
Concurrent driver upgrade:
Method to eliminate
scheduled system outages
for new function releases

A. Muehlbach
B. D. Valentine

D. Immel
M. S. Bomar

T. V. Bolan

The reliability, availability, and serviceability goal for an IBM
zSeriest system is to provide 24-hour-per-day, 365-day-per-year
service with reduced system downtime. The continuous reliable
operation rate has been improved with every new zSeries release by
using error prevention, error detection, error recovery, and other
methods that contribute to avoiding unplanned interruptions. Until
now, planned downtime—for example, the time needed to upgrade
a zSeries to the next firmware driver—had not yet been addressed.
We developed the concurrent driver upgrade (CDU) feature so that
customers could add new functions without downtime. It is now
possible to upgrade the zSeries firmware engineering change (EC)
driver to the next EC level without any performance impact during
the upgrade. This paper describes the motivation and strategy of
the CDU and describes its use.

Introduction

IBM zSeries* systems can activate firmware fixes

concurrently1 without the need for planned system

downtime. Two different concurrent firmware fix

strategies are used: unit-concurrent and unit-disruptive.

Unit-concurrent means that the activation of a specific

piece of firmware is concurrent from an application

perspective. Technically speaking, when switching the

firmware the system might be halted for a very short

period of time, but it would go unnoticed by an

application. Unit-disruptive means that the activation of

a specific piece of firmware is concurrent for the system

but is always disruptive for the subsystem. To make a

unit-disruptive approach concurrent, either of the

following is necessary:

� The subsystem exists more than once (nþ 1

approach). One subsystem can then take over the

system responsibilities while the other is updating its

firmware.
� The subsystem is not required by any running

operating system or application. The firmware can be

updated at any time without affecting the system.

History of the zSeries concurrent firmware fix

feature

The concurrent firmware fix feature was introduced

in 1994 with the implementation of the concurrently

patchable code for the hardware management console

(HMC) [1], followed by other zSeries components such as

the support element (SE), the power code, I/O adapters

(channel code), and flexible support processor (FSP).

Since 1995 it has been possible to apply System z*

firmware fixes unit-concurrently. In the years following

1995, more subsystems implemented or improved the nþ1

approach to use unit-disruptive techniques, or added or

improved the existing unit-concurrent support. Details

are provided in Table 1. Today, almost all firmware

problems can be fixed concurrently. However, new

functions cannot be added concurrently because of

subsystem-specific limitations.

Motivation for CDU

Over the years, System z customers have increasingly

accepted the concurrent firmware fix feature. Today, they

consider it mandatory that any firmware fix is applied

concurrently without planned system downtime.

Consequently, customers are asking for a concurrent

driver upgrade (CDU) feature that reduces their planned

downtime.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

1Concurrency requires that the activation is transparent to any running operating
system and has no impact on the operating systems and applications that are running.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. MUEHLBACH ET AL.

185

0018-8646/07/$5.00 ª 2007 IBM

Customers have communicated several specific

requests. They want no interruptions when either

microcode fixes are applied or new functions are added

using the firmware driver upgrade. Those without a

Sysplex environment [2] do not want to switch to a

Sysplex in order to be able to add new functions

concurrently. Also, customers want the ability to decide

when they will upgrade and add new functions. These

requests can be met only if new functions are delivered

with a new firmware driver and not within a sequential

firmware fix stream.

Technical basis of CDU

Because of a strict IBM System z9* time-to-market

requirement and the need to reduce the risk for

unplanned incident repair actions (UIRAs), it was

decided to reuse the existing concurrent fix capability of

the zSeries for the CDU feature. The deciding factors

included the facts that the existing firmware did not

require major restructuring and that the risk of a UIRA is

reduced by the continual improvement of the concurrent

firmware fix feature.

A number of requirements had to be met to include

the concurrent firmware fix feature in CDU: The

existing concurrent firmware fix mechanism had to

be considerably improved; new capabilities had to

be invented, especially for firmware that had to be

exchanged concurrently; more subsystems had to apply

unit-concurrent firmware fixes; the executing HMC and

SE had to control the CDU tightly.

CDU design decisions

During the early phase of the CDU design, the following

basic decisions were made:

� The existing concurrent firmware fix feature

allowed—and still allows—the customer to deactivate

a firmware fix that was already installed without a

planned downtime. The customer had rarely chosen

to use the deactivate fix feature. It was decided that

CDU would not support the concurrent deactivation

of a driver that was already installed. This would

significantly reduce the risks for a UIRA.
� Because canceling CDU after it is initiated might

result in errors that require a planned disruptive

downtime in order to recover with a power-on reset

(POR), it was decided that after starting CDU, the

new driver must be installed with the CDU process

running to completion.
� It was decided that concurrent crossovers from

general-availability driver GAn to driver GAnþ1 to

driver GAnþ2 must be done sequentially. This means

that driver GAn can be upgraded to driver GAnþ2

only after driver GAnþ1 has been fully installed.
� CDU should enable the customer to move

concurrently from one specific firmware2 level—the

microcode change level (MCL)3—on driver GAn

to a specific level on driver GAnþ1.The number of

crossover switch points would be limited for each

driver pair to reduce the number of transition code

versions and to improve test coverage. The next

section explains this approach in detail.
� A new firmware driver generally requires more

hardware system area (HSA)4 for the new functions.

It was decided that the customer must free used

memory if the HSA must be extended. CDU cannot

do this automatically. After the driver has been

installed, the customer can again use the memory

that has not been used for the HSA extension.
� Because there might be some firmware changes that

cannot be installed concurrently, such functions must

be identified during their initial design so that one of

the following actions can be taken: Either significant

Table 1 Concurrent firmware fix history.

Firmware component Concurrent fix support since System z model

HMC 09/1994 9672 G1

SE, FSP, power, channel 07/1995 9672 G2

i390, processor unit, microcode, logical partition (LPAR),

coupling facility control code (CFCC)

09/1996 9672 G3

Millicode 06/1997 9672 G4

Channel configuration off disruptive alternative 12/2000 2064

CFCC partition reactivation disruptive alternative 05/2004 2084

2Firmware is proprietary code that is usually delivered as microcode. An example of
firmware is the basic I/O system (BIOS) in read-only memory on a PC system board.
Firmware cannot be modified by the user but can be updated by service personnel.
3MCL is a set of changes to firmware. It is functionally equivalent to a software
program temporary fix and is intended for broad distribution.
4HSA is a logical area of central storage, not addressable by application programs,
used to store firmware and control information.

A. MUEHLBACH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

186

preplanning would have to be performed to ensure

that the basics are delivered with the GA1 driver,

which is the only driver with a POR, or delivery of

the function would have to be held off until the

next system generation.

Despite the best preplanning efforts, a problem that

remains is that all new functions may not be known

during development of the GA1 driver. CDU might

require some manual activities, such as turning the

configuration of a specific channel on and off or

activating or deactivating of a logical partition5 (LPAR).

Disruptive driver upgrades with a planned downtime

are permitted at any time. The customer decides which

strategy to use to upgrade a system to the next EC driver.

CDU switch point approach
As shown in Figure 1, System z9 contains many firmware

components. The HMC firmware runs in a separate

console and is managed separately from the system

firmware. From a CDU perspective, the only requirement

for the HMC is to upgrade its firmware from the driver

GAn to driver GAnþ1 prior to beginning the CDU process

for the System z9 system firmware.

The System z9 firmware comprises the following main

firmware components: support elements (SEs), FSPs,

power, LPAR, coupling facility control code (CFCC),

i390 code, millicode, and channels. Firmware is a key

component to provide flexible solutions and address

complex requirements for operations and service. On a

System z9, for example, power firmware not only helps

manage voltage, it is also executed in the cooling fan

hardware. The System z9 firmware components total

roughly ten million lines of code. A zSeries firmware

driver (i.e., GAn) includes all defined firmware

components.

Each firmware component has its own EC stream

to release code fixes and new functions to the field.

This allows every development team to release code

independently, which is important when releasing MCLs.

On System z9 GAn, there are 29 unique firmware EC

streams.

When CDU is used to upgrade the System z9 firmware,

the driver GAn to driver GAnþ1 will have designated

switch points. This means that each GAn firmware EC

stream must be at a specified MCL level, and the initial

CDU activation can only transition to a specified MCL

level for each GAnþ1 EC stream.

A CDU file called the min/max file was invented to

define the GAn-from-MCL requirements for each GAn

EC stream and the GAnþ1-to-MCL requirements for

each GAnþ1 EC stream. The CDU architecture and

implementation allow the from-MCL and to-MCL

requirements to be a range (i.e., from-MCL 20 to 40), but

there was a concern with the amount of testing that would

be required to test the different permutations within a

range across 29 unique EC streams (for both from and

to). Therefore, for each EC stream, a specific switch point

defines only one from-MCL level and one to-MCL level.

Additionally, it was concluded that a CDU test could

not be performed on every bundle of MCL fixes shipped

to the field. Fix bundles are more frequent at the

beginning of a GA release compared with the end-of-life

time frame of a driver. In order to complete a thorough

test across different hardware and operating system

configurations, designated CDU switch points have been

defined. This is shown in Figure 2, in which the boxes

represent fix bundle releases and the diamonds indicate

the CDU switch points.

Not every fix bundle supports CDU. Hence, as part of

the fix-apply process, the operator must make a decision

whether or not to apply MCLs above a CDU switch

point. The customer must develop a plan that indicates

when to use CDU to go to the next GA level and map this

plan to an IBM published plan for CDU switch-point

release dates. If another scheduled CDU switch-point

release is shown to be prior to the customer’s targeted GA

upgrade date, the customer can apply fixes above the

current CDU switch point. However, if no additional

CDU switch-point releases are planned prior to the GA

upgrade target, the operator should not apply MCLs

above the current CDU switch point. IBM does not

Figure 1

System z9 firmware structure and concurrent patch capability

overview.

i390 code

I/O

processor

code

Processing

unit

millicode

LPAR

hypervisor

Channel

Channel

n + 1 infrastructure, unit-disruptive, shutdown-reload-restart

Functional system, unit-concurrent, quiesce-reload-continue

Uses both strategies

FSP

FSP

CFCC

Primary

SE

GAn�1

Alternate

SE

GAn

HMC

HMC

HMC

5A partition in the central electronics complex capable of running its own operating-
system image.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. MUEHLBACH ET AL.

187

recommend removing fixes in order to get back to a CDU

switch point.

CDU flow details

A successful CDU consists of the following three steps:

1. CDU preload step: This step verifies that the

firmware can be upgraded concurrently and installs

the correct ‘‘from’’ and ‘‘to’’ firmware levels for the

CDU switch points on the primary and alternate SE

[3], respectively. The HMC offers several firmware

load source options.

2. CDU activate step: This step has three phases. The

first phase, preparation, includes both customer and

IBM activities and is performed on the GAn EC

driver. The customer must free the GAnþ1-specific

amount of memory for additional HSA. The HMC

verifies that the CDU is allowed and lets the CDU

process gather first failure data capture (FFDC)

data, described in more detail in the CDU FFDC

approach section below. Finally, the HSA is

extended. In the second phase, transition, the HMC

initiates and controls unit-disruptive and unit-

concurrent code switches. New functions are

initialized and enabled. The transition phase starts

with an alternate and primary SE switch. Some

firmware updates require manual intervention. In

the third phase, completion, the HMC requests such

intervention by displaying messages at the end of the

activation step. The customer, the IBM product

engineer, or both, can perform the requested activity.

3. Query function availability step: The status of the

added functions is reported. Normally, all new

functions are enabled and available.

The following sections describe in detail the activities

performed in all CDU phases. The sequence is always

controlled by the HMC.

Figure 1 provides an overview of the various

subsystems of a System z9 and of how to switch

concurrently to a newer firmware version using the unit-

disruptive or the unit-concurrent approach. In general,

the switching order is left to right, requesting that the

subsystems to the left must be able to handle n and

n þ 1 interface traffic.

Preload step

Figure 3(a) shows the main CDU option panel on the

HMC. The first step in the CDU process is to initially

preload the alternate SE with the GAnþ1 code while the

primary SE and the system continue to operate using the

GAn code. There are two initial preload options: initial

preload including MCLs from the IBM Support System,

and initial preload only. Both options put the base GAnþ1

driver on the alternate SE using the CDU DVD-RAM,

and the only difference in the two options is that the first

option will download any additional fixes that were

released after that CDU AROM was released.

The other two preload options allow the download of

additional fixes that were not part of the initial preload

step. The use of these preload options can enhance CDU

performance by avoiding the download of additional fixes

over a modem connection, which, for security reasons,

is a likely setup in a customer environment.

When the operator selects one of the CDU initial

preload options, the HMC validates that the CDU

AROM appropriately matches the from-GAn system

EC. The primary SE is requested to validate that the

concurrent patch is enabled from previous activities

and to retrieve and apply the latest CDU min/max file,

ensuring that the latest CDU requirements are known.

Next, a check is made to ensure that the CDU

minimum and maximum GAn requirements are met.

If CDU minimum MCL requirements are not satisfied,

but no CDU maximum requirement has been exceeded,

the operator is given the option to concurrently apply

additional GAn MCLs in order to meet the CDU

requirements. If at least one CDU maximum MCL

requirement has been exceeded, the operator is told

that the CDU is not possible. IBM does not generally

recommend removing fixes. The customer must wait

for the next CDU switch point.

Once this validation process has completed, the HMC

triggers the primary SE configuration and customization

upgrade data to be put on the alternate SE upgrade

Figure 2

CDU switch points.

P
at

ch
es

0

10

20

30

40

50

GAn GAn�1

From point 1

To

point 1

From point 2

To

point 2

Time

From point 3

To

point 3

Fix bundle releases

CDU switch points

A. MUEHLBACH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

188

partition. This ensures that the data is preserved during

this transition from GAn to GAnþ1 code. The alternate SE

then downloads from the HMC an image of the operating

system partitions and an image of the firmware partitions.

Once the download has completed, these two images are

unpacked and overwrite the data in all partitions on the

alternate SE hard disk except for the upgrade partition.

The upgrade data is then restored by taking it from the

upgrade partition and transforming it into the GAnþ1

code structures.

Finally, if the CDU initial preload option included the

request to retrieve MCLs, the alternate SE would retrieve

from the IBM Support System any additional MCLs that

were not part of the CDU AROM. These additional

MCLs would be applied on the alternate SE hard disk

following certain defined restrictions because the CDU

activation process must concurrently manage the firmware

updates in memory where that firmware executes. These

defined restrictions are derived from certain MCL

keywords (such as ACTREQ, which means that a fix

must be applied and active before the other fix is applied)

as well as from the CDU min/max file. The CDU preload

options, which do not include initial preload, can be

executed only after the initial preload has been performed.

Activation step

Preparation phase

By selecting the CDU activate option from the main

CDU option panel [Figure 3(a)], the following

requirements are verified before the code switch starts:

� The concurrent patch feature is enabled.
� The CDU min/max requirements are met (MCLs

might have been applied to, or removed from, the

GAn code primary SE since the CDU preload).
� No pending conditions from previous CDU or

concurrent patch sessions exist.
� There is enough free storage for the additional GAnþ1

HSA.The driver information contains theCDUGAnþ1

storage requirements. If there is not enough memory,

the customer is told how much memory to free.

After the verification, the HMC needs to know whether

the System z9 is ready for the very first or next CDU.

Functions that were added by using a previous CDU

might require special activities to activate the new code.

Such new functions would be available but not yet

enabled.

The very first CDU is always allowed. However,

the next CDU might require that some new functions

that were added with the last CDU be available and

enabled. CDU can be performed only on a well-defined

‘‘from’’ firmware level. This implies that the very first

step in the CDU preparation phase verifies that the

CDU is allowed.

The status of all functions that were added with

previous CDU switches is stored in the function

availability information (FAI) list. This information is

kept over the lifetime of a system. Whether the next CDU

is allowed depends on the information in the FAI and

is reported to the HMC through a ‘‘CDU allowed’’

indicator.

After verifying that another CDU can be performed,

the HMC checks whether the HSA is sufficient for

the new functions. The minimum i390 code firmware

level contains the information about the amount of

memory that is required for each new function. The

total amount of memory for the driver switch is

calculated by adding the amount of memory required

for all new functions. An HMC panel informs the

customer about the need for additional free memory

if the required HSA exceeds the amount of memory

available. The customer must provide memory by

deactivating a partition or varying off storage6 in

a partition if the complete memory is used.

Figure 3

(a) Main CDU option panel; (b) query function availability panel.

(a)

(b)

6Varying off storage is a z/OS* function which allows the operator to free memory.
The storage is then free for use by other partitions, controlled by the operator doing a
storage vary on.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. MUEHLBACH ET AL.

189

After verifying the availability of free memory, the

HMC issues a command to the i390 code to start the

HSA extension. This step marks the point of no return:

The firmware and the HSA layout are going to be

changed.

The CDU i390 code calls every new function to allocate

the required HSA. After each call, the i390 CDU code

verifies that there is still enough free memory left to back

the HSA requests of all remaining functions that have not

yet been called. If there is not enough memory left (most

likely caused by a new function requiring more HSA than

expected), the HMC stops the CDU activation process

and informs the customer about the additional memory

required. After the customer has provided the additional

memory, the CDU must be started again. The HSA

allocation process starts again at the point at which it

was stopped.

Transition phase

When the CDU activate preparation phase completes, the

transition phase begins. This is the heart of CDU activate

because it is in this step that the GAnþ1 code is applied

in each firmware subsystem memory. The SE is the first

subsystem to have its GAnþ1 code loaded, and this is done

by executing a CDU alternate SE switch. This causes the

GAnþ1 code to become the new primary SE while the GAn

code becomes the new alternate SE. The GAnþ1 new

primary SE must restart and perform a warm-start

resynchronization with the other firmware subsystems.

This GAnþ1 SE code must communicate with the GAn

code to obtain information about the state of the system.

In addition, if service or functional requests occur, the

GAnþ1 primary SE code must be able to interact with

the other GAn subsystem code. Once the primary

SE completes its warm-start resynchronization, it

serially triggers each subsystem to load its GAnþ1

firmware in the following order: FSP, power, i390 code,

millicode, all of the channel subsystems, enhanced initial

program loader, LPAR, and CFCC. While additional

firmware subsystems transition to the GAnþ1 firmware, all

subsystems must continue to interact with the mixture of

GAnþ1 and GAn code levels. The following is an example

of the details of what a firmware subsystem must go

through in order to perform the transition from GAn to

GAnþ1 CDU code.

The concurrent patch feature of the i390 code and

millicode uses a primary and an alternate code load

area to switch between two firmware levels. The

executable and linking format (ELF7) loader receives a

new millicode and a new i390 code load at the start of

an i390 concurrent patch sequence. Both code loads

are copied into the alternate code load area. The ELF

loader and millicode perform some relocation activities

to map the new code loads to existing data. Finally,

the ELF loader calls millicode to perform the actual

code switch.

The existing i390 concurrent firmware patch support of

the ELF loader did not allow the addition of new static

external variables. However, new functions implemented

in i390 depend on the ability to store information

permanently and might require that new static variables

be created and initialized during the concurrent patch

application of i390 code. To reduce the complexity of

CDU and avoid any delay during the concurrent patch

sequence, the dynamic HSA feature is not used. Instead,

the ELF loader allocates spare HSA space at POR time to

allow for the growth of i390 code and i390 data area sizes

during CDU. The preplanned size of the reserved HSA

memory is derived from previous code and data-area

changes among drivers.

The ELF loader distinguishes between CDU and

the normal i390 concurrent patch case. New function

pointers and new remote procedure calls (RPCs) are

allowed for CDU, but not for concurrent patches because

normal i390 concurrent patches can be deactivated,

whereas firmware changes that are applied with CDU

cannot be deactivated.

The ELF loader continues with the regular concurrent

patch process after the new static variables are allocated

and the symbol and relocation tables have been updated

accordingly. Function pointers are recalculated using

standard relocation methods of the concurrent patch

feature. Finally, the ELF loader sets a new event

indicator, ‘‘CDU i390 switch complete,’’ on all PUs

before the switch to the new i390 code load is initiated.

The new i390 code is activated by restarting the i390

environment. The CDU i390 switch complete event is

given highest priority, and an ELF loader routine is

dispatched that initializes all new static variables. This

design ensures that any new i390 code can access the new

static data variables only after they have been initialized.

The CDU-relevant ELF loader inventions are

described in this paper. For general i390 concurrent patch

details, see [4].

Completion phase

Even with a CDU activation success message, additional

actions may be required in order to make all CDU

functions available or to completely transition all

firmware subsystems to GAnþ1 code levels. The next

section presents the details of determining whether

all GAnþ1 functions are enabled and available.

Additionally, on System z9 there are currently a few

channel subsystems, Crypto Express2 [5], and CFCC

that require an additional action to migrate their code

from GAn to GAnþ1. As part of the CDU activation
7ELF is the standard file format used for executable and object files in UNIX**-based
operating systems.

A. MUEHLBACH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

190

process, a hardware message will potentially be

displayed directing the operator to invoke two tasks

to complete the GAnþ1 transition for those exception

firmware subsystems:

1. The ‘‘Query Channel/Crypto Config Off Pending’’

task allows the operator to see which channels and

cryptos must be configured offline and put back

online in order to get the GAnþ1 code loaded. If the

System z9 does not have any of the exception channel

or crypto hardware installed, no action by the

operator is required.

2. The second potential task that the operator may be

asked to invoke is the ‘‘Query Coupling Facility

Reactivations’’ task. This informs the operator

whether any coupling facility (CF) partitions must

be reactivated in order to move the CFCC code for

that partition to GAnþ1.

Query function availability step

Once the CDU activate is complete, the operator can

invoke the ‘‘Query function availability from last

activate’’ option from the CDU option panel

[Figure 3(a)] to get an overview of which functions are

not yet available or have not yet been enabled after the

CDU completion step. Figure 3(b) shows a hypothetical

resultant panel display from that invocation. This panel

addresses the exception cases in which one or more new

GAnþ1 functions cannot be made available during the

CDU activation process.

There are two possible reasons for the occurrence of

exception cases. The first is that not all subsystems have

transitioned to the GAnþ1 code level. As described above

in the activation step section, the operator should use the

‘‘Query Channel/Crypto Config Off Pending’’ and ‘‘Query

Coupling Facility Reactivations’’ tasks to ensure that the

GAnþ1 code-level transitions have completed. Once this

GAnþ1 code-level validation is completed, the operator

should invoke the CDU function availability option to

see what, if any, functions are still not yet available.

The second reason for exceptions is that one or more

functions may require some additional action to enable

them and make them available. This could range

anywhere from having to configure certain types of

channels or processors off and on to having to reactivate

the system, including a potential update to the input/

output configuration data set8 (IOCDS).

The CDU query function availability panel displays

only the functions that are not available. The IBM

System z9 Enterprise Class [6] and IBM Resource Link*

will describe all new functions that are available as part of

the GAnþ1 release. Additionally, the System z9 overview

and IBM Resource Link describe the additional actions

required to fully enable and make available any functions

that may be displayed on the CDU query function

availability panel.

CDU FFDC approach

Existing System z9 FFDC mechanisms are used to

save FFDC data so that a CDU-related problem can

be debugged without the need for more data. The

core of the CDU FFDC approach is a set of three

nondisruptive HSA dumps (CECDUMPs) and three

nondisruptive LPAR dumps9. Each CECDUMP is

integrated with the LPAR dump. The first CECDUMP/

LPAR dump pair, the pre-HSA-CDU dump, is created

before the HSA is changed by CDU. The second dump

pair, the post-HSA-CDU dump, is created after the

HSA has been extended in preparation for the new

firmware driver. The last CECDUMP/LPAR dump pair,

the post-CDU dump, is created after the completion

of the CDU transition phase.

The first two dump pairs are collected by the original

GAn primary SE and transferred to the preloaded

alternate SE. The post-CDU CEC dump/LPAR dump

pair is collected by the new primary SE, which is already

on the GAnþ1 level. The third CECDUMP/LPAR dump

pair is created only if the driver switch is successful. If

CDU fails at some point, the nondisruptive LPAR/CEC

dump pair is created immediately.

All dumps remain untouched on the system SE until

the next CDU is performed, in which case they are

replaced with the dumps from the new CDU cycle.

The dump files can be manually retrieved as a result

by IBM service personnel if an error is reported.

In addition, the SE keeps track of the following events

in the system log file:

� POR, CDU start, CDU end, SE reboot.
� Start and end of the various CDU phases.
� Several informational CDU logs with status and flow

information.

The system log file, any CDDM10 dump files, and the

security event log file are stored in special directories,

together with the CECDUMP/LPAR dump pairs, and

remain there until the next CDU cycle is performed.

Benefits of CDU

The major benefit of upgrading firmware by using CDU

is that no planned downtime is required. The system can

8A configuration definition built by the I/O configuration program and stored on disk
files associated with the processor controller.

9LPAR dump: Processor Resource/Systems Manager* (PR/SM*) FFDC data
collection.
10The CEC data debug manager, or CDDM, is the FFDC data manager in the CEC.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. MUEHLBACH ET AL.

191

continue processing its normal workload without any

performance impact.

A typical driver upgrade through CDU, including the

SE preload, takes approximately three hours. A normal

driver upgrade requires the transfer of the workload to

a different system, the shutdown of all applications and

operating systems, and a system shutdown. Activating the

system again with the new firmware driver, including

software IPL, might then take up to eight hours. By

using CDU, the customer can not only continue using

the system while it is being upgraded, but also save

significant time compared with a traditional driver

upgrade.

Conclusion and future direction
With the introduction of the CDU feature, IBM

System z9 customers have the ability both to upgrade

zSeries firmware and to add new functions without the

need for planned downtime. This paper described CDU

switch points, which are defined to identify the point at

which the transition to a new GA driver level can occur.

The CDU process itself consists of three underlying steps:

preloading the CDU switch-point firmware levels on the

primary and alternate SEs, activation of the new driver

level, and querying function availability to determine

whether all new functions are ready for use.

Improvements are planned for CDU with each new

System z generation. However, there will be no major

firmware redesign as a result of our goal to provide active

support. Subsequent System z systems will provide

incremental enhancements such as improved concurrent

firmware patch control and more subsystems with true

concurrent patch capability. Some I/O adapters without

true concurrent patch capability will no longer be part of

the system offering but will be replaced by modernized

versions with true concurrent patch support.

The addition of CDU technology contributes to the

continuous reliable operation rate of the IBM System z9

and is another step forward in reducing downtime.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of The Open
Group in the United States, other countries, or both.

References
1. B. E. Casey, G. L. Dunlap, M. C. Enichen, D. A. Larnerd, J. A.

Morrell, S. R. Nichols, P. D. Pagerey, and S. L. Rockwell,
‘‘A Method and System for Providing a Common Hardware
System Console Interface in Data Processing Systems,’’
U.S. Patent 6,182,106, January 30, 2001.

2. J. M. Nick, B. B.Moore, J.-Y. Chung, and N. S. Bowen, ‘‘S/390*

Cluster Technology: Parallel Sysplex*,’’ IBM Syst. J. 36, No. 2,
172–201 (1997).

3. B. D. Valentine, H. Weber, and J. D. Eggleston, ‘‘The Alternate
Support Element, a High-Availability Service Console for the

IBM eServer* z900,’’ IBM J. Res. & Dev. 46, No. 4/5, 559–566
(2002).

4. C. Axnix, T. Hendel, M. Mueller, A. Nuñez Mencias, H.
Penner, and S. Usenbinz, ‘‘Open-Standard Development
Environment for IBM System z9 Host Firmware,’’ IBM
J. Res. & Dev. 51, No. 1/2, 195–205 (2007, this issue).

5. T. W. Arnold, A. Dames, M. D. Hocker, M. D. Marik,
N. A. Pellicciotti, and K. Werner, ‘‘Cryptographic System
Enhancements for the IBM System z9,’’ IBM J. Res. & Dev. 51,
No. 1/2, 87–102 (2007, this issue).

6. IBM Corporation, ‘‘IBM System z9 Enterprise Class’’; see
http://www-03.ibm.com/systems/z/z9ec/.

Received March 10, 2006; accepted for publication

A. MUEHLBACH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

192

June 15, 2006; Internet publication December 5, 2006

Andreas Muehlbach IBM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (muhlbach@de.ibm.com). Mr.
Muehlbach holds a Dipl.-Ing. degree in electrical engineering and
computer science from the Technical University of Kaiserslautern.
He is a Senior Development Engineer working in processor
firmware development for IBM 9221, CMOS G1 to G6 processors,
z900, z990, and z9.

Brian D. Valentine IBM Systems and Technology Group, 1701
North Street, Endicott, New York 13760 (bdvalent@us.ibm.com).
Mr. Valentine graduated from Pennsylvania State University with
a B.S degree in computer science. He is a Senior Technical Staff
Member Programmer working in HMC and SE Licensed Internal
Code development.

Daniela Immel IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (immel1@de.ibm.com). Mrs. Immel received
her B.S. degree in business information systems from the
University of Applied Sciences, Karlsruhe. She is a Staff
Development Engineer in zSeries processor firmware.

Michael S. Bomar IBM Systems and Technology Group, 1701
North Street, Endicott, New York 13760 (bomarms@us.ibm.com).
Mr. Bomar received a B.S. degree in computer science from the
University of Tennessee. He is an Advisory Programmer working
in HMC and SE Licensed Internal Code development.

Timothy V. Bolan IBM Systems and Technology Group, 1701
North Street, Endicott, New York 13760 (bolant@us.ibm.com).
Mr. Bolan graduated from Rensselaer Polytechnic Institute with
a B.S. degree in electrical engineering. He is a Senior Engineer
working in HMC and SE Licensed Internal Code development.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. MUEHLBACH ET AL.

193

