OSN CHPID. The OSN validates the CCID
table entry for every control CCW command sent and
received by the 3745 device. If the table entry is valid,
CCW commands and data are sent by the OSN control
devices to the CCL in the Linux image using the
MOD_CCID primitive.

Once the XID sequence completes successfully and the
CCL transfers the parameters to OSN, the connection is
considered to be ACTIVE. When the connection state is
ACTIVE, read and write I/O operations are permitted
through the OSN data device. For a 3745 write operation,
OSN has transferred all of the SNA PIUs (path
information units, which describe SNA messages) for
the entire write channel program into OSN memory
from the host OS via the 3745 device. OSN then
repackages the data (adding the QDIO header) and
transfers it to the Linux image using the OSN data
device via QDIO queue structures [8].

For a QDIO write operation, OSN receives a signal
from the Linux image. OSN copies all of the data frames
from Linux memory space into OSN memory space. If
the targeted 3745 device is not currently receiving input
data, OSN issues an attention to alert the operating
system in the targeted host image. As part of a 125

M. ZEE ET AL.

126

disassembling process, QDIO headers are removed and
the data frames are disassembled into individual PIUs
and transferred to the VTAM/TPF in the host OS via a
read channel program. This process continues until data
is exhausted. When the read program is completed, OSN
is required to hold the data until the host issues the
next read I/O instruction or reissues the previous read
I/O instruction. If the previous read I/O instruction is
reissued, OSN resends all of the PIUs that were buffered;
otherwise, all of the data is purged at the start of the new
read channel program. Any queuing logic managed by
OSN must preserve the original order of frames and not
allow the frames to be dropped.

In some networking environments, such as an
environment with TCP/IP, it is acceptable for packets to be
“dropped,” for example in instances in which there are no
internal buffers available to data coming from the LAN or
from the sending host image. The higher-level architecture
forces the packets to be retransmitted, and eventually the
packets should reach the intended destination.

In the OSN design, packet dropping is not acceptable.
A channel connection for an SNA network is considered
a “reliable transport” in which packet loss or dropped
frames cannot be tolerated. Any lost frames over a
channel connection in an SNA network result in the SNA
connection being disconnected. To avoid this, a channel
protocol known as “slowdown” exists. This provides a
way of controlling dataflow between the host, OSN, and
CCL. Each side has the ability to indicate to the other
side that it is reaching its maximum utilization of buffer
resources. An “enter-slowdown” indicator is reported to
the sender of data when its buffer resources are about to
be depleted. When this indicator is received, the sender is
required to stop transmitting packets until the receiver of
data indicates that the out-of-buffer condition has been
resolved.

A delay may exist when the receiver realizes that it is
too backed up and before the sender can be notified of
this condition. We instituted an algorithm in the OSN
such that when its buffer pool is at 80% capacity, OSN
enters the abovementioned “slowdown” state. This state
tells the sending CCL that OSN is backed up and that
it should stop sending data frames. The sending CCL
then “holds back” and waits until an “exit slowdown”
indicator is sent by OSN before it resumes sending data.
The exit slowdown is triggered when the OSN buffers
have dropped to 25% usage.

When an active connection must be terminated, CCL
sends a DEL_CCID primitive to OSN. Upon receiving the
DEL_CCID, OSN unbinds the X side and the Y side and
releases all of the associated resources for that connection.
The DEL_CCID primitive is designed to be used for
normal termination or abnormal termination of a
connection.

M. ZEE ET AL.

OSN—the final product

CDLC over OSN has been designed for high-
performance functioning. CDLC connections between
CCL NCP and an SNA host over OSN have a natural
advantage over LAN and even ESCON connections:
Data flowing through OSN is not limited by the speed
of the external physical media (e.g., because there is no
external channel fabric or wire). Data flows at bus speed
from the SNA host into the OSA, and again at bus speed
from the OSA into the Linux image in which CCL
resides. The SNA host uses CDLC to communicate with
the OSA. Despite certain inefficiencies of the CDLC
protocol compared with more modern technologies such
as QDIO, VTAM can communicate with adjacent NCPs
more efficiently over CDLC than over an LSA (link
services architecture) LAN. (LSA is an SNA-oriented
channel protocol.) Therefore, customers who deploy the
OSN support instead of LSA will reduce z/OS cycles and
gain efficiency.

On the Linux side, the CDLC data flows over a QDIO
interface to the Linux image, which is more efficient than
the process of LAN data flowing over LCS (LAN channel
station, an IP-oriented channel protocol). However, the
biggest performance savings come from the fact that CCL
NCP does not have to manage the CDLC protocols that
deal with such items as timers and channel status. The
NCP allows the (emulated) ESCON adapter to handle
such protocols, thus minimizing the number of emulated
374x instructions that have to be executed for data
transfer to and from the SNA host. In addition, the OSN
support has been designed so that the OSA adapter
manages the details of the CDLC protocols, minimizing
the processing in the Linux image. In contrast, for NTRI
(NCP token-ring interface) LAN connections, the NCP
manages all of the details of every LLC2 (link layer
control-2) connection, using 374x instructions. (The term
LLC?2 refers to the upper portion of the OSI layer-2 data-
link control layer and is concerned with connection-
oriented traffic.) This is processor-intensive work in an
actual 3745, and the burden on the processor is magnified
because CCL has to emulate the 3745 instructions.

To determine the relative performance of CDLC over
OSN compared with 374x ESCON TIC3 adapters and
also with LAN connections over LSA and LCS, we took
a number of performance measurements in a controlled
environment, using dedicated processors and isolated
networking equipment. We set up two network
configurations that are representative of most of the SNA
traffic running through NCPs today: an SNA Network
Interconnect (SNI) back-to-back configuration with two
VTAMs and two NCPs, and a boundary network node
(BNN) configuration with one VTAM, one NCP, and
a number of peripheral (BNN) nodes.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

For each of the two network configurations, we set up
the following three SNI hardware configurations:

1. NCPs running in 3745s (with TIC3) that were
attached to VTAMs via ESCON channels
[Figure 6(a)].

2. NCPs running in CCLs that were attached via LAN
(100M Fast Ethernet) to their VTAMs [Figure 6(b)].

3. NCPs running in CCLs that were attached via OSN
to their VTAMs [Figure 7(a)].

We then performed a number of measurements in
each configuration, varying the number of sessions and
the think time (i.e., delay time) between transactions.

Figure 7(b) illustrates the traditional hardware BNN
configuration with one VTAM using an ESCON-
attached 3745 NCP, and a number of peripheral (BNN)
nodes.

In a manner similar to the SNI test environment, we
then replicated this BNN environment twice more. We
began by replacing the 3745 NCP with CCL NCP using
LAN connectivity between VTAM and CCL. Finally, we
replaced the LAN connectivity with the OSN connectivity
between VTAM and CCL. Note that for the BNN
environment we have provided only a single illustration
of the initial hardware configuration.

Next, we performed a number of measurements using
each configuration, varying the number of sessions and
the think time between transactions. Figure 8 illustrates
the average zLinux (or 374x) processor utilization
and throughput measurements for the different
configurations. Figure 8(a) provides the SNI
comparisons, and Figure 8(b) shows the BNN
comparisons.

Performance conclusions and summary

In both network configurations, the number of
transactions per second for the 3745 peaked at slightly
more than 400 transactions per second, and was far
outrun by CCL on the System z9. The most interesting
comparison is between the FE (Fast Ethernet) and CDLC
graphs in Figures 8(a) and 8(b). The only difference
between those two configurations is the connection
between the CCL NCP and the VTAM. The CDLC
configuration achieves more throughput using less

CPU than FE. For the purposes of comparing the
computational cost of the two solutions, we use these
graphs to calculate the CPU cost on a per-transaction
basis for each configuration. Using CDLC instead of
FE can reduce the CPU cost per transaction by 18% on
average, and as much as 30% in the Linux image running
CCL. In addition, using CDLC instead of FE results in a
z/OS CPU cost per transaction savings of 6% on average,
with savings as high as 18% in some cases [13].

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Think time of One TIC2
330 milliseconds or one TIC3
between transactions port in each

z900

' IBM 3745/46

LPAR1 LPAR2
IBM IBM
#08 3745-31A 35314 | 298
AWM :CZ) % AWM
sender g g responder
[l W w A
I m m 5
| VIAM | :
H SNA over E SNA E SNA over E
. CDLC O LLC2 ! CDLC ;

Think time of
330 milliseconds
between transactions

System z9 or

LAN connectivity
(Fast Ethernet)

2900 7990 z900
LPARI | LPAR2 ! LPAR3
z/OS (1CP) ace z/OS

SUSE SUSE
AWM Linux zZ/VGM Linux AWM
sender SLES9 5.1 SLES9 responder
it with CCL (2 CPs) with CCL I
 [VTaMm] | | |[NCP]: VIAM] } !
T il ki [
E OSA OSA LCS OSA LCS OSA E \
1| LSA or QDIO L2 or QDIO L2 LSA |'.
SNALLC2 |! SNALLC2 | SNALLC2 i
' © orIP-TG 0

Transaction: 100 bytes in

(a) IBM 3745/46 SNI test environment. The term “transaction”
refers to a transactional workload or test case. (AWM: application
workload modeler, a test tool that is used to generate and simulate
the application workload; LLC2: link layer control-2.) (b) IBM
CCL SNI test environment, using a shared LAN between VTAM
and CCL. (SUSE™ is a major retail Linux distribution, and SLES9
is a particular Linux release. CP: central processor.)

M. ZEE ET AL.

127

128

Think time of
330 milliseconds

between transactions

System z9

I\ ‘
LPAR2

LPAR1 ' [LPAR3
z/0S (1 CP) (1CP) z/0S
SUSE SUSE
AWM Linux z/VM Linux AWM
sender SLESQ 5.1 SLESQ responder
i with CCL| (2 CPs) | with CCL %
i [vam] || [NR): (INe]l || Tvram]:
i 7 A
0t OSA LCS OSA LCS i
o OSN 1l oropio12| |orQDioL2]|| OSN P
SN E E sNA
L over . SNALLC2 | over i
1! CDLC o OrIP-TG CDLC !
, E LAN connectivity i E
b8 (Fast Ethernet) E i
E ; Transaction: 100 bytes in E ;
E Transaction: 800 bytes out :
(a)
2900
Think time of
330 milliseconds
between transactions
Peripheral IBM LPARI
criphera 3745-31A
SNA nodes Two TIC2 z/08
AWM or two AWM

senders

TIC3 ports

f E LAN connectivity over
0 E (Fast Ethernet) CDLC
i E Transaction: 100 bytes in !
i Transaction: 800 bytes out
(b)
Figure 7

(a) IBM CCL SNI test environment using OSN between VTAM
and CCL. (b) IBM traditional BNN test environment using actual

3745 NCP.

90
80
70
60
50
40
30
20

Percentage of utilization (one z9 CP)

——3745 —=— FE ——CDLC

500 1,000 1,500 2,000
Transactions per second

System operations using OSN

The Open Systems Adapter for NCP (OSN) functions as a
CDLC-attached 3745 device to the SNA host systems in
the System z9 CPC (central processing complex). For the
3745 device, the OSA microcode supports the same CDLC
protocol used by the 3746 Model 900 ESCON adapter.
This means that there are no required software changes in

M. ZEE ET AL.

(@
120

100 |-
80 |-
60
40

20 ——3745 —=— FE ——CDLC

0 1 1 1
0 500 1,000 1,500 2,000

Transactions per second

(b)

Percentage of utilization (one z9 CP)

Figure 8

(a) SNI FE vs. CDLC performance graph. (FE: Fast Ethernet; CP:
central processor.) (b) BNN FE vs. CDLC performance graph.

the SNA (VTAM or TPF) host to exploit the OSN support
to a CCL NCP [14]. In other words, VTAM operating in a
z/OS environment, or TPF, or VTAM operating in a VM
or VSE environment can communicate and operate with

an OSN-attached CCL NCP as if it were connected to a

3745 NCP over an ESCON CDLC connection.

Both subarea and peripheral CDLC connections are
supported through this OSN connection to CCL NCP.
The VTAM and TPF definitions for channel attachments
through OSN to CCL NCP are configured in the same
manner as VITAM and TPF definitions for channel
attachments through ESCON to a 3745 NCP. Similarly,
each SNA host OSN CDLC connection is defined in
the CCL NCP definitions as an ESCON logical PU
(processor unit). There is one ESCON logical PU
definition in NCP for each OSN CDLC connection
to an SNA host, just as there is for each 3745 ESCON
CDLC-attached SNA host.

CCL NCP load and dump operations over an OSN-
based CDLC connection are supported in the same
manner as they are for an ESCON-attached 3745 NCP.
The same VTAM commands and host utilities can be
used to manage CCL NCP load and dump operations.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

These operations over the OSN CDLC connection take
less than one third of the time that the corresponding
action takes over a 3745 ESCON CDLC connection.

In summary, our new System z9 OSN functionality
achieved all of the critical functional design and
performance objectives that were necessary in making
the CCL a complete solution. The OSN support is
tightly integrated into the CCL, complementing the
communications solutions provided by the CCL. The
innovative System z9 technology, such as IFLs, LPAR,
and OSN when combined with the CCL, creates a
powerful overall solution, allowing our customers to
continue to exploit NCP functionality for their mission-
critical applications for years to come [15].

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark service mark, or registered trademark of Linus
Torvalds, Novell, Inc., The Open Group, or Microsoft in the
United States, other countries, or both.

References

1. T. Sheldon, “Communication Controller: Linktionary Term,”
Encyclopedia of Networking and Telecommunications; see
http:|/www.linktionary.com/c/comm_controller.html.

2. IBM Corporation, “IBM Networking Hardware: 3745
Communications Controller and NCP Network Control
Program”; see http.//www.networking.ibm.com/nhd|
webnav.nsflpages/375:375prod.html.

3. B. Louden, IBM Corporation, “IBM Communication
Controller Migration Guide,” IBM Redbooks; see http://
www.redbooks.ibm.com/abstracts|sg246298.html.

4. AT&T Service Guide,“AT&T Global Network Services
AT&T Managed Data Network Services — Connectivity
Services Withdrawn from Marketing”; see http://
www.att.com/abs/serviceguide/docs|agnscs_sg.doc.

5. IBM Corporation, “IBM Communication Controller for
Linux on System z9 and zSeries V1.2 Extends NCP
Connectivity in the Linux Environment,” IBM United
States Software Announcement 205-267; see http://www-
306.ibm.com|common/ssi|fcgi-bin/
ssialias?infotype=an&subtype=ca&appname=
GPA&htmlfid=897/|ENUS205-267.

6. J. Stevens, L. Napoli, and E. Lewis, IBM Corporation, “Back
to the Future: New Environment for SNA Applications,”
z/OS Hot Topics Newsletter, Issue 12, February 2005 (GA22-
7501-08); see http://publibz.boulder.ibm.com/epubs/pdf]
e0z2nl51.pdf.

7. A. Gurugé, “IBM Communication Controller for Linux on
System z9 and zSeries VIR2: Extending the IBM 3745/46
Legacy for Yet Another Decade,” IT In-Depth, October 2005;
see http:|www.itindepth.com/AnuDocs/CCL_WP1.pdf.

8. M. E. Baskey, M. Eder, D. A. Elko, B. H. Ratcliff, and D. W.
Schmidt, “zSeries Feature for Optimized Sockets-Based
Messaging: HiperSockets and OSA-Express,” IBM J. Res. &
Dev. 46, No. 4/5, 475-485 (2002).

9. IBM Corporation, “IBM Networking: ACF/NCP, ACF/SSP,
EP, NPSI, and NTuneMon Product Documentation™; see
http:|/www.networking.ibm.com/nhd|/webnav.nsf/pages/
375:public.html.

10. IBM Corporation, “Communication Controller for Linux on
System z”; see http://www-306.ibm.com/software/network/ccl|
library|.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

11. P. Rogers, A. Salla, and L. Sousa, “ABCs of z/OS System
Programming Volume 10,” September 2006, IBM Redbooks;
see http:/lwww.redbooks.ibm.com/redbooks/pdfs/sg246990.pdf.

12. B. White, W. Fries, D. Jorna, H. Kordmann, J. Nesbitt, F.
Packheiser, and E. Palacio, “IBM System z Connectivity
Handbook,” May 2006, IBM Redbooks; see http://
www.redbooks.ibm.com|redpieces|pdfs/sg245444.pdf.

13. B. Perrone and A. Christensen, IBM Corporation, “IBM
Communication Controller for Linux on System z VIR2.1
(CCL) and System z CPU Capacity Planning Information for
SNI and Boundary Function Workload,” September 2006; see
http:|/www-Libm.com/support/docview.wss?uid=swg27006207 &
aid=1.

14. B. White, D. Di Casoli, O. Ferreira, W. Porschen, and
M. Riches, “IBM Communication Controller for Linux on
System z VIR2.1 Implementation Guide,” November 2006,
IBM Redbooks; see http://www.redbooks.ibm.com/abstracts/
5g247223.html?Open.

15. IBM Corporation, “Communication Controller for Linux on
System z”; see http://www-306.ibm.com/software/network/ccl/.

Received March 22, 2006, accepted for publication
April 25, 2006, Internet publication December 5, 2006

M. ZEE ET AL.

129

130

Mooheng Zee [BM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (mzee@us.ibm.com).
In 1988, Mr. Zee received a B.S. degree in electrical engineering
from Polytechnic University, joining IBM that same year in
Poughkeepsie, New York. He started in the ESCON channel
diagnostic group and then moved to the networking I/O
development team to help develop the ATM networking products
for the IBM eServer®. In his fifteen years in networking
development, Mr. Zee has received several IBM Outstanding
Technical Achievement Awards and two patents. He is currently
involved in the development and continued enhancement of the
networking channel functions and OSN CDLC development.

Jerry W. Stevens IBM Software Group, P.O. Box 12195, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(sjerry@us.ibm.com). Mr. Stevens is a Senior Software Engineer
in Application and Integration Middleware working in Raleigh,
North Carolina, in the Enterprise Platform Solutions Architecture
Strategy and Design Group for z/OS communications servers. He
has more than twenty years of software development and design
experience, primarily in networking. His primary focus is
associated with the architecture and design of transport layer
interfaces and device drivers.

Belinda L. Thompson IBM Software Group, P.O. Box
12195, 3039 Cornwallis Road, Research Triangle Park, North
Carolina 27709 (belindat@us.ibm.com). Mrs. Thompson is an
Advisory Engineer in application and integration middleware
software development. She received a B.S. degree in computer
science from Old Dominion University. She joined the IBM z/OS
Communications Server team in Research Triangle Park, North
Carolina, in 1997 after a career as a UNIX** and Linux system
administrator and programmer, network administrator, and
application programmer. Mrs. Thompson was awarded an IBM
Development Excellence Award. She is currently responsible for
development of kernel device drivers for the Communications
Server for Linux and Communication Controller for Linux on
zSeries projects.

Joel A. Fowler IBM Software Group, P.O. Box 12195, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(fowlerja@us.ibm.com). In 1979, Mr. Fowler joined IBM as a
customer engineer in Moline, Illinois. In 1982, he became a
program support representative, moving to Raleigh, North
Carolina, in order to join the Network Control Program Level 2
Support and Change Team. Mr. Fowler joined the Network
Control Program development team in 1998. In 2003, he designed
and developed an IBM 3745 Communication Controller emulator
to run on the Windows™** platform, which was to be used for NCP
software problem diagnosis. The emulator was later converted

to a Linux application, which is used as the base for the
Communication Controller for Linux product. In 2003, Mr.
Fowler joined the Communication Controller for Linux design and
development team, where he continues to be a lead developer for
the CCL product.

Joel Goldman IBM Systems and Technology Group,

2455 South Road, Poughkeepsie, New York 12601
(jgoldman@us.ibm.com). Mr. Goldman received a B.E. degree in
computer science from Stevens Institute of Technology in 1978. He
joined IBM that same year in Kingston, New York. He spent 14
years at IBM Kingston before moving to Poughkeepsie, New
York, where he joined the 8100 adapter development laboratory,
working on hard-drive firmware and subsequently moving to a

M. ZEE ET AL.

networking I/O development team. He helped to develop the OSA
Support Facility and QDIO networking products for the IBM
eServer. Mr. Goldman has received one patent. He is currently
involved in the development and continued enhancement of the
Networking QDIO functions.

Ping T. Chan IBM Systems and Technology Group, 2455 South
Road, Poughkeepsie, New York 12601 (ping@us.ibm.com). Mr.
Chan is an Advisory Engineer working on the OSA development
team. He graduated with a B.E.E.E. degree from City College of
New York in 1984 and joined IBM at Poughkeepsie, New York,
that same year. He has held various technical positions in the IBM
eServer diagnostics and I/O areas. Mr. Chan has received several
IBM Outstanding Technical Achievement Awards for his
contributions in OSA development.

Thomas P. McSweeney [BM Software Group, P.O. Box
12195, 3039 Cornwallis Road, Research Triangle Park, North
Carolina 27709 (tommes@us.ibm.com). Mr. McSweeney joined
IBM after receiving a B.S. degree in computer science from
Louisiana State University in 1982. He worked for 13 years in
Network Control Program (NCP) development and design,
implementing numerous SNA networking functions in NCP,
from SNA Network Interconnect (SNI) to APPN (Advanced
Peer-to-Peer Networking) performance routing. He continued

his SNA networking career for several more years, enhancing and
supporting the SNA networking functions for the IBM 2216/2210
router family and for the 3746 NNP. After a brief time working in
the area of storage networking, he rejoined the SNA networking
development area. He is currently the technical team leader of the
Communication Controller for Linux (CCL) development team.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

