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Although part of the IBM System ze strategy is to improve design
and development processes to prevent errors from escaping to the
field, improving recovery is another element in the strategy to
keep a machine up and running should an error occur. The z9e

continues on an evolutionary path of enhancing I/O subsystem
(IOSS) recovery to further advance the reliability, availability, and
serviceability (RAS) of System z platforms. This paper presents
an overview of recovery and how it interacts with other RAS
functions—such as error-detection mechanisms in hardware,
including automatic identification and recovery of failing
elements—up to the point in time prior to the advent of the z9. It
then presents the innovations to IOSS recovery and error detection
in the z9 that further improve machine availability. The recovery
infrastructure, which significantly reduces recovery time and makes
recovery much less dependent on machine scaling for this and
future generations of System z servers, is described. Also described
are such innovative uses of this new infrastructure as improvements
in error detection related to elusive firmware problems seen in prior
machines, the ability to detect and recover from firmware hangs or
lockups related to inadvertently leaving control blocks locked, and
the capability to perform recovery in parallel by multiple system-
assist processors.

Introduction

Over the years, System z* (formerly zSeries*) servers have

been continuing to scale [1, 2] in terms of the sheer

number, capacity, and performance of their logical

partitions, processors, channels, networking adapters,

and the I/O devices to which they can attach. As a result,

customers have been placing a greater percentage of their

business-critical workloads on these machines. The

expectation of uninterrupted, around-the-clock operation

has made it increasingly important to minimize failures

that affect the operation of the machine. The z9*

continues in the System z evolutionary path to the highest

quality standards in both the hardware and firmware

[3–5]. However, statistics such as mean time to failure or

failure rate, no matter how good, still allow for errors.

And just one failure that takes a machine down could

have a severe impact on a client’s business. The engineers

at IBM recognized this and, in mainframes as early as

the IBM 3081, announced in 1980, they started on a

continuous path of delivering innovative solutions to

improve the reliability, availability, and serviceability

(RAS) of the machine to unprecedented levels in the

industry. One such innovation, serving all three aspects

of RAS, was the concept of recovery—the ability of a

machine to automatically restore itself to a known state

after taking an error and, if need be, to fence off failing

components so that the machine can continue running

on the unfenced portions of the machine with minimal

disruption to the running software.

In a System z eServer*, recovery code and hardware are

spread over the entire system [4, 5], ranging from primary

components, such as the first-order I/O network, I/O
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channels, or processor chips, to secondary components,

such as the power subsystem or the support element (SE).

For the functional components, recovery is implemented

mainly in firmware, which runs on the central processors

(CPs) and the system-assist processors (SAPs). Especially

in the I/O subsystem (IOSS), a significant portion of the

functionality is implemented in firmware [6]. As a result,

recovery must deal not only with hardware failures, but

also with firmware errors and a huge number of data

structures that reflect the current state of operation.

The typical recovery goals [3] and sequence of steps

are as follows:

1. Error detection: Detect the error as early as

possible through the use of appropriate checking

mechanisms. This applies to hardware failures and

firmware errors.

2. First failure data capture (FFDC): Collect

comprehensive information on the error itself and on

the circumstances that led to the failure. This step

lays the foundation for all subsequent recovery,

service, and repair actions dealing with the error,

as well as for subsequent analysis by System z

development groups.

3. Determining and scheduling of recovery actions: After

analyzing the FFDC data, determine the recovery

actions that must be performed in which order for

which elements in the system.

4. Execution of recovery actions:
� Reset of affected elements: Reset the elements

affected by the error to bring them back to a

known and consistent state that allows resumption

of normal operation. This applies to hardware

elements and the firmware stack. A hardware

element can be restarted successfully only if it is

not permanently damaged, i.e., if the error can

really be ‘‘repaired.’’
� Fencing of failing elements: Fence off the failing

element in case it is permanently damaged. This

is to protect the system as a whole from a

continuously malfunctioning element.
� IOSS control block (CB) recovery: Examine the

hardware system area (HSA) for I/O CBs that were

in use by affected elements at the time of error and

restore them to a known, consistent state, thus

making them available for continued usage.
� Retry/termination of affected operations: Either

retry or terminate all operations upon which the

failing element was working when the error

occurred. If a retry is possible, the recovery action

is transparent to the software. However,

depending on the error, there may be no way to

tell how far the failing element progressed in

executing the operation. In this case, the operation

must be terminated because, for example,

firmware internal data structures may have

become inconsistent, and they must be reset to a

known state.

5. Software notification: Notify the customer’s software

that an error has occurred and which operations

have been terminated. Again, depending on the

error, there may be no way to tell how far the failing

element progressed in executing the operation.

Therefore, software usually has to perform its own

recovery actions in order to allow the resumption

of normal operations. For example, when a failing

operation is part of a transaction, this may include

rolling the transaction back.

6. Serviceability infrastructure notification: Notify the

System z eServer SE that an error has occurred. This

includes submitting and logging all available FFDC

data and the state of all affected elements after

completion of the recovery actions. On the basis

of this information, the SE determines which

component of the system must be repaired and

triggers the service personnel to schedule the

appropriate repair action.

The following paragraphs briefly describe some of the

basic concepts of error detection, recovery, and analysis.

Error detection

Comprehensive error detection in hardware and firmware

is indispensable to the performance of a successful

recovery [3]. Detecting errors as early as possible is vital

to the avoidance of data integrity problems. In a System z

server, error-detection capability, like recovery functions,

is present among all system components. In hardware,

a wide variety of mechanisms are implemented as

appropriate to the specific chip function. Some examples

are parity checks of registers, cyclic redundancy checks

(CRCs) for serial data transfers, error-correction code

(ECC) logic in combination with thresholding, validity

checking of state transitions for state machines,

consistency checks at interfaces, and comparison

of results of double execution units.

Available literature (e.g., [7]) discusses these

mechanisms. For detecting firmware errors, far fewer

options are available, because there is no way to really

‘‘test’’ the code itself at runtime. Here, error detection

relies solely on active checking for bad parameters or

inconsistencies in the data used by the code.

Error data collection

On System z mainframes, an important aspect of the

recovery infrastructure is error data collection. FFDC
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mechanisms to collect unpolluted data on the original

failure are required to classify an error and to determine

the potential source of the error. It is critical to collect this

data as close in time to the detection of the error as

possible. While handling the error (e.g., sending controls

to failing hardware to reset error indications), more data

is collected to record the effect of each action performed

during the recovery task. This mechanism is known as

secondary failure data capture (SFDC).

FFDC and SFDC are tied closely into the general

recovery infrastructure, but may also be used by modules

other than recovery. While recovery code uses this data

internally to develop a recovery strategy to handle the

current problem, the data is also logged into permanent

storage on the SE hard disk. This data is used by

automated mechanisms on the SE—e.g., to identify a

failing field-replaceable unit (FRU)—and sent to IBM

System z support. In rare situations, the automated error-

handling mechanism cannot resolve the failure situation

as expected. The data collected in these situations is then

made subject to a detailed postmortem analysis by the

development team.

Error classification

Each error has specific characteristics that imply whether

and how recovery for it can be performed. There are

numerous meaningful criteria for classifying errors. Many

of them are reflected in the algorithms implemented in

a System z server [3] that determine the appropriate

recovery action for a given error. The most important

ones are discussed in the following subsections.

Clock-running and clock-stop errors

The most important goal of a System z server is to

preserve the integrity of the customer’s data. In severe

error situations, satisfying that goal may mean that it is

required to immediately stop a piece of hardware, or even

the whole system. Such errors, called clock-stop errors,

cannot be recovered. Fortunately, the mean time to

failure (MTTF) for System z servers is very high (30þ
years), so the occurrence of such an error is a rare event,

and only a small number of errors that occur require such

a drastic step. In ‘‘normal’’ error situations, the integrity

of the customer’s data is not endangered, and recovery

takes all required actions to keep the system operational.

These errors are therefore called clock-running errors.

Hardware failures and firmware errors

A piece of hardware may age and fail over time. In this

case, the System z recovery first attempt to repair it

involves resetting and reinitializing the failing hardware.

If this is not successful, the broken piece of hardware is

isolated to protect the remaining system from potential

misbehavior of the damaged element. This is done by

fencing it off, i.e., by shutting down all interfaces to the

failing element.

Either firmware errors exist in the code or they do not.

Firmware does not age, so it cannot break over time,

and errors usually surface as soon as the faulty code is

executed with a combination of conditions (such as input

parameters, stimuli, or workloads) that precipitate the

fault. If a System z eServer detects a firmware error, the

currently active task is usually aborted by restarting the

complete firmware stack on the processor that executed

the faulty code. Whether or not a successful recovery is

possible depends on the damage that has already been

caused to the firmware data structures. If they can be

reset to a consistent state, normal operation is resumed; if

they cannot, execution of all system functions that use the

damaged data structures must be inhibited. In severe

cases, this can result in the entire system being stopped.

Of course, the recovery code itself is a piece of firmware

and may therefore contain errors. If such an error

surfaces during execution, it means that the recovery

algorithms are unable to deal with the error situation that

initiated the recovery. There is no more-sophisticated

code to handle this situation; if there were, it would

already have been part of the initial recovery code.

Therefore, in such situations, the entire system is stopped.

The System z development group puts a very strong focus

on robustness and quality of the recovery code because

this firmware component, by its very nature, executes

in situations in which some error within the system has

already caused a certain amount of damage. Therefore,

the recovery code never relies on data structure content

that is also used by functional code. It also contains many

more consistency checks than functional code.

Recoverable and permanent errors

Most errors surface only in very specific circumstances.

Usually it is possible to reset the failing element, repair

the damage caused by the error, and resume normal

operation. Such errors are called recoverable errors.

However, if a piece of hardware has a solid, non-

intermittent failure due to aging or if it is not possible to

restore a consistent system state after an error, the failing

element must be fenced off. Such errors are called

permanent errors. Of course, any error that has been

recovered successfully might reoccur. For example, a

piece of hardware may show the same recoverable error

multiple times before it finally breaks permanently. It is

likely that a firmware error will show up repeatedly, since

the specific circumstances precipitating it typically

reoccur. If an error persistently and rapidly reoccurs, the

resulting recovery actions could monopolize vital system

resources, such as processors or I/O paths. This could

have a severe impact on the availability or performance of

the system. To avoid such situations, all recovery actions
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and errors are counted for each element in the system.

If an element fails repeatedly with the same recoverable

error so that the appropriate counter exceeds a predefined

threshold value, the error is treated as if it were

permanent. As escalation, the element is fenced off to

protect the remainder of the system. In the case of a

firmware error, fencingmeans inhibiting further execution

of the affected function by maintaining disablement flags

and having appropriate checks to the code. Obviously,

this is applicable only to nonvital functions.

Initial and secondary errors

In complex computer systems such as a System z server,

an initial error that occurs in one element often causes

additional follow-on errors to occur in other elements.

This effect is known as sympathy sickness. The required

recovery actions for an error are independent of whether

it is an initial or a secondary error. However, after

recovery is complete for a hardware failure, this difference

is highly important for determining which hardware

component must be replaced. Using the FFDC data

collected during a recovery run, the FRU error analysis

first attaches predefined weights to all available error

indications. The element with the highest weight is the

one that must be replaced. The algorithms used in this

process are based on the relevance of the individual error

indications, the hierarchy of the way in which chips are

connected, and the information concerning the success of

the recovery or the lack of it.

Scheduling of recovery actions

After an error is detected and FFDC data is collected,

recovery must determine the elements in the system that

are affected, the recovery actions that must be performed,

and the order in which they must be performed. For

errors affecting only one element, this is usually

straightforward because there are no dependencies.

If an error affects multiple elements in the system, the

scheduling becomes much more complicated. This often

occurs if an initial error in one element causes other

elements to detect follow-on errors, e.g., because of

timeouts or because some required resource is no longer

accessible. In the IOSS, many errors are of this kind

because of the chip hierarchy in the first-order I/O

network. Elements closer to processor chips must be

recovered successfully before elements farther away

can even be scanned to determine whether they have

encountered an error. This requires that the execution

of the recovery actions for the first-order I/O network

components be, in fact, interlaced with the FFDC step.

The scheduling step also determines which processors

should perform which recovery actions. In a System z

server, SAPs perform the IOSS recovery. There is a static

assignment of which SAP is responsible for performing

the recovery for a given I/O channel. Multiple recovery

requests that are independent of one another are

distributed over the SAPs that are affected by the errors

and are executed in parallel.

It is important to determine when to initiate the IOSS

recovery. Most resources and data structures are shared

among multiple elements such as channels or processors.

If a resource or data structure is held or locked by an

element, the recovery code is allowed to ‘‘steal’’ it only

if there is a recovery request for the owning element.

Because of this, starting recovery too early may result in

deadlocks if the complete picture of all pending errors in

the system and the required recovery actions is not yet

known. However, starting too late, when resources may

be unavailable, may cause additional follow-on errors,

thus endangering the success of the overall recovery. The

parallel recovery execution section below describes the

scheduling in more detail.

Execution of recovery requests

The execution of a recovery action concentrates on either

bringing a failing element back into a consistent state in

which normal operation can be resumed, or isolating it

from the rest of the system.

This action consists of the following steps:

1. Reset and reinitialization of failing elements: Most

errors that can occur in a System z eServer are

considered to be recoverable in the first attempt.

For hardware failures and firmware errors such as

programming exceptions and deadlocks, the recovery

code attempts to reset and reinitialize the failing

element. The firmware stack running on the affected

processor is restarted. For most hardware elements,

multiple levels of resets are available, with their scope

ranging from only a small section of chip logic to the

complete chip. An initial recovery attempt always

uses the least invasive reset type. If it is not successful

(i.e., the subsequent reinitialization of the element

fails), this indicates either that the hardware is

permanently damaged or that the scope of the reset

was not broad enough to cover all affected hardware

pieces. In both cases, recovery begins a retry,

including error-data collection. The recovery actions

performed in the retry are more comprehensive than

those in the initial attempt:

a. If new errors show up, they were probably the

cause of the failure of the first recovery. The

recovery actions derived from them are added

to the initial ones.

b. If there are no new errors, the retry uses a more

comprehensive reset that covers a larger portion of

the hardware, up to a full chip reset. If the previous
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recovery attempt already involved a full chip reset,

the error cannot be recovered. In this case, the

failing element is fenced permanently.

2. Fencing of failing elements: Fencing of a failing

element is done if the reset and reinitialization does not

work or if it encounters one of the few error types that

by their nature cannot be recovered. For that, recovery

isolates the failing element, for example, an I/O

channel card, from the remainder of the system. The

goal is to avoid a continuouslymalfunctioning element

that permanently disturbs the operation of the system,

since this would, at the least, have a performance

impact on the customer’s system. In extreme cases, it

could result in the machine being completely occupied

by recovery and no longer available.

3. IOSS CB recovery: The HSA is a memory space that

contains state information for all I/O operations

occurring in the processor complex. Thus,

maintaining the integrity of this memory space is

essential to the operation of the entire system. The

HSA is organized into sections, with each section

containing a particular type of IOSS CB. Each

CB type is a logical representation of particular

physical resources of the IOSS configuration. These

individual CBs are used by the IOSS firmware

to manage I/O operations; they contain state

information related to the I/O operations executing

in the IOSS. If the firmware has to update a CB as

part of processing an I/O operation, the element,

such as a SAP or a CPU, acquires exclusive use

of the CB by using a locking protocol. It acquires

exclusive access to the CB until the point at which it

releases or unlocks the CB. During the time interval

between the time at which the element acquires the

lock and the time at which it releases it, the CB is

considered to be held by the element and is in a

transitional state. If the element holding the CB lock

fails, the CB requires recovery to restore it to a

known state and make it available for use by the

other elements. Each IOSS CB type has a unique

recovery algorithm designed to recover the

associated CB type during IOSS recovery actions.

4. Retry or terminate ongoing operations: Reset or

fencing of a failing element affects all of the

operations that this element had been working on

when the error occurred. However, the IOSS internal

data structures still reflect these operations and have

to be reset. Depending on the type of operations, it

may be possible to retry them. If so, the recovery

is transparent to the customer’s workload. Since

other operations cannot be retried, they must be

terminated; in these cases, software must be notified.

Software and service infrastructure notification

For all operations that, because of a recovery action,

must be terminated according to the z/Architecture*,

software is notified. On the basis of these notifications,

the operating system (OS) may also have to perform some

software recovery action. When subchannel operations

are terminated, z/Architecture [8] provides for the

subchannel to be put into a channel-control-checked

(CCC) state, which is seen by the OS when the subchannel

is made status pending. When channels are put into a

permanent error or check-stop state, channel report words

(CRWs) are presented to the OS by the machine-check

interruption mechanism [8].

Furthermore, the service infrastructure is informed

about the recovery. The IOSS firmware sends all collected

FFDC data and results of the recovery actions to the SE.

On the basis of this data, the SE performs several tasks:

� Customer notification: The SE sends the customer a

hardware message concerning the error. There are

also OS error messages, but customers do not

necessarily monitor all consoles.
� FRU analysis: The FRU analysis consists of analyzing

the FFDC data for clock-running errors to identify

the failing element that caused them.
� Overall problem analysis: The overall problem

analysis (PA) combines the results of the clock-

running FRU analysis with all other error indications

in the system, such as clock-stop errors, SE errors, or

power subsystem errors. On the basis of this system-

wide overview of all failures that occurred within a

certain time window, the problem analysis routine

identifies the FRU that was the root cause of the

errors.
� IBM service personnel notification: The FRU

identified by the PA is automatically reported to IBM

by what we term a call home. If a service contract is in

place, this triggers IBM service personnel to contact

the customer and schedule a repair action. In a

System z eServer, a repair for a clock-running error

can usually be performed concurrently, i.e., without

further disruption of the customer’s workload.

IOSS CB recovery overview
Before the advent of the z9, the IOSS CB recovery design

used a generic scan method executed on a SAP to

perform recovery. As the name implies, the scan method

examines the entire HSA where all of the IOSS CBs

reside. It scans one CB at a time searching for the few

CBs that are held by the failing processor unit (PU). With

large I/O configurations, tens of thousands of CBs are

examined during this process, which can greatly extend

the time required to recover from an error.
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Long system recovery times have a direct impact on

overall system performance. Recovery tasks have a higher

internal priority, which delays other tasks that may

require the SAP performing the recovery action. Other

tasks executing on running PUs may require one or more

of the CBs scheduled for recovery. These tasks have to

wait for the held CB to be recovered and freed, which can

drive additional recovery actions (i.e., timeouts and CB

hang conditions). The large number of PUs in the system

configuration contending for a given set of shared CBs

only exacerbates this limitation.

The z9 enhanced IOSS recovery design introduces

the concept of CB state tracking. This method has

significantly reduced system recovery times and improved

overall system throughput and performance; it has

resulted in predictable, near-constant recovery times

instead of scaling with the size of the I/O configuration.

IOSS CB introduction

During the initial machine load (IML) of the z9

central processor complex (CPC), firmware reads the

installation-generated I/O configuration dataset (IOCDS)

and translates it into I/O CBs, such as the subchannel

control block (SCB), in HSA. Many types of I/O CBs are

required to logically define the IOSS, with each type

defining a particular component of the IOSS. Thus, the

HSA is memory space containing state information for all

of the I/O operations occurring in the CPC.

IOSS tasks and modes of operation

From an OS viewpoint, a task may be seen as a piece

of work or job stream managed by the system-level

software. The system firmware also views work on a task

basis, but the definition is firmware-code-specific. The z9

CPC comprises up to 64 PUs, and each PU can be

assigned one of two functional modes of operation:

1. As a CPU, executing software in z/Architecture or

Enterprise Systems Architecture/390* (ESA/390)

mode [8], with the capability of entering millicode [9]

mode to execute specific instructions. In this mode,

the scope of an IOSS task is defined as the execution

of that instruction by millicode.

2. As a SAP, executing firmware, primarily in i390 [6]

mode. A SAP views a task as a dispatchable unit of

work—for example, selecting a channel path to be

used for an I/O operation and initiating the

operation at that channel.

Within a task on a SAP, i390 code also invokes

millicode in certain situations, such as broadcasting an

interrupt condition to the CPUs. The firmware definition

of a task and its scope are the basis for understanding

state tracking and the IOSS CB recovery design of the z9

IOSS.

CB locking protocol and state tracking

Most CBs are accessed by different elements in the

system, namely CPUs, SAPs, and channel paths. Lock

fields in the CBs are used to implement an access

protocol. There are also a number of locking rules, such

as a strict order in which locks are to be acquired. The

order ensures that no deadlocks occur. If, for instance,

SAP A locks CB 1, then SAP B locks CB 2, and then

SAP A attempts to lock CB 2 and SAP B attempts to

lock CB 1, both SAPs are deadlocked. Therefore, CBs

are assigned priorities according to their type.

Another rule states that all locks may be held for only

the duration of a single task, such as dispatching a

new I/O operation or passing the status of such an

operation back to software upon completion. If a lock is

inadvertently held for a longer time, it may go unnoticed

until that CB is required again in a subsequent task.

If a task in the IOSS is aborted because of a hardware

or firmware failure, it is likely that locks are still held.

To recover from this situation, IOSS code on previous

systems would scan all CBs to find out which ones

participated in the aborted task. As the number of CBs

grew into the tens of thousands, this process took on the

order of one second to complete. On the other hand, a

single task will access only a very limited number of CBs,

usually less than ten. For this reason, state tracking was

introduced in the IOSS of the System z9*.

All lock operations are now tracked in a separate task

control block (TCB). The CPU maintains its own TCB,

as does the SAP; moreover, i390 code and millicode

maintain separate TCBs. This way, there is no

requirement to lock the TCB itself, which would have

created unacceptable contention. The TCB contains a

number of slots that correspond to the maximum number

of CBs being locked at any given time. When a CB is

locked, a free slot is picked in the TCB in which the CB

address and type are recorded. The slot number is stored

in the CB itself. This avoids an expensive scan of the

TCB when the CB is unlocked. To safeguard against

programming errors, the locking routine validates that

the CB is not already held by the processor requesting the

lock, which would be a violation of the locking rules.

CB locking and the TCB

Each PU is allocated two TCBs, one for i390 mode and

one for millicode mode. The TCB is a registry of the CB

resources currently owned by a task executing on the

processor.

When a SAP operating in i390 mode is dispatched to

perform a specific task requiring CB resources, it invokes

a locking protocol to acquire the proper serialization for
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updates to that CB. Figure 1(a) depicts an IOSS CB with

its owner lock data and extended lock information fields

used by the locking protocol to identify the type of lock,

the processor, and information about the task holding

the lock.

The locking protocol also provides the common i390

code interface to the TCB infrastructure to record

important information about the CB. Figure 1(b) depicts

a TCB. The TCB contains several arrays to maintain

information about the CBs locked during a task. Its key

fields are the following:

� CB mask (CBM) array: This array relates to a

corresponding entry in the CB type (CBT) and CB

address arrays (CBA) which identifies a locked CB or

one intended to be locked by a task.
� CBT array: This array contains the CBTs of the CBs

that are locked or intended to be locked by a task.

Each CBT entry corresponds to a bit in the CBM

array.
� CB address array: The CBA array contains the

storage address of the CBs locked or intended to be

locked by a task. Each CBA entry corresponds to a

bit in the CBM array.

The locking protocol updates the TCB arrays with the

CB information and also updates the CB with the TCB

CBM array index. The index is used by the unlocking

protocol code to quickly locate the correct TCB array

entries associated with the CB.

After the CB state information is updated, the CB

can be released using the unlock protocol. The unlock

protocol resets the specific CBM array bit to indicate that

the entry for this CB is no longer valid.

Enhanced error detection by locking protocols

The locking and unlocking protocols make use of the

TCB infrastructure to detect error conditions with respect

to control usage by a task or errors that exist in the HSA.

The firmware code contains a set of rules that apply to

and support the tasks based on the structure of the IOSS.

The rules also are used to verify that locking protocols

relative to task execution are observed by the firmware.

Task scope checking

All locks may be held only for the duration of a single

task. At the start of a new task, the IOSS interrupt

handler interrogates the TCB CBM bits. If there are any

bits set, this indicates that the previous task did not fully

unlock the CB resources it held for that task. In this case,

a microcode-detected error is set, I/O recovery is

scheduled, and firmware debug data is collected and

submitted to the SE for analysis.

Double unlock of a CB

The unlock protocol stores back the CB data, then

updates the CB lock word, thus freeing the CB for use

by another processor. If a task attempts to unlock a

previously unlocked CB, the unlock protocol detects

this condition by checking the CBM bits, thus preventing

a condition in which the CB could have been overwritten,

damaging the HSA data space.

CB verification

The unlocking protocol verifies that the CB being

unlocked is the correct one. The TCB CBT array entry is

compared to the CBT in the CB, and the TCB CBA array

entry is compared to the CBA. If there is a mismatch, a

microcode-detected error is set, I/O recovery is scheduled,

and firmware debug data is logged for analysis.

Figure 1

Control block definition: (a) common IOSS CB; (b) TCB.
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Early hang detection

When a SAP or a CPU firmware detects an invalid or

unexpected condition, it requests recovery by a SAP. This

request may be made pending while the SAP is in the

middle of a task and thus (yet) unaware of this request.

If the SAP subsequently attempts to lock a CB that is

currently held by the failing SAP or CPU, a deadlock

occurs. This situation was formerly detected and resolved

by a timeout mechanism.

A different approach is used in the System z9. When

SAP A detects that it is unable to lock a CB because it

is being held by SAP B, it checks whether SAP B has

requested a recovery from SAP A. In this case, SAP A

immediately invokes recovery without any delay.

Finally, when an IOSS task completes, no CBs are left

locked. At the start of the next task, the slot usage vector

in the TCB is checked. If it is nonzero, a lock has not been

released by the prior task. This triggers a recovery action,

and firmware debug data is collected and submitted to

the SE for analysis.

IOSS CB recovery use of the TCB

In the event of a PU failure related to either hardware or

firmware, the TCB has information about the CBs in

use by the PU at the time of the failure. These CBs

require recovery because they are the CBs whose state

information was being altered when the failure occurred

and may now be in an indeterminate state. IOSS CB

recovery consists of a set of algorithms, with each

algorithm unique for a particular CB type. The

algorithms are designed to interpret the TCB contents,

restore the targeted IOSS CBs to known states, and make

them available for future tasks.

Figure 2 depicts a task executing on CP01 that has

locked three CBs during its execution before taking an

error. IOSS recovery will be scheduled, and the TCB

content used to direct the recovery processing.

Early in the IOSS recovery sequence, the TCB is

validated to ensure that its contents are accurate. The

CBM array is checked to see whether the entries are valid,

the corresponding CBT entries are examined for valid

CBTs, and the CBA entries are examined for valid CBAs.

Address range checks performed on the CBA information

ensure that the CB resides within the expected address

range for that CB type. Invalid CB entries are considered

firmware errors. They cause firmware debug data to be

collected, and are removed from the TCB and further

recovery processing.

Once TCB validation is complete, the TCB is

interrogated by the CB-specific recovery algorithm, which

searches for a valid TCB CBM array entry for the specific

CB type to be recovered by the algorithm. If a valid TCB

CBM entry is found for the CB type, the CB address is

retrieved from the TCB CBA array and returned to the

recovery algorithm. Once a valid CB address is returned

to the recovery algorithm, it can locate the CB and restore

it to a known state. This process is repeated for each

algorithm until the TCB has been fully processed. Since it

is possible for multiple errors to occur simultaneously in

Figure 2
Task steps populating the TCB; then an error occurs.
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the IOSS, it is possible to have multiple TCBs to process

during a single execution of IOSS recovery code.

CB hang recovery
Even though the advanced error-detection methods

described above prevent a number of CB hangs from

occurring, there is still the need to recover from a CB

hang in the event that a firmware error escapes detection.

While the new TCB infrastructure was being formulated,

it became evident that it could also be an integral part of

the solution for recovering from CBs inadvertently left

locked by a PU.

Elusive CB hang and its consequences

IOSS CB recovery prior to the z9 works very well for

recovering CBs left locked by a PU that subsequently

underwent a hardware failure before being able to unlock

them. This is because the identity of the locking PU is set

into the owner portion of the CB lock word when the CB

is locked. This allows IOSS CB recovery to know which

CBs were left locked by the failing PUs so it can recover

and unlock them. But what happens if a CB was locked

by a PU and a firmware bug prevents the PU from

unlocking it, but the PU continues to run? In this case,

the PU that left the CB locked is typically healthy from

a hardware viewpoint; there would be no indications of

processor errors. However, the unsuspecting PU that

attempts to lock that CB will spin as it waits for that CB

to be unlocked by the prior owner until, eventually, a

timeout occurs for this unsuspecting PU.

Most tasks within the IOSS are timed, so that if

timeout occurs, the PU running the task is considered to

be hung. When the PU is running in i390 mode, running

tasks are timed by a mechanism called the watchdog timer

that is external to the task itself; i.e., it does not keep

track of the specifics of the task. Hence, when an i390-

mode watchdog timeout occurs, it is not obvious whether

trying to lock a specific CB caused the hang. The CB or

CBs left locked by the PU that ‘‘forgot’’ to unlock it

would not be recovered by the current IOSS CB recovery

method, as illustrated in Figure 3(a). CBs that are

inadvertently left locked and cause other elements to hang

are classified as hung CBs.

Other PUs could also eventually time out attempting to

lock this CB, perhaps multiple times, causing multiple

invocations of IOSS CB recovery. If a PU is taken

through a recovery process multiple times within a certain

period of time, there is a recovery escalation of that PU to

a check-stopped state, which essentially fences off the PU,

making it unusable. If multiple PUs were check-stopped,

the system could reach the point of being unusable, or

worse, no PUs would be left in an operational state and

the entire system would be put into a system check-stop

state. Analysis of FFDC from system check-stops that

have occurred in the field in past machines as far back as

the z990 has revealed cases in which multiprocessor hang

scenarios were the root cause.

Recovery from CB hangs in a multiprocessor

environment

Hang recovery makes use of the TCB described above

and introduces new constructs in a novel way to identify

and recover CBs that were inadvertently left locked,

causing the hang condition described previously.

The basic concept is this: Given that there are TCBs

containing addresses of CBs that the PU either locked or

intended to lock, hang recovery can examine the locks in

each of the CBs listed in the TCBs of the hung PUs to

determine which PUs actually had those CBs locked. If

any of those CBs were locked by another PU, hang

recovery could then examine the TCBs of the PUs

holding the locks. Depending on whether or not the PUs

holding the CB locks were running or being recovered,

hang recovery would then determine what recovery

actions to take.

The notion of intending to lock is captured in the TCB

as a result of the locking rules in managing the TCB and

CB. In short, before a PU attempts to lock a CB, it must

first set the appropriate CB information in the TCB.

Thus, should the PU hang on trying to obtain a lock,

the TCB would have the information about the CB that

could have caused the hang. In the case of the PU running

in millicode mode, the millicode knows exactly the CB on

which it hung and explicitly indicates that CB in the TCB

after a PU has hung. In either case, the methods of hang

recovery described below can be applied to a hang

detected either in i390 mode or in millicode mode.

Hang recovery algorithm

Hang recovery uses the TCBs of the PUs it is recovering

to examine the locks in CBs indicated in the respective

TCBs. If the hung PU held the lock of a CB, that CB

could not have been the cause of the hang, and it would

be recovered, as is done today by IOSS CB recovery.

However, if the lock of another PU was found in the

CB and was pointed to by a valid CBA in the TCB

of the hung PU, hang recovery would have to perform

additional analysis to see whether the fact that that

CB was left locked caused the hang.

The next step is to determine whether the PU holding

the lock has been scheduled for or is already in recovery.

If either is the case, hang recovery examines the TCBs of

the PU holding the lock to see whether that CBA was in a

TCB of the PU holding the lock. If the CBA is found

in the TCB of the PU holding the lock, hang recovery

removes this TCB entry from the TCB of the hung PU

because it is assured that the locked CB will be recovered
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Figure 3
(a) Hung CB; (b) CB hang handled by recovery.
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by the task responsible for running IOSS CB recovery

against the TCB of the PU holding the lock.

If the CB was not in the TCB of the owning PU, the CB

is not recovered by the recovery scheduled for that PU.

Therefore, this CB has inadvertently been left locked and

is a possible cause for the hang. Hang recovery then

‘‘steals’’ the lock by overwriting this lock (by means of a

compare and swap instruction [8]) with the lock identity

of the PU that was hung. This CB is then recovered

during this hung PU IOSS CB recovery task in the

same fashion as other CBs locked by this hung PU.

If it turns out that the PU holding the lock of the

CB is a running PU that is not scheduled for recovery,

additional steps are taken to ensure that a consistent state

exists between the CB lock and the TCB of the PU

holding the lock before determining the recovery action

to take. For example, if the CB was being locked and

unlocked by a PU in either a temporary or an endless

code loop, the lock would be in a state of transition. Hang

recovery could not steal the lock in this case, because this

transition could result in the lock being overlaid back to

the running PU in the code loop. Therefore, the action for

this hang recovery is simply to remove this CB from the

TCB of the hung PU. For this specific case, the concept is

as follows: If the running PU is in an endless loop locking

and unlocking a CB, the watchdog timer for that PU

eventually indicates a timeout condition, which causes

that CB to be recovered by a subsequent hang recovery

task for that PU.

If the lock of the CB held by the running PU is not

in transition, the TCB of the running PU can be searched

for this CB. If the CB appeared in the TCB of the running

PU, we can be reasonably certain that the running PU

knows about the lock. Therefore, the action for the hang

recovery currently being processed is simply to remove

this CB from the TCB of the hung PU. Even if the PU

holding this lock is hung performing some other action

that caused this CB to be left locked, hang recovery for

that PU should initiate at some subsequent point and

recover the locked CBs in its TCB, thereby recovering

the CB that caused the initial hang.

However, if the CB does not appear in the TCB of the

running PU and the lock is not in a state of transition,

it is this PU that is inadvertently holding the lock that

left the CB locked. Hang recovery ‘‘steals’’ the lock by

overwriting this lock (by means of a compare and swap

instruction [8]) with the lock identity of the PU that was

hung. This CB is then recovered during the hung PU

IOSS CB recovery task in the same fashion as other CBs

locked by this PU. It is interesting that for this case, the

CB can be ‘‘stolen’’ and recovered without putting the

running PU that caused the hang through any explicit

recovery actions. This scenario is depicted in Figure 3(b).

In a later section of this paper, testing is discussed.

Analysis of FFDC data from this testing revealed that the

following cases were injected and the subsequent recovery

actions were successful. The hung CB was locked by a PU

that either was being recovered—in which case the hung

CB address was removed from the TCB of the hung PU—

or was not being recovered—in which case the hung CB

followed the algorithm in Figure 3(b).

Parallel recovery considerations for hang recovery

Prior to the advent of the z9, designs for parallel recovery

had been attempted with little success. The main obstacle

to achieving a workable design was in the area of IOSS

CB recovery. Here too, the scanning for CBs that were

left locked by the PUs that were to be recovered was also

problematic. For a parallel recovery design to be of any

performance benefit, the scanning of the CBs would have

to be divided among the SAPs dispatched to perform the

recovery in parallel.

With the new TCB infrastructure on the z9, the split of

which CBs to recover aligns very nicely with the ability to

dispatch multiple SAPs to perform recovery in parallel,

whereby each SAP is assigned a non-overlapping subset

of the PUs to recover. Because the TCBs are organized

on a PU basis, with each TCB containing CBs either

locked or attempting to be locked by that PU, it

simplifies the determination of which CBs each SAP is to

recover. Each SAP performing recovery now examines

the TCBs of the PU being recovered to determine which

CBs to recover.

In the situations mentioned above, there are cases in

which CBs could be listed in multiple TCBs. The methods

for hang recovery were designed with parallel recovery in

mind to resolve potential overlap situations. Whether or

not there is a hang, just prior to IOSS CB recovery a

portion of the hang recovery firmware is run that resolves

any TCB CB overlap. This overlap is eliminated by

ensuring that CBAs left in the TCBs that are undergoing

IOSS CB recovery are the only valid CBAs for CBs

locked to the PUs being recovered by the SAP. Hence,

after any overlap is resolved, the TCBs of the PUs being

recovered contain only valid addresses of CBs that are

locked to the PUs holding the CB lock.

To avoid having to lock TCBs for PUs that other SAPs

are recovering, hang recovery employs methods a SAP

can use to ‘‘steal’’ the CB lock if it is required, as shown in

Figure 3(b), rather than inserting CB information into a

TCB for a PU the SAP is not recovering. Not having to

lock the TCBs reduces contention in a parallel recovery

environment.

Parallel recovery execution
In System z servers prior to z9, the FFDC data collection

for multiple errors in the I/O hardware components and
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the recovery actions for the self-timed interface (STI)

network [2] were already executed in parallel by multiple

processors. During this phase of recovery, called

hardware error recovery, all error indications in the I/O

hardware are reset, the resulting IOSS recovery actions

are determined, and appropriate requests are put into

an order-book data structure called the global recovery

request block (GRCB), which is visible to all SAPs in the

system. After completion of these tasks, the recovery

actions related to IOSS control blocks and channel

reinitialization are performed sequentially by the affected

SAPs on the basis of the requests in the GRCB. While

reinitialization of channel hardware could already have

been done in parallel on all SAPs without difficulty

prior to z9, sequential execution was required to restore

consistency and recover the IOSS control blocks because

of the structure of the algorithms used in this phase. This

restriction was removed on z9 by exploiting the new

TCB infrastructure that was described in detail in the

previous section.

The only remaining synchronization point is between

I/O hardware recovery and IOSS CB and channel

recovery. On one hand, this is due to the hierarchical

structure of I/O hardware. For example, hardware

problems present in the STI network must be recovered

before problems in attached components can be

recognized and handled. On future systems, it may be

an evolutionary step to enhance the granularity of this

synchronization by, for example, performing recovery for

channels in one domain of the STI network even though

there are still errors pending in other domains. However,

at present, the latest recovery improvements are more

than sufficient to keep pace with the overall growth in

system size and complexity. The additional effort in state

tracking and bookkeeping of failure details would require

a highly complex infrastructure that, by itself, would

create an exposure to new failure scenarios.

The I/O hardware error-handling phase of recovery is

relatively fast, usually taking less than 100 milliseconds.

In contrast, the IOSS control-block-related recovery

and the channel reinitialization based on the requests

collected in the GRCB may take several hundred

milliseconds. Since reinitializing the channels requires

very little processing capacity on the SAPs, handling

multiple channels in parallel takes only slightly longer

than reinitializing a single one. When multiple I/O

hardware errors occur at about the same time, recovery

on the z9 exploits this performance benefit by executing

this phase of the recovery only after waiting until the

requests from all I/O hardware errors pending in the

system have been collected in the GRCB.

To support parallel IOSS recovery, the z9 introduces

improvements in the error reporting to the recovery and

the bookkeeping for pending recovery actions. On

previous systems, each SAP scanned the various reporting

interfaces used by other SAPs to move orders into a

common system-wide order book (global recovery CB or

GRCB) before waiting at the synchronization point. This

approach can be thought of as a pull concept. Once the

I/O hardware recovery comes to an end, this SAP

continues its work by picking all orders from the order

book that can be executed on this SAP. New requests that

are pending on the reporting interfaces are not picked up

by the current recovery run, but are left for a later

recovery run.

With z9, each PU reporting an error can place a

recovery request in the GRCB directly and make

the order known to any SAP that is waiting at the

synchronization point—a push concept. This strategy

guarantees a more complete view of the system state while

performing IOSS recovery. New orders targeted for an

SAP that is already waiting at the synchronization point

can be executed as soon as possible. As a result of these

improvements, the z9 is the first System z mainframe that

allows full parallel execution of IOSS recovery.

Testing enhanced recovery

During z9 enhanced recovery testing, special error-

injection tools and techniques were used to emulate

various PU hardware failures at various firmware code

points. The tool uses a software interface to the processor

hardware to force uncorrectable errors at specific code

points in millicode to invoke recovery. These code points

were both focused and randomized to ensure that the

emulated PU failures occurred after various CBs were left

locked by one or more of the failing PUs. The error

injections were done in various z9 environments—from

small z9 central electronic complex simulator (CECSIM)

[10] environments to huge z9 machine configurations with

many processors and large I/O configurations. In many

cases, the error injections were done on the z9 while the

system was under a heavy load running various test

programs in various LPAR partitions. In addition,

firmware errors, such as setting locks into various CBs to

emulate CB hang situations, were done in these various

test environments as well.

Several immediate benefits were seen in the enhanced

recovery testing. The sympathy sickness often seen on

systems prior to z9 with large-system configurations

during system recovery was not seen in testing. This

was primarily because of the increased speed at which

recovery runs with the new design. Also, several code

bugs were found during testing that inadvertently left a

CB locked by a running processor that, on systems before

z9, would have caused a system check-stop. The z9

successfully recovered from these errors, thereby

validating the z9 CB hang recovery design.
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The enhanced recovery improvements also proved

beneficial in the overall debugging of other z9 functions

that were under test:

� Code bugs found during the normal testing process

for new firmware were identified closer to the point

of origin because of the advanced error detection.
� Added state tracking identified the task or instruction

executing at the time of error.
� Improvements related to enhanced recovery that were

made to the FFDC logs and traces resulted in the

precise logging of the CBs that were recovered or

caused the CB hang.
� The precise error codes that were added to the TCB

allowed for faster identification of bugs.

Conclusion
The z9 TCB infrastructure and its supporting firmware

have improved the IOSS recovery function by eliminating

lengthy CB scans, by providing enhanced error detection

and recovery for firmware-related problems, and by

providing a solution that scales with the ever-increasing

demands placed on the I/O subsystem by enterprise-level

computing.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.
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