
Practical
software reuse
for IBM System z
I/O subsystems

A. M. Webb
R. Mansell

J. W. Knight
S. J. Greenspan

D. B. Emmes

The design and implementation of the z/VMt SCSI (Small
Computer System Interface) I/O subsystem is described. z/VM is
an operating system that provides multiple virtual IBM System ze
machines on a single IBM System z computer. The approach
adopted herein allows the reuse of entire device drivers from
AIX 5Le, a completely different operating system, essentially
unchanged. AIX 5L is the IBM UNIXt operating system for
the IBM System pe platform. The design, and much of the
implemented code that allows the incorporation of such ‘‘foreign’’
device drivers, is independent of both z/VM and AIX 5L and could
potentially be used in other operating system environments.

Introduction

The potential benefits of software reuse are generally

accepted in both industry and academia [1, 2]. Experience

with technology suggests that there is rarely any benefit in

‘‘reinventing the wheel,’’ and the risks of ignoring past

technological approaches are well known [3]. Reuse can

take many forms, including the reuse of computer

programs, frameworks, and integrated development

environments. Reuse may reduce costs, increase

reliability, and accelerate the evolution of software. The

growing number of object-oriented languages (such as

Cþþ [4], Eiffel** [5], Java** [6], Smalltalk** [7], and C#**

[8]) and object-oriented design and development

environments (such as Rational Rose* [9]) attest to the

importance of software reuse. All of these reflect examples

of software that may be written with reuse in mind.

This paper concerns the reuse of software in a realm

where neither the software nor its environment were

actually architected or implemented with reuse in mind.

The technology described offers a flexible and efficient

methodology for the migration of operating system (OS)

extensions, such as device drivers, from one operating

environment to another. This methodology thus allows

the sharing of a single implementation of appropriate

operating system functions across multiple heterogeneous

systems. It should be noted that this approach is not an

architecture for the development of platform-independent

OS functions; rather, it is a way to exploit existing OS

functions in an environment other than that for which

they were originally developed.

The efficacy of the technology is demonstrated in a

practical manner by the successful integration, with

minimal change, of device drivers from the AIX 5L*

operating system in z/VM*, an IBM System z* operating

system product. The success of this approach is significant

because the two operating systems are very different in

purpose and implementation. AIX 5L (hereafter referred

to simply as AIX*) is the IBM proprietary UNIX**

operating system for the IBM System p* and provides a

rich application development and execution environment.

The primary function of z/VM is to provide a virtual

System z environment for other operating systems.

The methodology described in this paper offers

significant benefits in terms of programmer productivity

and allows developers to preserve the integration of

reliability, availability, and serviceability (RAS) models.

Overall programming error rates are reduced. The

approach does present some interesting challenges with

respect to performance and scalability. However, because

much more code is potentially portable than was designed

to be so, this methodology makes it possible to implement

many capabilities that would otherwise be prohibitively

expensive to introduce in a way that is responsive to

market demands.

The technology is based on the concept of an

architected execution container that preserves the

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

229

0018-8646/07/$5.00 ª 2007 IBM

reliability and robustness attributes expected of System z

operating systems (for example, recovery from runtime

errors) while implementing an execution environment

that provides the data and programming interfaces

expected by the migrated code. The AIX device drivers

are incorporated into the host operating system, z/VM,

as components in the execution container. As described

below, the execution container provides a framework for

combining multiple components in order to implement

a particular function, in this case, access to Small

Computer System Interface (SCSI) I/O.

The remainder of this paper is organized as follows.

First, some background information is presented to

briefly introduce the IBM System z, the AIX operating

system, and their associated I/O models. Next, we discuss

the design of the execution container and the way in

which it may be tailored to meet particular migration

needs. We also discuss the porting of AIX device

drivers so that they run in the execution container, the

integration of the execution container and device drivers

into z/VM, and the deployment of the finished product.

Included in this section is a discussion of the small

changes made to the device drivers and why these changes

are preferable to previously proposed alternative

approaches for producing production-quality

multiplatform device drivers. Also discussed are compiler

and other environmental requirements and how these

requirements were satisfied for the z/VM product.

Finally, results are summarized and conclusions

presented.

Background

A brief introduction to IBM System z

The IBM System z continues a succession of computing

systems that started with the IBM System/360*

introduced in 1964 [10–19]. Throughout this evolution

of large-scale commercial computer systems, upward

compatibility of hardware and software has been

preserved. In an analogous manner, the System z I/O

architecture [17–23] has evolved to add new functions

while usually allowing existing applications and I/O to

continue to function properly. The I/O architecture

includes the notion of channels, which manage I/O

devices under the control of channel programs stored in

the computer main memory, and more recently an in-

memory protocol called queued direct I/O (QDIO), which

manages the I/O devices [24]. The effort to maintain

hardware compatibility required a similar continuity of

software, starting from the first OS/360 [25] and leading

to current versions of z/OS* [26] and all IBM operating

systems for System z, including z/VM (see the section on

the z/VM CP environment below). Since the introduction

of the IBM System/360, technology has evolved and

hardware reliability has improved dramatically [27–29],

thereby raising the expectations for software reliability.

AIX device driver environment

In AIX, the interface between a device driver (or other

kernel extension) and the rest of the operating system

kernel is similar to those in other UNIX systems [30–32].

Documentation on how to write device drivers for AIX

for the IBM System p platforms is readily available

[33–40]. When device drivers are introduced into a system,

they register their services dynamically. The mechanism

that allows the addition of new device drivers is in the

AIX kernel itself, but much of the control, including the

configuration of drivers and individual devices, is driven

by application programs known as device methods

[33, 39]. AIX uses the object data manager (ODM) as a

repository for configuration information, and the device

methods use defined interfaces to access the configuration

information in the ODM [33, 39]. Neither the ODM nor

the device methods were ported for integration in z/VM.

Instead, the device methods were replaced by new code

that offered equivalent function (see the section on device

driver extensions below). Similarly, new code was written

to meet the configuration information needs that were

previously satisfied by the ODM. The new code was

implemented as a ‘‘container component’’ (see the section

on the anatomy of a container component below) and

manages the required configuration data using a simple

data model that can be readily mapped to a simple

database or flat-file representation. (A flat file was used

for the initial test scaffolding, which is discussed in the

section on z/VM CP integration below.) The AIX SCSI

support is implemented in multiple software layers. The

lowest-level AIX device driver, the layer that interacts

directly with System p I/O hardware, was not ported.

Instead, the interfaces expected by the higher-level drivers

are implemented by a new device driver for the System z

QDIO interface.

z/VM CP environment

The current z/VM operating system is the latest in a

succession of such systems that originated in the IBM

Cambridge Scientific Center in the 1960s [41, 42]. The

primary function of z/VM is to provide a fully virtualized

System z environment in which System z operating

systems (primarily Linux** for System z and z/OS, as well

as z/VM itself) can execute. The control program (CP)

is a fundamental component of the z/VM operating

system that is responsible for the management of the

real machine’s resources and the provisioning of those

resources to the guest virtual machines. The primary

purpose of the work described in this paper is to allow the

CP to use standard SCSI devices instead of disks specific

to System z.

A. M. WEBB ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

230

In the past, IBM introduced the concept of Fixed Block

Architecture (FBA) for storage in a range of mainframe

I/O devices, and such devices worked with a fixed block

size of 512 bytes. Because SCSI disks are also typically

subdivided into 512-byte blocks, it was possible to create

a relatively thin new layer of software between the pre-

existing CP FBA functions and the interface to the AIX

drivers in the execution container. This mapping between

CP FBA functions and the AIX driver interfaces, as well

as a new mechanism to allow the initial program load

(IPL) of z/VM directly from a SCSI device [43], has made

it possible for FBA-aware System z operating systems

to operate entirely with SCSI devices.

For a substantial portion of its history, the CP

component of z/VM executed without making use of the

System z dynamic address translation (DAT) facilities.

That is, the CP used ‘‘real addresses’’ rather than ‘‘virtual

addresses.’’ Even with the introduction of DAT facilities

to CP, CP itself still allocated contiguous storage in

chunks of no more than 4,096 bytes, which equals

one page. As a consequence, new CP facilities for the

allocation of larger contiguous ranges of memory were

required in order to implement an execution environment

for the AIX drivers. These facilities are based upon earlier

work by C. J. Stephenson [44], which was adapted to

the CP environment and extended to include several

attributes required by the AIX driver, including storage

allocations larger than 4,096 bytes and allocations on

specific power-of-two boundaries.

Design

Overview

In an ideal world, reusable software will run in any

execution or OS environment. Unfortunately, since little

useful software can satisfy such a constraint, some

modifications are inevitably required in order to use

the software in another environment.

Moving software from one environment to another

using a strategy of adaptation (also known as software

porting) is often as expensive in terms of development and

testing costs as development of new code, and does little

to enable any future amortization of those costs. In

order to obtain substantial benefits of reuse, both the

programming and data models of the original system

must somehow be preserved, and thus the required

transformation must be performed at a level not directly

apparent to the software itself. A number of ways exist

to accomplish this goal.

One established approach is to create reusable software

by developing it within a universally available operating

environment [45], but this approach has performance

challenges and may not achieve sufficient isolation from

the native operating system environment. It also excludes

reuse of software already developed without reuse in

mind.

An alternative is to create an execution context that

closely mimics that of the system from which the software

is being migrated, which is not a trivial task. However,

the cost of this approach can generally be amortized as

other software is migrated. Provision of most required

services in this way is relatively straightforward.

However, assumptions with respect to late binding (i.e.,

binding performed at execution time) and the dynamic

introduction of executables can be harder to resolve.

Nevertheless, this approach offers an advantage over

simple porting in that it is sufficient, from a testing

perspective, to demonstrate that the mimicked services

are functionally equivalent to the original system. The

imported code that uses the mimicked services is not

changed and thus does not require further testing.

The methodology presented in this paper allows

internal operating system software, such as device drivers,

to be migrated by providing services that mimic those

of the original environment, and we present several

mechanisms for addressing the issues that arise. The

approach also provides a general structure within which

such environments may be constructed with progressively

lower costs—not only costs associated with the migration

of subsequent functions, but also the lower costs of

operating systems that can share much of the container

infrastructure described below.

The execution container (hereafter referred to simply as

the container) is based upon an architecture that specifies

the way in which a program may operate within the

environment of the container. The container architecture

itself defines no specific interface with the operating

system within which it is instantiated, leaving any

obligations of communication and interaction to one or

more of the executable components that are introduced

during its operation. In this context, the term component

is used to describe any object that conforms to the

architectural requirements of the container. In other

words, a component is aware of, and by implication

capable of conforming to, the environment of the

container. In this sense, the container is nothing

more than a very simple programming framework.

To be useful, the container must be more than a

framework, and the necessary additional functionality is

provided by the core system services component (CSSC).

This component provides a basic set of services that

are discussed further in the section on environmental

requirements below. The container alone serves no one

specific purpose; rather, it provides an architected

environment within which one or more loaded

components provide functionality.

With the sole exception of the CSSC, all components

are required to be introduced by means of the

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

231

CSSC_loadComponent service. Aside from taking care of

the required tasks associated with loading and initializing

a new component, being successfully ‘‘loaded’’ into the

container via CSSC_loadComponent is a sufficient

indication of architectural conformance. In other words,

no further tests are made to ensure conformance before

or after loading, beyond the provision of some mandated

functions to be invoked when loading and unloading a

component. A component is not obliged to communicate

with, or offer services to, any other component, but in

general a component is likely to do both.

Typically, a component has no dependencies upon

any external capabilities except those offered by other

components. This independence implies complete

portability across any environments that support the

container architecture. Portability in this context is

compile-time portability, not binary compatibility.

This platform independence is implied wherever the

term component is used without other qualification.

We must also recognize a special class of component

that does have an awareness of the host OS environment;

these are known as system interface components. In

discussions of container frameworks, a system interface

component is any component that has some knowledge

of or dependency upon the environment within which

the container is being instantiated. This knowledge

allows such a component to interact in some way with

the environment. CSSC is an obvious example of such a

component, because it is responsible for the integration of

the container with its environment, including the task of

container initialization. In general, other system interface

components are required only in order to provide access

to services provided by the container.

Another component that must be aware of a non-

container environment is the personality, discussed in

the section on personalities below. For the z/VM

SCSI, the non-container environment is the AIX kernel

environment. The personality component transforms

the services available to container components to those

expected by the ported device drivers. Together with the

device driver extensions (described in the section on

device driver integration below), it provides the AIX

kernel services expected by the device drivers.

The container has been implemented using the C

programming language. This choice of languages was

natural, but not essential, because AIX drivers are

themselves written in C. Operation of the container only

requires object-code compatibility. Any language can be

used when creating a component, provided that the

simple interface obligations of the container can be met,

together with the underlying complier assumptions for

linkage.

Our approach is useful because it is relatively

inexpensive to create a prototype in an environment other

than that for which the work is ultimately intended.

For example, the container for the z/VM SCSI was

prototyped in an application environment on Linux,

which allowed development and test of the platform-

independent components using conventional

development tools—something that is not easily achieved

with operating system extensions. Figure 1 illustrates the

basic components of the programming environment being

described.

Specification is not required with respect to the way in

which the container communicates with the environment,

and this offers some important benefits. The

implementation of the container can be encapsulated

within some other recognizable entity in the intended

environment. For example, the container may be

packaged so that it appears to be a conventional device

driver in the Linux environment. In this way, a single

device driver may be shared across a number of different

and apparently incompatible environments. The

container can be closely integrated with its environment,

so that instead of requiring an intermediate software layer

that maps the semantics of the environment to some

public interface defined by the container, the environment

itself can be adapted to behave as a component and

communicate directly with the services provided by the

Figure 1

Container schematic showing the container environment and its

interactions with the host operating system. All interactions with

the host operating system are mediated by a system-interface

component. The unlabeled boxes inside the personality compo-

nent represent the AIX device drivers, which are isolated from the

container environment by the AIX personality and the driver

extensions (not shown).

Container environment
Operating

system

services

System

interface

component

A

Core services component

Operating

system

environment

Primary component

Personality

System

interface

component

B

A. M. WEBB ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

232

supported OS extensions. The issues of porting the OS

extensions are easily separated from the issues relating

to their exploitation on a given platform. It is a

straightforward task to introduce extension-specific

system interface components in support of specialized

requirements. For example, workload management

capabilities can be directly integrated with the container.

Finally, a system can have any number of containers

concurrently active, subject to whatever host OS

constraints apply. The use of multiple containers

promotes isolation of code and data structures, and

isolation of resources managed by the ported code.

These characteristics have the potential to enhance

RAS, security, workload balancing, and installation

management and control.

Anatomy of a container component

Each component is a separately loadable object within

the container-managed environment. As previously

mentioned, it must conform to certain internal

requirements of the container, and it may also have

awareness of the environment outside of the container.

The following summary describes material that is covered

in more detail in the subsequent sections.

Each component has one or more associated interface

header files that contain all of the information needed to

load and access the component. Language preprocessing,

in conjunction with specific programming models,

allows one component to access the services of

another component with no additional programming

beyond the inclusion of the header file and a call to

CSSC_loadComponent to load the desired component.

Versioning information contained in the interface

header files ensures that any conflict (for example,

between the versions of the interface used at compile time

and the versions expected at runtime) is detected when the

component is loaded. Depending upon the component,

such a conflict may result in a load failure or the

automatic provisioning of the appropriate interface by

the component being referenced.

When a given component is first loaded, a component

control area (CCA) is allocated and associated with the

component. Control is given to a mandated function, as

previously mentioned and discussed in more detail below,

that has the opportunity to establish component-specific

information for future use. The component control area

contains the vector table discussed below as well as

internal component control structures.

Each component interface is implemented using a

vector table, and access to a given interface is obtained

using either the CSSC_loadComponent service or the

CSSC_getInterface service. Each vector contains the

entry point of an associated function and the component

control area that should be effective when that function is

in control. Some powerful capabilities offered by this

approach are enumerated in the following paragraphs.

First, by separating the definition of the interface from

the executable component itself, it becomes possible for a

single component to present multiple versions of the same

interface to its callers. This separation facilitates both

upward and downward compatibility as well as providing

the possibility for an interface that can adapt to the needs

of a specific caller. The use of vectors also enables

multiple versions of a given component that can be

concurrently supported.

Additionally, by storing both the function address

and the control area address in each vector, it becomes

possible for a component to export vectors owned by

other components without incurring the normal

computational overhead associated with cascaded

function calls. This mechanism is effectively exploited

by the system services component itself.

All components have a designated default interface

that is accessed using the reference returned by

CSSC_loadComponent. A component may also support

additional interfaces, and access to these interfaces is

obtained via the CSSC_getInterface facility.

The first request to load a component causes the

initialization function for that component to be executed.

Subsequent load requests increment the use count but do

not cause further initialization. The process of unloading

decrements the use count, and a component remains

available until its responsibility count reaches zero.

At that time, its terminate function is called, and it is

considered to be unavailable within the container. A

subsequent load will result in the initialize function being

called. The initialization and termination vectors are two

examples of a set of vectors that are an obligatory part of

the container architecture. Other required vectors include

recovery, debug, recycle, validation, control, start, and

stop.

The recovery vector allows a component to define a

procedure that should receive control as a result of a

system-detected error during execution. This interface is

part of an architected recovery hierarchy defined within

the container. The debug vector allows a component to

interact with an external debugging mechanism. This

interface may be used to modify the behavior of the

component. The recycle function informs a component

that a client has terminated. This notification allows the

component to ‘‘clean up’’ any resources, such as memory,

held on behalf of that client. The validation vector allows

a component to indicate its own functional status, that is,

true if no errors are found or false if some unrecoverable

problems are detected. The control vector is a function

with unspecified semantics that allows additional

component vectors to be defined that are not expressly

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

233

defined by the container architecture. Whether or not

such functions exist depends on the component.

The start vector, if present, indicates that this

component is capable of being a primary container

component. A primary component is one to which control

is given at some time after container initialization is

complete. A hierarchy of such components may exist if

a component that receives control using this interface is

prepared to pass control to the next component in such a

hierarchy. The exact nature of such a hierarchy is not

programmatically apparent; rather, it is an emergent

property of a set of components. For example, in the

case of the container I/O application described in this

paper, CSSC is the component to which the container

initialization routine gives control. Once CSSC has

completed its container-related initialization, it passes

control to the first identified primary component in the

load list (see the section on establishing purpose below).

A primary component is not expected to return control

until it has to terminate. Consequently, when the primary

component previously called by CSSC returns control,

the container will close. Typically, one primary

component will establish interfaces for services to entities

outside the container environment and then wait to

service requests via that interface. The stop vector

provides the means by which an external agent, such as a

system operator, can indicate to a primary component

that it should cease execution. This interface is intended

to be the normal mechanism for shutting down the

container.

Any function exported by a component for use by

other components must conform to the programming

model of the container. This obligation is satisfied by

a collection of macros supplied for the purpose, such

as the following:

void *

my_function(thread_ct * thread, void * arg)

f
COMP_ENTRY(my_function);

void * result;

result ¼ arg;
COMP_EXIT(result);

g

In this example, the COMP_ENTRY and COMP_EXIT

macros conceal the container-specific linkage obligations

associated with the designated function. A variety of

such macros are provided to address all of the basic

requirements of structured programming within the

container. As well as addressing issues of linkage, these

macros provide a consistent and comprehensive RAS

model within the container, which is integrated with the

container environment by CSSC. The scaffolding macros

are defined in such a way that inconsistent usage, or

omission, is generally detected at compile time.

Core system services

CSSC comprises two separate components. A system

interface component, CSPS (core services, platform

specific), is responsible for providing an interface with

the operating system in support of the various control

and management services required. A platform-neutral

component, CSPN (core services, platform neutral), is

responsible for making various control and resource

management services available to other components in

the container. These services represent a minimal set

of capabilities needed to allow consistent, platform-

independent operation of other components loaded

into the container.

For practical purposes, CSSC embodies the container

from the perspective of other loaded components. Access

to the CSSC public vector table allows a program to be

a component in the container environment. The various

parts that make up a working container are illustrated

in Figure 1.

Environmental requirements

The AIX kernel environment, the z/VM CP environment,

and other operating system kernel environments are all

greatly restricted in terms of available system services

when compared with the application environment. In

this context, such limitations are not disadvantageous.

Indeed, this characteristic makes device drivers relatively

portable and makes the required infrastructure to support

such portability reasonably straightforward.

These environmental services needed to support OS

extensions can be classified as

� Executable content management (e.g., load/unload

and exported reference identification).
� Memory management (e.g., allocation/deallocation

and pinning/unpinning).
� Cross-memory addressing services.
� Synchronization (e.g., general locking services, wait,

and notification).
� Scheduling (e.g., asynchronous scheduling, execution-

mode switching, time-delayed scheduling, and time-

limited suspension).
� RAS (e.g., trace, dump, and logging).

Some services are needed to gain access to system

resources (e.g., services such as content management

and memory management). Other services support

the integration of container-managed events with the

environment (e.g., synchronization and scheduling). The

provision of other services might be considered optional

(e.g., tracing and logging).

A. M. WEBB ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

234

The nature of the required services is generally so

fundamental that there is little likelihood of significant

problems when implementing such services in any

environment of interest. The container, as implemented,

encapsulates these services in CSSC. Within CSSC, the

CSPS subcomponent owns the actual interface between

the container and existing operating system services. This

design allows significant flexibility in terms of the way in

which a particular function is implemented. The greatest

challenge when implementing these services arises from

the need to anticipate possible future requirements that

might be placed upon a given service. For practical

reasons, the services interface exported by CSSC is

generally consistent with the analogous AIX kernel

services. For example, the AIX xmalloc service is

exported to the device drivers by the personality

component. The AIX personality component does a

simple remapping of the AIX xmalloc interface to the

CSSC_malloc interface. The CSSC_malloc interface is

in fact just the CSPS_malloc interface as exported by

the CSPN component on both z/VM and Linux.

Intercomponent flows

We place two significant constraints upon the design of

the container. In particular, the container cannot exploit

the native mechanisms of the compiler for managing

global data, and it cannot exploit any platform-unique

services for the runtime binding between components.

When the initialization function of a component is

called, the function is passed an area of memory that can

be used as a global control area CCA for the component.

The address of the CCA is maintained by CSSC and is

returned to any caller that causes the component to be

loaded. In the interests of linkage efficiency, this address

is also that of the default public vector table for the

component, as described below.

In the absence of runtime services for dynamic binding

between executables, the container exploits an efficient

compile-time mechanism to support runtime binding

between components. Exploiting this mechanism involves

certain conventions. First, each component must provide

a public header file, referred to as an interface header file.

This file provides all of the information needed to locate

and exploit the owning component. The header file must

be included wherever access to a component is required.

In addition to including the header file, a component

must use CSSC_loadComponent to load the requisite

component into the container environment at any time

prior to first use. Once this has been accomplished, the

reference returned by the loading process is stored in the

control area of the local component in accordance with

the container rules for component references. This

reference provides access to the default public vector table

of the component.

Finally, access to services in another component is

achieved using the access macros supplied in the interface

header file of the target component. For example,

xyz ¼ (t *) CSSC_malloc(thread, size, alignment,

flags);

shows how a component might call the storage allocation

service provided by CSSC. By convention, the first

argument, thread, provides access to per-thread

container control structures.

We employ a novel exploitation of the preprocessor to

allow the access macros supplied in the interface header

file to be used regardless of the caller’s own control area

organization. The code generated in support of a call

to another component, for example CSSC_malloc,

essentially resolves to

frameptr-.cca ¼ malloc.cca,
malloc.fnc (thread, size, alignment, flags);

This greatly simplified example shows the required

control area being loaded into the current frame, and the

required function vector (malloc) being invoked. A frame

is part of the container linkage mechanism. Each active

function has a corresponding frame that allows the

container to manage various aspects of serviceability

and recoverability. In this case, the frame is used to

communicate context information to the function

being called. The control structures associated with

the frame are C-language automatic variables declared

and initialized by COMP_ENTRY. The COMP_ENTRY macro

in the implementation of CSSC_malloc retrieves the

CCA from the caller’s frame and establishes appropriate

local addressability.

By storing both the required control area address and

the function address in each vector, the container allows

a component to promote vectors obtained from other

components. This approach improves overall

performance by eliminating unnecessary intermediate

execution paths when accessing non-local functions. For

example, CSSC directly exports the memory services

provided by CSPS. In other words, no intervening

CSPN wrapper is necessary.

Integrating the container with its environment

The CSPS component of CSSC, or some platform-specific

intermediary code acting as an agent for CSPS, receives

initial control from the operating system environment. As

a result, if CSPS is to be introduced by the operating

system, it must be consistent with that environment.

In the case of z/VM, CSPS and the entire container

are actually directly integrated with CP. The part of

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

235

CSPS responsible for initializing the environment of the

container is called the prolog. This container prolog

handles any differences between the native linkage of

the system and the linkage required by the language

environment chosen for CSPS. Various ways exist to

accomplish this function, and the particular way that is

chosen tends to reflect the language and compiler being

used.

CSPS performs its own private initialization and then

loads the CSPN component, simulating the behavior of

CSSC_loadComponent. Once CSPN has been successfully

loaded, CSPS calls the start meta-function supplied by

CSPN. This event marks the end of the container

initialization and the beginning of its application.

Establishing purpose

The CSSC start function loads a set of components that

are identified in a special configuration file called the load

list. The load list is loaded using the data management

capabilities provided by CSSC. All of the components

in the list are loaded, and one of them is identified as

being the primary component. Nothing prevents a

given operating system from having some or all of

the components preloaded, and in fact z/VM does

preloading. The primary component determines the

specific purpose of the container, and is passed control

by CSSC by invoking the start vector of the primary

component. The container remains active until the

primary component returns control to CSSC. If no

primary component is provided, the container simply

terminates.

In this paper, the primary component is the I/O

services component (IOSC). The IOSC component has

two principal responsibilities: It provides an interface to

support I/O operations, and it routes such operations to

whichever personality provides access to the resource in

question.

Personalities

A personality is a specialized container component that

is responsible for emulating a particular execution

environment. Any number of concurrently active

personalities may exist. The personality presents a

standard interface to the other components and provides

an environmentally unique interface to the migrated code

that it is responsible for supporting.

The personality must map the service API presented by

IOSC to the native API expected by the migrated code.

This requirement applies not only to the I/O operations

themselves, but also to the management tasks of

initialization, configuration, and termination. Similarly,

the personality must intercept all of the interactions of the

migrated code with the environment of the migrated code

in a manner that is indistinguishable from the native

environment. Note that the requirement dictates that the

environment is indistinguishable from, but not identical

to, the native environment of the migrated code.

The AIX driver code is by definition unaware of

the container or its architectural requirements. This

shortcoming is addressed by integrating a set of

functional extensions (identified as driver extensions in

Figure 2) that are combined with the driver code during

linkage editing. These extensions address all of the

architectural obligations associated with being a

component, such as providing the required vectors

discussed above, and also relieve the personality of

responsibility for driver-specific activities normally

addressed by AIX facilities such as device methods

[33, 39]. AIX device methods are application programs

that are separate from the device drivers and that

control device activation and configuration.

In addition, the extension implements the recovery and

resource management interfaces that System z requires

of an I/O handler and that are not part of the AIX

environment. Specifically, these interfaces relate to

recovery (handling unexpected programming errors or

other failures at runtime), recycling (handling resource

cleanup on behalf of failed clients), and I/O purge

(forcing the completion of outstanding I/O requests

on the basis of some specified filter).

When linked together, the device driver and its

extension constitute a proper container component.

Language preprocessing is used to remap device driver

calls for external services to the appropriate container

linkage. Function calls that are internal to the device

driver are not modified and do not follow container

linkage conventions.

Figure 2

Driver component schematic.

Driver

extensions

AIX

device

drivers

A
IX

 p
er

so
n

al
it

y

IO
S

C

CSSC

I/O

Q
D

IO

I/OHost

system

I/O

request

A. M. WEBB ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

236

Figure 2 presents a simplified view of the major

components involved in I/O that uses the container,

and indicates the principal dependencies among them.

Note that IOSC communicates with the driver via the

personality. The personality is responsible for presenting

an implementation-independent view of the driver

interface, as well as providing a convincing AIX

execution environment for the drivers themselves. The

figure shows that the driver communicates only with

the personality and with the QDIO driver. The QDIO

driver is an example of a device driver written specifically

for the container environment. In essence, CSSC is the

personality of QDIO. Conversely, the QDIO driver must

implement the interfaces expected by the AIX device

drivers, thus performing a role similar to that of the

AIX personality. The QDIO driver must interact

with operating system I/O services and thus requires a

system interface component. Because the QDIO driver

implements a driver for a System z architecture facility, a

potential exists for amortizing its development cost across

multiple System z operating system platforms.

Container reliability

In this section, we consider the ways in which the

recovery environment that is assumed by the drivers is

preserved, and also how that environment is integrated

with the host operating system environment. Our intent is

for the overall reliability, availability, and serviceability

of the device drivers to be enhanced in the process of

integrating them in the container.

Handles

The container employs handles to transparently address

many of the reliability problems that arise from the use

of pointers to access dynamically assigned, reusable

resources owned by the system or another component.

For example, when one component loads another, it

obtains a license to access the services and resources

of that component. In the event that that contract is

terminated (e.g., because the component was unloaded),

the system needs a means of detecting such out-of-

contract usage. Handles provide such a mechanism.

The type handle_ct is declared by appropriate C

typdefs to be a single-element array whose underlying

structure anonymously reserves memory. By defining the

handle as a single-element array in C, we ensure that the

reference cannot be trivially modified. Anonymous

mapping is done primarily to avoid any kind of

implementation dependency by the user of the handle.

This technique ensures that an individual handle supplier

is not constrained in terms of implementation. This

approach (and other related approaches in this paper)

reduces unintentional programming errors. These

approaches are not security mechanisms, and they

can always be deliberately circumvented. Passing of the

handle provides the system service with an area in

the caller’s space in which the service can place the

information needed to manage a reference to a resource.

In our environment, a handle must at least allow the

address of the item that is being referenced to be derived

from the handle itself. Sufficient shared information must

exist, stored in both the handle and the element to which

it refers, to determine that the handle indeed represents

the current instance of the resource. Note that the address

information in the handle is meaningful only in the

context of the component that supplied the handle.

Figure 3 illustrates a simple handle implementation.

This mechanism of using handles as references requires

that while the element being addressed may be reassigned

or reused, it should persist and retain a consistent type

through time. The mechanism also requires that a given

identifier should not be reused. Failure to satisfy these

constraints significantly reduces the benefit that handles

offer. The container addresses these issues using two

mechanisms. First, the element representing the resource

being referenced is allocated using cell pools, that is,

pre-allocated areas of memory from which individual

elements are allocated. The use of cell pools ensures that

the internal structure of individual elements remains

consistent over time. Cell pools offer additional benefits

with respect to performance and memory management;

most significantly, their use provides a consistent

interpretation of a memory area over time, regardless of

the current use status. When an element from a cell pool

is freed, it retains all of the information it contained on

last use, and is reinitialized only if it is eventually reused.

Figure 3

Simple handle implementation, showing the address that is used to

locate the element to which the handle refers. Also shown are two

identifiers, one in the handle and one in the referenced element.

For the handle reference to the element to be valid, the two

identifiers must match. (The upper set of rectangles represents the

handle. The lower two rectangles represent the element referenced

by the handle.)

Identifier

Component ID Address Identifier

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

237

As a second mechanism, a numerical identifier is

associated with each instance of a resource at the time

the resource is allocated. This number is stored in the

associated handle. Whenever the resource is referenced,

the identifier in the handle is compared with the instance

identifier in the element representing the resource, and if

the numbers do not match, the reference is denied. The

identifier is invalidated when the resource is deallocated.

The size of the identifier field is determined by the

resource owner and depends on the expected frequency of

reallocation. This mechanism has some associated risk

because it is possible that a handle may be used after the

identifier has completely cycled and happens to be correct

at the time of reference. Appropriate choice for the size of

the identifier can make the probability of this occurrence

very small.

These two mechanisms jointly allow for safe and

verifiable access to the resources to which they are

applied. The container further enhances the serviceability

of instance identifier use by adopting a systematic

mechanism for invalidating the instance identifier.

Whenever a new instance identifier is being assigned to an

element, it is incremented by 2. Thus, all active elements

in a cell pool will have an even instance identifier. When

the resource is deallocated, the low-order bit of the

identifier in the cell is set to 1 in order to effectively make

the instance identifier odd. This technique has the useful

side effect of allowing the current allocation status of

elements in a cell pool to be determined by simple

examination of the instance identifiers. It also preserves

debugging information about the prior use of an

individual cell, and can give insight into the frequency

with which resources are being reused. Any subsequent

reference to the resource that uses the current handle will

fail because the handle is now stale; that is, its instance

identifier does not match the target data area.

To provide freedom of implementation to a handle

owner, only part of the handle is required to be uniformly

mapped by all users. This fixed portion contains the

component identity of the handle owner. Each

component is able to manage and interpret the remainder

of the information in the handle in any way it sees fit.

Handles are used in the container to manage references

to locks, latches, and several other critical data structures

whose typical usage implies frequent acquisition and

release. The use of pre-allocated storage for the resources

of a given type and the use of a handle to reference the

resource is effectively a form of ‘‘type-safe memory’’

[46–48].

Of course a penalty is paid in terms of the performance

cost of validating the handle. Typically, the validation

process first requires validating ownership (component

identity), then validating type (its type matches the

expected resource being processed), and finally validating

the identifier. These costs are in addition to the

fundamental cost introduced by the implied indirection.

The handle could be made more robust by including

a small checksum, but a checksum was not implemented

in the container. Damage to a handle that affected only

the embedded memory reference was considered too

unlikely to justify the additional cost.

Isolation

Some data elements and their memory areas are more

critical than others in terms of sensitivity to inadvertent

modification. For example, damage to the state elements

of a software lock may have implications far beyond the

success or failure of the execution flow that caused the

damage.

Data isolation is particularly beneficial in the case of

locks and latches, especially if they are to be shared by

programs that are otherwise isolated. There are several

reasons why the isolation provided by the use of handles

is beneficial. First, locks and latches are examples of state

that, while mutable with respect to the user, are internally

constrained by the set of meaningful values that can be

assumed. To increase reliability, a program should not

be able to deliberately or inadvertently invalidate the

allowable state model. Second, locks and latches are

repeatedly acquired, used, and released; that is, frequent

changes in ownership exist. The System z architecture

does not allow areas within a page to be uniquely

protected with respect to other areas in the same page,

which means that a program solution is required.

In the case of the device drivers, the types used for

locks and latches are transparently redefined so that a

handle is stored in the local data structure instead of the

lock or latch itself. The implied change to the semantics

of the locking and latching calls themselves is easily

provided by the transformation layer of the personality.

The handle is then used to reference the lock or latch with

all of the previously attributed benefits, and the actual

memory element can be placed in memory not normally

accessible to the originating program.

Trace

The container implements a comprehensive trace facility,

which allows execution activity to be collected by thread,

by function type, or by activity classification. The amount

of data collected can also be controlled within these

classifications.

All existing trace macros within the AIX drivers were

remapped, using an AIX personality header file, to the

container trace, and in this way the existing trace model

of the driver was preserved.

Additionally, the trace produced by interaction with

container services provides useful insight into driver

activity and records those failed service requests whose

A. M. WEBB ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

238

disposition is ignored by the drivers. The compile-time

remapping of the device driver calls in order to use

container linkages allows the collection of traces with the

same granularity as other inter-component calls.

Finally, compiler hooks, and/or prolog and epilog

macros, invoked by the compiler at the start and end

of functions, can be used to incorporate flow tracing

within the migrated driver stack without requiring

any modifications to the driver code. This approach

is particularly valuable because this same mechanism

permits an almost full integration of the driver code with

the container recovery model.

Detailed trace tools are essential during development

but are less useful after deployment because of the

runtime costs involved. We paid significant attention

to minimizing the runtime penalty paid for making

the trace/no trace determination.

Diagnostic aids

All major control structures managed by the container

employ the notion of eye catchers. Originally used to

improve serviceability by making core dump information

more readily identifiable to analysts involved in problem

determination and resolution, the eye catchers also make

it easier to recognize bad pointers and the effects of

memory overwrite errors. Each eye catcher consists of an

eight-character acronym, the address of the data area

within which the eye catcher is included, and the size

of that data area. This information can be used by

container-aware functions at runtime to validate data

area references, and can be used by core-dump analysis

tools to automate similar validations. Not all data

structures have eye catchers; for example, the data

structures directly accessed by the migrated drivers do not

have eye catchers.

The nature of the vector interface between components

makes it simple to incorporate additional diagnostic

mechanisms without requiring any normal runtime

penalty. Additionally, the container linkage provides

a platform-independent basis for analyzing container

activity. It is possible to determine the current status of all

threads of control that are active within the container.

The linkage also augments the normal compiler and

driver linkage in order to support OS-specific retry and

recovery models.

Device driver integration

Porting the device drivers

Preceding sections in this paper have discussed the

general characteristics of code that executes in the

architectural environment of the container. The current

section examines issues that arise specifically from the

AIX drivers.

The AIX device drivers are not aware of, nor do they

conform to, the container architecture. However, the

container allows this code to be migrated with minimum

change and with a preservation of both programming and

data models. This approach is in contrast to those in

architectures such as UDI (Uniform Driver Interface) [49]

that require new drivers to be developed that conform to a

documented architecture. The container model offers the

same benefits of single-driver development, but does so in

a way that allows an existing driver to be used without the

constraints and additional effort that a formal architecture

imposes on initial driver development. In fact, migration

of the AIX drivers to the container environment was

relatively trouble-free. The most laborious task was the

identification of required information from the AIX

system header files referenced by the drivers for use in

the container, discussed in the next section.

Very little modification of the drivers was necessary.

Indeed, in our opinion, the changes described below

amount to following good programming practices. In all

cases these changes could have been introduced into the

original driver code without affecting its function in its

original environment. The following three situations

accounted for most of the changes made.

First, when the personality requires explicit access to

information in a data area also accessed by the drivers,

that data area must be defined by the personality, and

a typedef is used to map it into the expected type space

of the driver. In some cases, the drivers referred to a

structure explicitly, and in those cases it was necessary to

modify the drivers so that an appropriate abstract type

reference was used.

Second, references to system services were resolved

during compilation of the drivers by using macros to

rewrite the reference to conform to the container linkage

model. However, in a few places the drivers made explicit

use of embedded function pointers, making such

rewriting impossible. In some cases, it was possible to

leave these explicit uses of function pointers unmodified

(where some other extant mechanism for communicating

necessary container information existed). It was

sometimes necessary to rewrite the code so that the

function pointer usage was hidden by an appropriate

macro.

Finally, instances of incorrectly typed assignments

existed. The z/VM build environment, like some other

product-build environments, does not accept such

warning messages from the compilation. Rather than

risk eliminating meaningful messages, we modified the

code to resolve such problems.

AIX system header files

The device drivers referenced dozens of AIX header files,

some of which, in turn, referenced dozens of other header

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

239

files. We did not want to import any more code than

necessary in order to compile AIX device drivers. With

respect to the first two device drivers, we commented out

all references to AIX header files and incorporated the

required material from AIX header files into a few new

header files. We found that with this approach, the

contents of many of the AIX header files were not

required for the drivers being ported, and for some

of the header files only a few lines were required.

Subsequent to our initial work, during the process of

porting another SCSI disk device driver, we found that

this consolidation of multiple AIX header files into a

single header file was not appropriate because the

appropriate separation of unrelated definitions and

declarations was lost. For example, the second SCSI disk

device required different implementations of similarly

named data structures. The two SCSI disk device drivers

support two different storage subsystems but use the same

lower-level device driver, so this type of conflict is to be

expected. Consequently, the original header file structure

was reapplied to the subset of information required by the

drivers.

Device driver extensions

A device driver extension provides the implementation of

the services required of a component in the container

environment, as discussed above. The device driver

extension also provides the configuration and

initialization services that are accomplished in the AIX

environment by device methods [33, 39]. AIX device

methods are application programs, separate from the

device driver, that control device activation and

configuration. These functions in the driver extensions

were modeled on their AIX analogs but use a different

interface for accessing configuration information. The

driver extensions are also different from AIX device

methods in that the equivalent function in driver

extensions runs in the same environment as the rest of

the device driver, while the AIX driver methods run

as normal (albeit privileged) applications. In addition,

the device driver extensions provide functions not

implemented in the AIX kernel environment. For

example, in the System z environment, a requirement

exists to purge any outstanding I/O activity when physical

storage resources required by the I/O must be used for

some other purpose. Implementing the purge function

required an additional minor change to the device drivers

to ensure that requests being transferred between device

drivers are not missed by the purge mechanism. Like the

system interface components depicted in Figure 1, the

device driver extensions are different from most container

components because they are aware of both the container

environment and the AIX kernel environment. In

particular, they directly invoke some of the interfaces

exported by their associated device drivers as well as

invoking container interfaces exported by CSSC.

z/VM CP integration

The development of the SCSI for z/VM support did not

follow the usual product development cycle for z/VM

or for any other IBM-developed software. Before the

development environment for the final product was

available, the majority of the container was developed

and tested on Linux running as a z/VM guest. The Linux

implementation included the basic container functions,

the AIX personality, and the device driver extensions, as

well as additional device drivers required for the System z

environment and test scaffolding to emulate the layers

of hardware and software not available in the Linux

environment. The container and all of its subcomponents

executed as a normal user process. No actual SCSI I/O

was performed in the Linux environment. Such I/O was

simulated by the test scaffolding, which utilized the same

container component infrastructure as product code. The

platform-independent portions of the code developed

on Linux were subsequently integrated into the z/VM

CP component, and the first version of this support

became generally available as part of z/VM 5.1 in

September 2004.

CP environment

As discussed above, for many years the CP component

of VM did not exploit virtual addressing; that is, all of

the CP code and data areas were fixed in memory and

referenced by real addresses. This fact, and the lack of

facilities for dynamically allocating large areas of memory

(greater than one page, or 4,096 bytes), meant that each

‘‘stack frame’’ of a C routine had to occupy less than

one page. While this restriction may seem a stringent

requirement at first glance, in reality it is not that different

from the AIX or other UNIX kernel environments.

Portions of the AIX kernel are pageable, but many parts

are not. Routines that are not allowed to cause page

faults must have fixed storage for their C-procedure call

stacks. In AIX the stacks are contiguous ranges of virtual

addresses, but they are limited in size. Thus, AIX kernel

extensions and device drivers do not have routines with

large stack frames. Rather than have large memory

areas allocated as C ‘‘automatic’’ storage, the dynamic

requirements of the drivers are met by explicit memory

allocation calls at runtime or (quite commonly) by

allocating a pool of space during driver initialization and

suballocating the storage from the pool as required. In

practice, meeting the requirement that the stack frame of

each C routine be smaller than one page was not difficult,

but it does require the use of a compiler that allows

function prolog and epilog code to be supplied at compile

time.

A. M. WEBB ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

240

Two assembly language macros were provided for this

purpose, corresponding to function prolog and epilog.

Parameterized information passed to these macros at

compile time allows the macros to generate an optimal

code sequence, sensitive to the constraints, such as stack

usage, of the particular environment.

CP SCSI exploitation

To minimize the changes required of other CP

components, our initial SCSI support emulated an older

I/O device, the FBA channel-attached disk. Existing

interfaces allowed applications to access SCSI disks by

the applications building the same channel programs

that were used to access FBA disks. New code in CP

interpreted these channel programs and translated the

requests to calls to the SCSI interfaces. The processing of

these channel programs by the central processor (instead

of the channel processors) corresponds to processing

overhead incurred to avoid large-scale changes to the

z/VM I/O system. Ultimately, the interface exposed by

the FBA device support is very nearly the same as that

provided by the SCSI device drivers, so this additional

computational overhead could easily be avoided with

minor changes. We did not attempt to implement these

changes in the initial release because they are pervasive,

and even though they are not complex, they would

require a substantial verification and testing effort

that was avoided by emulating existing interfaces.

In z/VM 5.2, the paging subsystem was changed to

avoid the channel program emulation, resulting in

significantly improved paging performance on SCSI

devices, due largely to the increased concurrency

allowed by direct access to the SCSI I/O interface.

Despite the increased CPU processing overhead

discussed above, SCSI devices have been observed to

produce a substantially increased paging rate compared

with previous device interfaces [50]. The results reported

in [50] are for a hypothetical configuration, specifically

designed to force a high paging rate, and are not claimed

to be representative of any production environment.

However, the results do demonstrate that the SCSI device

interface can sustain a higher I/O rate than previous

interfaces while accessing the same external storage

subsystem via the same host hardware interfaces.

Summary and conclusions
The approach described in this paper allowed a relatively

small number of individuals to produce a new I/O

subsystem for the z/VM product. The subsystem included

tens of thousands of lines of code from a completely

different operating system, all written in C, a language

that had never been used in the CP component of z/VM.

As successful as the approach has been in providing a new

function for z/VM, with very low development and test

costs, some drawbacks exist. Although providing an AIX

execution environment (via the AIX personality)

minimized the changes to the AIX device drivers, this

environment incurs some CPU processing overhead, as

does the improved software reliability provided by the

mechanisms discussed in the section on container

reliability. In addition to these possible performance

problems, z/VM must maintain and support the AIX

device drivers, components of which are unfamiliar to the

z/VM team. Some additional education is also required

for the service team to become familiar with the extensive

use of vector tables and C preprocessor macros used to

implement component linkages.

The design and development of a significant part of the

subsystem (excluding the ported AIX device drivers) was

accomplished by workers outside the traditional z/VM

team. Much of this code was integrated into z/VM after it

had undergone function and component testing on Linux.

The schedule that started with the production of the first

working executable and culminated with components that

were ready for system test was very aggressive. However,

the progress from system test to product general

availability was relatively straightforward, and no

significant serviceability problems have appeared with

respect to the z/VM SCSI subsystem in customer

installations. As discussed in the section on device

driver integration, an AIX device driver that was not

contemplated in the original design was added to z/VM

subsequent to the initial development; it became generally

available in December of 2005 with the release of

z/VM 5.2. The addition of this device driver, which was

new for z/VM, was accomplished largely by the traditional

z/VM development team with substantially less effort than

required for the first two device drivers, demonstrating

the utility and flexibility of the container design and

validating the basic design concepts.

A significant portion of the newly developed code is

independent of the z/VM system. All of CSPN, IOSC,

the AIX personality, the AIX device driver extensions,

and the QDIO device driver have been designed and

implemented with the intent that they be reusable in other

System z operating system environments. Because of the

isolation provided by the container, the ported AIX

device drivers should also not require changes to be

functional in a different environment. All of these

components can simply be reused in order to provide the

same function in another System z operating system. Of

course, in addition to the z/VM-specific components,

namely CSPS and the z/VM system interface

components, other operating systems may require

functions not implemented for z/VM. Nonetheless, in

addition to reusing the AIX device drivers, the approach

described will allow much of the container

implementation itself to be reused.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

241

In summary, the container design and implementation

have proven to provide a robust mechanism for

incorporating device drivers from the AIX operating

system running on System p servers into the CP

component of z/VM running on System z servers. This

incorporation provides a significant saving in design and

implementation effort. The advantages of this approach

far outweigh the drawbacks mentioned above, and this

approach to the reuse of kernel code can be generalized to

other device drivers or kernel components and applied

to other operating systems.

Acknowledgments
This paper has concentrated on the container design and

the reuse of the AIX device drivers. Other aspects of the

project have been discussed only briefly or omitted

entirely. The hard work and dedication of many

individuals were required for the timely delivery of

z/VM 5.1 and z/VM 5.2, and any list of contributors

would almost certainly be incomplete. However, with

regard to the z/VM SCSI I/O subsystem, we would

particularly like to acknowledge, in alphabetical order,

the contributions of Roger E. Bonsteel, Charles J. Brazie,

Juliet C. Candee, John L. Czukkermann, Eric R. Farman,

Joseph M. Hust, John J. Majikes, James L. McGuinniss,

Jr., Lisa H. Reese, Robert W. Schreiber, Steven G.

Wilkins, John W. Yacynych, and Edward Zebrowski, Jr.

We also thank the referees for their suggestions for

improving the paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of The Open
Group, Sun Microsystems, Inc., Xerox Corporation, Microsoft
Corporation, Interactive Software Engineering, Inc., or Linus
Torvalds in the United States, other countries, or both.

References
1. C. W. Kruger, ‘‘Software Reuse,’’ ACM Comput. Surv. 24,

No. 2, 131–183 (1992).
2. B. W. Kernighan and P. L. Plaugher, Software Tools,

Addison-Wesley, Reading, MA, 1976.
3. F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley,

Reading, MA, 1995.
4. B. Stroustrup, The Cþþ Programming Language, Addison-

Wesley, Reading, MA, 2000.
5. B. Meyer, Object-Oriented Software Construction, Prentice-

Hall, New York, 1997.
6. G. Bracha, J. Gosling, B. Joy, and G. Steele, The Java

Language Specification, Addison-Wesley, Reading, MA, 2005.
7. P. H. Winston and S. Narasimhan, On to Smalltalk, Addison-

Wesley, Reading, MA, 1998.
8. A. Hejlsberg, S. Wiltamuth, and P. Golde, The C#

Programming Language, Addison-Wesley, Reading, MA,
2003.

9. G. Booch, Object Oriented Analysis and Design with
Applications, Benjamin/Cummings, Redwood City, CA, 1994.

10. G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr.,
‘‘Architecture of the IBM System/360,’’ IBM J. Res. & Dev. 8,
No. 2, 87–101 (1964).

11. R. P. Case and A. Padegs, ‘‘Architecture of the IBM
System/360,’’ Commun. ACM 21, No. 1, 73–96 (1978).

12. A. Padegs, ‘‘System/360 and Beyond,’’ IBM J. Res. & Dev. 25,
No. 5, 377–390 (1981).

13. A. Padegs, ‘‘System/370* Extended Architecture: Design
Considerations,’’ IBM J. Res. & Dev. 27, No. 3, 198–205
(1983).

14. D. Gifford and A. Spector, ‘‘Case Study: IBM’s System/360–
370 Architecture,’’ Commun. ACM 30, No. 4, 291–307 (1987).

15. K. E. Plambeck, ‘‘Concepts of Enterprise Systems
Architecture/370*,’’ IBM Syst. J. 28, No. 1, 39–61 (1989).

16. K. E. Plambeck, W. Eckert, R. R. Rogers, and C. F. Webb,
‘‘Development and Attributes of z/Architecture*,’’ IBM J.
Res. & Dev. 46, No. 4/5, 367–379 (2002).

17. N. S. Prasad, IBM Mainframes Architecture and Design,
McGraw-Hill, New York, 1994.

18. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832-04); see http://www.elink.ibmlink.ibm.com/public/
applications/publications/cgibin/pbi.cgi/.

19. IBM Corporation, Enterprise Systems Architecture/390*

Principles of Operation (SA22-7201-08); see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

20. S. A. Calta, J. A. deVeer, E. Loizides, and R. N. Strangwayes,
‘‘Enterprise Systems Connection (ESCON*) Architecture*—
System Overview,’’ IBM J. Res. & Dev. 36, No. 4, 535–551
(1992).

21. J. C. Elliott and M. W. Sachs, ‘‘The IBM Enterprise Systems
Connection (ESCON) Architecture,’’ IBM J. Res. & Dev. 36,
No. 4, 577–591 (1992).

22. T. A. Gregg, ‘‘S/390* CMOS Server I/O: The Continuing
Evolution,’’ IBM J. Res. & Dev. 41, No. 4/5, 449–462 (1997).

23. D. J. Stigliani, Jr., T. E. Bubb, D. F. Casper, J. H. Chin, S. G.
Glassen, J. M. Hoke, V. A. Minassian, J. H. Quick, and C. H.
Whitehead, ‘‘IBM eServer* z900 I/O Subsystem,’’ IBM J.
Res. & Dev. 46, No. 4/5, 421–445 (2002).

24. M. E. Baskey, M. Eder, D. A. Elko, B. H. Ratcliff, and D. W.
Schmidt, ‘‘zSeries* Features for Optimized Sockets-Based
Messaging: HiperSockets* and OSA-Express,’’ IBM J. Res.
& Dev. 46, No. 4/5, 475–485 (2002).

25. G. H. Mealy, B. I. Witt, and W. A. Clark, ‘‘The Functional
Structure of OS/360*’’ (Part I, Part II, Part III), IBM Syst. J.
5, No. 1, 3–51 (1966).

26. C. E. Clark, ‘‘The Facilities and Evolution of MVS/ESA*,’’
IBM Syst. J. 28, No. 1, 124–150 (1989).

27. M. Mueller, L. C. Alves, W. Fischer, M. L. Fair, and I. Modi,
‘‘RAS Strategy for IBM S/390 G5 and G6,’’ IBM J. Res. &
Dev. 43, No. 5/6, 875–888 (1999).

28. L. C. Alves, M. L. Fair, P. J. Meaney, C. L. Chen, W. J.
Clarke, G. C. Wellwood, N. E. Weber, I. N. Modi, B. K.
Tolan, and F. Freier, ‘‘RAS Design for the IBM eServer z900,’’
IBM J. Res. & Dev. 46, No. 4/5, 503–521 (2002).

29. M. L. Fair, C. R. Conklin, S. B. Swaney, P. J. Meaney, W. J.
Clarke, L. C. Alves, I. N. Modi, F. Freier, W. Fischer, and
N. E. Weber, ‘‘Reliability, Availability, and Serviceability
(RAS) of the IBM eServer z990,’’ IBM J. Res. & Dev. 48, No.
3/4, 519–534 (2004).

30. M. J. Bach, The Design of the UNIX Operating System,
Prentice-Hall, Englewood Cliffs, NJ, 1986.

31. M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman, The Design and Implementation of the 4.4 BSD
Operating System, Addison-Wesley, Reading, MA, 1996.

32. U. Vahalia, UNIX Internals: The New Frontier, Prentice-Hall,
Upper Saddle River, NJ, 1996.

33. IBM Corporation, AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts (SC23-4125-07); see
http://www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi/.

A. M. WEBB ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

242

34. IBM Corporation, AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs (SC23-4128-08);
see http://www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi/.

35. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Base Operating System and Extensions, Volume 1 (SC23-4159-
06); see http://www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi/.

36. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Base Operating System and Extensions, Volume 2 (SC23-4160-
05); see http://www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi/.

37. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems, Volume 1 (SC23-4163-05); see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

38. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems, Volume 2 (SC23-4164-05); see http://
www.elink.ibmlink.ibm.com/public/applications/publications/
cgibin/pbi.cgi/.

39. IBM Corporation, AIX 5L Version 5.3 System Management
Concepts: Operating System and Devices (SC23-4908-02); see
http://www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi/.

40. IBM Corporation, AIX 5L Version 5.3 System Management
Guide: Operating System and Devices (SC23-4910-02); see
http://www.elink.ibmlink.ibm.com/public/applications/
publications/cgibin/pbi.cgi/.

41. R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. J.
Hatfield, ‘‘Virtual Storage and Virtual Machine Concepts,’’
IBM Syst. J. 11, No. 2, 99–130 (1972).

42. R. J. Creasy, ‘‘The Origin of the VM/370 Time-Sharing
System,’’ IBM J. Res. & Dev. 25, No. 5, 483–490 (1981).

43. G. Banzhaf, F. W. Brice, G. R. Frazier, J. P. Kubala, T. B.
Mathias, and V. Sameske, ‘‘SCSI Initial Program Loading for
zSeries,’’ IBM J. Res. & Dev. 48, No. 3/4, 507–518 (2004).

44. C. J. Stephenson, ‘‘Fast Fits: New Methods for Dynamic
Storage Allocation,’’ Proceedings of the 9th ACM Symposium
on Operating Systems Principles, 1983, pp. 30–32.

45. T. Lindholm and F. Yellin, Sun MicroSystems, ‘‘The Java
Virtual Machine Specification—2nd Edition,’’ ISBN 0-201-
43294-3, 1999.

46. M. Greenwald and D. Cheriton, ‘‘The Synergy Between Non-
Blocking Synchronization and Operating System Structure,’’
Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, 1996, pp. 123–136.

47. D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney, ‘‘Region-Based Memory Management in Cyclone,’’
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, 2002, pp.
282–293.

48. M. Hicks, G. Morrisett, D. Grossman, and T. Jim,
‘‘Experience with Safe Manual Memory-Management in
Cyclone,’’ Proceedings of the 4th International Symposium on
Memory Management, 2004, pp. 73–84.

49. CerTek Software Designs, ‘‘Uniform Driver Interface: UDI
Version 1.01 Specification’’; see http://www.projectudi.org/
specs.html.

50. IBM Corporation, ‘‘z/VM Performance Report: CP Disk I/O
Performance’’; see http://www.vm.ibm.com/perf/reports/zvm/
html/520dasd.html.

Received May 2, 2006; accepted for publication

Alan M. Webb IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (alan_webb@us.ibm.com). Mr. Webb is a Senior Software
Engineer who joined IBM UK in 1977. He received an M.S. degree
with distinction in software engineering from Oxford University in
1997. Mr. Webb has worked as a developer and architect in
Hursley, England, and in Raleigh, North Carolina. In 1999, he
joined the IBM Thomas J. Watson Research Center, where he
has worked on various projects related to IBM server software
technologies.

Ray Mansell IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (mansell@us.ibm.com). Mr. Mansell joined the IBM
UK Laboratories in 1974 after receiving a bachelor’s degree in
electronic engineering from the University of Bath. He joined the
IBM Thomas J. Watson Research Center in 1990 and has worked
on high-performance file systems, virtualization, and operating
systems.

Joshua W. Knight IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (joshk@us.ibm.com). Dr. Knight is a Research Staff
Member. He received a B.S. degree in engineering physics from
Cornell University in 1968 and a Ph.D. degree in applied physics
from Stanford University in 1978. He joined IBM in 1981 and has
since worked on hardware and software performance and on server
software technologies.

Steven J. Greenspan IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(fletch@us.ibm.com). Mr. Greenspan received his B.S. degree in
computer science in 1982 from the City College of New York. That
same year, he joined IBM in Poughkeepsie, New York, to work on
development tools. Since 1987, he has worked on the design and
development of System z operating systems.

David B. Emmes IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(emmes@us.ibm.com). In 1974, Mr. Emmes received his B.A.
degree in mathematics summa cum laude from Washington
University in St. Louis. He received his M.S. degree in mathematics
from M.I.T. in 1976, and his M.S. degree in computer and
information science from Syracuse University in 1985. He joined
IBM in 1978 and has designed and developed z/OS operating
system support for real storage management, Sysplex
communications, workload management, TCP/IP, and Java
Virtual Machine performance enhancements. Since 2002,
Mr. Emmes has been involved in the effort described in this
paper, focusing on the QDIO driver and related hardware
and firmware areas.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. M. WEBB ET AL.

243

May 24, 2006; Internet publication December 5, 2006

