Enhanced |/O
subsystem
recovery and

availability on the
IBM System z9

Although part of the IBM System z™ strategy is to improve design
and development processes to prevent errors from escaping to the
field, improving recovery is another element in the strategy to
keep a machine up and running should an error occur. The z9™
continues on an evolutionary path of enhancing I/O subsystem
(10SS) recovery to further advance the reliability, availability, and
serviceability (RAS) of System z platforms. This paper presents
an overview of recovery and how it interacts with other RAS
functions—such as error-detection mechanisms in hardware,
including automatic identification and recovery of failing
elements—up to the point in time prior to the advent of the z9. It
then presents the innovations to 10SS recovery and error detection
in the z9 that further improve machine availability. The recovery
infrastructure, which significantly reduces recovery time and makes
recovery much less dependent on machine scaling for this and
Sfuture generations of System z servers, is described. Also described
are such innovative uses of this new infrastructure as improvements
in error detection related to elusive firmware problems seen in prior
machines, the ability to detect and recover from firmware hangs or
lockups related to inadvertently leaving control blocks locked, and
the capability to perform recovery in parallel by multiple system-
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assist processors.

Introduction

Over the years, System z* (formerly zSeries*) servers have
been continuing to scale [1, 2] in terms of the sheer
number, capacity, and performance of their logical
partitions, processors, channels, networking adapters,
and the I/O devices to which they can attach. As a result,
customers have been placing a greater percentage of their
business-critical workloads on these machines. The
expectation of uninterrupted, around-the-clock operation
has made it increasingly important to minimize failures
that affect the operation of the machine. The z9*
continues in the System z evolutionary path to the highest
quality standards in both the hardware and firmware
[3-5]. However, statistics such as mean time to failure or
failure rate, no matter how good, still allow for errors.
And just one failure that takes a machine down could

have a severe impact on a client’s business. The engineers
at IBM recognized this and, in mainframes as early as
the IBM 3081, announced in 1980, they started on a
continuous path of delivering innovative solutions to
improve the reliability, availability, and serviceability
(RAS) of the machine to unprecedented levels in the
industry. One such innovation, serving all three aspects
of RAS, was the concept of recovery—the ability of a
machine to automatically restore itself to a known state
after taking an error and, if need be, to fence off failing
components so that the machine can continue running
on the unfenced portions of the machine with minimal
disruption to the running software.

In a System z eServer*, recovery code and hardware are
spread over the entire system [4, 5], ranging from primary
components, such as the first-order 1/O network, I/O
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channels, or processor chips, to secondary components,
such as the power subsystem or the support element (SE).
For the functional components, recovery is implemented
mainly in firmware, which runs on the central processors
(CPs) and the system-assist processors (SAPs). Especially
in the I/O subsystem (IOSS), a significant portion of the
functionality is implemented in firmware [6]. As a result,
recovery must deal not only with hardware failures, but
also with firmware errors and a huge number of data
structures that reflect the current state of operation.

The typical recovery goals [3] and sequence of steps
are as follows:

1. Error detection: Detect the error as early as
possible through the use of appropriate checking
mechanisms. This applies to hardware failures and
firmware errors.

2. First failure data capture (FFDC): Collect
comprehensive information on the error itself and on
the circumstances that led to the failure. This step
lays the foundation for all subsequent recovery,
service, and repair actions dealing with the error,
as well as for subsequent analysis by System z
development groups.

3. Determining and scheduling of recovery actions: After
analyzing the FFDC data, determine the recovery
actions that must be performed in which order for
which elements in the system.

4. Execution of recovery actions:

* Reset of affected elements: Reset the elements
affected by the error to bring them back to a
known and consistent state that allows resumption
of normal operation. This applies to hardware
elements and the firmware stack. A hardware
element can be restarted successfully only if it is
not permanently damaged, i.e., if the error can
really be “repaired.”

* Fencing of failing elements: Fence off the failing
element in case it is permanently damaged. This
is to protect the system as a whole from a
continuously malfunctioning element.

* JOSS control block (CB) recovery: Examine the
hardware system area (HSA) for I/O CBs that were
in use by affected elements at the time of error and
restore them to a known, consistent state, thus
making them available for continued usage.

® Retry/termination of affected operations: Either
retry or terminate all operations upon which the
failing element was working when the error
occurred. If a retry is possible, the recovery action
is transparent to the software. However,
depending on the error, there may be no way to
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tell how far the failing element progressed in
executing the operation. In this case, the operation
must be terminated because, for example,
firmware internal data structures may have
become inconsistent, and they must be reset to a
known state.

5. Software notification: Notify the customer’s software
that an error has occurred and which operations
have been terminated. Again, depending on the
error, there may be no way to tell how far the failing
element progressed in executing the operation.
Therefore, software usually has to perform its own
recovery actions in order to allow the resumption
of normal operations. For example, when a failing
operation is part of a transaction, this may include
rolling the transaction back.

6. Serviceability infrastructure notification: Notify the
System z eServer SE that an error has occurred. This
includes submitting and logging all available FFDC
data and the state of all affected elements after
completion of the recovery actions. On the basis
of this information, the SE determines which
component of the system must be repaired and
triggers the service personnel to schedule the
appropriate repair action.

The following paragraphs briefly describe some of the
basic concepts of error detection, recovery, and analysis.

Error detection

Comprehensive error detection in hardware and firmware
is indispensable to the performance of a successful
recovery [3]. Detecting errors as early as possible is vital
to the avoidance of data integrity problems. In a System z
server, error-detection capability, like recovery functions,
is present among all system components. In hardware,

a wide variety of mechanisms are implemented as
appropriate to the specific chip function. Some examples
are parity checks of registers, cyclic redundancy checks
(CRCs) for serial data transfers, error-correction code
(ECC) logic in combination with thresholding, validity
checking of state transitions for state machines,
consistency checks at interfaces, and comparison

of results of double execution units.

Available literature (e.g., [7]) discusses these
mechanisms. For detecting firmware errors, far fewer
options are available, because there is no way to really
“test” the code itself at runtime. Here, error detection
relies solely on active checking for bad parameters or
inconsistencies in the data used by the code.

Error data collection

On System z mainframes, an important aspect of the
recovery infrastructure is error data collection. FFDC
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mechanisms to collect unpolluted data on the original
failure are required to classify an error and to determine
the potential source of the error. It is critical to collect this
data as close in time to the detection of the error as
possible. While handling the error (e.g., sending controls
to failing hardware to reset error indications), more data
is collected to record the effect of each action performed
during the recovery task. This mechanism is known as
secondary failure data capture (SFDC).

FFDC and SFDC are tied closely into the general
recovery infrastructure, but may also be used by modules
other than recovery. While recovery code uses this data
internally to develop a recovery strategy to handle the
current problem, the data is also logged into permanent
storage on the SE hard disk. This data is used by
automated mechanisms on the SE—e.g., to identify a
failing field-replaceable unit (FRU)—and sent to IBM
System z support. In rare situations, the automated error-
handling mechanism cannot resolve the failure situation
as expected. The data collected in these situations is then
made subject to a detailed postmortem analysis by the
development team.

Error classification

Each error has specific characteristics that imply whether
and how recovery for it can be performed. There are
numerous meaningful criteria for classifying errors. Many
of them are reflected in the algorithms implemented in

a System z server [3] that determine the appropriate
recovery action for a given error. The most important
ones are discussed in the following subsections.

Clock-running and clock-stop errors

The most important goal of a System z server is to
preserve the integrity of the customer’s data. In severe
error situations, satisfying that goal may mean that it is
required to immediately stop a piece of hardware, or even
the whole system. Such errors, called clock-stop errors,
cannot be recovered. Fortunately, the mean time to
failure (MTTF) for System z servers is very high (30+
years), so the occurrence of such an error is a rare event,
and only a small number of errors that occur require such
a drastic step. In “normal” error situations, the integrity
of the customer’s data is not endangered, and recovery
takes all required actions to keep the system operational.
These errors are therefore called clock-running errors.

Hardware failures and firmware errors

A piece of hardware may age and fail over time. In this
case, the System z recovery first attempt to repair it
involves resetting and reinitializing the failing hardware.
If this is not successful, the broken piece of hardware is
isolated to protect the remaining system from potential
misbehavior of the damaged element. This is done by

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

fencing it off, i.e., by shutting down all interfaces to the
failing element.

Either firmware errors exist in the code or they do not.
Firmware does not age, so it cannot break over time,
and errors usually surface as soon as the faulty code is
executed with a combination of conditions (such as input
parameters, stimuli, or workloads) that precipitate the
fault. If a System z eServer detects a firmware error, the
currently active task is usually aborted by restarting the
complete firmware stack on the processor that executed
the faulty code. Whether or not a successful recovery is
possible depends on the damage that has already been
caused to the firmware data structures. If they can be
reset to a consistent state, normal operation is resumed; if
they cannot, execution of all system functions that use the
damaged data structures must be inhibited. In severe
cases, this can result in the entire system being stopped.

Of course, the recovery code itself is a piece of firmware
and may therefore contain errors. If such an error
surfaces during execution, it means that the recovery
algorithms are unable to deal with the error situation that
initiated the recovery. There is no more-sophisticated
code to handle this situation; if there were, it would
already have been part of the initial recovery code.
Therefore, in such situations, the entire system is stopped.
The System z development group puts a very strong focus
on robustness and quality of the recovery code because
this firmware component, by its very nature, executes
in situations in which some error within the system has
already caused a certain amount of damage. Therefore,
the recovery code never relies on data structure content
that is also used by functional code. It also contains many
more consistency checks than functional code.

Recoverable and permanent errors

Most errors surface only in very specific circumstances.
Usually it is possible to reset the failing element, repair
the damage caused by the error, and resume normal
operation. Such errors are called recoverable errors.
However, if a piece of hardware has a solid, non-
intermittent failure due to aging or if it is not possible to
restore a consistent system state after an error, the failing
element must be fenced off. Such errors are called
permanent errors. Of course, any error that has been
recovered successfully might reoccur. For example, a
piece of hardware may show the same recoverable error
multiple times before it finally breaks permanently. It is
likely that a firmware error will show up repeatedly, since
the specific circumstances precipitating it typically
reoccur. If an error persistently and rapidly reoccurs, the
resulting recovery actions could monopolize vital system
resources, such as processors or I/O paths. This could
have a severe impact on the availability or performance of
the system. To avoid such situations, all recovery actions
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and errors are counted for each element in the system.
If an element fails repeatedly with the same recoverable
error so that the appropriate counter exceeds a predefined
threshold value, the error is treated as if it were
permanent. As escalation, the element is fenced off to
protect the remainder of the system. In the case of a
firmware error, fencing means inhibiting further execution
of the affected function by maintaining disablement flags
and having appropriate checks to the code. Obviously,
this is applicable only to nonvital functions.

Initial and secondary errors

In complex computer systems such as a System z server,
an initial error that occurs in one element often causes
additional follow-on errors to occur in other elements.
This effect is known as sympathy sickness. The required
recovery actions for an error are independent of whether
it is an initial or a secondary error. However, after
recovery is complete for a hardware failure, this difference
is highly important for determining which hardware
component must be replaced. Using the FFDC data
collected during a recovery run, the FRU error analysis
first attaches predefined weights to all available error
indications. The element with the highest weight is the
one that must be replaced. The algorithms used in this
process are based on the relevance of the individual error
indications, the hierarchy of the way in which chips are
connected, and the information concerning the success of
the recovery or the lack of it.

Scheduling of recovery actions
After an error is detected and FFDC data is collected,
recovery must determine the elements in the system that
are affected, the recovery actions that must be performed,
and the order in which they must be performed. For
errors affecting only one element, this is usually
straightforward because there are no dependencies.
If an error affects multiple elements in the system, the
scheduling becomes much more complicated. This often
occurs if an initial error in one element causes other
elements to detect follow-on errors, e.g., because of
timeouts or because some required resource is no longer
accessible. In the IOSS, many errors are of this kind
because of the chip hierarchy in the first-order I/O
network. Elements closer to processor chips must be
recovered successfully before elements farther away
can even be scanned to determine whether they have
encountered an error. This requires that the execution
of the recovery actions for the first-order I/O network
components be, in fact, interlaced with the FFDC step.
The scheduling step also determines which processors
should perform which recovery actions. In a System z
server, SAPs perform the IOSS recovery. There is a static
assignment of which SAP is responsible for performing
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the recovery for a given I/O channel. Multiple recovery
requests that are independent of one another are
distributed over the SAPs that are affected by the errors
and are executed in parallel.

It is important to determine when to initiate the IOSS
recovery. Most resources and data structures are shared
among multiple elements such as channels or processors.
If a resource or data structure is held or locked by an
element, the recovery code is allowed to “steal” it only
if there is a recovery request for the owning element.
Because of this, starting recovery too early may result in
deadlocks if the complete picture of all pending errors in
the system and the required recovery actions is not yet
known. However, starting too late, when resources may
be unavailable, may cause additional follow-on errors,
thus endangering the success of the overall recovery. The
parallel recovery execution section below describes the
scheduling in more detail.

Execution of recovery requests
The execution of a recovery action concentrates on either
bringing a failing element back into a consistent state in
which normal operation can be resumed, or isolating it
from the rest of the system.

This action consists of the following steps:

1. Reset and reinitialization of failing elements: Most
errors that can occur in a System z eServer are
considered to be recoverable in the first attempt.
For hardware failures and firmware errors such as
programming exceptions and deadlocks, the recovery
code attempts to reset and reinitialize the failing
element. The firmware stack running on the affected
processor is restarted. For most hardware elements,
multiple levels of resets are available, with their scope
ranging from only a small section of chip logic to the
complete chip. An initial recovery attempt always
uses the least invasive reset type. If it is not successful
(i.e., the subsequent reinitialization of the element
fails), this indicates either that the hardware is
permanently damaged or that the scope of the reset
was not broad enough to cover all affected hardware
pieces. In both cases, recovery begins a retry,
including error-data collection. The recovery actions
performed in the retry are more comprehensive than
those in the initial attempt:

a. If new errors show up, they were probably the
cause of the failure of the first recovery. The
recovery actions derived from them are added
to the initial ones.

b. If there are no new errors, the retry uses a more
comprehensive reset that covers a larger portion of
the hardware, up to a full chip reset. If the previous
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recovery attempt already involved a full chip reset,
the error cannot be recovered. In this case, the
failing element is fenced permanently.

2. Fencing of failing elements: Fencing of a failing
element is done if the reset and reinitialization does not
work or if it encounters one of the few error types that
by their nature cannot be recovered. For that, recovery
isolates the failing element, for example, an /O
channel card, from the remainder of the system. The
goalis to avoid a continuously malfunctioning element
that permanently disturbs the operation of the system,
since this would, at the least, have a performance
impact on the customer’s system. In extreme cases, it
could result in the machine being completely occupied
by recovery and no longer available.

3. I0SS CB recovery: The HSA is a memory space that
contains state information for all I/O operations
occurring in the processor complex. Thus,
maintaining the integrity of this memory space is
essential to the operation of the entire system. The
HSA is organized into sections, with each section
containing a particular type of IOSS CB. Each
CB type is a logical representation of particular
physical resources of the IOSS configuration. These
individual CBs are used by the IOSS firmware
to manage I/O operations; they contain state
information related to the I/O operations executing
in the IOSS. If the firmware has to update a CB as
part of processing an I/O operation, the element,
such as a SAP or a CPU, acquires exclusive use
of the CB by using a locking protocol. It acquires
exclusive access to the CB until the point at which it
releases or unlocks the CB. During the time interval
between the time at which the element acquires the
lock and the time at which it releases it, the CB is
considered to be held by the element and is in a
transitional state. If the element holding the CB lock
fails, the CB requires recovery to restore it to a
known state and make it available for use by the
other elements. Each IOSS CB type has a unique
recovery algorithm designed to recover the
associated CB type during IOSS recovery actions.

4. Retry or terminate ongoing operations: Reset or
fencing of a failing element affects all of the
operations that this element had been working on
when the error occurred. However, the IOSS internal
data structures still reflect these operations and have
to be reset. Depending on the type of operations, it
may be possible to retry them. If so, the recovery
is transparent to the customer’s workload. Since
other operations cannot be retried, they must be
terminated; in these cases, software must be notified.
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Software and service infrastructure notification

For all operations that, because of a recovery action,
must be terminated according to the z/Architecture®,
software is notified. On the basis of these notifications,
the operating system (OS) may also have to perform some
software recovery action. When subchannel operations
are terminated, z/Architecture [8] provides for the
subchannel to be put into a channel-control-checked
(CCC) state, which is seen by the OS when the subchannel
is made status pending. When channels are put into a
permanent error or check-stop state, channel report words
(CRWs) are presented to the OS by the machine-check
interruption mechanism [8].

Furthermore, the service infrastructure is informed
about the recovery. The IOSS firmware sends all collected
FFDC data and results of the recovery actions to the SE.
On the basis of this data, the SE performs several tasks:

* Customer notification: The SE sends the customer a
hardware message concerning the error. There are
also OS error messages, but customers do not
necessarily monitor all consoles.

® FRU analysis: The FRU analysis consists of analyzing
the FFDC data for clock-running errors to identify
the failing element that caused them.

® Overall problem analysis: The overall problem
analysis (PA) combines the results of the clock-
running FRU analysis with all other error indications
in the system, such as clock-stop errors, SE errors, or
power subsystem errors. On the basis of this system-
wide overview of all failures that occurred within a
certain time window, the problem analysis routine
identifies the FRU that was the root cause of the
errors.

® [BM service personnel notification: The FRU
identified by the PA is automatically reported to IBM
by what we term a call home. If a service contract is in
place, this triggers IBM service personnel to contact
the customer and schedule a repair action. In a
System z eServer, a repair for a clock-running error
can usually be performed concurrently, i.e., without
further disruption of the customer’s workload.

I0OSS CB recovery overview

Before the advent of the z9, the IOSS CB recovery design
used a generic scan method executed on a SAP to
perform recovery. As the name implies, the scan method
examines the entire HSA where all of the IOSS CBs
reside. It scans one CB at a time searching for the few
CBs that are held by the failing processor unit (PU). With
large I/O configurations, tens of thousands of CBs are
examined during this process, which can greatly extend
the time required to recover from an error.
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Long system recovery times have a direct impact on
overall system performance. Recovery tasks have a higher
internal priority, which delays other tasks that may
require the SAP performing the recovery action. Other
tasks executing on running PUs may require one or more
of the CBs scheduled for recovery. These tasks have to
wait for the held CB to be recovered and freed, which can
drive additional recovery actions (i.e., timeouts and CB
hang conditions). The large number of PUs in the system
configuration contending for a given set of shared CBs
only exacerbates this limitation.

The z9 enhanced IOSS recovery design introduces
the concept of CB state tracking. This method has
significantly reduced system recovery times and improved
overall system throughput and performance; it has
resulted in predictable, near-constant recovery times
instead of scaling with the size of the I/O configuration.

I0SS CB introduction

During the initial machine load (IML) of the z9

central processor complex (CPC), firmware reads the
installation-generated 1/O configuration dataset (IOCDS)
and translates it into I/O CBs, such as the subchannel
control block (SCB), in HSA. Many types of I/O CBs are
required to logically define the IOSS, with each type
defining a particular component of the IOSS. Thus, the
HSA is memory space containing state information for all
of the I/O operations occurring in the CPC.

I0SS tasks and modes of operation

From an OS viewpoint, a task may be seen as a piece
of work or job stream managed by the system-level
software. The system firmware also views work on a task
basis, but the definition is firmware-code-specific. The z9
CPC comprises up to 64 PUs, and each PU can be
assigned one of two functional modes of operation:

1. As a CPU, executing software in z/Architecture or
Enterprise Systems Architecture/390* (ESA/390)
mode [8], with the capability of entering millicode [9]
mode to execute specific instructions. In this mode,
the scope of an TOSS task is defined as the execution
of that instruction by millicode.

2. As a SAP, executing firmware, primarily in 1390 [6]
mode. A SAP views a task as a dispatchable unit of
work—for example, selecting a channel path to be
used for an I/O operation and initiating the
operation at that channel.

Within a task on a SAP, 1390 code also invokes
millicode in certain situations, such as broadcasting an
interrupt condition to the CPUs. The firmware definition
of a task and its scope are the basis for understanding
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state tracking and the IOSS CB recovery design of the z9
IOSS.

CB locking protocol and state tracking

Most CBs are accessed by different elements in the
system, namely CPUs, SAPs, and channel paths. Lock
fields in the CBs are used to implement an access
protocol. There are also a number of locking rules, such
as a strict order in which locks are to be acquired. The
order ensures that no deadlocks occur. If, for instance,
SAP A locks CB 1, then SAP B locks CB 2, and then
SAP A attempts to lock CB 2 and SAP B attempts to
lock CB 1, both SAPs are deadlocked. Therefore, CBs
are assigned priorities according to their type.

Another rule states that all locks may be held for only
the duration of a single task, such as dispatching a
new I/O operation or passing the status of such an
operation back to software upon completion. If a lock is
inadvertently held for a longer time, it may go unnoticed
until that CB is required again in a subsequent task.

If a task in the IOSS is aborted because of a hardware
or firmware failure, it is likely that locks are still held.
To recover from this situation, IOSS code on previous
systems would scan all CBs to find out which ones
participated in the aborted task. As the number of CBs
grew into the tens of thousands, this process took on the
order of one second to complete. On the other hand, a
single task will access only a very limited number of CBs,
usually less than ten. For this reason, state tracking was
introduced in the TOSS of the System z9*.

All lock operations are now tracked in a separate task
control block (TCB). The CPU maintains its own TCB,
as does the SAP; moreover, 1390 code and millicode
maintain separate TCBs. This way, there is no
requirement to lock the TCB itself, which would have
created unacceptable contention. The TCB contains a
number of slots that correspond to the maximum number
of CBs being locked at any given time. When a CB is
locked, a free slot is picked in the TCB in which the CB
address and type are recorded. The slot number is stored
in the CB itself. This avoids an expensive scan of the
TCB when the CB is unlocked. To safeguard against
programming errors, the locking routine validates that
the CB is not already held by the processor requesting the
lock, which would be a violation of the locking rules.

CB locking and the TCB
Each PU is allocated two TCBs, one for 1390 mode and
one for millicode mode. The TCB is a registry of the CB
resources currently owned by a task executing on the
processor.

When a SAP operating in 1390 mode is dispatched to
perform a specific task requiring CB resources, it invokes
a locking protocol to acquire the proper serialization for
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updates to that CB. Figure 1(a) depicts an IOSS CB with
its owner lock data and extended lock information fields
used by the locking protocol to identify the type of lock,
the processor, and information about the task holding
the lock.

The locking protocol also provides the common 1390
code interface to the TCB infrastructure to record
important information about the CB. Figure 1(b) depicts
a TCB. The TCB contains several arrays to maintain
information about the CBs locked during a task. Its key
fields are the following:

* CB mask (CBM) array: This array relates to a
corresponding entry in the CB type (CBT) and CB
address arrays (CBA) which identifies a locked CB or
one intended to be locked by a task.

® CBT array: This array contains the CBTs of the CBs
that are locked or intended to be locked by a task.
Each CBT entry corresponds to a bit in the CBM
array.

® CB address array: The CBA array contains the
storage address of the CBs locked or intended to be
locked by a task. Each CBA entry corresponds to a
bit in the CBM array.

The locking protocol updates the TCB arrays with the
CB information and also updates the CB with the TCB
CBM array index. The index is used by the unlocking
protocol code to quickly locate the correct TCB array
entries associated with the CB.

After the CB state information is updated, the CB
can be released using the unlock protocol. The unlock
protocol resets the specific CBM array bit to indicate that
the entry for this CB is no longer valid.

Enhanced error detection by locking protocols

The locking and unlocking protocols make use of the
TCB infrastructure to detect error conditions with respect
to control usage by a task or errors that exist in the HSA.
The firmware code contains a set of rules that apply to
and support the tasks based on the structure of the IOSS.
The rules also are used to verify that locking protocols
relative to task execution are observed by the firmware.

Task scope checking

All locks may be held only for the duration of a single
task. At the start of a new task, the IOSS interrupt
handler interrogates the TCB CBM bits. If there are any
bits set, this indicates that the previous task did not fully
unlock the CB resources it held for that task. In this case,
a microcode-detected error is set, /O recovery is
scheduled, and firmware debug data is collected and
submitted to the SE for analysis.
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Word Byte 0 Byte 1 Byte 2 Byte 3
0 Owner lock data Extended lock information
1 CB type
CB specific state data
n
(a)
Word Byte 0 Byte 1 Byte 2 Byte 3
0
1 TCBtype |  PU# 0
2 CB mask (0:15)
3 :
4 Task footprint
5-6 :
7-11 Extended error information
28 | CBtype(00) | CB type(01) | CB type(02) | CB type(3)
29-30 :
31 | CBtype(12) | CBtype(13) | CB type(14) | CB type(15)
32-33 Control block address (00)
62-63 Control block address (15)
(b)

Control block definition: (a) common IOSS CB; (b) TCB.

Double unlock of a CB

The unlock protocol stores back the CB data, then
updates the CB lock word, thus freeing the CB for use
by another processor. If a task attempts to unlock a
previously unlocked CB, the unlock protocol detects
this condition by checking the CBM bits, thus preventing
a condition in which the CB could have been overwritten,
damaging the HSA data space.

CB verification

The unlocking protocol verifies that the CB being
unlocked is the correct one. The TCB CBT array entry is
compared to the CBT in the CB, and the TCB CBA array
entry is compared to the CBA. If there is a mismatch, a
microcode-detected error is set, I/O recovery is scheduled,
and firmware debug data is logged for analysis.
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Task steps populating the TCB; then an error occurs.

Early hang detection

When a SAP or a CPU firmware detects an invalid or
unexpected condition, it requests recovery by a SAP. This
request may be made pending while the SAP is in the
middle of a task and thus (yet) unaware of this request.
If the SAP subsequently attempts to lock a CB that is
currently held by the failing SAP or CPU, a deadlock
occurs. This situation was formerly detected and resolved
by a timeout mechanism.

A different approach is used in the System z9. When
SAP A detects that it is unable to lock a CB because it
is being held by SAP B, it checks whether SAP B has
requested a recovery from SAP A. In this case, SAP A
immediately invokes recovery without any delay.

Finally, when an IOSS task completes, no CBs are left
locked. At the start of the next task, the slot usage vector
in the TCB is checked. If it is nonzero, a lock has not been
released by the prior task. This triggers a recovery action,
and firmware debug data is collected and submitted to
the SE for analysis.

10SS CB recovery use of the TCB

In the event of a PU failure related to either hardware or
firmware, the TCB has information about the CBs in
use by the PU at the time of the failure. These CBs
require recovery because they are the CBs whose state
information was being altered when the failure occurred
and may now be in an indeterminate state. IOSS CB
recovery consists of a set of algorithms, with each
algorithm unique for a particular CB type. The
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algorithms are designed to interpret the TCB contents,
restore the targeted IOSS CBs to known states, and make
them available for future tasks.

Figure 2 depicts a task executing on CPO1 that has
locked three CBs during its execution before taking an
error. IOSS recovery will be scheduled, and the TCB
content used to direct the recovery processing.

Early in the IOSS recovery sequence, the TCB is
validated to ensure that its contents are accurate. The
CBM array is checked to see whether the entries are valid,
the corresponding CBT entries are examined for valid
CBTs, and the CBA entries are examined for valid CBAs.
Address range checks performed on the CBA information
ensure that the CB resides within the expected address
range for that CB type. Invalid CB entries are considered
firmware errors. They cause firmware debug data to be
collected, and are removed from the TCB and further
recovery processing.

Once TCB validation is complete, the TCB is
interrogated by the CB-specific recovery algorithm, which
searches for a valid TCB CBM array entry for the specific
CB type to be recovered by the algorithm. If a valid TCB
CBM entry is found for the CB type, the CB address is
retrieved from the TCB CBA array and returned to the
recovery algorithm. Once a valid CB address is returned
to the recovery algorithm, it can locate the CB and restore
it to a known state. This process is repeated for each
algorithm until the TCB has been fully processed. Since it
is possible for multiple errors to occur simultaneously in
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the 10SS, it is possible to have multiple TCBs to process
during a single execution of IOSS recovery code.

CB hang recovery

Even though the advanced error-detection methods
described above prevent a number of CB hangs from
occurring, there is still the need to recover from a CB
hang in the event that a firmware error escapes detection.
While the new TCB infrastructure was being formulated,
it became evident that it could also be an integral part of
the solution for recovering from CBs inadvertently left
locked by a PU.

Elusive CB hang and its consequences

10SS CB recovery prior to the z9 works very well for
recovering CBs left locked by a PU that subsequently
underwent a hardware failure before being able to unlock
them. This is because the identity of the locking PU is set
into the owner portion of the CB lock word when the CB
is locked. This allows IOSS CB recovery to know which
CBs were left locked by the failing PUs so it can recover
and unlock them. But what happens if a CB was locked
by a PU and a firmware bug prevents the PU from
unlocking it, but the PU continues to run? In this case,
the PU that left the CB locked is typically healthy from
a hardware viewpoint; there would be no indications of
processor errors. However, the unsuspecting PU that
attempts to lock that CB will spin as it waits for that CB
to be unlocked by the prior owner until, eventually, a
timeout occurs for this unsuspecting PU.

Most tasks within the IOSS are timed, so that if
timeout occurs, the PU running the task is considered to
be hung. When the PU is running in 1390 mode, running
tasks are timed by a mechanism called the watchdog timer
that is external to the task itself; i.e., it does not keep
track of the specifics of the task. Hence, when an 1390-
mode watchdog timeout occurs, it is not obvious whether
trying to lock a specific CB caused the hang. The CB or
CBs left locked by the PU that “forgot” to unlock it
would not be recovered by the current IOSS CB recovery
method, as illustrated in Figure 3(a). CBs that are
inadvertently left locked and cause other elements to hang
are classified as hung CBs.

Other PUs could also eventually time out attempting to
lock this CB, perhaps multiple times, causing multiple
invocations of IOSS CB recovery. If a PU is taken
through a recovery process multiple times within a certain
period of time, there is a recovery escalation of that PU to
a check-stopped state, which essentially fences off the PU,
making it unusable. If multiple PUs were check-stopped,
the system could reach the point of being unusable, or
worse, no PUs would be left in an operational state and
the entire system would be put into a system check-stop
state. Analysis of FFDC from system check-stops that
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have occurred in the field in past machines as far back as
the 2990 has revealed cases in which multiprocessor hang
scenarios were the root cause.

Recovery from CB hangs in a multiprocessor
environment

Hang recovery makes use of the TCB described above
and introduces new constructs in a novel way to identify
and recover CBs that were inadvertently left locked,
causing the hang condition described previously.

The basic concept is this: Given that there are TCBs
containing addresses of CBs that the PU either locked or
intended to lock, hang recovery can examine the locks in
each of the CBs listed in the TCBs of the hung PUs to
determine which PUs actually had those CBs locked. If
any of those CBs were locked by another PU, hang
recovery could then examine the TCBs of the PUs
holding the locks. Depending on whether or not the PUs
holding the CB locks were running or being recovered,
hang recovery would then determine what recovery
actions to take.

The notion of intending to lock is captured in the TCB
as a result of the locking rules in managing the TCB and
CB. In short, before a PU attempts to lock a CB, it must
first set the appropriate CB information in the TCB.
Thus, should the PU hang on trying to obtain a lock,
the TCB would have the information about the CB that
could have caused the hang. In the case of the PU running
in millicode mode, the millicode knows exactly the CB on
which it hung and explicitly indicates that CB in the TCB
after a PU has hung. In either case, the methods of hang
recovery described below can be applied to a hang
detected either in 1390 mode or in millicode mode.

Hang recovery algorithm

Hang recovery uses the TCBs of the PUs it is recovering
to examine the locks in CBs indicated in the respective
TCBs. If the hung PU held the lock of a CB, that CB
could not have been the cause of the hang, and it would
be recovered, as is done today by IOSS CB recovery.
However, if the lock of another PU was found in the
CB and was pointed to by a valid CBA in the TCB

of the hung PU, hang recovery would have to perform
additional analysis to see whether the fact that that

CB was left locked caused the hang.

The next step is to determine whether the PU holding
the lock has been scheduled for or is already in recovery.
If either is the case, hang recovery examines the TCBs of
the PU holding the lock to see whether that CBA was in a
TCB of the PU holding the lock. If the CBA is found
in the TCB of the PU holding the lock, hang recovery
removes this TCB entry from the TCB of the hung PU
because it is assured that the locked CB will be recovered
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by the task responsible for running IOSS CB recovery
against the TCB of the PU holding the lock.

If the CB was not in the TCB of the owning PU, the CB
is not recovered by the recovery scheduled for that PU.
Therefore, this CB has inadvertently been left locked and
is a possible cause for the hang. Hang recovery then
“steals” the lock by overwriting this lock (by means of a
compare and swap instruction [8]) with the lock identity
of the PU that was hung. This CB is then recovered
during this hung PU IOSS CB recovery task in the
same fashion as other CBs locked by this hung PU.

If it turns out that the PU holding the lock of the
CB is a running PU that is not scheduled for recovery,
additional steps are taken to ensure that a consistent state
exists between the CB lock and the TCB of the PU
holding the lock before determining the recovery action
to take. For example, if the CB was being locked and
unlocked by a PU in either a temporary or an endless
code loop, the lock would be in a state of transition. Hang
recovery could not steal the lock in this case, because this
transition could result in the lock being overlaid back to
the running PU in the code loop. Therefore, the action for
this hang recovery is simply to remove this CB from the
TCB of the hung PU. For this specific case, the concept is
as follows: If the running PU is in an endless loop locking
and unlocking a CB, the watchdog timer for that PU
eventually indicates a timeout condition, which causes
that CB to be recovered by a subsequent hang recovery
task for that PU.

If the lock of the CB held by the running PU is not
in transition, the TCB of the running PU can be searched
for this CB. If the CB appeared in the TCB of the running
PU, we can be reasonably certain that the running PU
knows about the lock. Therefore, the action for the hang
recovery currently being processed is simply to remove
this CB from the TCB of the hung PU. Even if the PU
holding this lock is hung performing some other action
that caused this CB to be left locked, hang recovery for
that PU should initiate at some subsequent point and
recover the locked CBs in its TCB, thereby recovering
the CB that caused the initial hang.

However, if the CB does not appear in the TCB of the
running PU and the lock is not in a state of transition,
it is this PU that is inadvertently holding the lock that
left the CB locked. Hang recovery “steals” the lock by
overwriting this lock (by means of a compare and swap
instruction [8]) with the lock identity of the PU that was
hung. This CB is then recovered during the hung PU
I0SS CB recovery task in the same fashion as other CBs
locked by this PU. It is interesting that for this case, the
CB can be “stolen” and recovered without putting the
running PU that caused the hang through any explicit

recovery actions. This scenario is depicted in Figure 3(b).
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In a later section of this paper, testing is discussed.
Analysis of FFDC data from this testing revealed that the
following cases were injected and the subsequent recovery
actions were successful. The hung CB was locked by a PU
that either was being recovered—in which case the hung
CB address was removed from the TCB of the hung PU—
or was not being recovered—in which case the hung CB
followed the algorithm in Figure 3(b).

Parallel recovery considerations for hang recovery
Prior to the advent of the z9, designs for parallel recovery
had been attempted with little success. The main obstacle
to achieving a workable design was in the area of 10SS
CB recovery. Here too, the scanning for CBs that were
left locked by the PUs that were to be recovered was also
problematic. For a parallel recovery design to be of any
performance benefit, the scanning of the CBs would have
to be divided among the SAPs dispatched to perform the
recovery in parallel.

With the new TCB infrastructure on the z9, the split of
which CBs to recover aligns very nicely with the ability to
dispatch multiple SAPs to perform recovery in parallel,
whereby each SAP is assigned a non-overlapping subset
of the PUs to recover. Because the TCBs are organized
on a PU basis, with each TCB containing CBs ecither
locked or attempting to be locked by that PU, it
simplifies the determination of which CBs each SAP is to
recover. Each SAP performing recovery now examines
the TCBs of the PU being recovered to determine which
CBs to recover.

In the situations mentioned above, there are cases in
which CBs could be listed in multiple TCBs. The methods
for hang recovery were designed with parallel recovery in
mind to resolve potential overlap situations. Whether or
not there is a hang, just prior to IOSS CB recovery a
portion of the hang recovery firmware is run that resolves
any TCB CB overlap. This overlap is eliminated by
ensuring that CBAs left in the TCBs that are undergoing
I0SS CB recovery are the only valid CBAs for CBs
locked to the PUs being recovered by the SAP. Hence,
after any overlap is resolved, the TCBs of the PUs being
recovered contain only valid addresses of CBs that are
locked to the PUs holding the CB lock.

To avoid having to lock TCBs for PUs that other SAPs
are recovering, hang recovery employs methods a SAP
can use to “steal” the CB lock if it is required, as shown in
Figure 3(b), rather than inserting CB information into a
TCB for a PU the SAP is not recovering. Not having to
lock the TCBs reduces contention in a parallel recovery
environment.

Parallel recovery execution

In System z servers prior to z9, the FFDC data collection
for multiple errors in the I/O hardware components and
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the recovery actions for the self-timed interface (STI)
network [2] were already executed in parallel by multiple
processors. During this phase of recovery, called
hardware error recovery, all error indications in the I/O
hardware are reset, the resulting IOSS recovery actions
are determined, and appropriate requests are put into
an order-book data structure called the global recovery
request block (GRCB), which is visible to all SAPs in the
system. After completion of these tasks, the recovery
actions related to IOSS control blocks and channel
reinitialization are performed sequentially by the affected
SAPs on the basis of the requests in the GRCB. While
reinitialization of channel hardware could already have
been done in parallel on all SAPs without difficulty
prior to z9, sequential execution was required to restore
consistency and recover the IOSS control blocks because
of the structure of the algorithms used in this phase. This
restriction was removed on z9 by exploiting the new
TCB infrastructure that was described in detail in the
previous section.

The only remaining synchronization point is between
I/O hardware recovery and IOSS CB and channel
recovery. On one hand, this is due to the hierarchical
structure of I/O hardware. For example, hardware
problems present in the STI network must be recovered
before problems in attached components can be
recognized and handled. On future systems, it may be
an evolutionary step to enhance the granularity of this
synchronization by, for example, performing recovery for
channels in one domain of the STI network even though
there are still errors pending in other domains. However,
at present, the latest recovery improvements are more
than sufficient to keep pace with the overall growth in
system size and complexity. The additional effort in state
tracking and bookkeeping of failure details would require
a highly complex infrastructure that, by itself, would
create an exposure to new failure scenarios.

The 1/O hardware error-handling phase of recovery is
relatively fast, usually taking less than 100 milliseconds.
In contrast, the IOSS control-block-related recovery
and the channel reinitialization based on the requests
collected in the GRCB may take several hundred
milliseconds. Since reinitializing the channels requires
very little processing capacity on the SAPs, handling
multiple channels in parallel takes only slightly longer
than reinitializing a single one. When multiple I/O
hardware errors occur at about the same time, recovery
on the z9 exploits this performance benefit by executing
this phase of the recovery only after waiting until the
requests from all I/O hardware errors pending in the
system have been collected in the GRCB.

To support parallel IOSS recovery, the z9 introduces
improvements in the error reporting to the recovery and
the bookkeeping for pending recovery actions. On
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previous systems, each SAP scanned the various reporting
interfaces used by other SAPs to move orders into a
common system-wide order book (global recovery CB or
GRCB) before waiting at the synchronization point. This
approach can be thought of as a pull concept. Once the
I/O hardware recovery comes to an end, this SAP
continues its work by picking all orders from the order
book that can be executed on this SAP. New requests that
are pending on the reporting interfaces are not picked up
by the current recovery run, but are left for a later
recovery run.

With z9, each PU reporting an error can place a
recovery request in the GRCB directly and make
the order known to any SAP that is waiting at the
synchronization point—a push concept. This strategy
guarantees a more complete view of the system state while
performing IOSS recovery. New orders targeted for an
SAP that is already waiting at the synchronization point
can be executed as soon as possible. As a result of these
improvements, the z9 is the first System z mainframe that
allows full parallel execution of IOSS recovery.

Testing enhanced recovery

During z9 enhanced recovery testing, special error-
injection tools and techniques were used to emulate
various PU hardware failures at various firmware code
points. The tool uses a software interface to the processor
hardware to force uncorrectable errors at specific code
points in millicode to invoke recovery. These code points
were both focused and randomized to ensure that the
emulated PU failures occurred after various CBs were left
locked by one or more of the failing PUs. The error
injections were done in various z9 environments—f{rom
small z9 central electronic complex simulator (CECSIM)
[10] environments to huge z9 machine configurations with
many processors and large /O configurations. In many
cases, the error injections were done on the z9 while the
system was under a heavy load running various test
programs in various LPAR partitions. In addition,
firmware errors, such as setting locks into various CBs to
emulate CB hang situations, were done in these various
test environments as well.

Several immediate benefits were seen in the enhanced
recovery testing. The sympathy sickness often seen on
systems prior to z9 with large-system configurations
during system recovery was not seen in testing. This
was primarily because of the increased speed at which
recovery runs with the new design. Also, several code
bugs were found during testing that inadvertently left a
CB locked by a running processor that, on systems before
79, would have caused a system check-stop. The z9
successfully recovered from these errors, thereby
validating the z9 CB hang recovery design.
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The enhanced recovery improvements also proved
beneficial in the overall debugging of other z9 functions
that were under test:

* Code bugs found during the normal testing process
for new firmware were identified closer to the point
of origin because of the advanced error detection.

* Added state tracking identified the task or instruction
executing at the time of error.

e Improvements related to enhanced recovery that were
made to the FFDC logs and traces resulted in the
precise logging of the CBs that were recovered or
caused the CB hang.

® The precise error codes that were added to the TCB
allowed for faster identification of bugs.

Conclusion

The z9 TCB infrastructure and its supporting firmware
have improved the IOSS recovery function by eliminating
lengthy CB scans, by providing enhanced error detection
and recovery for firmware-related problems, and by
providing a solution that scales with the ever-increasing
demands placed on the I/O subsystem by enterprise-level
computing.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.
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