Concurrent driver upgrade:
Method to eliminate
scheduled system outages
for new function releases

The reliability, availability, and serviceability goal for an IBM
zSeries® system is to provide 24-hour-per-day, 365-day-per-year
service with reduced system downtime. The continuous reliable
operation rate has been improved with every new zSeries release by
using error prevention, error detection, error recovery, and other
methods that contribute to avoiding unplanned interruptions. Until
now, planned downtime—for example, the time needed to upgrade
a zSeries to the next firmware driver—had not yet been addressed.
We developed the concurrent driver upgrade (CDU) feature so that
customers could add new functions without downtime. It is now
possible to upgrade the zSeries firmware engineering change (EC)
driver to the next EC level without any performance impact during
the upgrade. This paper describes the motivation and strategy of

A. Muehlbach
B. D. Valentine
D. Immel

M. S. Bomar
T. V. Bolan

the CDU and describes its use.

Introduction

IBM zSeries* systems can activate firmware fixes
concurrently! without the need for planned system
downtime. Two different concurrent firmware fix
strategies are used: unit-concurrent and unit-disruptive.
Unit-concurrent means that the activation of a specific
piece of firmware is concurrent from an application
perspective. Technically speaking, when switching the
firmware the system might be halted for a very short
period of time, but it would go unnoticed by an
application. Unit-disruptive means that the activation of
a specific piece of firmware is concurrent for the system
but is always disruptive for the subsystem. To make a
unit-disruptive approach concurrent, either of the
following is necessary:

® The subsystem exists more than once (n + 1
approach). One subsystem can then take over the
system responsibilities while the other is updating its
firmware.

* The subsystem is not required by any running
operating system or application. The firmware can be
updated at any time without affecting the system.

!Concurrency requires that the activation is transparent to any running operating
system and has no impact on the operating systems and applications that are running.

History of the zSeries concurrent firmware fix
feature
The concurrent firmware fix feature was introduced
in 1994 with the implementation of the concurrently
patchable code for the hardware management console
(HMQ) [1], followed by other zSeries components such as
the support element (SE), the power code, I/O adapters
(channel code), and flexible support processor (FSP).
Since 1995 it has been possible to apply System z*
firmware fixes unit-concurrently. In the years following
1995, more subsystems implemented or improved the n+ 1
approach to use unit-disruptive techniques, or added or
improved the existing unit-concurrent support. Details
are provided in Table 1. Today, almost all firmware
problems can be fixed concurrently. However, new
functions cannot be added concurrently because of
subsystem-specific limitations.

Motivation for CDU

Over the years, System z customers have increasingly
accepted the concurrent firmware fix feature. Today, they
consider it mandatory that any firmware fix is applied
concurrently without planned system downtime.
Consequently, customers are asking for a concurrent
driver upgrade (CDU) feature that reduces their planned
downtime.

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this

paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor.

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

A. MUEHLBACH ET AL.

185

186

Table 1 Concurrent firmware fix history.

Firmware component

Concurrent fix support since System z model

HMC
SE, FSP, power, channel

1390, processor unit, microcode, logical partition (LPAR),
coupling facility control code (CFCC)

Millicode
Channel configuration off disruptive alternative

CFCC partition reactivation disruptive alternative

09/1994 9672 G1
07/1995 9672 G2
09/1996 9672 G3
06/1997 9672 G4
12/2000 2064
05/2004 2084

Customers have communicated several specific
requests. They want no interruptions when either
microcode fixes are applied or new functions are added
using the firmware driver upgrade. Those without a
Sysplex environment [2] do not want to switch to a
Sysplex in order to be able to add new functions
concurrently. Also, customers want the ability to decide
when they will upgrade and add new functions. These
requests can be met only if new functions are delivered
with a new firmware driver and not within a sequential
firmware fix stream.

Technical basis of CDU

Because of a strict IBM System z9* time-to-market
requirement and the need to reduce the risk for
unplanned incident repair actions (UTRAs), it was
decided to reuse the existing concurrent fix capability of
the zSeries for the CDU feature. The deciding factors
included the facts that the existing firmware did not
require major restructuring and that the risk of a UIRA is
reduced by the continual improvement of the concurrent
firmware fix feature.

A number of requirements had to be met to include
the concurrent firmware fix feature in CDU: The
existing concurrent firmware fix mechanism had to
be considerably improved; new capabilities had to
be invented, especially for firmware that had to be
exchanged concurrently; more subsystems had to apply
unit-concurrent firmware fixes; the executing HMC and
SE had to control the CDU tightly.

CDU design decisions
During the early phase of the CDU design, the following
basic decisions were made:

* The existing concurrent firmware fix feature
allowed—and still allows—the customer to deactivate
a firmware fix that was already installed without a
planned downtime. The customer had rarely chosen
to use the deactivate fix feature. It was decided that

A. MUEHLBACH ET AL.

CDU would not support the concurrent deactivation
of a driver that was already installed. This would
significantly reduce the risks for a UTRA.

® Because canceling CDU after it is initiated might
result in errors that require a planned disruptive
downtime in order to recover with a power-on reset
(POR), it was decided that after starting CDU, the
new driver must be installed with the CDU process
running to completion.

¢ It was decided that concurrent crossovers from
general-availability driver GA” to driver GA™"! to
driver GA™™ must be done sequentially. This means
that driver GA” can be upgraded to driver GA"™
only after driver GA™™! has been fully installed.

* CDU should enable the customer to move
concurrently from one specific firmware® level—the
microcode change level (MCL)>—on driver GA”
to a specific level on driver GA""'. The number of
crossover switch points would be limited for each
driver pair to reduce the number of transition code
versions and to improve test coverage. The next
section explains this approach in detail.

* A new firmware driver generally requires more
hardware system area (HSA)* for the new functions.
It was decided that the customer must free used
memory if the HSA must be extended. CDU cannot
do this automatically. After the driver has been
installed, the customer can again use the memory
that has not been used for the HSA extension.

* Because there might be some firmware changes that
cannot be installed concurrently, such functions must
be identified during their initial design so that one of
the following actions can be taken: Either significant

“Firmware is proprietary code that is usually delivered as microcode. An example of
firmware is the basic I/O system (BIOS) in read-only memory on a PC system board.
Firmware cannot be modified by the user but can be updated by service personnel.
SMCL is a set of changes to firmware. It is functionally equivalent to a software
program temporary fix and is intended for broad distribution.

“HSA is a logical area of central storage, not addressable by application programs,
used to store firmware and control information.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

preplanning would have to be performed to ensure
that the basics are delivered with the GA1 driver,
which is the only driver with a POR, or delivery of
the function would have to be held off until the
next system generation.

Despite the best preplanning efforts, a problem that
remains is that all new functions may not be known
during development of the GA1 driver. CDU might
require some manual activities, such as turning the
configuration of a specific channel on and off or
activating or deactivating of a logical partition® (LPAR).
Disruptive driver upgrades with a planned downtime
are permitted at any time. The customer decides which
strategy to use to upgrade a system to the next EC driver.

CDU switch point approach

As shown in Figure 1, System z9 contains many firmware
components. The HMC firmware runs in a separate
console and is managed separately from the system
firmware. From a CDU perspective, the only requirement
for the HMC is to upgrade its firmware from the driver
GA" to driver GA™"! prior to beginning the CDU process
for the System z9 system firmware.

The System z9 firmware comprises the following main
firmware components: support elements (SEs), FSPs,
power, LPAR, coupling facility control code (CFCC),
1390 code, millicode, and channels. Firmware is a key
component to provide flexible solutions and address
complex requirements for operations and service. On a
System z9, for example, power firmware not only helps
manage voltage, it is also executed in the cooling fan
hardware. The System z9 firmware components total
roughly ten million lines of code. A zSeries firmware
driver (i.e., GA") includes all defined firmware
components.

Each firmware component has its own EC stream
to release code fixes and new functions to the field.

This allows every development team to release code
independently, which is important when releasing MCLs.
On System z9 GA”, there are 29 unique firmware EC
streams.

When CDU is used to upgrade the System z9 firmware,
the driver GA” to driver GA™! will have designated
switch points. This means that each GA” firmware EC
stream must be at a specified MCL level, and the initial
CDU activation can only transition to a specified MCL
level for each GA™™" EC stream.

A CDU file called the min/max file was invented to
define the GA”"-from-MCL requirements for each GA”
EC stream and the GA""'-to-MCL requirements for

SA partition in the central electronics complex capable of running its own operating-
system image.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

LPA].{ - CFCC
hypervisor

t

Alternate
SE

Channel

Primary

=II
1390 code
HMC
/0
processor
code
=

- ! "1 | Processing _I
unit | Channel I

HMC millicode

[J n + 1 infrastructure, unit-disruptive, shutdown-reload-restart
1 Functional system, unit-concurrent, quiesce-reload-continue
[] Uses both strategies

System z9 firmware structure and concurrent patch capability
overview.

each GA™™' EC stream. The CDU architecture and
implementation allow the from-MCL and to-MCL
requirements to be a range (i.e., from-MCL 20 to 40), but
there was a concern with the amount of testing that would
be required to test the different permutations within a
range across 29 unique EC streams (for both from and
to). Therefore, for each EC stream, a specific switch point
defines only one from-MCL level and one to-MCL level.

Additionally, it was concluded that a CDU test could
not be performed on every bundle of MCL fixes shipped
to the field. Fix bundles are more frequent at the
beginning of a GA release compared with the end-of-life
time frame of a driver. In order to complete a thorough
test across different hardware and operating system
configurations, designated CDU switch points have been
defined. This is shown in Figure 2, in which the boxes
represent fix bundle releases and the diamonds indicate
the CDU switch points.

Not every fix bundle supports CDU. Hence, as part of
the fix-apply process, the operator must make a decision
whether or not to apply MCLs above a CDU switch
point. The customer must develop a plan that indicates
when to use CDU to go to the next GA level and map this
plan to an IBM published plan for CDU switch-point
release dates. If another scheduled CDU switch-point
release is shown to be prior to the customer’s targeted GA
upgrade date, the customer can apply fixes above the
current CDU switch point. However, if no additional
CDU switch-point releases are planned prior to the GA
upgrade target, the operator should not apply MCLs
above the current CDU switch point. IBM does not

A. MUEHLBACH ET AL.

187

188

A o Fix bundle releases
Q CDU switch points From point 3
50 | .
From point 2
40 F From point 1 TOA
point 3
8
S130k
£ 30
Ay
20 To
0 To point 2
point 1
07¢ 3 >
GA”" GA"t 1
Time

CDU switch points.

recommend removing fixes in order to get back to a CDU
switch point.

CDU flow details
A successful CDU consists of the following three steps:

1. CDU preload step: This step verifies that the
firmware can be upgraded concurrently and installs
the correct “from” and “to” firmware levels for the
CDU switch points on the primary and alternate SE
[3], respectively. The HMC offers several firmware
load source options.

2. CDU activate step: This step has three phases. The
first phase, preparation, includes both customer and
IBM activities and is performed on the GA” EC
driver. The customer must free the GA™™-specific
amount of memory for additional HSA. The HMC
verifies that the CDU is allowed and lets the CDU
process gather first failure data capture (FFDC)
data, described in more detail in the CDU FFDC
approach section below. Finally, the HSA is
extended. In the second phase, transition, the HMC
initiates and controls unit-disruptive and unit-
concurrent code switches. New functions are
initialized and enabled. The transition phase starts
with an alternate and primary SE switch. Some
firmware updates require manual intervention. In
the third phase, completion, the HMC requests such
intervention by displaying messages at the end of the
activation step. The customer, the IBM product
engineer, or both, can perform the requested activity.

A. MUEHLBACH ET AL.

3. Query function availability step.: The status of the
added functions is reported. Normally, all new
functions are enabled and available.

The following sections describe in detail the activities
performed in all CDU phases. The sequence is always
controlled by the HMC.

Figure 1 provides an overview of the various
subsystems of a System z9 and of how to switch
concurrently to a newer firmware version using the unit-
disruptive or the unit-concurrent approach. In general,
the switching order is left to right, requesting that the
subsystems to the left must be able to handle n and
n + 1 interface traffic.

Preload step

Figure 3(a) shows the main CDU option panel on the
HMC. The first step in the CDU process is to initially
preload the alternate SE with the GA™"! code while the
primary SE and the system continue to operate using the
GA" code. There are two initial preload options: initial
preload including MCLs from the IBM Support System,
and initial preload only. Both options put the base GA™™!
driver on the alternate SE using the CDU DVD-RAM,
and the only difference in the two options is that the first
option will download any additional fixes that were
released after that CDU AROM was released.

The other two preload options allow the download of
additional fixes that were not part of the initial preload
step. The use of these preload options can enhance CDU
performance by avoiding the download of additional fixes
over a modem connection, which, for security reasons,
is a likely setup in a customer environment.

When the operator selects one of the CDU initial
preload options, the HMC validates that the CDU
AROM appropriately matches the from-GA” system
EC. The primary SE is requested to validate that the
concurrent patch is enabled from previous activities
and to retrieve and apply the latest CDU min/max file,
ensuring that the latest CDU requirements are known.

Next, a check is made to ensure that the CDU
minimum and maximum GA” requirements are met.

If CDU minimum MCL requirements are not satisfied,
but no CDU maximum requirement has been exceeded,
the operator is given the option to concurrently apply
additional GA” MCLs in order to meet the CDU
requirements. If at least one CDU maximum MCL
requirement has been exceeded, the operator is told
that the CDU is not possible. IBM does not generally
recommend removing fixes. The customer must wait
for the next CDU switch point.

Once this validation process has completed, the HMC
triggers the primary SE configuration and customization
upgrade data to be put on the alternate SE upgrade

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

partition. This ensures that the data is preserved during
this transition from GA” to GA™"! code. The alternate SE
then downloads from the HMC an image of the operating
system partitions and an image of the firmware partitions.
Once the download has completed, these two images are
unpacked and overwrite the data in all partitions on the
alternate SE hard disk except for the upgrade partition.
The upgrade data is then restored by taking it from the
upgrade partition and transforming it into the GA™"!
code structures.

Finally, if the CDU initial preload option included the
request to retrieve MCLs, the alternate SE would retrieve
from the IBM Support System any additional MCLs that
were not part of the CDU AROM. These additional
MCLs would be applied on the alternate SE hard disk
following certain defined restrictions because the CDU
activation process must concurrently manage the firmware
updates in memory where that firmware executes. These
defined restrictions are derived from certain MCL
keywords (such as ACTREQ, which means that a fix
must be applied and active before the other fix is applied)
as well as from the CDU min/max file. The CDU preload
options, which do not include initial preload, can be
executed only after the initial preload has been performed.

Activation step

Preparation phase

By selecting the CDU activate option from the main
CDU option panel [Figure 3(a)], the following
requirements are verified before the code switch starts:

¢ The concurrent patch feature is enabled.

* The CDU min/max requirements are met (MCLs
might have been applied to, or removed from, the
GA" code primary SE since the CDU preload).

e No pending conditions from previous CDU or
concurrent patch sessions exist.

e There is enough free storage for the additional GA™"!
HSA. The driver information contains the CDU GA™*!
storage requirements. If there is not enough memory,
the customer is told how much memory to free.

After the verification, the HMC needs to know whether
the System z9 is ready for the very first or next CDU.
Functions that were added by using a previous CDU
might require special activities to activate the new code.
Such new functions would be available but not yet
enabled.

The very first CDU is always allowed. However,
the next CDU might require that some new functions
that were added with the last CDU be available and
enabled. CDU can be performed only on a well-defined

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

é_ Concurrent Upgrade Engineering Changes (ECs) '

Select one of the following actions. If Preload is selected, please
also select one of the Preload Options.

@ Preload

O Activate

© Query function availability from last activate

Preload Options

@lnitial Preload including MCLs from IBM Support System
Olnitial Preload only

O Retrieve MCLs from IBM Support System

O Retrieve MCLs from DVD-RAM

_OK || _Cancel | _Help |

(2)

‘ Query Function Availability from Last Activate

EC G12345
Function Enabled Available
eBoD enhancements yes no
OSN channel enhancements yes no

(b)

(a) Main CDU option panel; (b) query function availability panel.

“from” firmware level. This implies that the very first
step in the CDU preparation phase verifies that the
CDU is allowed.

The status of all functions that were added with
previous CDU switches is stored in the function
availability information (FAI) list. This information is
kept over the lifetime of a system. Whether the next CDU
is allowed depends on the information in the FAI and
is reported to the HMC through a “CDU allowed”
indicator.

After verifying that another CDU can be performed,
the HMC checks whether the HSA is sufficient for
the new functions. The minimum 1390 code firmware
level contains the information about the amount of
memory that is required for each new function. The
total amount of memory for the driver switch is
calculated by adding the amount of memory required
for all new functions. An HMC panel informs the
customer about the need for additional free memory
if the required HSA exceeds the amount of memory
available. The customer must provide memory by
deactivating a partition or varying off storage® in
a partition if the complete memory is used.

®Varying off storage is a z/OS* function which allows the operator to free memory.
The storage is then free for use by other partitions, controlled by the operator doing a
storage vary on. 189

A. MUEHLBACH ET AL.

190

After verifying the availability of free memory, the
HMC issues a command to the 1390 code to start the
HSA extension. This step marks the point of no return:
The firmware and the HSA layout are going to be
changed.

The CDU 1390 code calls every new function to allocate
the required HSA. After each call, the 1390 CDU code
verifies that there is still enough free memory left to back
the HSA requests of all remaining functions that have not
yet been called. If there is not enough memory left (most
likely caused by a new function requiring more HSA than
expected), the HMC stops the CDU activation process
and informs the customer about the additional memory
required. After the customer has provided the additional
memory, the CDU must be started again. The HSA
allocation process starts again at the point at which it
was stopped.

Transition phase

When the CDU activate preparation phase completes, the
transition phase begins. This is the heart of CDU activate
because it is in this step that the GA™' code is applied
in each firmware subsystem memory. The SE is the first
subsystem to have its GA"™! code loaded, and this is done
by executing a CDU alternate SE switch. This causes the
GA"™! code to become the new primary SE while the GA”
code becomes the new alternate SE. The GA™"' new
primary SE must restart and perform a warm-start
resynchronization with the other firmware subsystems.
This GA™"" SE code must communicate with the GA”
code to obtain information about the state of the system.
In addition, if service or functional requests occur, the
GA"™! primary SE code must be able to interact with
the other GA” subsystem code. Once the primary

SE completes its warm-start resynchronization, it
serially triggers each subsystem to load its GA™"!
firmware in the following order: FSP, power, 1390 code,
millicode, all of the channel subsystems, enhanced initial
program loader, LPAR, and CFCC. While additional
firmware subsystems transition to the GA™" firmware, all
subsystems must continue to interact with the mixture of
GA"™™" and GA” code levels. The following is an example
of the details of what a firmware subsystem must go
through in order to perform the transition from GA”" to
GA™"' CDU code.

The concurrent patch feature of the 1390 code and
millicode uses a primary and an alternate code load
area to switch between two firmware levels. The
executable and linking format (ELF’) loader receives a
new millicode and a new 1390 code load at the start of
an 1390 concurrent patch sequence. Both code loads
are copied into the alternate code load area. The ELF

"ELF is the standard file format used for executable and object files in UNIX**-based
operating systems.

A. MUEHLBACH ET AL.

loader and millicode perform some relocation activities
to map the new code loads to existing data. Finally,
the ELF loader calls millicode to perform the actual
code switch.

The existing 1390 concurrent firmware patch support of
the ELF loader did not allow the addition of new static
external variables. However, new functions implemented
in 1390 depend on the ability to store information
permanently and might require that new static variables
be created and initialized during the concurrent patch
application of 1390 code. To reduce the complexity of
CDU and avoid any delay during the concurrent patch
sequence, the dynamic HSA feature is not used. Instead,
the ELF loader allocates spare HSA space at POR time to
allow for the growth of 1390 code and 1390 data area sizes
during CDU. The preplanned size of the reserved HSA
memory is derived from previous code and data-area
changes among drivers.

The ELF loader distinguishes between CDU and
the normal 1390 concurrent patch case. New function
pointers and new remote procedure calls (RPCs) are
allowed for CDU, but not for concurrent patches because
normal 1390 concurrent patches can be deactivated,
whereas firmware changes that are applied with CDU
cannot be deactivated.

The ELF loader continues with the regular concurrent
patch process after the new static variables are allocated
and the symbol and relocation tables have been updated
accordingly. Function pointers are recalculated using
standard relocation methods of the concurrent patch
feature. Finally, the ELF loader sets a new event
indicator, “CDU 1390 switch complete,” on all PUs
before the switch to the new 1390 code load is initiated.

The new 1390 code is activated by restarting the 1390
environment. The CDU 1390 switch complete event is
given highest priority, and an ELF loader routine is
dispatched that initializes all new static variables. This
design ensures that any new 1390 code can access the new
static data variables only after they have been initialized.

The CDU-relevant ELF loader inventions are
described in this paper. For general 1390 concurrent patch
detalils, see [4].

Completion phase

Even with a CDU activation success message, additional
actions may be required in order to make all CDU
functions available or to completely transition all
firmware subsystems to GA™™ code levels. The next
section presents the details of determining whether

all GA™' functions are enabled and available.
Additionally, on System z9 there are currently a few
channel subsystems, Crypto Express2 [5], and CFCC
that require an additional action to migrate their code
from GA”" to GA™™!. As part of the CDU activation

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

process, a hardware message will potentially be
displayed directing the operator to invoke two tasks
to complete the GA™™ transition for those exception
firmware subsystems:

1. The “Query Channel/Crypto Config Off Pending”
task allows the operator to see which channels and
cryptos must be configured offline and put back
online in order to get the GA""' code loaded. If the
System z9 does not have any of the exception channel
or crypto hardware installed, no action by the
operator is required.

2. The second potential task that the operator may be
asked to invoke is the “Query Coupling Facility
Reactivations” task. This informs the operator
whether any coupling facility (CF) partitions must
be reactivated in order to move the CFCC code for
that partition to GA™™"

Query function availability step

Once the CDU activate is complete, the operator can
invoke the “Query function availability from last
activate” option from the CDU option panel

[Figure 3(a)] to get an overview of which functions are
not yet available or have not yet been enabled after the
CDU completion step. Figure 3(b) shows a hypothetical
resultant panel display from that invocation. This panel
addresses the exception cases in which one or more new
GA™! functions cannot be made available during the
CDU activation process.

There are two possible reasons for the occurrence of
exception cases. The first is that not all subsystems have
transitioned to the GA™™" code level. As described above
in the activation step section, the operator should use the
“Query Channel/Crypto Config Off Pending” and “Query
Coupling Facility Reactivations” tasks to ensure that the
GA"™™! code-level transitions have completed. Once this
GA"™! code-level validation is completed, the operator
should invoke the CDU function availability option to
see what, if any, functions are still not yet available.
The second reason for exceptions is that one or more
functions may require some additional action to enable
them and make them available. This could range
anywhere from having to configure certain types of
channels or processors off and on to having to reactivate
the system, including a potential update to the input/
output configuration data set® (IOCDS).

The CDU query function availability panel displays
only the functions that are not available. The IBM
System z9 Enterprise Class [6] and IBM Resource Link*
will describe all new functions that are available as part of

8A configuration definition built by the I/O configuration program and stored on disk
files associated with the processor controller.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

the GA"! release. Additionally, the System z9 overview
and IBM Resource Link describe the additional actions
required to fully enable and make available any functions
that may be displayed on the CDU query function
availability panel.

CDU FFDC approach

Existing System z9 FFDC mechanisms are used to
save FFDC data so that a CDU-related problem can
be debugged without the need for more data. The

core of the CDU FFDC approach is a set of three
nondisruptive HSA dumps (CECDUMPs) and three
nondisruptive LPAR dumps’. Each CECDUMP is
integrated with the LPAR dump. The first CECDUMP/
LPAR dump pair, the pre-HSA-CDU dump, is created
before the HSA is changed by CDU. The second dump
pair, the post-HSA-CDU dump, is created after the
HSA has been extended in preparation for the new
firmware driver. The last CECDUMP/LPAR dump pair,
the post-CDU dump, is created after the completion
of the CDU transition phase.

The first two dump pairs are collected by the original
GA" primary SE and transferred to the preloaded
alternate SE. The post-CDU CEC dump/LPAR dump
pair is collected by the new primary SE, which is already
on the GA™! level. The third CECDUMP/LPAR dump
pair is created only if the driver switch is successful. If
CDU fails at some point, the nondisruptive LPAR/CEC
dump pair is created immediately.

All dumps remain untouched on the system SE until
the next CDU is performed, in which case they are
replaced with the dumps from the new CDU cycle.

The dump files can be manually retrieved as a result
by IBM service personnel if an error is reported.

In addition, the SE keeps track of the following events
in the system log file:

e POR, CDU start, CDU end, SE reboot.

e Start and end of the various CDU phases.

¢ Several informational CDU logs with status and flow
information.

The system log file, any CDDM'° dump files, and the
security event log file are stored in special directories,
together with the CECDUMP/LPAR dump pairs, and
remain there until the next CDU cycle is performed.

Benefits of CDU
The major benefit of upgrading firmware by using CDU
is that no planned downtime is required. The system can

“LPAR dump: Processor Resource/Systems Manager* (PR/SM*) FEDC data
collection.
'"The CEC data debug manager, or CDDM, is the FFDC data manager in the CEC.

A. MUEHLBACH ET AL.

191

continue processing its normal workload without any IBM eServer™ z900,” IBM J. Res. & Dev. 46, No. 4/5, 559-566

. (2002).
perform.tmce lr.npaCt' . . 4. C. Axnix, T. Hendel, M. Mueller, A. Nuifiez Mencias, H.
A typical driver upgrade through CDU, including the Penner, and S. Usenbinz, “Open-Standard Development
SE preload, takes approximately three hours. A normal Environment for IBM System z9 Host Firmware,” IBM
dri ad : the transf f th kload t J. Res. & Dev. 51, No. 1/2, 195-205 (2007, this issue).
rlYer upgrade requires the transier o ¢ v.vor. oad to 5. T. W. Arnold, A. Dames, M. D. Hocker, M. D. Marik,
a different system, the shutdown of all applications and N. A. Pellicciotti, and K. Werner, “Cryptographic System
operating systems, and a system shutdown. Activating the Enhancements for the IBM System z9,” IBM J. Res. & Dev. 51,
system again with the new firmware driver, including 6 11\113‘;\-41@ 87*1?.2 (20“05391\‘/}“; lstsue)' 9 Enterprise Class™
. . . orporation, ystem Z nterprise ass, see
software IPL, might then take up to eight hgurs. By http:] pwww-03.ibm.com/systems/z/z9¢c/.
using CDU, the customer can not only continue using
the system while it is being upgraded, but also save Received March 10, 2006, accepted for publication
significant time compared with a traditional driver June 15, 2006, Internet publication December 5, 2006

upgrade.

Conclusion and future direction
With the introduction of the CDU feature, IBM
System z9 customers have the ability both to upgrade
zSeries firmware and to add new functions without the
need for planned downtime. This paper described CDU
switch points, which are defined to identify the point at
which the transition to a new GA driver level can occur.
The CDU process itself consists of three underlying steps:
preloading the CDU switch-point firmware levels on the
primary and alternate SEs, activation of the new driver
level, and querying function availability to determine
whether all new functions are ready for use.

Improvements are planned for CDU with each new
System z generation. However, there will be no major
firmware redesign as a result of our goal to provide active
support. Subsequent System z systems will provide
incremental enhancements such as improved concurrent
firmware patch control and more subsystems with true
concurrent patch capability. Some I/O adapters without
true concurrent patch capability will no longer be part of
the system offering but will be replaced by modernized
versions with true concurrent patch support.

The addition of CDU technology contributes to the
continuous reliable operation rate of the IBM System z9
and is another step forward in reducing downtime.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of The Open
Group in the United States, other countries, or both.

References

1. B. E. Casey, G. L. Dunlap, M. C. Enichen, D. A. Larnerd, J. A.
Morrell, S. R. Nichols, P. D. Pagerey, and S. L. Rockwell,
“A Method and System for Providing a Common Hardware
System Console Interface in Data Processing Systems,”
U.S. Patent 6,182,106, January 30, 2001.

2. J. M. Nick, B. B. Moore, J.-Y. Chung, and N. S. Bowen, “S/390*
Cluster Technology: Parallel Sysplex*,” IBM Syst. J. 36, No. 2,
172-201 (1997).

3. B. D. Valentine, H. Weber, and J. D. Eggleston, “The Alternate

192 Support Element, a High-Availability Service Console for the

A. MUEHLBACH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Andreas Muehlbach [BM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (muhlbach@de.ibm.com). Mr.
Muehlbach holds a Dipl.-Ing. degree in electrical engineering and
computer science from the Technical University of Kaiserslautern.
He is a Senior Development Engineer working in processor
firmware development for IBM 9221, CMOS G1 to G6 processors,
7900, 7990, and z9.

Brian D. Valentine IBM Systems and Technology Group, 1701
North Street, Endicott, New York 13760 (bdvalent@us.ibm.com).
Mr. Valentine graduated from Pennsylvania State University with
a B.S degree in computer science. He is a Senior Technical Staff
Member Programmer working in HMC and SE Licensed Internal
Code development.

Daniela Immel IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (immell@de.ibm.com). Mrs. Immel received
her B.S. degree in business information systems from the
University of Applied Sciences, Karlsruhe. She is a Staff
Development Engineer in zSeries processor firmware.

Michael S. Bomar [1BM Systems and Technology Group, 1701
North Street, Endicott, New York 13760 (bomarms@us.ibm.com).
Mr. Bomar received a B.S. degree in computer science from the
University of Tennessee. He is an Advisory Programmer working
in HMC and SE Licensed Internal Code development.

Timothy V. Bolan 1BM Systems and Technology Group, 1701
North Street, Endicott, New York 13760 (bolant@us.ibm.com).
Mr. Bolan graduated from Rensselaer Polytechnic Institute with
a B.S. degree in electrical engineering. He is a Senior Engineer
working in HMC and SE Licensed Internal Code development.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

A. MUEHLBACH ET AL.

193

