
IBM System z9
eFUSE
applications
and methodology

R. F. Rizzolo
T. G. Foote
J. M. Crafts

D. A. Grosch
T. O. Leung

D. J. Lund
B. L. Mechtly
B. J. Robbins

T. J. Slegel
M. J. Tremblay

G. A. Wiedemeier

IBM System z9e is the first zSeriest product to use electronic
fuses (eFUSEs). The blowing of the fuse does not involve
a physical rupture of the fuse element, but rather causes
electromigration of the silicide layer, substantially increasing the
resistance. The fuse is ‘‘blown’’ with the application of a higher-
than-nominal voltage. eFUSEs provide several compelling
advantages over the laser fuses they have replaced. The blow
process does not risk damage to adjacent devices. eFUSEs can
be blown by a logic process instead of a physical laser ablation
method. eFUSEs are substantially smaller than laser fuses, and
they scale better with process improvements. Finally, since no
specialized equipment or separate product flow is required,
eFUSEs can be blown at multiple test and application stages. We
discuss circuit design, fuse programming, test considerations, and
z9e system applications. The physical and logical implementation
of eFUSEs has resulted in improved yield at wafer, module, and
final assembly test levels, and has provided additional flexibility
in logic function and in system use.

Background
Chip yield, the ratio of acceptable tested chips to the

total number tested, is a strong function of the number

of memory storage elements, or array cells on chip.

Redundant cells have been required on memory chips for

many years in order to increase yield [1]. When a defective

cell (or collection of cells) was identified through chip

testing, the defective address was typically recorded in

nonvolatilememory. Thiswas implemented by laser-blown

fuses on the chip. Subsequently, whenever the defective

address was accessed, the fuses and associated redundancy

logic would address redundant cells instead of defective

cells. As chip integration has increased, logic has been

integrated with large static arrays on most advanced chip

designs. Three of five zSeries* chip types integrate logic

with memory to such an extent that they require hundreds

to thousands of fuses for array redundancy. An electronic

chip ID, or EID, has also been implemented with fuses.

Laser fuse (,FUSE) methodology, problems, and
limitations
,FUSEs [2] are blown using a diode-pumped laser. The

wafer is stepped to a location specified in a fuse file

containing the fuse to be blown (from prior test results)

and the physical location. The laser is fired at an

empirically determined power and time duration

guaranteed to blow the fuse. A chuck steps to the next

location, and the process is repeated until all fuses are

blown. However, ,FUSE usage introduces the following

problems and limitations:

� ,FUSEs use an increasing amount of chip area when

redundancy requirements are increasing. The laser

target must be sufficiently large and separated from

other structures so that the ablated metal does not

cause collateral damage. We have observed that larger

chips, advanced semiconductor processes, higher

yield, and more stringent test requirements drive the

need for more redundancy. This is not just to cover

classical ‘‘hard’’ defects, but ‘‘soft’’ defects as well.

These soft defects may fail only under certain

conditions such as low or high voltage, high speed,

or long data retention time.
� ,FUSEs do not scale as well as the semiconductor

technology. The target size and pitch depend on the

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 R. F. RIZZOLO ET AL.

65

0018-8646/07/$5.00 ª 2007 IBM

beam spot size, on the need to remain far enough

away from other structures to avoid damage, and on

stepper accuracy. This indicates an increasing area

penalty as semiconductor technology advances.
� ,FUSEs require a special laser tool and test flow which

lower throughput and restrict ,FUSE usage. Fuse blow

is typically done after the first pass of wafer testing.

After a high-temperature first-pass test, the wafers are

routed to the laser tool. After fuses are blown, the

wafers are routed back to the wafer tester to verify

that the fuses were blown correctly. This second-

pass wafer test is done at low temperature. Low-

temperature-dependent defects may cause new array

fails. Even though these fails may be ‘‘repairable,’’ the

implementation complexity and additional process

time are prohibitive. Chips are processed once. Array

fails at any subsequent test step, whether repairable or

not, result in the chip being discarded.

These laser fuse disadvantages drove the need for a

more flexible and smaller fuse structure.

eFUSE circuit design
The eFUSE [3] implementation used in the System z9*

comprises four essential on-chip elements and one

essential off-chip element. The silicided polysilicon fuse

is the element that is blown or programmed through

an electromigration event. Figure 1 shows a scanning

electron microscope image of blown and unblown

eFUSEs. The programming circuitry consists of two

large-series n-FET transistors designed to draw a large

amount of current (10–15 mA), as shown in Figure 2(a).

The sense circuitry is the structure that reads the state of

the polysilicon fuse, as shown in Figure 2(b). The control

logic (not shown) controls the fuse program and fuse read

operations. An external voltage source, called Fsource,

is used to program fuse elements (at .3.3 V) and read

them (at 0.0 V).

The eFUSE circuit design needs 10–15 mA of current

from the Fsource supply to blow a fuse (F). This required

a series n-FET configuration [N0 and N1 in Figure 2(a)]

using thick-oxide n-FETs, so that the programming

n-FETs were not damaged during application of the

high-voltage external supply. The requirement that the

programming n-FETs be able to draw 10–15 mA of

current through an approximately 200-X polysilicon fuse

resistor forces these n-FETs to be approximately 50 lm
wide. The current requirements during the fuse program

and fuse read are significant. This places constraints

on the Fsource wiring in the design. The on-chip wiring

for the Fsource signal was made such that the maximum

resistance was less than 5 X, and the off-chip wiring was

implemented such that the total resistance back to the

supply (ground or high-voltage supply) was less than 5 X.

This requirement was imposed so that the voltage drop

on the Fsource net during a fuse-programming event is

less than 100 mV. This guarantees that the external

supply is at an accurate voltage, enabling a good fuse-

programming event. The other motivation for this wiring

requirement is that a large number of fuses (more than

1,000 fuses) must be able to be read at the same time, as is

done in the z9* system chips. The risk in reading this

many fuses simultaneously is that the voltage divider

circuit may change because of a shift of the on-chip

ground relative to the ground signal applied on the Fsource

signal. Requiring a low resistance in the Fsource signal

limits this ground shift.

The initial design requirements for the sense circuit

[Figure 2(b)] were to interpret any polysilicon fuse of less

resistance than 500 X as ‘‘unprogrammed’’ and any fuse

of greater resistance than 5 kX as ‘‘programmed.’’ A

further requirement for the sense circuitry was that it

must not draw more than ;500 lA of current through

the fuse to prevent reverse electromigration from

occurring. This current limitation sets the size of p-FET

P8 in Figure 2(b). This current limit means that in a best-

case process and high-voltage condition, the resistance

of the parallel combination of p-FETs P8 and P1 must

be greater than 2 kX. In a worst-case process and low-

voltage condition, the resistance of p-FET P8 increases

sufficiently that sensing a 5-kX fuse as programmed

becomes a challenge.

In addition to the above design constraints, the sense

circuitry must be protected during application of the

Figure 1

Scanning electron micrograph of blown (programmed) and

unblown eFUSEs.

Depleted

CoSi2
(blown)

Unblown

R. F. RIZZOLO ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

66

high-voltage supply, since the oxide breakdown of all

FETs in this process is less than 3 V. This requires thick-

oxide isolation n-FETs [N1 and N4 in Figure 2(b)] to

protect against destruction of the sense circuit during the

application of the high programming voltage. To help

stabilize the Fsource voltage during a fuse sense event, an

n-FET pulldown [N2, N3, N7 in Figure 2(a)] was added

on the Fsource side of the polysilicon resistor to minimize

any ‘‘ground bounce’’ that would occur because of the

Fsource signal.

Since the Fsource net connects to a chip I/O and then

to the outside world, electrostatic discharge (ESD)

protection must be provided. Hardware results indicate

that the per-fuse n-FET clamp structure of Figure 2(a)

is sufficient for ESD protection.

The control circuitry for the eFUSE is fairly simple,

consisting of a single latch for each fuse element, tied to

the ‘‘blow select’’ input pin, used to select which fuse is

to be programmed if the ‘‘blow enable’’ signal is set.

The blow enable signal is set by another latch that is

controlled independently of the blow select latches. The

remaining control logic consists of a set of latches and

a small state-machine that goes through the sequence

shown in Table 1 to control the fuse sense.

During this input signal sequence, the following is

happening in the sense circuit. The first state is the steady

state for the sense circuit, in which it holds the current

state in the half-latch structure created by FETs P1, N14,

and N15, and inverter I28. The second state is the

precharge state, in which the latch feedback loop is

broken by turning off n-FET N15 and the node sense

node is precharged via p-FET P8. The third state is the

fuse sense state, where n-FET N1 is turned on and the

voltage divider is set up between p-FETs P8/P1 and the

polysilicon fuse through n-FETs N1 and N4. The inverter

I28 and p-FET P1 are then used to sense the state of

the fuse.

After the initial designs finished long-term reliability

testing, a problem with the sense circuitry was discovered.

The p-FET P1 [Figure 2(b)] in the half latch used as part

of the sense circuitry would weaken over time (because of

a voltage-threshold deterioration mechanism known as

negative bias temperature instability, or NBTI [4]) if the

half latch was storing a 1 value. This happened whenever

a programmed fuse was read, and the resulting state

would persist until the chip was powered off. The danger

is that the degradation of P1 causes a programmed fuse,

which can be read correctly immediately after the fuse is

programmed, to cease to be read as programmed with the

passage of time. This observation on certain chips led to a

change in the control logic for the eFUSE sense circuit.

This change called for the half latch that is part of the

sense circuit to be reset by the control logic so that the P1

does not degrade over time, ensuring that the sense circuit

will continue to read an unprogrammed fuse correctly.

This change required that a ‘‘shadow’’ latch be added

in the control logic. This shadow latch is external to the

circuit shown in Figure 2(b), and has its data input tied

to the fuse out (Fout) pin in Figure 2(b). In addition to

the new shadow latch, there is an additional operation

performed to clear the half latch. Clearing this half latch

is described by the state-machine sequence in Table 2.

Table 1 State-machine sequence to sense eFUSE.

Time Precharge Sense b and

precharge

Fuse

sense 1

Fuse

sense 2

0 1 1 0 0

1 0 0 0 0

2 0 0 1 1

3 1 0 1 1

4 1 1 0 0

Figure 2

(a) eFUSE programming circuitry; (b) eFUSE sense circuitry.

Blow fuse

Blow enable

Fsource

Fsource

eFUSE blow circuit Fout

N1

N0

Fsource

Int_clamp

Fuse_sense_2

Clamp circuit

N2 N3

N7

Vdd

gnd

F

(a)

(b)

eFUSE

blow

circuit

Fout

Fout

Blow fuse

Blow enable

N15 I28

Sense node

Fuse sense 1

Sense b and

precharge

Precharge
P8

N1

N4

P1

N14

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 R. F. RIZZOLO ET AL.

67

During this input signal sequence, the following is

happening in the sense circuit. The first state is the steady

state for the sense circuit, in which it holds the current

state in the half-latch structure created by FETs P1, N14,

and N15, and inverter I28. The second state is the

precharge state, in which the latch feedback loop is

broken by turning off n-FET N15 and the node sense

node is precharged via p-FET P8. The third state is the

fuse sense state, in which n-FET N1 is turned on and the

voltage divider is set up between p-FETs P8/P1 and the

polysilicon fuse through n-FETs N1 and N4. The inverter

I28 and p-FET P1 are then used to sense the state of the

fuse.

eFUSE/,FUSE controls and multiplexing (MUX)
There are three basic ways of implementing redundancy

through fuse values on System z9 chips, and this

flexibility drives the control and multiplexor logic.

,FUSEs are tried-and-true nonvolatile storage using

laser fuses, but they can be programmed only at wafer

test. eFUSEs provide potential improved yield and

productivity and can be programmed much later in the

manufacturing flow (but not in the field). However, they

carry the risk of a new type of fuse. ‘‘Soft fuses’’ are

implemented by programmable and scannable latches,

can be programmed even in the field, and are used to

override hard fuses. However, they are volatile storage,

and fuse values are lost if power is interrupted. All fuse

types were included to minimize schedule risk and

maximize yield. The initial chips used ,FUSE for

redundancy because it was a proven methodology

on several previous zSeries generations. With a tight

schedule, the project could not tolerate any time delays

associated with a potential eFUSE problem. eFUSE

learning and debug would be done in parallel with

functional learning and debug. The final design was to use

eFUSE only. Multiplexors determine the fuse data to be

used—,FUSE, eFUSE, or soft fuse. Soft-fuse latches

have a dual use: They may be used to override the other

fuses, and they are used to control the programming of

the eFUSEs.

Figure 3(a) shows the eFUSE controls, ,FUSE

controls, and multiplexing. The major eFUSE inputs are

as follows: The precharge and sense inputs initialize the

circuit and read the fuse values into the sense latches. The

Fsource voltage is the power supply used to blow the fuse.

The blow control signal is held high when scanning

latches and held low to blow a fuse (with Fsource). The

program signal is used to select the fuses to be blown.

eFUSE initialization via the precharge/sense inputs can

be done using either test controls or via a state machine,

as selected by the eFUSE init select signal. eFUSE

initialization via test controls is useful, since it does not

require scanning the chip. This is the main method of

eFUSE initialization used during manufacturing test.

eFUSE initialization via the state machine is used during

system operation.

Additional multiplexor controls, fuse select and fuse

control, are used to set up the chip to use eFUSEs,

,FUSEs, or soft-fuse latches as the source for fuse values

on the chip (the fuse out signal). Both eFUSE and

,FUSE values are captured into a non-scan sense latch

by an initialization pulse. This value is loaded into the

functional soft-fuse latches by the fuse select and fuse

control multiplexor signals. Soft-fuse latches are part

of the normal scan chain.

Programming (writing)
eFUSE programming is a simple process [see Figure 3(b)].

Fuses are blown one at a time in order to limit IR drop on

the Fsource line.

1. Flush zeros into the soft-fuse scan chain (blow

control is low).

2. Scan a single ‘‘1’’ into the nth position in the soft-fuse

chain, corresponding to the first fuse to be blown.

3. Set blow control high to blow fuse (;200 ls
required).

4. Set blow control low, flush chain with zero.

5. Scan in a single ‘‘1’’ to the mth position,

corresponding to the second fuse to be blown.

6. Repeat Steps 3 and 4 to blow the next fuse.

7. Repeat Steps 5 and 6, modifying m until all required

fuses are blown.

8. Read eFUSEs to verify values.

Table 2 State-machine sequence to clear half latch.

Time Precharge Sense b and precharge Fuse sense 1 Fuse sense 2 Blow fuse Blow enable

0 1 1 0 0 0 0

1 1 0 1 1 1 1

2 1 1 0 0 1 1

3 1 1 0 0 0 0

R. F. RIZZOLO ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

68

This ‘‘keep it super-simple’’ approach was chosen

to minimize complexity and programming effort. The

disadvantage of this approach is that requires many scan

cycles to blow all fuses, since the chain always starts with

all ‘‘0.’’ The EID fuse block, where many fuses are blown

to encode the EID, is placed near the beginning of the

fuse scan chain to improve programming time. An

alternative, more efficient method is to follow Steps 1–3

above but then continue the scan to the next fuse blow

position:

4a. Set blow control low but do not flush chain.

5a. Apply m–n clocks to scan the single ‘‘1’’ to the mth

position, corresponding to the second fuse to be

blown.

After that fuse is blown, the scan is continued to the

next position. That fuse is blown. This continues until all

fuses are blown. In this way, all fuses are blown with a

single scan of the fuse chain. A further enhancement is

possible by using multiple Fsource pins and provides a

separate blow control signal for each Fsource pin.

Reading
Reading is accomplished by generating an initialization

signal to read the eFUSE value into its sense latch. The

multiplexor controls transfer of the sense latch data to

the soft-fuse latch. The steps are as follows:

1. Initializing test controls and state machine.

2. Set eFUSE init select to use either test controls or

state machine for precharge/sense eFUSE read

sequence.

3. Run precharge/sense sequence to initialize eFUSEs

and set eFUSE sense latches.

4. Set fuse select and fuse control inputs to 0 to capture

eFUSE values in soft-fuse latches.

5. Scan out soft-fuse latches to verify eFUSE values.

Applications and considerations specific to
System z9
eFUSEs were used on 15 of the 16 chips on the System z9

multichip module (MCM). The clock chip used an older

semiconductor technology that supported only ,FUSE.

The major applications, referenced in Figure 4, are

electronic chip ID (EID), array redundancy, recording

chip parametric data, implementing fault tolerance on

specific arrays, recording MCM specific data, array repair

at the MCM level, and recording the total blown-fuse

count.

Wafer and package test flow

Electronic fuses can be programmed at each of the

following device test steps: high-temperature wafer test,

low-temperature wafer test, first-pass package test, and

post-stress package test. Wafer test contains two passes,

high-temperature and low-temperature. Package test,

with the die mounted on a temporary carrier, is done

before and after burn-in stress.

The major function of high-temperature wafer test is

to remove or repair defective chips. Experience over

many years indicates that this test step is most efficient

in removing defects, especially those sensitive to low

voltage; therefore, this step is usually run first. The EID

is a unique code identifying the chip lot, wafer, and xy

position on the wafer; this is also programmed at the first

pass of wafer test. EID eFUSE programming content is

identical to that for ,FUSE. In addition, an intrinsic

speed metric using the average performance sort ring

oscillator (PSRO) delay is recorded, along with a power

sort code based on CMOS quiescent current. This

provides the ability to directly read the chip speed and

power sort at known temperature and voltage conditions

during system diagnostics without referencing an external

database. Finally, the count of all fuses blown is

programmed into a separate eFUSE bank to serve

as a simple checksum.

Figure 3

(a) eFUSE/ FUSE controls and multiplexing; (b) eFUSE program-

ming logic.

Test

controls

State

machine

eFUSE

init select

eFUSE

Sense

latch

P
re

ch
ar

g
e

S
en

se

 FUSE init

controls

0

1

MUX 0

1

MUX

0

1

MUX

0

1

MUX

Fuse

select

L1
L2

Fout

Soft-

fuse

latch

Program

Fsource
voltage

Fuse

control

Fuse

FUSE

Sense

latch

Fuse

(a)

(b)

A A A

Scan out

Blow control

Fsource

Scan in

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 R. F. RIZZOLO ET AL.

69

Array redundancy eFUSE solutions are determined

at all test steps; this results in a significant yield

improvement over ,FUSE. At high-temperature wafer

test, a number of array built-in self-test (ABIST) tests are

run with different patterns, voltage corners, speeds, and

various timing adjustments to check read and write

margins. If a chip is marked as possibly repairable, the

failed address register (FAR) content is passed to an

offline program that merges the fail data from every test

to find an optimal solution as the die is being tested.

Redundancy fuses are then blown, and ABIST is rerun

to verify that the fix worked.

The next wafer test pass is done at low temperatures

in order to detect low-temperature-unique fails along

with high-voltage-unique fails. Quiescent current is

exponentially sensitive to both temperature and Vdd.

To prevent thermal runaway, many high-voltage tests,

including dynamic voltage stress and extended voltage

stress (DVS and EVS), must be run at low temperature.

At low-temperature testing, the eFUSE repairs are

enabled and the ABIST test suite is repeated. If new

defects are found, the new FAR contents are passed to

the merge program. The merge program in turn checks

for available redundancy; if there is any redundancy

available, new eFUSEs are blown and the fuse count

register is updated. ABIST is rerun, and if the chip fails, it

is discarded; otherwise, it is passed on to packaging. The

ability to blow fuses at this test step has significantly

enhanced yield. New fails caused by EVS or DVS stress

could be repaired and recovered, as well as soft fails that

occurred only under those conditions. Since these soft

fails are also more likely to occur under in situ burn-in

conditions, burn-in yield is effectively increased.

After dicing, the chip is mounted on a temporary chip

attach (TCA) substrate or ‘‘package’’ that provides access

to all pins and serves as a carrier for burn-in. Pre-stress

package testing is done to check for failures on chip

external I/O and defects induced by dicing or substrate

attachment. The eFUSE repairs from both passes of

wafer test are enabled, and the ABIST test suite is

repeated. If new eFUSEs are blown, the count register

is updated and ABIST repeated. If sufficient redundancy

is not available, the chip is discarded. First-pass fails

from the burn-in step are also routinely sent back through

this pre-stress test. This permits the recovery of single-

cell repairable array fails, one of the most common

burn-in fail categories. Our experience showed that

approximately 20% of all burn-in fails were

recovered by eFUSE array repair.

Since post-stress package testing is similar to prior

steps, we discuss it before burn-in. Only passing TCAs

from burn-in are sent to post-stress package test. The

eFUSE repairs from all prior test steps are enabled, and

the ABIST test suite is repeated. If new eFUSEs are

blown, the count register is updated to its final value

and ABIST is repeated. If sufficient redundancy is not

available, the chip is discarded. Multiple chips are then

assembled on an MCM and sent to the MCM test sector.

Burn-in considerations

Burn-in, used to improve reliability, is a batch-processing

operation in which typically dozens to hundreds of chips

from a wafer-processing lot are processed simultaneously.

This process involves the application of high-

temperature, high-voltage stress conditions while

exercising the parts with patterns for a defined duration.

IBM zSeries MCM chips use in situ burn-in; that is, all

tests must be passed under burn-in conditions. Such

conditions are well outside the application conditions and

can adversely affect eFUSE circuit operation because

of NBTI degradation. In addition, it is not necessary for

the eFUSE read and write circuitry to operate at stress

conditions, since a typical application uses that circuitry

only during power-up, a relatively rare event. Tests

Figure 4

eFUSE applications at various test steps.

• ECID

• Array repair

 (base defects,

 high-

 temperature,

 low-voltage

 sensitive)

• PSRO

• Power code

• Fuse count

• Array repair

 (low-

 temperature,

 high-voltage

 sensitive,

 EVS/DVS

 stress

 induced)

• Fuse count

• Array repair

 (burn-in

 stress

 induced)

• Fuse count

BURN-IN

• Array repair

 (burn-in

 stress

 induced)

• Good core ID

• Fuse count

• MCM serial

 number

• MCM part

 number

• MCM net

 repairs

• Array repair

 (system

 functional

 fails)

Wafer test Package test MCM and system test

fa
il

SYSTEM

TEST

Repairable

array?

y n

R
ep

la
ce

 b
ad

 c
h
ip

p
as

s

fa
il

SHIP

R. F. RIZZOLO ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

70

were structured to initialize eFUSEs and latch results at

nominal conditions only. At stress conditions, only the

latched (soft-fuse) information was accessed.

Burn-in fails may be tool-related, batch-process-

related, or chip-related. Currents and temperatures are

very high. One catastrophic failing chip can cause other

chips on the same burn-in board to apparently fail.

Finally, the chip itself may fail in either a hard or a

soft way. Soft fails are those that occur only at specific

conditions. A fast chip may fail only at the burn-in high-

voltage and high-temperature conditions and pass at all

other conditions. Hard fails are typically reliability fails

caused by the acceleration of a defect mechanism. A hard

fail is a part that originally passed but now fails at non-

stress conditions. Because of these various failure modes,

all chips have two chances to pass burn-in. So-called first-

pass burn-in fails are all collected in a new ‘‘re-con’’

lot and sent back to pre-stress package testing. Passing

parts continue to second-pass burn-in, and second-pass

burn-in fails are discarded.

The burn-in system has the capability to test and

extract data from individual parts, but it cannot apply

a unique repair action to each part. Software and a

common database structure (see Figure 5) were designed

to capture array fail information from the FAR for a

given ABIST test, the burn-in lot, and the chip EID under

burn-in conditions. Multiple ABIST tests were run, and

the FAR data for each was fed to a merge program to

calculate the optimum repair. This merged burn-in repair

data, along with lot and EID, was stored in the database.

As previously discussed, all first-pass burn-in fails were

sent back to pre-stress package test. That tester had

access to the database containing the burn-in repair

information. It was planned to use the burn-in repair data

to blow eFUSEs to repair in situ burn-in fails. In practice

this was not needed, because the burn-in yield exceeded

its target. Stress-induced repairable fails (for example,

new single-cell array fails at non-burn-in conditions) are

a major fail mechanism captured by this methodology.

Since these fails are sent back to pre-stress package

test, that step will identify the new fail.

eFUSE at MCM test

A major eFUSE advantage is the ability to program at

the multichip-module (MCM) level. MCM Fsource wiring

was designed specifically to provide the ability to program

eFUSEs on all MCM chips. There were two main

MCM eFUSE applications in manufacturing: MCM

electronic ID (EID) and MCM yield recovery.

Every MCM has a unique EID programmed in

eFUSEs that contains the MCM serial number and

the MCM part number. The EID can be retrieved

electronically at any packaging level that uses this MCM.

Information such as MCM build history, chips on MCM

vintage, and MCM quality level can be retrieved. Critical

test information is saved by EID for future reference.

This information has been proven useful for comparing

MCM characterization data among wafers, chips, and

systems. It has also been used extensively for MCM

traceability. Two separate z9 system eFUSE applications

improve MCM yield: eBIT1 implementation to recover

substrates with defective nets, and functional array repair

on the large cache chip (called SCD) without chip

replacement.

The design of the MCM and chip I/O provides

redundant net capability to maximize substrate yield [5].

There are approximately 380 repairable groups of nets,

with roughly one spare net for every 12 functional nets. In

manufacturing, all functional nets are tested for opens

with an interconnect test [6]. All substrates have a

database entry indicating the defective (open) nets on that

substrate. If all fails from the interconnect test match

all entries in the open substrate net list, codes uniquely

indicating every failing group and net are burned into

eBIT eFUSEs on the memory controller chip called

MSC0. This chip was chosen because it had many spare

eFUSEs. If the interconnect test results do not match the

substrate fail list, the MCM is sent for physical repair,

which usually results in the removal of two chips. System-

level code accesses the eBIT fuses and reconfigures logic

to use the redundant net in place of the open net. The

estimated quantity of substrates that can be saved by

eBIT is about 5%.

Another method of enhancing MCM yield and

reducing rework time and cost is to repair functional

array fails at MCM test without chip replacement.

ABIST is very effective at catching array fails. However,

it has been our experience over multiple programs that

Figure 5

eFUSE burn-in (BI) dataflow.

BI stress

oven

Centrally

located

converted

BI repair

data

Tester:

Repair with

BI data BI collects

repair data

by lot and

electronic

chip

identification

Tester pulls

data at lot

setup

Lot sent to

test after BI

eFUSing based on BI results

1eBIT: General term used to identify all allowable defective nets that can be repaired
(spared) electronically by eFUSEs.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 R. F. RIZZOLO ET AL.

71

some array fails escape to final assembly test, and these

are consistently one of the most common causes of

MCM rework. The four SCD cache chips on the MCM

contain in total more than 400 million array cells. The

chip also has the capability to catch the failing address

register (FAR) in many functional fail cases. The FAR

contents indicate whether the fail is repairable. There is

no capability at system level to blow eFUSEs, but there is

at the MCM test level. Referring to Figure 6, code was

written to capture the MCM EID, chip EID, and FAR at

final assembly (system) test. This data is transmitted to

the MCM test sector. This failing MCM does not go

through the normal physical repair loop, but instead

through a much shorter path. eFUSEs are blown at

MCM test on the chip identified by functional system

test. The MCM is retested to ensure that nothing else is

defective, and it is then sent back to system test. The time

and expense of uncapping, physical chip replacement,

uncap test, and recapping is avoided. Approximately

10–12% of System z9 MCM line returns were repaired

by eFUSEs.

Array fault tolerance test considerations

The processor chip used multiple copies of a relatively

small array called a content-addressable memory (CAM)

that caused significant yield problems on a predecessor

chip. These problems were due to localized single-cell fails

in the array. Because the CAM array design contained no

redundancy, a defect in any one of the instances of this

array would cause the loss of at least one of the two cores,

or possibly the entire chip. Layout changes were made to

the CAM, but it was unclear whether they would fix the

problem. The addition of redundancy was not possible. It

would be a major change to the array, and it would have

a major impact on schedule and chip layout; another

solution was needed.

Each CAM had four separate quadrants, and it was

decided that the system could accept a single defective

quadrant. Functional fault tolerance on CAM was

already in place as part of the z9 system reliability,

availability, and serviceability (RAS) strategy, but this

was meant to quarantine a defective quadrant in the rare

event of a reliability fail so that functional operation

would continue. This is very different from applying

structural logic and array built-in self-test (LBIST and

ABIST) tests to a chip in which any one quadrant in any

CAM could be bad but the chip would still be good. It

was theoretically possible that every processor core on the

MCM could have a fail in a different quadrant, yet the

same tests could be used for all chips. A novel fault-

tolerant structure using eFUSEs was chosen to help

improve yield should this CAM problem reoccur.

Each CAM quadrant has a dedicated multiple-input

signal register (MISR) [7], in which quadrant responses to

the stimulus supplied by BIST testing are compressed.

A defective quadrant affects the signature only in its

dedicated MISR. Typical single-cell defects do not affect

LBIST, since LBIST uses only the write-through array

function and does not read array cells; ABIST, of course,

is affected. The test-and-tag procedure was as follows

(Figure 7). Initially, eFUSEs to tag the bad CAM

quadrant are not set. If the ABIST test program detects

a bad CAM MISR signature, an eFUSE is blown,

indicating the specific bad CAM and quadrant. If ABIST

is repeated, logic inside the array senses the set eFUSE

and forces the quadrant data-out pins and the MISR

to a known constant value. There are four independent

CAMs per core, each with four quadrants, giving sixteen

possibilities for acceptable defect locations; with the one

nondefective case, that gives seventeen possible ‘‘good’’

MISR signatures per core. The test program reads the

CAM eFUSEs, and on the basis of what is set, selects one

of the seventeen ABIST MISR signatures as valid. If the

MISR matches that signature, the CAMs are called good.

A CAM fuse could be set at any test step from wafer

through package post-stress, but only one quadrant

defect would be allowed.

A more comprehensive type of LBIST, known

as LBIST_COMBINED, will, on the other hand,

write and read array cells. Theoretically it could be

treated similarly to ABIST: Choose one of seventeen

LBIST_COMBINED signatures based on the CAM

eFUSE that was set. In practice, this was more

Figure 6

eFUSE and physical MCM repair loops.

eFUSE repair loop Physical repair loop

SCD

fails

and

fail

data

All

other

fails

SHIP

Passes

System

functional

test

MCM

cap test

MCM

uncapping

Remove and

replace

bad chip

MCM

uncap test

MCM

capping

MCM

cap test

MCM SCD

eFUSE blow

and cap test

R. F. RIZZOLO ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

72

complicated because of the number of possible

combinations. LBIST_COMBINED is a suite of

tests, each with different clocking, pattern counts, and

weighting. Each separate pattern would require seventeen

different valid signatures. Fortunately, the layout change

fixed the CAM yield problem; none of these options,

including ABIST, were needed.

System-level implementation

EID information for each chip is read by the System z9

support element (SE) code from eFUSEs and stored in

several files on the SE hard disk—for example, the self-

test MISR results file and a general file that records

all eFUSE values. EID information is kept and logged

by the SE to allow for automatic parts tracking in

manufacturing.

The MCM serial number and MCM part number are

also available in eFUSEs for the SE to read and store.

SE code gathers this information as well as other chip-

specific information (such as sort, PSRO, and flush delay

from eFUSEs on MSC0) and saves it to a system data file

tied by serial number to a specific MCM. This system

summary file is used to track chip performance during

characterization and in analysis of chip fails in

manufacturing.

Known array failures on every chip are burned into the

eFUSEs on that chip at manufacturing. The SE reads

these blown eFUSEs and stores them in a table for use at

IML time to repair these arrays by using redundant cells.

The array repairs are controlled by the SE by transferring

the table contents to the soft-fuse latches using the fuse

control bits. These array repairs are applied during a

system initialization procedure after power-up called

initial machine load (IML). The array repairs are

preserved during subsequent IMLs. This process is

substantially the same as the process previously used

with laser fuses.

Chip interface failures discovered in manufacturing are

also marked for repair with the use of eFUSEs. Up to

eight repairs are possible using redundant chip interface

wires. The SE reads these repairs from the eFUSEs into a

table stored on the SE hard disk and applies them during

IML by scanning appropriate latches. This allows chip

interface fails to be repaired instead of scrapping the

MCM.

The virtual power-on process [8] was used to verify this

SE code prior to system power-on. The eFUSEs were

‘‘blown’’ by updating with the encoded data in the repair

scan chain in the simulation model. Subsequently the

steps in the repair process, in which SE code reads the

blown eFUSE data and builds the repair table to be

applied later in IML, were verified before real hardware

was delivered.

Conclusions

Improved yields at all test levels are directly attributable

to eFUSEs. They are easily programmed, easily read, and

reliable. New features that were previously not practical

are now feasible; these include burn-in yield recovery,

multichip module (MCM) electronic ID, MCM substrate

repair, and MCM array repair without chip replacement.

Since eFUSEs are significantly smaller than laser fuses

and scale with the technology, more redundancy is

available for less area. It is extremely convenient and

elegant when pertinent test and redundancy data resides

on the chip or MCM itself, with no external lookup

required. The main challenges to eFUSE technology

are from database lookup methods or electrically

erasable programmable read-only memory (EEPROM)

implementations, in which redundancy information is no

longer stored on the chip as it is needed. This is driven by

a predicted steep increase in required redundancy based

on more dense arrays, process variation, projected defect

levels at volume ramp time, and so on. Cost is also a

factor. Real estate on leading-edge ten-level-metal, 60-nm

silicon-on-insulator (SOI) process chips is much more

expensive than on an EEPROM chip. Compression

schemes have been proposed [8] to reduce the number

of fuses and the associated area required. It remains

to be seen whether the complexity and time associated

with database lookup, availability, and maintenance

outweighs its obvious area advantage. There is an

attractive simplicity in the ‘‘plug-and-play’’ aspect of

eFUSE technology, with no external referencing required,

especially for critical elements such as array redundancy.

Acknowledgments
Many individuals contributed to the success of IBM

System z9 eFUSE development. The authors particularly

thank the following: In East Fishkill, New York,

Figure 7

CAM fault tolerance.

set eFUSE

PCAM

MISR

Q
U

A
D

0

Q
U

A
D

3

Q
U

A
D

2

Q
U

A
D

1

B
A

D

Q
U

A
D

0

Q
U

A
D

3

Q
U

A
D

2

Q
U

A
D

1

B
A

D

eFUSE not set eFUSE set

M
IS

R
1

B
A

D

M
IS

R
1

co
n
st

an
t

M
IS

R
0

M
IS

R
3

M
IS

R
2

M
IS

R
0

M
IS

R
2

M
IS

R
3

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 R. F. RIZZOLO ET AL.

73

Franco Motika, Donato Forlenza, Orazio Forlenza,

William Hurley, and John Parker from MD test and

characterization, and Subu Iyer, Alan Leslie, and

Chandrasekara Kothandaraman in the eFUSE

development group; in Boeblingen, Germany,

Otto Torreiter for characterization and debug; in

Poughkeepsie, New York, Rick Dennis and Chris Berry

for physical design, Steve Michnowski, Ron Frishmuth,

and Humayun Kabir for test pattern development,

Tom Gilbert for simulation, Ed McCain for system

verification, Steve Wilson for test, and Phil Wu and

Dan Skooglund for management support; in Essex

Junction, Vermont, James Pettine and Gary Sarnowicz

for test development, Mark Ollive for merge program

development, Greg Miller for burn-in development,

Tami Vogel and Keith Stevens for physical failure

analysis, Janet Rocque and Deb Hamm for logistical

support, and Matt Ringler for eFUSE development and

initial design.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

References
1. P. Bunce, J. Davis, T. Knips, and D. Plass, ‘‘System for

Implementing a Column Redundancy Scheme for Arrays with
Controls that Span Multiple Data Bits,’’ U.S. Patent 6,584,023,
June 24, 2003.

2. T. H. Daubenspeck, T. L. McDevitt, W. T. Motsiff, and A. K.
Stamper, ‘‘Triple Damascene Fuse,’’ U.S. Patent 6,667,533,
December 2003.

3. C. Kothandaraman, S. K. Iyer, and S. S. Iyer, ‘‘Electrically
Programmable Fuse (eFUSE) Using Electromigration in
Silicides,’’ IEEE Electron Device Lett. 23, No. 9, 523–525
(2002).

4. Y. Lee, S. Jacobs, S. Stader, N. Mielke, and R. Nachman, ‘‘The
Impact of PMOST Bias-Temperature Degradation on Logic
Circuit Reliability Performance,’’ Microelectron. Reliabil. 45,
107–114 (2005).

5. D. M. Berger, J. Y. Chen, F. D. Ferraiolo, J. A. Magee, and
G. A. Van Huben, ‘‘High-Speed Source-Synchronous Interface
for the IBM System z9 Processor,’’ IBM J. Res. & Dev. 51,
No. 1/2, 53–64 (2007, this issue).

6. O. Torreiter, U. Baur, G. Geocke, and K. Melocco, ‘‘Testing
the Enterprise IBM System/390* Multi Processor,’’ Proceedings
of the IEEE International Test Conference, 1997, pp. 115–123.

7. T. Foote, D. Hoffman, W. Huott, T. Koprowski, B. Robbins,
and M. Kusko, ‘‘Testing the 400MHz IBM Generation-4
CMOS Chip,’’ Proceedings of the IEEE International Test
Conference, 1997, pp. 106–114.

8. M. R. Ouellette, D. L. Anand, and P. Jakobsen, ‘‘Shared Fuse
Macro for Multiple Embedded Memory Devices with
Redundancy Compression Scheme,’’ Proceedings of the Custom
Integrated Circuits Conference, 2001, pp. 191–194.

Received May 5, 2006; accepted for publication

Richard F. Rizzolo IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (rizzolo@us.ibm.com).
Mr. Rizzolo is a Senior Technical Staff Member and served as test
team leader for several System z* projects, most recently for the
System z9. He also has primary responsibility for the sort and
characterization methodology for MCM chips designed in
Poughkeepsie, New York. He received his B.S. degree in physics
from Rensselaer Polytechnic Institute in 1977 and his M.E. degree
in electrical engineering from Rensselaer in 1980. Since joining
IBM in 1978, Mr. Rizzolo has worked on bipolar and CMOS
projects in the areas of design for testability, high-frequency design
and timing analysis, diagnostics, and circuit design. He holds ten
patents and has co-authored a number of papers in the field of
testability and diagnostics.

Thomas G. Foote IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(tomfoote@us.ibm.com). Mr. Foote is a Senior Engineer and test
data development team leader for zSeries chips. He received his
B.S.E.E. degree from Purdue University in 1973, joining IBM that
same year in the area of chip test data development for early FET
chip designs. Mr. Foote has worked in test tool development,
functional simulation, packaging tools, large systems competitive
analysis, and most recently in chip test data development. He holds
patents and has co-authored papers in the area of design and
design for test.

James M. Crafts IBM Systems and Technology Group, 1000
River Street, Essex Junction, Vermont 05452 (jcrafts@us.ibm.com).
Mr. Crafts is a Senior Engineer in the World Wide Test
Engineering Group. He joined IBM in 1985.

David A. Grosch IBM Systems and Technology Group, 1000
River Street, Essex Junction, Vermont 05452 (grosch@us.ibm.com).
Mr. Grosch received a B.S. degree in electrical engineering from
the Rochester Institute of Technology in 1985, joining IBM that
same year, He is currently an Advisory Engineer working on
zSeries burn-in development.

Tak O. Leung IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (tleung@us.ibm.com).
Mr. Leung is a Senior Engineer and the MCM manufacturing test
leader for zSeries MCMs. He received his B.S.E.E. degree from
Columbia University in 1983, joining IBM that same year in the
area of chip design-for-test for vendor components and continuing
to work in the field of test development for both large-system
MCM designs and vendor MCM designs, with a focus in
manufacturing. Most recently Mr. Leung held program
management responsibilities for the MCM manufacturing of the
bond, assembly, and test operations for several OEM customers.
He has co-authored papers in the area of design and design for test.

David J. Lund IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (dlund@us.ibm.com).
Mr. Lund received an M.S. degree in computer science from Union
College in 1985. In 1987, he joined IBM at the Poughkeepsie,
New York, Development Laboratory to work on the System/390*

Processor Controller. He is currently a Senior Software Engineer,
working on the zSeries service element. He has received several
IBM Outstanding Technical Achievement Awards for his work
on System/390 and zSeries hardware reset applications.

R. F. RIZZOLO ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

74

October 17, 2006; Internet publication February 13, 2007

Bryan L. Mechtly IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(mechtly@us.ibm.com). Mr. Mechtly received a B.S. degree in
computer science from Indiana University of Pennsylvania in 1983.
After graduation he joined IBM in the Processor Controller
Department in Poughkeepsie, New York, working on bipolar
mainframe computers. Mr. Mechtly supported the transition to
CMOS mainframe technology and currently works in the service
element area. He has received several IBM Outstanding Technical
Achievement Awards for his work on the processor controller and
service element; he is a coauthor of one U.S. patent and several
patent applications.

Bryan J. Robbins IBM Systems and Technology Group, 3790
Mesquite Drive, Beavercreek, Ohio 45440 (brobbins@us.ibm.com).
Mr. Robbins is a Senior Engineer at IBM. He received a B.S.
degree in electrical engineering in 1986 and an M.S. degree in
computer and electrical engineering in 1988, both from Purdue
University. Mr. Robbins has co-authored several papers in the
area of design for test; he holds eight patents.

Timothy J. Slegel IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (slegel@us.ibm.com).
Mr. Slegel received his B.S.E.E. and M.S.E.E. degrees from Lehigh
University in 1980 and 1982, respectively, joining IBM in 1982.
He has worked in many areas of processor design, including
floating-point units, vector processors, and cache design. He was
the chief architect and overall team leader for the G5 and z990
microprocessors, and the overall technical leader for the processor
subsystem in the System z9. Mr. Slegel has received two IBM
Corporate Awards, three IBM Outstanding Innovation Awards,
two IBM Outstanding Technical Achievement Awards, and a
Tenth-Plateau IBM Invention Achievement Award, with 38 U.S.
patents. He is a Distinguished Engineer, currently working on the
design of future IBM systems.

Michael J. Tremblay IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(MJT307@us.ibm.com). Mr. Tremblay received B.S. and M.S.
degrees in electrical engineering from the University of New
Hampshire. He also received an M.B.A. degree in finance and
accounting from Marist College. He was employed as a Senior
Engineer by G.T.E. before joining IBM at the Poughkeepsie,
New York, Development Laboratory to work on the 3080X
System Processor Controller. Mr. Tremblay was a key test team
member for the H2 MCMs, the first modules to incorporate self-
test. He was the system architect for the SST MCM testers
designed and built by IBM. Mr. Tremblay has received an IBM
Outstanding Technical Achievement Award for his work on the
H2 MCM self-test design. He has presented papers at the
Manufacturing Technology Symposium and the Test ITL.

Glen A. Wiedemeier IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (wiedem@us.ibm.com).
Mr. Wiedemeier is a Staff Engineer; he has served as an I/O
designer for POWER4þ*, POWER5*, POWER5þ*, and z9
systems. He received his B.S. degree in engineering from the
University of Wisconsin at Madison in 2001. He joined IBM
that same year and has since designed high-speed single-ended
and differential amplifiers, laser fuse sense circuits, and
eFUSE sense circuits.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 R. F. RIZZOLO ET AL.

75

