Practical
software reuse
for IBM System z
I/O subsystems

A. M. Webb

R. Mansell

J. W. Knight

S. J. Greenspan
D. B. Emmes

The design and implementation of the z/VM® SCSI (Small
Computer System Interface) 1/O subsystem is described. z/VM is

an operating system that provides multiple virtual IBM System z

™

machines on a single IBM System z computer. The approach
adopted herein allows the reuse of entire device drivers from

AIX 5L™, a completely different operating system, essentially
unchanged. AIX 5L is the IBM UNIX® operating system for

the IBM System p™ platform. The design, and much of the
implemented code that allows the incorporation of such “foreign”
device drivers, is independent of both z/VM and AIX 5L and could
potentially be used in other operating system environments.

Introduction

The potential benefits of software reuse are generally
accepted in both industry and academia [1, 2]. Experience
with technology suggests that there is rarely any benefit in
“reinventing the wheel,” and the risks of ignoring past
technological approaches are well known [3]. Reuse can
take many forms, including the reuse of computer
programs, frameworks, and integrated development
environments. Reuse may reduce costs, increase
reliability, and accelerate the evolution of software. The
growing number of object-oriented languages (such as
C++[4], Eiffel** [5], Java** [6], Smalltalk** [7], and C#**
[8]) and object-oriented design and development
environments (such as Rational Rose* [9]) attest to the
importance of software reuse. All of these reflect examples
of software that may be written with reuse in mind.

This paper concerns the reuse of software in a realm
where neither the software nor its environment were
actually architected or implemented with reuse in mind.
The technology described offers a flexible and efficient
methodology for the migration of operating system (OS)
extensions, such as device drivers, from one operating
environment to another. This methodology thus allows
the sharing of a single implementation of appropriate
operating system functions across multiple heterogeneous
systems. It should be noted that this approach is not an
architecture for the development of platform-independent
OS functions; rather, it is a way to exploit existing OS

functions in an environment other than that for which
they were originally developed.

The efficacy of the technology is demonstrated in a
practical manner by the successful integration, with
minimal change, of device drivers from the AIX 5L*
operating system in z/VM*, an IBM System z* operating
system product. The success of this approach is significant
because the two operating systems are very different in
purpose and implementation. AIX 5L (hereafter referred
to simply as AIX*) is the IBM proprietary UNIX**
operating system for the IBM System p* and provides a
rich application development and execution environment.
The primary function of z/VM is to provide a virtual
System z environment for other operating systems.

The methodology described in this paper offers
significant benefits in terms of programmer productivity
and allows developers to preserve the integration of
reliability, availability, and serviceability (RAS) models.
Overall programming error rates are reduced. The
approach does present some interesting challenges with
respect to performance and scalability. However, because
much more code is potentially portable than was designed
to be so, this methodology makes it possible to implement
many capabilities that would otherwise be prohibitively
expensive to introduce in a way that is responsive to
market demands.

The technology is based on the concept of an
architected execution container that preserves the

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

A. M. WEBB ET AL.

229

230

reliability and robustness attributes expected of System z
operating systems (for example, recovery from runtime
errors) while implementing an execution environment
that provides the data and programming interfaces
expected by the migrated code. The AIX device drivers
are incorporated into the host operating system, z/VM,
as components in the execution container. As described
below, the execution container provides a framework for
combining multiple components in order to implement
a particular function, in this case, access to Small
Computer System Interface (SCSI) I/O.

The remainder of this paper is organized as follows.
First, some background information is presented to
briefly introduce the IBM System z, the AIX operating
system, and their associated I/O models. Next, we discuss
the design of the execution container and the way in
which it may be tailored to meet particular migration
needs. We also discuss the porting of AIX device
drivers so that they run in the execution container, the
integration of the execution container and device drivers
into z/VM, and the deployment of the finished product.
Included in this section is a discussion of the small
changes made to the device drivers and why these changes
are preferable to previously proposed alternative
approaches for producing production-quality
multiplatform device drivers. Also discussed are compiler
and other environmental requirements and how these
requirements were satisfied for the z/VM product.
Finally, results are summarized and conclusions
presented.

Background

A brief introduction to IBM System z

The IBM System z continues a succession of computing
systems that started with the IBM System/360*
introduced in 1964 [10-19]. Throughout this evolution
of large-scale commercial computer systems, upward
compatibility of hardware and software has been
preserved. In an analogous manner, the System z /O
architecture [17-23] has evolved to add new functions
while usually allowing existing applications and I/O to
continue to function properly. The I/O architecture
includes the notion of channels, which manage 1/O
devices under the control of channel programs stored in
the computer main memory, and more recently an in-
memory protocol called queued direct 1/O (QDIO), which
manages the I/O devices [24]. The effort to maintain
hardware compatibility required a similar continuity of
software, starting from the first OS/360 [25] and leading
to current versions of z/OS* [26] and all IBM operating
systems for System z, including z/VM (see the section on
the z/VM CP environment below). Since the introduction
of the IBM System/360, technology has evolved and

A. M. WEBB ET AL.

hardware reliability has improved dramatically [27-29],
thereby raising the expectations for software reliability.

AlX device driver environment

In AIX, the interface between a device driver (or other
kernel extension) and the rest of the operating system
kernel is similar to those in other UNIX systems [30-32].
Documentation on how to write device drivers for AIX
for the IBM System p platforms is readily available
[33-40]. When device drivers are introduced into a system,
they register their services dynamically. The mechanism
that allows the addition of new device drivers is in the
AIX kernel itself, but much of the control, including the
configuration of drivers and individual devices, is driven
by application programs known as device methods

[33, 39]. AIX uses the object data manager (ODM) as a
repository for configuration information, and the device
methods use defined interfaces to access the configuration
information in the ODM [33, 39]. Neither the ODM nor
the device methods were ported for integration in z/VM.
Instead, the device methods were replaced by new code
that offered equivalent function (see the section on device
driver extensions below). Similarly, new code was written
to meet the configuration information needs that were
previously satisfied by the ODM. The new code was
implemented as a “container component” (see the section
on the anatomy of a container component below) and
manages the required configuration data using a simple
data model that can be readily mapped to a simple
database or flat-file representation. (A flat file was used
for the initial test scaffolding, which is discussed in the
section on z/VM CP integration below.) The AIX SCSI
support is implemented in multiple software layers. The
lowest-level AIX device driver, the layer that interacts
directly with System p I/O hardware, was not ported.
Instead, the interfaces expected by the higher-level drivers
are implemented by a new device driver for the System z
QDIO interface.

z/VM CP environment

The current z/VM operating system is the latest in a
succession of such systems that originated in the IBM
Cambridge Scientific Center in the 1960s [41, 42]. The
primary function of z/VM is to provide a fully virtualized
System z environment in which System z operating
systems (primarily Linux** for System z and z/OS, as well
as z/VM itself) can execute. The control program (CP)
is a fundamental component of the z/VM operating
system that is responsible for the management of the
real machine’s resources and the provisioning of those
resources to the guest virtual machines. The primary
purpose of the work described in this paper is to allow the
CP to use standard SCSI devices instead of disks specific
to System z.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

In the past, IBM introduced the concept of Fixed Block
Architecture (FBA) for storage in a range of mainframe
I/O devices, and such devices worked with a fixed block
size of 512 bytes. Because SCSI disks are also typically
subdivided into 512-byte blocks, it was possible to create
a relatively thin new layer of software between the pre-
existing CP FBA functions and the interface to the AIX
drivers in the execution container. This mapping between
CP FBA functions and the AIX driver interfaces, as well
as a new mechanism to allow the initial program load
(IPL) of z/VM directly from a SCSI device [43], has made
it possible for FBA-aware System z operating systems
to operate entirely with SCSI devices.

For a substantial portion of its history, the CP
component of z/VM executed without making use of the
System z dynamic address translation (DAT) facilities.
That is, the CP used “real addresses” rather than “virtual
addresses.” Even with the introduction of DAT facilities
to CP, CP itself still allocated contiguous storage in
chunks of no more than 4,096 bytes, which equals
one page. As a consequence, new CP facilities for the
allocation of larger contiguous ranges of memory were
required in order to implement an execution environment
for the AIX drivers. These facilities are based upon earlier
work by C. J. Stephenson [44], which was adapted to
the CP environment and extended to include several
attributes required by the AIX driver, including storage
allocations larger than 4,096 bytes and allocations on
specific power-of-two boundaries.

Design

Overview

In an ideal world, reusable software will run in any
execution or OS environment. Unfortunately, since little
useful software can satisfy such a constraint, some
modifications are inevitably required in order to use

the software in another environment.

Moving software from one environment to another
using a strategy of adaptation (also known as software
porting) is often as expensive in terms of development and
testing costs as development of new code, and does little
to enable any future amortization of those costs. In
order to obtain substantial benefits of reuse, both the
programming and data models of the original system
must somehow be preserved, and thus the required
transformation must be performed at a level not directly
apparent to the software itself. A number of ways exist
to accomplish this goal.

One established approach is to create reusable software
by developing it within a universally available operating
environment [45], but this approach has performance
challenges and may not achieve sufficient isolation from
the native operating system environment. It also excludes

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

reuse of software already developed without reuse in
mind.

An alternative is to create an execution context that
closely mimics that of the system from which the software
is being migrated, which is not a trivial task. However,
the cost of this approach can generally be amortized as
other software is migrated. Provision of most required
services in this way is relatively straightforward.
However, assumptions with respect to late binding (i.e.,
binding performed at execution time) and the dynamic
introduction of executables can be harder to resolve.
Nevertheless, this approach offers an advantage over
simple porting in that it is sufficient, from a testing
perspective, to demonstrate that the mimicked services
are functionally equivalent to the original system. The
imported code that uses the mimicked services is not
changed and thus does not require further testing.

The methodology presented in this paper allows
internal operating system software, such as device drivers,
to be migrated by providing services that mimic those
of the original environment, and we present several
mechanisms for addressing the issues that arise. The
approach also provides a general structure within which
such environments may be constructed with progressively
lower costs—not only costs associated with the migration
of subsequent functions, but also the lower costs of
operating systems that can share much of the container
infrastructure described below.

The execution container (hereafter referred to simply as
the container) is based upon an architecture that specifies
the way in which a program may operate within the
environment of the container. The container architecture
itself defines no specific interface with the operating
system within which it is instantiated, leaving any
obligations of communication and interaction to one or
more of the executable components that are introduced
during its operation. In this context, the term component
is used to describe any object that conforms to the
architectural requirements of the container. In other
words, a component is aware of, and by implication
capable of conforming to, the environment of the
container. In this sense, the container is nothing
more than a very simple programming framework.

To be useful, the container must be more than a
framework, and the necessary additional functionality is
provided by the core system services component (CSSC).
This component provides a basic set of services that
are discussed further in the section on environmental
requirements below. The container alone serves no one
specific purpose; rather, it provides an architected
environment within which one or more loaded
components provide functionality.

With the sole exception of the CSSC, all components
are required to be introduced by means of the 231

A. M. WEBB ET AL.

232

Container environment
Operating
system .
yo > Core services component
services

System Primary component

<_L> interface Personality
component

i T

System
. interface >
Operating L |
component |«
system B

environment

Container schematic showing the container environment and its
interactions with the host operating system. All interactions with
the host operating system are mediated by a system-interface
component. The unlabeled boxes inside the personality compo-
nent represent the AIX device drivers, which are isolated from the
container environment by the AIX personality and the driver
extensions (not shown).

CSSC_loadComponent service. Aside from taking care of
the required tasks associated with loading and initializing
a new component, being successfully “loaded” into the
container via CSSC_loadComponent is a sufficient
indication of architectural conformance. In other words,
no further tests are made to ensure conformance before
or after loading, beyond the provision of some mandated
functions to be invoked when loading and unloading a
component. A component is not obliged to communicate
with, or offer services to, any other component, but in
general a component is likely to do both.

Typically, a component has no dependencies upon
any external capabilities except those offered by other
components. This independence implies complete
portability across any environments that support the
container architecture. Portability in this context is
compile-time portability, not binary compatibility.

This platform independence is implied wherever the
term component is used without other qualification.

We must also recognize a special class of component
that does have an awareness of the host OS environment;
these are known as system interface components. In
discussions of container frameworks, a system interface
component is any component that has some knowledge
of or dependency upon the environment within which

A. M. WEBB ET AL.

the container is being instantiated. This knowledge
allows such a component to interact in some way with
the environment. CSSC is an obvious example of such a
component, because it is responsible for the integration of
the container with its environment, including the task of
container initialization. In general, other system interface
components are required only in order to provide access
to services provided by the container.

Another component that must be aware of a non-
container environment is the personality, discussed in
the section on personalities below. For the z/VM
SCSI, the non-container environment is the AIX kernel
environment. The personality component transforms
the services available to container components to those
expected by the ported device drivers. Together with the
device driver extensions (described in the section on
device driver integration below), it provides the AIX
kernel services expected by the device drivers.

The container has been implemented using the C
programming language. This choice of languages was
natural, but not essential, because AIX drivers are
themselves written in C. Operation of the container only
requires object-code compatibility. Any language can be
used when creating a component, provided that the
simple interface obligations of the container can be met,
together with the underlying complier assumptions for
linkage.

Our approach is useful because it is relatively
inexpensive to create a prototype in an environment other
than that for which the work is ultimately intended.

For example, the container for the z/VM SCSI was
prototyped in an application environment on Linux,
which allowed development and test of the platform-
independent components using conventional
development tools—something that is not easily achieved
with operating system extensions. Figure 1 illustrates the
basic components of the programming environment being
described.

Specification is not required with respect to the way in
which the container communicates with the environment,
and this offers some important benefits. The
implementation of the container can be encapsulated
within some other recognizable entity in the intended
environment. For example, the container may be
packaged so that it appears to be a conventional device
driver in the Linux environment. In this way, a single
device driver may be shared across a number of different
and apparently incompatible environments. The
container can be closely integrated with its environment,
so that instead of requiring an intermediate software layer
that maps the semantics of the environment to some
public interface defined by the container, the environment
itself can be adapted to behave as a component and
communicate directly with the services provided by the

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

supported OS extensions. The issues of porting the OS
extensions are easily separated from the issues relating
to their exploitation on a given platform. It is a
straightforward task to introduce extension-specific
system interface components in support of specialized
requirements. For example, workload management
capabilities can be directly integrated with the container.

Finally, a system can have any number of containers
concurrently active, subject to whatever host OS
constraints apply. The use of multiple containers
promotes isolation of code and data structures, and
isolation of resources managed by the ported code.
These characteristics have the potential to enhance
RAS, security, workload balancing, and installation
management and control.

Anatomy of a container component

Each component is a separately loadable object within
the container-managed environment. As previously
mentioned, it must conform to certain internal
requirements of the container, and it may also have
awareness of the environment outside of the container.
The following summary describes material that is covered
in more detail in the subsequent sections.

Each component has one or more associated interface
header files that contain all of the information needed to
load and access the component. Language preprocessing,
in conjunction with specific programming models,
allows one component to access the services of
another component with no additional programming
beyond the inclusion of the header file and a call to
CSSC_ToadComponent to load the desired component.

Versioning information contained in the interface
header files ensures that any conflict (for example,
between the versions of the interface used at compile time
and the versions expected at runtime) is detected when the
component is loaded. Depending upon the component,
such a conflict may result in a load failure or the
automatic provisioning of the appropriate interface by
the component being referenced.

When a given component is first loaded, a component
control area (CCA) is allocated and associated with the
component. Control is given to a mandated function, as
previously mentioned and discussed in more detail below,
that has the opportunity to establish component-specific
information for future use. The component control area
contains the vector table discussed below as well as
internal component control structures.

Each component interface is implemented using a
vector table, and access to a given interface is obtained
using either the CSSC_loadComponent service or the
CSSC_getInterface service. Each vector contains the
entry point of an associated function and the component
control area that should be effective when that function is

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

in control. Some powerful capabilities offered by this
approach are enumerated in the following paragraphs.

First, by separating the definition of the interface from
the executable component itself, it becomes possible for a
single component to present multiple versions of the same
interface to its callers. This separation facilitates both
upward and downward compatibility as well as providing
the possibility for an interface that can adapt to the needs
of a specific caller. The use of vectors also enables
multiple versions of a given component that can be
concurrently supported.

Additionally, by storing both the function address
and the control area address in each vector, it becomes
possible for a component to export vectors owned by
other components without incurring the normal
computational overhead associated with cascaded
function calls. This mechanism is effectively exploited
by the system services component itself.

All components have a designated default interface
that is accessed using the reference returned by
CSSC_loadComponent. A component may also support
additional interfaces, and access to these interfaces is
obtained via the CSSC_getInterface facility.

The first request to load a component causes the
initialization function for that component to be executed.
Subsequent load requests increment the use count but do
not cause further initialization. The process of unloading
decrements the use count, and a component remains
available until its responsibility count reaches zero.

At that time, its terminate function is called, and it is
considered to be unavailable within the container. A
subsequent load will result in the initialize function being
called. The initialization and termination vectors are two
examples of a set of vectors that are an obligatory part of
the container architecture. Other required vectors include
recovery, debug, recycle, validation, control, start, and
stop.

The recovery vector allows a component to define a
procedure that should receive control as a result of a
system-detected error during execution. This interface is
part of an architected recovery hierarchy defined within
the container. The debug vector allows a component to
interact with an external debugging mechanism. This
interface may be used to modify the behavior of the
component. The recycle function informs a component
that a client has terminated. This notification allows the
component to “clean up” any resources, such as memory,
held on behalf of that client. The validation vector allows
a component to indicate its own functional status, that is,
true if no errors are found or false if some unrecoverable
problems are detected. The control vector is a function
with unspecified semantics that allows additional
component vectors to be defined that are not expressly 233

A. M. WEBB ET AL.

234

defined by the container architecture. Whether or not
such functions exist depends on the component.

The start vector, if present, indicates that this
component is capable of being a primary container
component. A primary component is one to which control
is given at some time after container initialization is
complete. A hierarchy of such components may exist if
a component that receives control using this interface is
prepared to pass control to the next component in such a
hierarchy. The exact nature of such a hierarchy is not
programmatically apparent; rather, it is an emergent
property of a set of components. For example, in the
case of the container I/O application described in this
paper, CSSC is the component to which the container
initialization routine gives control. Once CSSC has
completed its container-related initialization, it passes
control to the first identified primary component in the
load list (see the section on establishing purpose below).
A primary component is not expected to return control
until it has to terminate. Consequently, when the primary
component previously called by CSSC returns control,
the container will close. Typically, one primary
component will establish interfaces for services to entities
outside the container environment and then wait to
service requests via that interface. The stop vector
provides the means by which an external agent, such as a
system operator, can indicate to a primary component
that it should cease execution. This interface is intended
to be the normal mechanism for shutting down the
container.

Any function exported by a component for use by
other components must conform to the programming
model of the container. This obligation is satisfied by
a collection of macros supplied for the purpose, such
as the following:

void *
my_function(thread_ct * thread, void * arg)
{

COMP_ENTRY (my_function);

void * result;

result=arg;

COMP_EXIT(result);

In this example, the COMP_ENTRY and COMP_EXIT
macros conceal the container-specific linkage obligations
associated with the designated function. A variety of
such macros are provided to address all of the basic
requirements of structured programming within the
container. As well as addressing issues of linkage, these
macros provide a consistent and comprehensive RAS
model within the container, which is integrated with the
container environment by CSSC. The scaffolding macros

A. M. WEBB ET AL.

are defined in such a way that inconsistent usage, or
omission, is generally detected at compile time.

Core system services

CSSC comprises two separate components. A system
interface component, CSPS (core services, platform
specific), is responsible for providing an interface with
the operating system in support of the various control
and management services required. A platform-neutral
component, CSPN (core services, platform neutral), is
responsible for making various control and resource
management services available to other components in
the container. These services represent a minimal set
of capabilities needed to allow consistent, platform-
independent operation of other components loaded
into the container.

For practical purposes, CSSC embodies the container
from the perspective of other loaded components. Access
to the CSSC public vector table allows a program to be
a component in the container environment. The various
parts that make up a working container are illustrated
in Figure 1.

Environmental requirements
The AIX kernel environment, the z/VM CP environment,
and other operating system kernel environments are all
greatly restricted in terms of available system services
when compared with the application environment. In
this context, such limitations are not disadvantageous.
Indeed, this characteristic makes device drivers relatively
portable and makes the required infrastructure to support
such portability reasonably straightforward.

These environmental services needed to support OS
extensions can be classified as

¢ Executable content management (e.g., load/unload
and exported reference identification).

* Memory management (e.g., allocation/deallocation
and pinning/unpinning).

¢ Cross-memory addressing services.

¢ Synchronization (e.g., general locking services, wait,
and notification).

¢ Scheduling (e.g., asynchronous scheduling, execution-
mode switching, time-delayed scheduling, and time-
limited suspension).

* RAS (e.g., trace, dump, and logging).

Some services are needed to gain access to system
resources (e.g., services such as content management
and memory management). Other services support
the integration of container-managed events with the
environment (e.g., synchronization and scheduling). The
provision of other services might be considered optional
(e.g., tracing and logging).

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

The nature of the required services is generally so
fundamental that there is little likelihood of significant
problems when implementing such services in any
environment of interest. The container, as implemented,
encapsulates these services in CSSC. Within CSSC, the
CSPS subcomponent owns the actual interface between
the container and existing operating system services. This
design allows significant flexibility in terms of the way in
which a particular function is implemented. The greatest
challenge when implementing these services arises from
the need to anticipate possible future requirements that
might be placed upon a given service. For practical
reasons, the services interface exported by CSSC is
generally consistent with the analogous AIX kernel
services. For example, the AIX xmalloc service is
exported to the device drivers by the personality
component. The AIX personality component does a
simple remapping of the AIX xmalloc interface to the
CSSC_malloc interface. The CSSC_malloc interface is
in fact just the CSPS_malloc interface as exported by
the CSPN component on both z/VM and Linux.

Intercomponent flows

We place two significant constraints upon the design of
the container. In particular, the container cannot exploit
the native mechanisms of the compiler for managing
global data, and it cannot exploit any platform-unique
services for the runtime binding between components.

When the initialization function of a component is
called, the function is passed an area of memory that can
be used as a global control area CCA for the component.
The address of the CCA is maintained by CSSC and is
returned to any caller that causes the component to be
loaded. In the interests of linkage efficiency, this address
is also that of the default public vector table for the
component, as described below.

In the absence of runtime services for dynamic binding
between executables, the container exploits an efficient
compile-time mechanism to support runtime binding
between components. Exploiting this mechanism involves
certain conventions. First, each component must provide
a public header file, referred to as an interface header file.
This file provides all of the information needed to locate
and exploit the owning component. The header file must
be included wherever access to a component is required.

In addition to including the header file, a component
must use CSSC_ToadComponent to load the requisite
component into the container environment at any time
prior to first use. Once this has been accomplished, the
reference returned by the loading process is stored in the
control area of the local component in accordance with
the container rules for component references. This
reference provides access to the default public vector table
of the component.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Finally, access to services in another component is
achieved using the access macros supplied in the interface
header file of the target component. For example,

xyz=(t *) CSSC_malloc(thread, size, alignment,
flags);

shows how a component might call the storage allocation
service provided by CSSC. By convention, the first
argument, thread, provides access to per-thread
container control structures.

We employ a novel exploitation of the preprocessor to
allow the access macros supplied in the interface header
file to be used regardless of the caller’s own control area
organization. The code generated in support of a call
to another component, for example CSSC_malloc,
essentially resolves to

frameptr->cca=malloc.cca,
malloc.fnc (thread, size, alignment, flags);

This greatly simplified example shows the required
control area being loaded into the current frame, and the
required function vector (malloc) being invoked. A frame
is part of the container linkage mechanism. Each active
function has a corresponding frame that allows the
container to manage various aspects of serviceability
and recoverability. In this case, the frame is used to
communicate context information to the function

being called. The control structures associated with

the frame are C-language automatic variables declared
and initialized by COMP_ENTRY. The COMP_ENTRY macro
in the implementation of CSSC_malloc retrieves the
CCA from the caller’s frame and establishes appropriate
local addressability.

By storing both the required control area address and
the function address in each vector, the container allows
a component to promote vectors obtained from other
components. This approach improves overall
performance by eliminating unnecessary intermediate
execution paths when accessing non-local functions. For
example, CSSC directly exports the memory services
provided by CSPS. In other words, no intervening
CSPN wrapper is necessary.

Integrating the container with its environment

The CSPS component of CSSC, or some platform-specific
intermediary code acting as an agent for CSPS, receives

initial control from the operating system environment. As

a result, if CSPS is to be introduced by the operating

system, it must be consistent with that environment.

In the case of z/VM, CSPS and the entire container

are actually directly integrated with CP. The part of 235

A. M. WEBB ET AL.

236

device
Host drivers 1/0
system
o) /0
request
Figure 2

Driver component schematic.

CSPS responsible for initializing the environment of the
container is called the prolog. This container prolog
handles any differences between the native linkage of
the system and the linkage required by the language
environment chosen for CSPS. Various ways exist to
accomplish this function, and the particular way that is
chosen tends to reflect the language and compiler being
used.

CSPS performs its own private initialization and then
loads the CSPN component, simulating the behavior of
CSSC_loadComponent. Once CSPN has been successfully
loaded, CSPS calls the start meta-function supplied by
CSPN. This event marks the end of the container
initialization and the beginning of its application.

Establishing purpose
The CSSC start function loads a set of components that
are identified in a special configuration file called the load
list. The load list is loaded using the data management
capabilities provided by CSSC. All of the components
in the list are loaded, and one of them is identified as
being the primary component. Nothing prevents a
given operating system from having some or all of
the components preloaded, and in fact z/VM does
preloading. The primary component determines the
specific purpose of the container, and is passed control
by CSSC by invoking the start vector of the primary
component. The container remains active until the
primary component returns control to CSSC. If no
primary component is provided, the container simply
terminates.

In this paper, the primary component is the I/O
services component (IOSC). The IOSC component has
two principal responsibilities: It provides an interface to

A. M. WEBB ET AL.

support I/O operations, and it routes such operations to
whichever personality provides access to the resource in
question.

Personalities

A personality is a specialized container component that
is responsible for emulating a particular execution
environment. Any number of concurrently active
personalities may exist. The personality presents a
standard interface to the other components and provides
an environmentally unique interface to the migrated code
that it is responsible for supporting.

The personality must map the service API presented by
IOSC to the native API expected by the migrated code.
This requirement applies not only to the I/O operations
themselves, but also to the management tasks of
initialization, configuration, and termination. Similarly,
the personality must intercept all of the interactions of the
migrated code with the environment of the migrated code
in a manner that is indistinguishable from the native
environment. Note that the requirement dictates that the
environment is indistinguishable from, but not identical
to, the native environment of the migrated code.

The AIX driver code is by definition unaware of
the container or its architectural requirements. This
shortcoming is addressed by integrating a set of
functional extensions (identified as driver extensions in
Figure 2) that are combined with the driver code during
linkage editing. These extensions address all of the
architectural obligations associated with being a
component, such as providing the required vectors
discussed above, and also relieve the personality of
responsibility for driver-specific activities normally
addressed by AIX facilities such as device methods
[33, 39]. AIX device methods are application programs
that are separate from the device drivers and that
control device activation and configuration.

In addition, the extension implements the recovery and
resource management interfaces that System z requires
of an I/O handler and that are not part of the AIX
environment. Specifically, these interfaces relate to
recovery (handling unexpected programming errors or
other failures at runtime), recycling (handling resource
cleanup on behalf of failed clients), and I/O purge
(forcing the completion of outstanding I/O requests
on the basis of some specified filter).

When linked together, the device driver and its
extension constitute a proper container component.
Language preprocessing is used to remap device driver
calls for external services to the appropriate container
linkage. Function calls that are internal to the device
driver are not modified and do not follow container
linkage conventions.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Figure 2 presents a simplified view of the major
components involved in I/O that uses the container,
and indicates the principal dependencies among them.
Note that IOSC communicates with the driver via the
personality. The personality is responsible for presenting
an implementation-independent view of the driver
interface, as well as providing a convincing AIX
execution environment for the drivers themselves. The
figure shows that the driver communicates only with
the personality and with the QDIO driver. The QDIO
driver is an example of a device driver written specifically
for the container environment. In essence, CSSC is the
personality of QDIO. Conversely, the QDIO driver must
implement the interfaces expected by the AIX device
drivers, thus performing a role similar to that of the
AIX personality. The QDIO driver must interact
with operating system I/O services and thus requires a
system interface component. Because the QDIO driver
implements a driver for a System z architecture facility, a
potential exists for amortizing its development cost across
multiple System z operating system platforms.

Container reliability

In this section, we consider the ways in which the
recovery environment that is assumed by the drivers is
preserved, and also how that environment is integrated
with the host operating system environment. Our intent is
for the overall reliability, availability, and serviceability
of the device drivers to be enhanced in the process of
integrating them in the container.

Handles

The container employs handles to transparently address
many of the reliability problems that arise from the use
of pointers to access dynamically assigned, reusable
resources owned by the system or another component.
For example, when one component loads another, it
obtains a license to access the services and resources

of that component. In the event that that contract is
terminated (e.g., because the component was unloaded),
the system needs a means of detecting such out-of-
contract usage. Handles provide such a mechanism.

The type handle_ct is declared by appropriate C
typdefs to be a single-element array whose underlying
structure anonymously reserves memory. By defining the
handle as a single-element array in C, we ensure that the
reference cannot be trivially modified. Anonymous
mapping is done primarily to avoid any kind of
implementation dependency by the user of the handle.
This technique ensures that an individual handle supplier
is not constrained in terms of implementation. This
approach (and other related approaches in this paper)
reduces unintentional programming errors. These
approaches are not security mechanisms, and they

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Component ID I Address I

e 4

Identifier ‘

Simple handle implementation, showing the address that is used to
locate the element to which the handle refers. Also shown are two
identifiers, one in the handle and one in the referenced element.
For the handle reference to the element to be valid, the two
identifiers must match. (The upper set of rectangles represents the
handle. The lower two rectangles represent the element referenced
by the handle.)

can always be deliberately circumvented. Passing of the
handle provides the system service with an area in
the caller’s space in which the service can place the
information needed to manage a reference to a resource.
In our environment, a handle must at least allow the
address of the item that is being referenced to be derived
from the handle itself. Sufficient shared information must
exist, stored in both the handle and the element to which
it refers, to determine that the handle indeed represents
the current instance of the resource. Note that the address
information in the handle is meaningful only in the
context of the component that supplied the handle.
Figure 3 illustrates a simple handle implementation.
This mechanism of using handles as references requires
that while the element being addressed may be reassigned
or reused, it should persist and retain a consistent type
through time. The mechanism also requires that a given
identifier should not be reused. Failure to satisfy these
constraints significantly reduces the benefit that handles
offer. The container addresses these issues using two
mechanisms. First, the element representing the resource
being referenced is allocated using cell pools, that is,
pre-allocated areas of memory from which individual
elements are allocated. The use of cell pools ensures that
the internal structure of individual elements remains
consistent over time. Cell pools offer additional benefits
with respect to performance and memory management;
most significantly, their use provides a consistent
interpretation of a memory area over time, regardless of
the current use status. When an element from a cell pool
is freed, it retains all of the information it contained on
last use, and is reinitialized only if it is eventually reused.

A. M. WEBB ET AL.

237

238

As a second mechanism, a numerical identifier is
associated with each instance of a resource at the time
the resource is allocated. This number is stored in the
associated handle. Whenever the resource is referenced,
the identifier in the handle is compared with the instance
identifier in the element representing the resource, and if
the numbers do not match, the reference is denied. The
identifier is invalidated when the resource is deallocated.
The size of the identifier field is determined by the
resource owner and depends on the expected frequency of
reallocation. This mechanism has some associated risk
because it is possible that a handle may be used after the
identifier has completely cycled and happens to be correct
at the time of reference. Appropriate choice for the size of
the identifier can make the probability of this occurrence
very small.

These two mechanisms jointly allow for safe and
verifiable access to the resources to which they are
applied. The container further enhances the serviceability
of instance identifier use by adopting a systematic
mechanism for invalidating the instance identifier.
Whenever a new instance identifier is being assigned to an
element, it is incremented by 2. Thus, all active elements
in a cell pool will have an even instance identifier. When
the resource is deallocated, the low-order bit of the
identifier in the cell is set to 1 in order to effectively make
the instance identifier odd. This technique has the useful
side effect of allowing the current allocation status of
elements in a cell pool to be determined by simple
examination of the instance identifiers. It also preserves
debugging information about the prior use of an
individual cell, and can give insight into the frequency
with which resources are being reused. Any subsequent
reference to the resource that uses the current handle will
fail because the handle is now stale; that is, its instance
identifier does not match the target data area.

To provide freedom of implementation to a handle
owner, only part of the handle is required to be uniformly
mapped by all users. This fixed portion contains the
component identity of the handle owner. Each
component is able to manage and interpret the remainder
of the information in the handle in any way it sees fit.

Handles are used in the container to manage references
to locks, latches, and several other critical data structures
whose typical usage implies frequent acquisition and
release. The use of pre-allocated storage for the resources
of a given type and the use of a handle to reference the
resource is effectively a form of “type-safe memory”
[46-48].

Of course a penalty is paid in terms of the performance
cost of validating the handle. Typically, the validation
process first requires validating ownership (component
identity), then validating type (its type matches the
expected resource being processed), and finally validating

A. M. WEBB ET AL.

the identifier. These costs are in addition to the
fundamental cost introduced by the implied indirection.

The handle could be made more robust by including
a small checksum, but a checksum was not implemented
in the container. Damage to a handle that affected only
the embedded memory reference was considered too
unlikely to justify the additional cost.

Isolation

Some data elements and their memory areas are more
critical than others in terms of sensitivity to inadvertent
modification. For example, damage to the state elements
of a software lock may have implications far beyond the
success or failure of the execution flow that caused the
damage.

Data isolation is particularly beneficial in the case of
locks and latches, especially if they are to be shared by
programs that are otherwise isolated. There are several
reasons why the isolation provided by the use of handles
is beneficial. First, locks and latches are examples of state
that, while mutable with respect to the user, are internally
constrained by the set of meaningful values that can be
assumed. To increase reliability, a program should not
be able to deliberately or inadvertently invalidate the
allowable state model. Second, locks and latches are
repeatedly acquired, used, and released; that is, frequent
changes in ownership exist. The System z architecture
does not allow areas within a page to be uniquely
protected with respect to other areas in the same page,
which means that a program solution is required.

In the case of the device drivers, the types used for
locks and latches are transparently redefined so that a
handle is stored in the local data structure instead of the
lock or latch itself. The implied change to the semantics
of the locking and latching calls themselves is easily
provided by the transformation layer of the personality.
The handle is then used to reference the lock or latch with
all of the previously attributed benefits, and the actual
memory element can be placed in memory not normally
accessible to the originating program.

Trace

The container implements a comprehensive trace facility,
which allows execution activity to be collected by thread,
by function type, or by activity classification. The amount
of data collected can also be controlled within these
classifications.

All existing trace macros within the AIX drivers were
remapped, using an AIX personality header file, to the
container trace, and in this way the existing trace model
of the driver was preserved.

Additionally, the trace produced by interaction with
container services provides useful insight into driver
activity and records those failed service requests whose

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

disposition is ignored by the drivers. The compile-time
remapping of the device driver calls in order to use
container linkages allows the collection of traces with the
same granularity as other inter-component calls.

Finally, compiler hooks, and/or prolog and epilog
macros, invoked by the compiler at the start and end
of functions, can be used to incorporate flow tracing
within the migrated driver stack without requiring
any modifications to the driver code. This approach
is particularly valuable because this same mechanism
permits an almost full integration of the driver code with
the container recovery model.

Detailed trace tools are essential during development
but are less useful after deployment because of the
runtime costs involved. We paid significant attention
to minimizing the runtime penalty paid for making
the trace/no trace determination.

Diagnostic aids

All major control structures managed by the container
employ the notion of eye catchers. Originally used to
improve serviceability by making core dump information
more readily identifiable to analysts involved in problem
determination and resolution, the eye catchers also make
it easier to recognize bad pointers and the effects of
memory overwrite errors. Each eye catcher consists of an
eight-character acronym, the address of the data area
within which the eye catcher is included, and the size

of that data area. This information can be used by
container-aware functions at runtime to validate data
area references, and can be used by core-dump analysis
tools to automate similar validations. Not all data
structures have eye catchers; for example, the data
structures directly accessed by the migrated drivers do not
have eye catchers.

The nature of the vector interface between components
makes it simple to incorporate additional diagnostic
mechanisms without requiring any normal runtime
penalty. Additionally, the container linkage provides
a platform-independent basis for analyzing container
activity. It is possible to determine the current status of all
threads of control that are active within the container.
The linkage also augments the normal compiler and
driver linkage in order to support OS-specific retry and
recovery models.

Device driver integration

Porting the device drivers

Preceding sections in this paper have discussed the
general characteristics of code that executes in the
architectural environment of the container. The current
section examines issues that arise specifically from the
AIX drivers.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

The AIX device drivers are not aware of, nor do they
conform to, the container architecture. However, the
container allows this code to be migrated with minimum
change and with a preservation of both programming and
data models. This approach is in contrast to those in
architectures such as UDI (Uniform Driver Interface) [49]
that require new drivers to be developed that conform to a
documented architecture. The container model offers the
same benefits of single-driver development, but does so in
a way that allows an existing driver to be used without the
constraints and additional effort that a formal architecture
imposes on initial driver development. In fact, migration
of the AIX drivers to the container environment was
relatively trouble-free. The most laborious task was the
identification of required information from the AIX
system header files referenced by the drivers for use in
the container, discussed in the next section.

Very little modification of the drivers was necessary.
Indeed, in our opinion, the changes described below
amount to following good programming practices. In all
cases these changes could have been introduced into the
original driver code without affecting its function in its
original environment. The following three situations
accounted for most of the changes made.

First, when the personality requires explicit access to
information in a data area also accessed by the drivers,
that data area must be defined by the personality, and
a typedef is used to map it into the expected type space
of the driver. In some cases, the drivers referred to a
structure explicitly, and in those cases it was necessary to
modify the drivers so that an appropriate abstract type
reference was used.

Second, references to system services were resolved
during compilation of the drivers by using macros to
rewrite the reference to conform to the container linkage
model. However, in a few places the drivers made explicit
use of embedded function pointers, making such
rewriting impossible. In some cases, it was possible to
leave these explicit uses of function pointers unmodified
(where some other extant mechanism for communicating
necessary container information existed). It was
sometimes necessary to rewrite the code so that the
function pointer usage was hidden by an appropriate
macro.

Finally, instances of incorrectly typed assignments
existed. The z/VM build environment, like some other
product-build environments, does not accept such
warning messages from the compilation. Rather than
risk eliminating meaningful messages, we modified the
code to resolve such problems.

AIX system header files

The device drivers referenced dozens of AIX header files,
some of which, in turn, referenced dozens of other header

A. M. WEBB ET AL.

239

240

files. We did not want to import any more code than
necessary in order to compile AIX device drivers. With
respect to the first two device drivers, we commented out
all references to AIX header files and incorporated the
required material from AIX header files into a few new
header files. We found that with this approach, the
contents of many of the AIX header files were not
required for the drivers being ported, and for some
of the header files only a few lines were required.
Subsequent to our initial work, during the process of
porting another SCSI disk device driver, we found that
this consolidation of multiple AIX header files into a
single header file was not appropriate because the
appropriate separation of unrelated definitions and
declarations was lost. For example, the second SCSI disk
device required different implementations of similarly
named data structures. The two SCSI disk device drivers
support two different storage subsystems but use the same
lower-level device driver, so this type of conflict is to be
expected. Consequently, the original header file structure
was reapplied to the subset of information required by the
drivers.

Device driver extensions

A device driver extension provides the implementation of
the services required of a component in the container
environment, as discussed above. The device driver
extension also provides the configuration and
initialization services that are accomplished in the AIX
environment by device methods [33, 39]. AIX device
methods are application programs, separate from the
device driver, that control device activation and
configuration. These functions in the driver extensions
were modeled on their AIX analogs but use a different
interface for accessing configuration information. The
driver extensions are also different from AIX device
methods in that the equivalent function in driver
extensions runs in the same environment as the rest of
the device driver, while the AIX driver methods run

as normal (albeit privileged) applications. In addition,
the device driver extensions provide functions not
implemented in the AIX kernel environment. For
example, in the System z environment, a requirement
exists to purge any outstanding I/O activity when physical
storage resources required by the 1/O must be used for
some other purpose. Implementing the purge function
required an additional minor change to the device drivers
to ensure that requests being transferred between device
drivers are not missed by the purge mechanism. Like the
system interface components depicted in Figure 1, the
device driver extensions are different from most container
components because they are aware of both the container
environment and the AIX kernel environment. In
particular, they directly invoke some of the interfaces

A. M. WEBB ET AL.

exported by their associated device drivers as well as
invoking container interfaces exported by CSSC.

z/VM CP integration

The development of the SCSI for z/VM support did not
follow the usual product development cycle for z/VM
or for any other IBM-developed software. Before the
development environment for the final product was
available, the majority of the container was developed
and tested on Linux running as a z/VM guest. The Linux
implementation included the basic container functions,
the AIX personality, and the device driver extensions, as
well as additional device drivers required for the System z
environment and test scaffolding to emulate the layers
of hardware and software not available in the Linux
environment. The container and all of its subcomponents
executed as a normal user process. No actual SCSI I/O
was performed in the Linux environment. Such I/O was
simulated by the test scaffolding, which utilized the same
container component infrastructure as product code. The
platform-independent portions of the code developed

on Linux were subsequently integrated into the z/VM
CP component, and the first version of this support
became generally available as part of z/VM 5.1 in
September 2004.

CP environment

As discussed above, for many years the CP component
of VM did not exploit virtual addressing; that is, all of
the CP code and data areas were fixed in memory and
referenced by real addresses. This fact, and the lack of
facilities for dynamically allocating large areas of memory
(greater than one page, or 4,096 bytes), meant that each
“stack frame” of a C routine had to occupy less than
one page. While this restriction may seem a stringent
requirement at first glance, in reality it is not that different
from the AIX or other UNIX kernel environments.
Portions of the AIX kernel are pageable, but many parts
are not. Routines that are not allowed to cause page
faults must have fixed storage for their C-procedure call
stacks. In AIX the stacks are contiguous ranges of virtual
addresses, but they are limited in size. Thus, AIX kernel
extensions and device drivers do not have routines with
large stack frames. Rather than have large memory
areas allocated as C “automatic” storage, the dynamic
requirements of the drivers are met by explicit memory
allocation calls at runtime or (quite commonly) by
allocating a pool of space during driver initialization and
suballocating the storage from the pool as required. In
practice, meeting the requirement that the stack frame of
each C routine be smaller than one page was not difficult,
but it does require the use of a compiler that allows
function prolog and epilog code to be supplied at compile
time.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Two assembly language macros were provided for this
purpose, corresponding to function prolog and epilog.
Parameterized information passed to these macros at
compile time allows the macros to generate an optimal
code sequence, sensitive to the constraints, such as stack
usage, of the particular environment.

CP SCSI exploitation
To minimize the changes required of other CP
components, our initial SCSI support emulated an older
I/O device, the FBA channel-attached disk. Existing
interfaces allowed applications to access SCSI disks by
the applications building the same channel programs
that were used to access FBA disks. New code in CP
interpreted these channel programs and translated the
requests to calls to the SCSI interfaces. The processing of
these channel programs by the central processor (instead
of the channel processors) corresponds to processing
overhead incurred to avoid large-scale changes to the
z/VM 1/O system. Ultimately, the interface exposed by
the FBA device support is very nearly the same as that
provided by the SCSI device drivers, so this additional
computational overhead could easily be avoided with
minor changes. We did not attempt to implement these
changes in the initial release because they are pervasive,
and even though they are not complex, they would
require a substantial verification and testing effort
that was avoided by emulating existing interfaces.
In z/VM 5.2, the paging subsystem was changed to
avoid the channel program emulation, resulting in
significantly improved paging performance on SCSI
devices, due largely to the increased concurrency
allowed by direct access to the SCSI I/O interface.
Despite the increased CPU processing overhead
discussed above, SCSI devices have been observed to
produce a substantially increased paging rate compared
with previous device interfaces [50]. The results reported
in [50] are for a hypothetical configuration, specifically
designed to force a high paging rate, and are not claimed
to be representative of any production environment.
However, the results do demonstrate that the SCSI device
interface can sustain a higher 1/O rate than previous
interfaces while accessing the same external storage
subsystem via the same host hardware interfaces.

Summary and conclusions

The approach described in this paper allowed a relatively
small number of individuals to produce a new /O
subsystem for the z/VM product. The subsystem included
tens of thousands of lines of code from a completely
different operating system, all written in C, a language
that had never been used in the CP component of z/VM.
As successful as the approach has been in providing a new
function for z/VM, with very low development and test

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

costs, some drawbacks exist. Although providing an AIX
execution environment (via the AIX personality)
minimized the changes to the AIX device drivers, this
environment incurs some CPU processing overhead, as
does the improved software reliability provided by the
mechanisms discussed in the section on container
reliability. In addition to these possible performance
problems, z/VM must maintain and support the AIX
device drivers, components of which are unfamiliar to the
z/VM team. Some additional education is also required
for the service team to become familiar with the extensive
use of vector tables and C preprocessor macros used to
implement component linkages.

The design and development of a significant part of the
subsystem (excluding the ported AIX device drivers) was
accomplished by workers outside the traditional z/VM
team. Much of this code was integrated into z/VM after it
had undergone function and component testing on Linux.
The schedule that started with the production of the first
working executable and culminated with components that
were ready for system test was very aggressive. However,
the progress from system test to product general
availability was relatively straightforward, and no
significant serviceability problems have appeared with
respect to the z/VM SCSI subsystem in customer
installations. As discussed in the section on device
driver integration, an AIX device driver that was not
contemplated in the original design was added to z/VM
subsequent to the initial development; it became generally
available in December of 2005 with the release of
z/VM 5.2. The addition of this device driver, which was
new for z/VM, was accomplished largely by the traditional
z/VM development team with substantially less effort than
required for the first two device drivers, demonstrating
the utility and flexibility of the container design and
validating the basic design concepts.

A significant portion of the newly developed code is
independent of the z/VM system. All of CSPN, I0SC,
the AIX personality, the AIX device driver extensions,
and the QDIO device driver have been designed and
implemented with the intent that they be reusable in other
System z operating system environments. Because of the
isolation provided by the container, the ported AIX
device drivers should also not require changes to be
functional in a different environment. All of these
components can simply be reused in order to provide the
same function in another System z operating system. Of
course, in addition to the z/VM-specific components,
namely CSPS and the z/VM system interface
components, other operating systems may require
functions not implemented for z/VM. Nonetheless, in
addition to reusing the AIX device drivers, the approach
described will allow much of the container
implementation itself to be reused. 241

A. M. WEBB ET AL.

242

In summary, the container design and implementation
have proven to provide a robust mechanism for
incorporating device drivers from the AIX operating
system running on System p servers into the CP
component of z/VM running on System z servers. This
incorporation provides a significant saving in design and
implementation effort. The advantages of this approach
far outweigh the drawbacks mentioned above, and this
approach to the reuse of kernel code can be generalized to
other device drivers or kernel components and applied
to other operating systems.

Acknowledgments

This paper has concentrated on the container design and
the reuse of the AIX device drivers. Other aspects of the
project have been discussed only briefly or omitted
entirely. The hard work and dedication of many
individuals were required for the timely delivery of
z/VM 5.1 and z/VM 5.2, and any list of contributors
would almost certainly be incomplete. However, with
regard to the z/VM SCSI I/O subsystem, we would
particularly like to acknowledge, in alphabetical order,
the contributions of Roger E. Bonsteel, Charles J. Brazie,
Juliet C. Candee, John L. Czukkermann, Eric R. Farman,
Joseph M. Hust, John J. Majikes, James L. McGuinniss,
Jr., Lisa H. Reese, Robert W. Schreiber, Steven G.
Wilkins, John W. Yacynych, and Edward Zebrowski, Jr.
We also thank the referees for their suggestions for
improving the paper.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of The Open
Group, Sun Microsystems, Inc., Xerox Corporation, Microsoft
Corporation, Interactive Software Engineering, Inc., or Linus
Torvalds in the United States, other countries, or both.

References

1. C. W. Kruger, “Software Reuse,” ACM Comput. Surv. 24,
No. 2, 131-183 (1992).

2. B. W. Kernighan and P. L. Plaugher, Software Tools,
Addison-Wesley, Reading, MA, 1976.

3. F. P. Brooks, Jr., The Mythical Man-Month, Addison-Wesley,
Reading, MA, 1995.

4. B. Stroustrup, The C++ Programming Language, Addison-
Wesley, Reading, MA, 2000.

5. B. Meyer, Object-Oriented Software Construction, Prentice-
Hall, New York, 1997.

6. G. Bracha, J. Gosling, B. Joy, and G. Steele, The Java
Language Specification, Addison-Wesley, Reading, MA, 2005.

7. P. H. Winston and S. Narasimhan, On to Smalltalk, Addison-
Wesley, Reading, MA, 1998.

8. A. Hejlsberg, S. Wiltamuth, and P. Golde, The C#
Programming Language, Addison-Wesley, Reading, MA,
2003.

9. G. Booch, Object Oriented Analysis and Design with
Applications, Benjamin/Cummings, Redwood City, CA, 1994.

A. M. WEBB ET AL.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

G. M. Amdahl, G. A. Blaauw, and F. P. Brooks, Jr.,
“Architecture of the IBM System/360,” IBM J. Res. & Dev. 8,
No. 2, 87-101 (1964).

. R. P. Case and A. Padegs, “Architecture of the IBM

System/360,” Commun. ACM 21, No. 1, 73-96 (1978).

. A. Padegs, “System/360 and Beyond,” IBM J. Res. & Dev. 25,

No. 5, 377-390 (1981).

A. Padegs, “System/370* Extended Architecture: Design
Considerations,” IBM J. Res. & Dev. 27, No. 3, 198-205
(1983).

D. Gifford and A. Spector, “Case Study: IBM’s System/360—
370 Architecture,” Commun. ACM 30, No. 4, 291-307 (1987).

. K. E. Plambeck, “Concepts of Enterprise Systems

Architecture/370*,” IBM Syst. J. 28, No. 1, 39-61 (1989).
K. E. Plambeck, W. Eckert, R. R. Rogers, and C. F. Webb,
“Development and Attributes of z/Architecture™,” IBM J.
Res. & Dev. 46, No. 4/5, 367-379 (2002).

N. S. Prasad, IBM Mainframes Architecture and Design,
McGraw-Hill, New York, 1994.

. IBM Corporation, z/Architecture Principles of Operation

(SA22-7832-04); see hitp:|www.elink.ibmlink.ibm.com/public/
applications/publications|cgibin/pbi.cgi/.

. IBM Corporation, Enterprise Systems Architecture/390*

Principles of Operation (SA22-7201-08); see http://
www.elink.ibmlink.ibm.com/public|applications/publications/
cgibin/pbi.cgil.

S. A. Calta, J. A. deVeer, E. Loizides, and R. N. Strangwayes,
“Enterprise Systems Connection (ESCON¥) Architecture™—
System Overview,” IBM J. Res. & Dev. 36, No. 4, 535-551
(1992).

J. C. Elliott and M. W. Sachs, “The IBM Enterprise Systems
Connection (ESCON) Architecture,” IBM J. Res. & Dev. 36,
No. 4, 577-591 (1992).

T. A. Gregg, “S/390* CMOS Server 1/O: The Continuing
Evolution,” IBM J. Res. & Dev. 41, No. 4/5, 449-462 (1997).
D. J. Stigliani, Jr., T. E. Bubb, D. F. Casper, J. H. Chin, S. G.
Glassen, J. M. Hoke, V. A. Minassian, J. H. Quick, and C. H.
Whitehead, “IBM eServer® z900 1/O Subsystem,” IBM J.
Res. & Dev. 46, No. 4/5, 421-445 (2002).

M. E. Baskey, M. Eder, D. A. Elko, B. H. Ratcliff, and D. W.
Schmidt, “zSeries™ Features for Optimized Sockets-Based
Messaging: HiperSockets™ and OSA-Express,” IBM J. Res.
& Dev. 46, No. 4/5, 475-485 (2002).

G. H. Mealy, B. I. Witt, and W. A. Clark, “The Functional
Structure of OS/360*” (Part 1, Part 11, Part I1I), IBM Syst. J.
5, No. 1, 3-51 (1966).

C. E. Clark, “The Facilities and Evolution of MVS/ESA*,”
IBM Syst. J. 28, No. 1, 124-150 (1989).

M. Mueller, L. C. Alves, W. Fischer, M. L. Fair, and I. Modi,
“RAS Strategy for IBM S/390 G5 and G6,” IBM J. Res. &
Dev. 43, No. 5/6, 875-888 (1999).

L. C. Alves, M. L. Fair, P. J. Meaney, C. L. Chen, W. J.
Clarke, G. C. Wellwood, N. E. Weber, I. N. Modi, B. K.
Tolan, and F. Freier, “RAS Design for the IBM eServer z900,”
IBM J. Res. & Dev. 46, No. 4/5, 503-521 (2002).

M. L. Fair, C. R. Conklin, S. B. Swaney, P. J. Meaney, W. J.
Clarke, L. C. Alves, I. N. Modi, F. Freier, W. Fischer, and
N. E. Weber, “Reliability, Availability, and Serviceability
(RAS) of the IBM eServer z990,” IBM J. Res. & Dev. 48, No.
3/4, 519-534 (2004).

M. J. Bach, The Design of the UNIX Operating System,
Prentice-Hall, Englewood Cliffs, NJ, 1986.

M. K. McKusick, K. Bostic, M. J. Karels, and J. S.
Quarterman, The Design and Implementation of the 4.4 BSD
Operating System, Addison-Wesley, Reading, MA, 1996.

U. Vahalia, UNIX Internals: The New Frontier, Prentice-Hall,
Upper Saddle River, NJ, 1996.

IBM Corporation, AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts (SC23-4125-07); see
http:|lwww.elink.ibmlink.ibm.com/publicapplications/
publications/cgibin/pbi.cgi/.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

34. IBM Corporation, AIX 5L Version 5.2 General Programming
Concepts: Writing and Debugging Programs (SC23-4128-08);
see http:|www.elink.ibmlink.ibm.com/publicapplications/
publications/cgibin/pbi.cgi/.

35. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Base Operating System and Extensions, Volume 1 (SC23-4159-
006); see http:/lwww.elink.ibmlink.ibm.com/public/applications/|
publications/cgibin/pbi.cgi/.

36. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Base Operating System and Extensions, Volume 2 (SC23-4160-
05); see http://www.elink.ibmlink.ibm.com/public|applications/
publications/cgibin/pbi.cgi/.

37. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems, Volume 1 (SC23-4163-05); see http://
www.elink.ibmlink.ibm.com/publicapplications/publications/
cgibin/pbi.cgil.

38. IBM Corporation, AIX 5L Version 5.2 Technical Reference:
Kernel and Subsystems, Volume 2 (SC23-4164-05); see http://
www.elink.ibmlink.ibm.com/public|applications/publications/
cgibin/pbi.cgi/.

39. IBM Corporation, AIX 5L Version 5.3 System Management
Concepts: Operating System and Devices (SC23-4908-02); see
http:|/www.elink.ibmlink.ibm.com/public/applications|
publications/cgibin/pbi.cgi/.

40. IBM Corporation, AIX 5L Version 5.3 System Management
Guide: Operating System and Devices (SC23-4910-02); see
http:|lwww.elink.ibmlink.ibm.com/public/applications|
publications/cgibin/pbi.cgi/.

41. R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. J.
Hatfield, “Virtual Storage and Virtual Machine Concepts,”
IBM Syst. J. 11, No. 2, 99-130 (1972).

42. R.J. Creasy, “The Origin of the VM/370 Time-Sharing
System,” IBM J. Res. & Dev. 25, No. 5, 483-490 (1981).

43. G. Banzhaf, F. W. Brice, G. R. Frazier, J. P. Kubala, T. B.
Mathias, and V. Sameske, “SCSI Initial Program Loading for
zSeries,” IBM J. Res. & Dev. 48, No. 3/4, 507-518 (2004).

44. C. J. Stephenson, “Fast Fits: New Methods for Dynamic
Storage Allocation,” Proceedings of the 9th ACM Symposium
on Operating Systems Principles, 1983, pp. 30-32.

45. T. Lindholm and F. Yellin, Sun MicroSystems, “The Java
Virtual Machine Specification—2nd Edition,” 1SBN 0-201-
43294-3, 1999.

46. M. Greenwald and D. Cheriton, “The Synergy Between Non-
Blocking Synchronization and Operating System Structure,”
Proceedings of the 2nd Symposium on Operating Systems
Design and Implementation, 1996, pp. 123-136.

47. D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and
J. Cheney, “Region-Based Memory Management in Cyclone,”
Proceedings of the ACM SIGPLAN 2002 Conference on
Programming Language Design and Implementation, 2002, pp.
282-293.

48. M. Hicks, G. Morrisett, D. Grossman, and T. Jim,
“Experience with Safe Manual Memory-Management in
Cyclone,” Proceedings of the 4th International Symposium on
Memory Management, 2004, pp. 73-84.

49. CerTek Software Designs, “Uniform Driver Interface: UDI
Version 1.01 Specification”; see http://www.projectudi.org/
specs.html.

50. IBM Corporation, “z/VM Performance Report: CP Disk I/O
Performance”; see http://www.vm.ibm.com/perfreports/zvm/
html/520dasd.html.

Received May 2, 2006, accepted for publication
May 24, 2006, Internet publication December 5, 2006

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Alan M. Webb IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (alan_webb@us.ibm.com). Mr. Webb is a Senior Software
Engineer who joined IBM UK in 1977. He received an M.S. degree
with distinction in software engineering from Oxford University in
1997. Mr. Webb has worked as a developer and architect in
Hursley, England, and in Raleigh, North Carolina. In 1999, he
joined the IBM Thomas J. Watson Research Center, where he
has worked on various projects related to IBM server software
technologies.

Ray Mansell 1BM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (mansell@us.ibm.com). Mr. Mansell joined the IBM

UK Laboratories in 1974 after receiving a bachelor’s degree in
electronic engineering from the University of Bath. He joined the
IBM Thomas J. Watson Research Center in 1990 and has worked
on high-performance file systems, virtualization, and operating
systems.

Joshua W. Knight 1BM Research Division, Thomas J. Watson
Research Center, P.O. Box 704, Yorktown Heights, New York
10598 (joshk@us.ibm.com). Dr. Knight is a Research Staff
Member. He received a B.S. degree in engineering physics from
Cornell University in 1968 and a Ph.D. degree in applied physics
from Stanford University in 1978. He joined IBM in 1981 and has
since worked on hardware and software performance and on server
software technologies.

Steven J. Greenspan [BM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(fletch@us.ibm.com). Mr. Greenspan received his B.S. degree in
computer science in 1982 from the City College of New York. That
same year, he joined IBM in Poughkeepsie, New York, to work on
development tools. Since 1987, he has worked on the design and
development of System z operating systems.

David B. Emmes IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(emmes@us.ibm.com). In 1974, Mr. Emmes received his B.A.
degree in mathematics summa cum laude from Washington
University in St. Louis. He received his M.S. degree in mathematics
from M.L.T. in 1976, and his M.S. degree in computer and
information science from Syracuse University in 1985. He joined
IBM in 1978 and has designed and developed z/OS operating
system support for real storage management, Sysplex
communications, workload management, TCP/IP, and Java
Virtual Machine performance enhancements. Since 2002,

Mr. Emmes has been involved in the effort described in this
paper, focusing on the QDIO driver and related hardware

and firmware areas.

A. M. WEBB ET AL.

243

