
Redundant I/O
interconnect

U. Helmich
M. Becht

M. J. Becht
J. R. Easton

R. K. Errickson
T. Gehrmann

S. G. Glassen
S. R. Greenspan

F. Koeble
H. Lehmann

C. Mayer
J. S. Nikfarjam

F. A. Schumacher
W. Storz

The outstanding reliability, availability, and serviceability (RAS)
characteristics of IBM mainframe computers are among the
features that gained the IBM eServere family its reputation as a
leading platform for business-critical applications. The aim now is
to further improve IBM System z9t RAS by introducing redundant
I/O interconnect (RII) as a building block of enhanced book
availability and recovery scenarios. RII provides a means of
maintaining I/O connectivity during planned or unplanned outages
in a way that is transparent to the operating system and customer
applications. The mechanism that meets this requirement is the
provision of an alternate path to the I/O cage, which provides high-
bandwidth I/O slots to enable a higher number of I/O ports per
card. This paper discusses the I/O subsystem hardware and
firmware aspects of RII.

Introduction
One of the many improvements of the IBM System z9*

compared with its predecessors is the ability to perform a

broader variety of service actions without causing any

disruption to a customer’s business. Another paper

published in this issue focuses on a category of service

actions that allow the customer to add or replace

processor books to the processor cage of a system—the

enhanced book availability (EBA) features that reduce

planned outages for book hardware upgrades and

maintenance [1]. This approach first requires a solution

to the problem presented by a limitation that originates

from the classical organization of the self-timed interface

(STI) network [2]. This is a proprietary point-to-point

network that was first introduced with the third

generation of IBM S/390* CMOS servers (G3). It fans

out the I/O bandwidth from the memory bus adapters

(MBAs) through one or more multiplexer switch chip

levels to the channel cards, located in the I/O frame. The

MBA card is plugged to the processor book and provides

the connection to the system bus. The channels provide

connectivity to I/O devices outside the server, such as

redundant arrays of independent disks and other types of

storage systems, network adapters, and even other IBM

zSeries* servers (coupling). On systems before the z9*, the

topology of the STI network was organized as a special

case of a general network, a collection of I/O trees in

which the port of an MBA was at the root of each tree,

and the channels could be seen as leaves. While this is an

appropriate and robust approach to gain the required I/O

fan-out, it has the limitation that only a single path exists

from an MBA to a channel. Removing an MBA card or a

processor book (to which the MBA cards are plugged) is

disruptive to all channels in the tree. The redundant I/O

interconnect (RII) addresses this limitation by adding a

connection between every two I/O trees at the first

multiplexer switch chip (TNT) level.

Hardware and software engineers have different

concepts of redundancy. While redundancy is avoided as

much as possible in code development, it is a key aspect

of high-availability hardware design. This is especially

true for zSeries systems, where availability is of

paramount importance. Most critical components, such

as the distributed converter assembly (DCA) and cage

controller, are present in an N þ 1 configuration [3, 4].

In the memory subsystem, redundancy exists on several

levels. Each memory chip provides spare memory lines.

Entire spare memory cards are plugged in and used to

compensate if an entire card should fail. In the I/O

subsystem, the redundancy concept is extended to a

guideline that advises the customer to provide multiple

logical paths to a device wherever possible. Different

logical paths should make use of different channel and

switch hardware. Because this approach cannot always

be taken, or it cannot be taken for all I/O devices, the

redundancy provided by hardware was taken one step

further with the introduction of RII.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 U. HELMICH ET AL.

173

0018-8646/07/$5.00 ª 2007 IBM

Prior systems were already able to bypass failing units

in the I/O network by exploiting redundant I/O

connections that were designed for some other purpose.

The first hardware implementation of a redundant

interconnection to a channel-attached device was called

STI chaining. It was introduced with the common I/O

platform (CIOP) cards on the IBM S/390 G5/G6 server.

STI chaining provided a way to attach multiple CIOP

bridge cards to a single MBA port. This was desirable

because the bandwidth of each port of an MBA chip was

much larger than the bandwidth of a single bridge card.

Instead of attaching open-ended chains of bridge cards

to an MBA, the endpoints of every two chains were

connected to form a closed chain of CIOP cards between

two MBA ports, thus forming a redundant connection to

each card.

On IBM eServer* z900 and z990, a different approach

was taken. The fan-out of MBA bandwidth to the I/O

network was improved by cascading STI switch chips into

multiple levels of multiplexers (increasing the depth of the

I/O tree). With the increased density of packaging units,

more than one CIOP channel could be placed on a single

field-replaceable unit (FRU). The chaining cable between

channels on the same board was replaced by on-board

wiring. This new CIOP card design improved the

reliability of the chaining link, but the redundant

connection provided by the older cable approach had

to be sacrificed.

On System z9, the idea of an RII emerged again. The

RII feature focuses on providing the redundant path that

is required by EBA. A new link was added between

different I/O trees at the highest possible point in the I/O

network—the first-level multiplexer. This connection can

be used to disable or remove a processor book, an MBA,

or an MBA–TNT (Triton-T) cable without impact on I/O

connectivity. The feature is also exploited by recovery in

the event that one of the above components fails and

cannot be recovered. This paper explains some of the

hardware and firmware aspects of this major building

block that had to be invented to support CBA. We

further discuss how recovery scenarios make use of RII.

Overview
The System z9 channel subsystem (CSS) presents two

aspects. One is the I/O subsystem [5], also known as the

physical CSS, which comprises the I/O-related hardware

and its associated firmware support and control

structures. The second aspect is the multiple-logical-

channel subsystem (MCSS) [6], which provides for the

logical replication of facilities within the CSS. At the

MCSS level, RII is completely transparent, but at the

physical CSS view it is not.

The I/O subsystem is further broken down into the I/O

subsystem hardware and the I/O subsystem Licensed

Internal Code (LIC), usually referred to as system

firmware. The firmware maintains data structures and

configuration information that reflect the state of the

hardware. It performs all hardware accesses and controls

state transitions.

More complete information on I/O chips and the

STI network can be found in [2, 7, 8]. Changes to the

hardware that were required in order to make RII

possible are described in subsequent sections of this paper.

Exploiters of the RII feature are the new enhanced

book availability (EBA) scenarios as well as recovery.

On System z9 it is possible to add a new processor

book or repair a defective book without stopping traffic

to affected I/O units. The RII is required to make this

possible. If an MBA port is seen as the root of an I/O

tree, the redundant connection is added as a second root

to each tree. This can be seen in Figure 1, where all I/O

units attached to a first-level TNT multiplexer chip (an

I/O domain) are accessed via two different paths. The

default path to an I/O domain connects MBA and TNT

ports (light blue). This is the only path to an I/O domain

on systems prior to z9. On z9 the darker blue port was

added to the TNT chip. This port allows a connection

between TNT chips at the same level in two different

I/O trees, the chained STI link. With the help of this

chained link, an alternate path to an I/O domain can be

established. For example, the loss of the default path

from MBA A to TNT A can be compensated by routing

traffic to the I/O domain attached to TNT B via the link

between MBA B and TNT B followed by the chained

link. To make the best use of this feature, the only

requirement is that the two MBAs should be plugged

to different processor books.

When a new book is concurrently added to a system by

an EBA concurrent book add (CBA) service action, the

I/O subsystem becomes unbalanced. In many cases the

Figure 1

STI interconnections between MBA and TNT chips.

SAP

A

TNT

A

I/O domain I/O domain

Chained

STI Primary

STI links

Secondary

STI links

TNT

B

SAP

B

System assist

processor (SAP)

System assist

processor

Common

Port 0 Port 1 Port 0 Port 1

Port A Port B

Common

CommonCommon

Port A Port B

0 1 2 3 0 1 2 3

MBA

A

MBA

B

U. HELMICH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

174

new book also brings new MBAs into the system. For

example, if a single-book configuration is upgraded to a

two-book configuration, at first all old I/O domain pairs

are attached to the old book and all new I/O domain pairs

are connected to the new book. This situation creates two

problems that can be solved by rebalancing the I/O, a

second step of the CBA. The first problem is that the I/O

is not evenly distributed between the books, which might

create an I/O performance penalty. The second problem

would be a later repair action to a book. Because the

I/O is not plugged across different books, it would be

necessary to stop all I/O attached to the book that is

replaced. The RII feature makes it possible to run a

domain pair via a single MBA connection. During such a

transition phase, the other MBA connection to the pair

can be plugged to a new position. When all I/O domain

pairs are evenly distributed across books, the traffic can

be switched back to the default STI connections. I/O

operations are not interrupted during the rebalancing.

A second EBA scenario that exploits RII is concurrent

book repair (CBR). A processor book that contains

defective components but is still able to run I/O can be

replaced without stopping customer operations (hot book

replace). The CBR service action must evacuate all

resources from the book before it can be safely removed.

I/O can be taken from the book without interrupting any

operations provided that I/O domain pairs are plugged

across different books. In this case, the RII feature

provides connectivity to those domains that have a

default path to the book that is being replaced.

In addition to the need to support CBA and CBR, the

RII feature can be exploited by I/O subsystem recovery.

RII was not designed with a focus on recovery, but in

many cases recovery can prevent the loss of an I/O

domain by switching to the alternate path. A failure of

the MBA chip or the connection to the first-level TNT

can be recovered by redirecting traffic to the alternate

path.

STI switch chip

The TNT application-specific integrated circuit (ASIC)

chip is the next generation of the STI switch chip used

on previous zSeries servers. This chip was based on

the z990 STI switch chip, with several enhancements,

improvements, and new functions. The TNT STI switch

chip is used to increase the number of STI links in z9–109

systems and to connect I/O devices through the enhanced

STI (eSTI) link to the MBA chip in the central electronic

complex (CEC) book.

The following are the new features for TNT:

� A second 2.7-GB/s eSTI link was added to provide an

alternate system path for concurrent node servicing.

� All multispeed STI (mSTI) links now support 2 GB/s

in addition to the previously supported speeds of

333 MB/s, 500 MB/s, and 1 GB/s.
� A 1-KB buffer was added for each sink port to

improve performance. This change minimizes the

effect of a slow sink port throttling north port traffic.
� First-error-capture registers were added to help

isolate errors by capturing the first error that occurs

and no other errors until the register has been reset.
� The sense control packet storage was increased.
� The command reject storage for stray packets was

increased.

There are three source links on the TNT chip: two

eSTI ports and a single mSTI port. The eSTI provides

connections to the 2.7-GB/s links. The mSTI provides

connections to a 333-MB/s, 500-MB/s, 1-GB/s, or 2-GB/s

link. In any given TNT application, either the mSTI or

the eSTIs are used as the source port or ports.

Use of the mSTI source port is restricted to the

connection between a first-level and second-level TNT; an

alternate path is not supported in this configuration. Use

of the eSTI ports is reserved for the first-level TNT system

connection. In this application both of the eSTI ports are

typically used, one as a primary path and the other as a

secondary or backup path to the system. The primary

path is always connected to an MBA-GXþ, and the

secondary path always to another TNT. In a cascading

configuration in which a TNT is connected to another

TNT, the first-level sink mSTI port is connected to a

second-level TNT source mSTI port. This allows for

higher fan-out of the STI links. A maximum depth of two

TNT chips is supported.

Under normal conditions the primary link is timed,

physically operational, and serves as the active path

through which system traffic flows. Regarding the

secondary path, there is a minimum requirement for the

link to be maintained in a timed and operational state in

order to provide early identification of failures and to

schedule preventive maintenance. When an event occurs

that affects the usability of the active path, an action is

taken to swap active paths. This action is a code-initiated

recovery swap that is described below.

TNT is a 9.3-mm ASIC chip implemented with IBM

CMOS Cu-11 130-nm lithography technology. The chip

uses seven levels of metal and has supply voltages of

1.35 V for the core, 1.94 V for the mSTI I/O circuits, and

3.3 V for the phase-locked loop (PLL) circuits. The chip

resides on a 32-mm ceramic ball grid array package.

There are multiple operating frequencies in TNT, since

the STI ports can be run at different speeds. The host

logic runs at a frequency of 189 MHz, the eSTI interface

runs at 1.136 GHz, and the mSTI interface can run at

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 U. HELMICH ET AL.

175

1 GHz, 500 MHz, 250 MHz, or 166 MHz, depending on

the configuration.

Measured power consumption in a configuration in

which all four south ports are running at 1 GHz is

approximately 11 watts. This configuration generates

the greatest power consumption.

Performance measurements were made on the

TNT chip by running the mSTI links at 500 MHz.

Measurements were taken while running with

64-kilobyte 3 6-byte I/O starts, with a 50/50 ratio

of reads to writes. Results showed that the eSTI link

ran at 100% of target, 2.7 GB/s, and the mSTI link ran

at 103% of target, 1,029 MB/s in duplex mode (read and

write). At the time the measurements were made, there

was no available adapter that would take advantage of

the 2-GB/s interface, so performance numbers are not

available for the high-speed link.

Card packaging
The hardware that enables the RII consists of the TNT

module, STI-MP (STI-multiport), STI-A8, and STI-A4

cards. The concept of adding an additional eSTI link

to provide an alternate path to another I/O domain

presented several challenges. There had to be a means to

connect two TNT modules through an eSTI interface.

The previous-generation STI switch card was a half-

high full-length card with a very high-density metric

(VHDM**) connector for an eSTI cable on one end and

on the other, a VHDM connector for four mSTI ports

that plugged directly into the I/O cage. The new STI card

had to support an eSTI speed of 2.7 GB/s (an increase

over the previous speed of 2 GB/s), and the maximum

mSTI speed had to double to 2 GB/s. There were

limitations on the extent to which the card could be

redesigned. The mSTI connector on the card could

not change because it had to remain compatible with

the I/O cage, which was not going to be redesigned.

Each STI-MP card had to be an FRU to be able

to support repair actions without affecting the other

domain. A proposal to provide the alternate eSTI

connection on the cable side of the card was rejected

because of space limitations for an additional or larger

connector on the STI-MP card. Because the I/O cage was

not to be redesigned, providing the alternate eSTI

connection on the I/O board was not an option.

Figure 2
Mother-and-daughters card package.

VHDM connector

6 row � 40 wafer � 3 power � 2 guide

(Passive design:

no active components)

11.00 in.

2.72 in.

VHDM connector

6 row � 40 wafer � 3 power � 2 guide

Secondary eSTI link

Interface with I/O board

STI – 2.7 GB

VHDM (6 � 14)

TNT

CMOS

TNT

CMOS

VHDM-H connector

8 row � 45 wafer � 2 power � 2 guide

MSTI

sink

ports

MSTI

sink

ports

MSTI

sink

ports

MSTI

sink

ports

Secondary

eSTI link

 STI – 2.7 GB

VHDM (6 � 14)

VHDM-H connector

8 row � 45 wafer � 2 power � 2 guide

Secondary

eSTI link

Primary

eSTI link

Primary

eSTI link

STI-A8

STI-MP STI-MP

New VHDM-H connector

8 row � 45 wafer � 2 power � 2 guide
New VHDM-H connector

8 row � 45 wafer � 2 power � 2 guide

U. HELMICH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

176

The final card packaging solution was a mother-and-

daughter concept consisting of two cards: the STI-MP card

(daughter) and either the STI-A8 or STI-A4 card (mother).

Two STI-MP cards plug into one mother card. Figure 2

shows a logical representation of the card package.

In this approach, the alternate or secondary eSTI link is

routed through a VHDM connector from one STI-MP to

the mother card and to the other STI-MP card. The mSTI

ports are wired straight through the mother card to the

I/O board connector. Both types of mother cards (STI-A8

and STI-A4) are passive with no active components,

which eliminates the potential for field failures on the

card. The STI-MP card is approximately four inches

shorter than the previous STI-M card to make room

for the mother cards. With the addition of the second

eSTI interface and another PLL on top of the existing

components of the former STI-M card, care had to be

taken in the STI-MP card design. With the additional

eSTI interface, two more signal planes were added. Also,

the VHDM connector to the mother card had to grow in

order to carry this interface along with the extra ground

planes for signal integrity. As the speed of mSTI doubled,

wiring rules were more strict to preserve signal integrity.

The STI-MP/STI-A8 package is shown in Figure 3.

In the I/O cage, seven I/O domains are available (I/O-A

through I/O-G in Figure 4), each with connectivity to an

STI-MP card, as shown in the figure. Each STI-MP is

connected to four I/O card slots in each domain. The STI-

MP/STI-A8 card package resides in slots 5, 14, and 23 in

Figure 4. In slot 28, the STI-MP/STI-A4 package is used.

The STI-MP on the bottom of I/O slot 28 does not have

I/O connectivity because of the lack of space created by

the presence of the DCAs in the back of the cage. Because

there is no mSTI connector for the bottom of this slot,

a separate mother card had to be designed to fit in the

slot. The STI-A4 card fits only in slot 28 and provides

a secondary eSTI connection to the STI-MP cards, and

mSTI links to only the top STI-MP card in that slot. The

bottom STI-MP in this slot provides only a secondary

eSTI path for the top STI-MP card for the RII function

and does not have direct I/O connectivity.

Firmware implementation

As a result of the organization of the I/O subsystem into

separated I/O domains, information about traffic and

Figure 3

STI-MP/STI-A8 package: Two STI-MP cards (left, top and bottom)

are plugged into one STI-A8 card (right).

Figure 4

I/O cage (top view). (DCA/CC: distributed converter assembly/

cage controller.)

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

1

2

3

4

5

6

9

8

10

11

12

13

14

15

16

17

7

DCA / CC2

DCA / CC1

2.7GB-eSTI

2.7GB-eSTI

2.7GB-eSTI

2.7GB-eSTI

I/O-A

I/O-B

I/O-B

I/O-A

I/O-B

I/O-A

I/O-B

I/O-A

A

B

I/O-C

I/O-D

I/O-D

I/O-C

I/O-D

I/O-C

I/O-D

I/O-C

C

D

18

I/O-F

I/O-E

I/O-E

I/O-F

I/O-E

I/O-F

I/O-E

I/O-F

F

G

I/O-G

I/O-G

I/O-G

I/O-G

2.7GB-eSTI

2.7GB-eSTI

2.7GB-eSTI

2.7GB-eSTI

Bot

Top

BotTop

Bot

Top

Bot

STI-
A4

ESTI-

A8STI-

A8

STI_MP

STI_MP

STI-
A8

36

STI_MP

STI_MP

STI_MP

STI_MP

STI_MP

STI_MP

Front cage Rear cage

Top

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 U. HELMICH ET AL.

177

interrupts is grouped with an I/O-domain granularity.

Such data sets are kept in several places in the hardware

and firmware, and are indexed with the hardware address

(HWA) of the domain. The new chaining link introduced

with RII breaks this paradigm of isolation among

different I/O domains. Traffic and interrupts associated

with a channel in one domain can flow via two different

MBAs, depending on the RII path selection. These

different paths are associated with different HWAs. This

creates a requirement that the firmware know the active

path to a device because state information for the same

channel is kept in different locations, depending on the

path taken. For this reason, it is necessary to allow a path

swap only under firmware control in order to give the

code a chance to move information from the old data set

to the new one. Also, the TNT chip can be operated in a

mode in which a failing eSTI connection automatically

causes a failover to the chained link. This mode is not

used because firmware is not prepared to handle traffic on

the new path without proper preparation. During the

time window that exists before firmware is informed of

the automatic switch, the automatic switch would cause

the risk of a configuration mismatch between path

information kept by firmware and the actual path

selection in the hardware.

The downside of this approach is that a switch under

code control takes longer than it would if the automatic

hardware failover could be used. Further, all processors

handling state information must be synchronized on a

safe task boundary before the configuration update can

be performed. In order to make path switches during

service scenarios absolutely transparent to the operating

system and the channels, the swap task must be designed

for speed.

The firmware module that controls an RII path switch,

also known as a TNT alternate path swap task, always

executes a certain sequence of steps to drain all traffic

in the affected I/O domain. Here we give a simplified

summary of the steps that are required for a transparent

support element (SE) controlled swap:

1. Quiesce interrupt processing: Disable interrupt

handling for inbound traffic.

2. STI restriction: Disable outbound traffic, i.e., place

STI access restriction on links.

3. Hardware swap: Disable inbound direct memory

access (DMA) traffic and perform hardware path

switch. DMA is stopped only during a very brief

period while arbitration is disabled in the TNT chip.

4. Update or modify the I/O configuration data: All

firmware data structures associated with channels in

the affected domain have to be updated with the new

HWA information.

5. Remove STI restriction: Enable outbound traffic by

granting access to the new path to all processor units

(PUs).

6. Re-enable interrupt processing: Inbound traffic that

was delayed during the swap now causes interrupts

on the new path. The interrupt handling on this path

is enabled.

The following sections highlight only a few of the key

aspects that had to be improved by firmware. A recovery-

initiated swap task will follow the same design point but

may deviate from the described sequence in some details

that are beyond the scope of this paper.

Interrupt handling

One of the goals that was set for the RII design was to

perform the TNT swap function without affecting the I/O

traffic on any port not directly involved in the swap.

Another goal was to avoid stopping any threads

midstream, although this proved to be not entirely

possible.

A typical I/O task consists of front-end processing

(where the request is passed to the channel) and back-

end processing (where the channel signals completion

and sends the associated status back to the channel

subsystem). The objective is to reach a point at which the

back-end processing can be completed and new work can

be prevented from starting. Instructions, on the other

hand, continue to be executed unless they attempt to

access hardware resources that are affected by the swap.

Without a quiesce of the interrupt processing, a change

to the I/O path configuration during a running I/O

operation could lead to dropping traffic, causing an

unacceptable loss of application transparency. To avoid

this scenario, it is important to update the I/O path

configuration on each affected PU on an I/O task

boundary. The PUs requiring updates to their I/O path

configuration can be subdivided into two groups: system

assist processors (SAPs), whose functions include I/O

handling and managing system resources, and customer

CPUs. Each PU category has different facilities available

and requires a different strategy to reach an I/O task

boundary. Upon a path configuration change request, a

SAP self-issues a CSS event and can perform the update

operation from the CSS interrupt handler (CSSIH). This

is not available to CPUs, but similarly a CPU is issued a

signal work (SIGW) interrupt and can safely handle the

update in the SIGW interrupt handler. Since an SIGW

interrupt is characteristically issued only to SAPs, a CPU

that is issued an SIGW interrupt can be assured of a

pending path configuration update.

To securely transfer I/O traffic from a source path to

a destination path, we defined a two-stage operation

requiring special synchronization among all affected PUs.

U. HELMICH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

178

In the first stage (quiesce), traffic is disabled on the source

path for each affected PU and is brought back up on the

destination path only during the second stage (re-enable).

Because re-enable brings traffic up on an empty path,

only the quiesce requires an initiative on an I/O task

boundary. Traffic cannot be safely moved until every PU

signals it that it has successfully completed the quiesce.

Should any PU in the quiesce process fail or time out, we

defined a third operation, cancel, which attempts to back

out of the procedure by re-enabling traffic on the source

path.

STI access restriction

The STI restriction capability (STI port fencing) was first

introduced on the z900 to restrict and release hardware

accesses to a primary or secondary STI port for all PUs

except for the PU that restricted the STI port. It was used

primarily during a recovery action (STI link retiming).

For z9–109, this STI restriction capability was extended

to prevent hardware access during a controlled or

uncontrolled TNT alternate path swap action. The design

enables us to restrict or release both a primary STI link

and a secondary STI link. To restrict and release the

chained STI link between two STI-MP cards, all four

secondary STIs of the affected TNT have to be restricted

and released.

The semantics of an STI restriction is as follows:

If an STI port has been restricted by a certain firmware

function, all instructions that detect this restriction during

a hardware access must wait and retranslate the

associated target hardware address until the swap is

complete and the restriction is removed.

Hardware swap

After the system is prepared for the actual swap, e.g., the

interrupt processing is quiesced and the STI is restricted

(meaning that the PU responsible for the swap is the only

one granted access to the affected STI network), the

hardware swap is performed. Because of time constraints,

no differentiation between a controlled and a recovery

swap is done there. The duration of the entire swap

depends partially on the traffic in the PU–memory–

MBA network. The routing and the access grant of the

commands to the TNT can vary, and to avoid timeouts

of the attached I/O, the path length is kept as short as

possible. This results in a short swap sequence that can

handle both types of the swap without distinguishing

between them. In addition to the hardware accesses that

are required to perform the swap, a few more actions

must be taken. The TNT error reporting must be

adapted, DMA traffic that has been initiated by the

I/O and has already started must be observed, some

configuration setup in the MBA and TNT chips must be

moved, and finally the TNT is triggered to perform the

hardware swap.

As shown in Figure 1, the general hardware swap

sequence executed by firmware is the following (The

TNT A primary eSTI is the active path, and this one

gets switched to the chained link. All commands to

TNT A are routed via MBA B and TNT B and no

longer via MBA A because this path might already

be down.):

1. The arbitration in TNT A is stopped. Request

packets are no longer routed.

2. The error reporting of the TNT A logic up to

MBA A is disabled. No errors are cleared. Only

the reporting is disabled.

3. The TNT A secondary eSTI is set up as an eSTI

slave. The original master setup for the default case

would prevent a possible retiming of the chained link

because no PU has access other than over the

chained link.

4. Any other TNT setup dedicated to the active eSTI

link, such as logical receive buffer timeout

enablement, is moved from the primary to the

secondary eSTI.

5. The I/O-specific setup in MBA A is copied to

MBA B.

6. DMA responses already originated by the I/O before

the swap was triggered are given a small time period

to finish.

7. TNT A hardware is triggered to do the internal

hardware swap and afterward to re-enable

arbitration.

8. The error reporting of TNT A logic in the secondary

eSTI is enabled. The reporting is now routed up to

MBA B.

Coupling consideration

Coupling channel paths place unique requirements upon

the RII function. First of all, the integrated cluster bus

(ICB) links cannot implement the function at all. Unlike

other channel paths that are connected through the

bridge (TNT) logic, the ICB channel path logic resides in

the MBA hub chip STI port logic. This is true both for

the ICB-4 channel type, which directly uses the STI port

on the hub chip, and for the ICB-3 channel type, which

uses the bridge chip to create two channels from a single

STI port on the hub.

Intersystem connect (ISC) channels also present unique

challenges. Unlike the channels that are used for I/O, ISC

channels use interrupt and error vector bits in the MBA

port to carry additional information on top of the

initiative. In effect, this distributes the channel function

between the MBA hub chip and the channel cards that

are attached via the bridge chips. In contrast to I/O

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 U. HELMICH ET AL.

179

channels, where over-indication in the vector results

in false initiative that can be safely processed, over-

indication for ISC channels can result in data corruption.

Loss of the information causes message timeouts. This

means that the redundant I/O interconnect function must

move information from the primary hub port to the

alternate hub port when the alternate path is activated.

Because of these restrictive requirements, the traffic

from the channels through the bridge to the hub is

blocked before the switch occurs. This ensures that no

updates are made to the vectors during the swap process.

While accesses to the hub are blocked, the information is

copied from the vectors in the first hub to the vectors in

the alternate hub. After this is completed, the traffic from

the channels to the hub is enabled once more. This copies

all of the information from the old hub to the new hub

without loss and without introducing extra information.

A switch to the alternate path as a result of a recovery

action for the hub is also complicated by the presence of

ISC and ICB channels. Because ICB channels cannot

utilize the redundant I/O interconnection, a recovery

action that instigates a switch to the alternate path causes

all ICB channels on the affected hub to be stopped. ISC

channels fare somewhat better, since they can perform the

switch, but because they have functional information

at the primary hub port, they cannot be switched

transparently. The recovery action at the primary hub

makes any information there inaccessible, so to preserve

data integrity, all ISC channels on that hub must undergo

a reset recovery action which forces channel-control

check status to be posted for any active operation on the

channel paths. This status is generally recoverable by the

operating system software, so it does not affect customer

operation, and it is certainly an improvement over the

stop recovery that would be required without the

redundant path.

Recovery considerations

Error recovery uses the data captured by hardware error

detection to isolate the error source and to determine

the effect of the error on operation. A comprehensive

description of the RAS strategy for IBM S/390 systems

can be found in [9]. Depending on the severity and extent

of errors, the adequate recovery action is executed to

remove the source of error. If an error is detected in the

data flow of the I/O network (MBA, STI multiplexer),

most of the time a simple bad status is returned to the

originator of the operation, with no requirement for a

special firmware-initiated hardware recovery action. For

some more-severe errors, especially within control logic of

the I/O network, a firmware-controlled error recovery is

necessary to reset and initialize the hardware area in error

or to retime and initialize the STI link. During this direct

intervention into hardware, the functional use of this

I/O path is blocked on both sides of the defective subunit

for inbound and outbound operations. Hardware and

firmware provide methods to block the functional work

on the I/O path. Only error-recovery functions have

exclusive access rights to resolve error situations within

affected I/O subunits. Newly started I/O operations

during this recovery task are handled like a temporary

busy condition of the I/O path and are started again

repeatedly until the error situation is removed and the

I/O path is again ready. If an ongoing I/O operation

is affected by the error, the affected function or

superordinate hardware units at the respective endpoints

of this path retry the operation or continue at a known

synchronization point. When error recovery is not

successful or the same failure reoccurs with high

frequency, the failed unit is fenced from the

configuration. On previous zSeries system generations, an

entire I/O domain related to the fenced unit was stopped.

On System z9, error recovery now exploits the RII

feature. All channel-attached devices are switched to the

alternate I/O path and are not stopped when the unit in

error cannot be reset. This can be done for all MBA

errors and errors in TNT north ports. This error domain

is the MBA common logic and the building blocks shown

in light blue in Figure 1.

To guarantee a small switch-delay time, the chained

STI link is initialized during system initialization and

is set into standby mode. Idle patterns, which are

continuously sent across the link by the hardware itself,

are sufficient to constantly examine the operability of the

link. In this state, the chained STI link is physically

operational, and it is also fully supported by error

recovery if errors are detected by hardware.

Application interface

On the SE, the hardware object model (HOM)

[10] is the object-oriented representation of each

sensed physical part in the System z9–109. The HOM

supports the self-configuring and self-managing of

hardware components and their status representation and

management. The specification of the object hierarchy is

rules-based, including attributes and interconnections to

other system parts. The class instantiations representing

the system components and abstractions consist of

packaging units, functional units, and logical units.

A packaging unit object is created for every sensed

hardware FRU, i.e., the MBA fan-out, STI-MP, STI-A8,

and STI-A4 cards. The functional unit objects reflect

functional entities, which are active elements residing

on packaging units. An example of a functional unit is

the TNT module that resides on the STI-MP card. In

addition to the clock states and function states, e.g.,

running or isolated (fenced), a functional unit maintains

connections to other functional units. Application

U. HELMICH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

180

interfaces and services have been established to provide

access to the HOM for application programs such as

repair and verify (R&V) and manufacturing engineering

service (MES) hot plug.

The STI path between an MBA port and the TNT eSTI

port is established via an STI cable. During the HOM

self-configuration, i.e., during system power-on, these

connections are sensed by the flexible support processor

(FSP) [11]. All functional units in the I/O cages maintain

an STI connection object. The STI connection holds two

single STI connection objects, one for the default and one

for the alternate path. The STI connection object has the

information indicating which of the two is the active one.

The two single STI connections for each functional unit

are calculated on the basis of the sensed topology. The

chained link is given by the STI-MP card plug positions.

Depending on the results of the STI sensing, the default

hardware address and the alternate hardware address are

calculated and set in the corresponding STI connection

object.

A controlled swap to the alternate path can be

triggered by the SE during CBR, MBA fan-out card

rebalance, MBA repair, STI-cable repair, or at the STI

status and control panel. A recovery swap can be initiated

by the CEC firmware in the event of an error in an MBA

or STI path from an MBA port to a TNT eSTI port. If

the cause for the recovery swap has been removed, that is,

the failed unit has been replaced, it is of course desirable

to swap back to the default configuration. The difference

between the two scenarios is that in the controlled swap

case, the SE requests the CEC to perform a swap on a

specific link by means of a service word (Figure 5) and

receives a service word indicating whether the swap was

successful.

Because recovery swaps can occur asynchronously, the

HOM STI manager splits off a separate thread that waits

for such events. If the service word arrives, it will be

parsed and checked if there are any differences from

the information currently reflected in HOM. If so,

the affected objects will be updated.

To perform controlled swaps and additional necessary

tasks (for instance during a repair action), the HOM STI

manager provides the following set of application

interfaces:

� Activate alternate path: Activates the alternate path to

a unit (and to all units within the same STI domain).

The target is the unit ID.
� Restore default path: Activates the default path to a

unit (and to all units within the same STI domain).

The target is the unit ID.
� Quiesce and disable link: Stops all I/O traffic to the

specified link (drops the link). The target is the unit

ID along with an indication for default or alternate

path.
� Retime and enable link: Re-enables the I/O traffic to

the specified link (retimes the link). The target is the

unit ID and an indication for default or alternate

path.

To ensure that the SE and the CEC have the same view

of the recent swap configuration in the event of a recovery

swap that occurs while the SE is not available, the SE

reboots and then explicitly requests the complete swap-

related configuration information from the CEC firmware

and updates the HOM configuration accordingly.

As stated earlier, the swap to the alternate path can

occur under control or as a result of a recovery action.

Therefore, a method of viewing the current state of the

STI links is needed. This is the purpose of the STI status

and control screen on the SE. The screen is designed to

represent the logical layout of the STI links. Descriptions

of the most important display items are shown in Table 1.

The STI status and control screen is used to view the

current state of the STI links. Debug tools are used to

manually switch between the default and alternate paths

in a bring-up or test environment as an aid in hardware

debugging. In a customer environment, repair and verify

procedures are used to restore the default path.

Results

The RII feature was designed primarily to support path

swap actions that are controlled by the SE. This enabled

the implementation of advanced service features such as

EBA. RII was also used to improve the automatic error

recovery functionality that is implemented in CEC

firmware. Today, after several months have passed since

Figure 5

Service word communication during swap sequence.

x

Blue = active path

Orange = inactive path

y
c

SW BB80 [Return code]

Parse record and update

configuration

SW BB81 [New configuration]

HOM

STI

manager

HOM CEC

SW BB10 [HWA of TNT-X]

(Swap to alternate path)
MX MY

TX TY

x y

c

MX MY

TX TY

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 U. HELMICH ET AL.

181

System z9 became generally available to the market, we

can say that RII proved to work perfectly transparently

to customer applications during controlled swap tasks. By

perfectly transparently, we mean that the customer did

not see any messages on the operator console or in any

operating system running on the system. The benefit to

error recovery is well above our expectations, but leaves

some room for improvement on later systems. To cover

the very few failure situations where a recovery swap is

not possible will require a different approach to the RII

concept. The RII feature cannot be used if a TNT chip is

lost, because this chip provides the hardware for the RII

feature.

The new feature does not create any performance

impact while all I/O domains are running on their default

paths. The logic that provides the alternate path is not

‘‘used’’ while traffic is flowing via the default path. The

on-chip logic is parallel to the logic providing the default.

No part of it can add path length to the default path.

The chained connection is monitored by logic added

to the TNT module that does not interfere with traffic

on the other port. In a swapped configuration, peak

performance is theoretically degraded because two I/O

domains share hardware resources that are otherwise

used by only one I/O domain. Test setups with fully

populated I/O domains and heavy I/O traffic did not

show any significant performance degradation when

running in swapped mode. This is due to the bandwidth

layout of the primary STI links, which include sufficient

performance reserves to carry the additional traffic. If a

given customer setup causes concern regarding the I/O

bandwidth, it is possible to schedule the service slot to a

time at which traffic is expected to be low.

Conclusion
By breaking with the former concept of full isolation

between I/O domains, the RII feature provides a new

method to increase the availability and serviceability of

the System z9 server. While interacting in a complex and

time-critical manner with multiple processors and I/O

resources, a simple and easy-to-use primitive is provided

to any high-level application exploiting this feature. The

primitive is designed to be fast and transparent to I/O

operations in progress. Exhaustive testing was done to

ensure that there are no side effects, and these tests

showed that there are none.

While IBM plans that future systems will keep I/O

domains isolated from one another to make failure

domains manageable, the RII feature has proven to be a

valuable exception to a general rule. The plan is for the

next system to change the handling of hardware interrupt

locations and addressing tables in a way that removes

much of the complexity that the current firmware

implementations must handle. A key problem that had to

be solved by RII is the synchronization among several

processors that access an I/O path. The design for the

next server generation will remove the requirement for

such an interaction between different processors. This

reduced complexity will further help integrate the swap

task with all error-recovery scenarios in which it

Table 1 STI status and control screen display items.

Display item Description

Select check box This is how an STI row is selected.

Attention This is a field to indicate that something is abnormal on this STI row.

STI link status This shows the status of the STI link. Possible values are
� Operational: Link is active and being used.
� Standby: Link is operational but not being used.
� Fenced: Link is not operational.
� Stopped: Link is not operational, stopped by hardware.

Chain link status This shows the status of the link between the two TNTs. Possible values are
� Standby: Link is operational but not being used.
� Operational: Link is active and being used.

Display PCHID/CSS.CHPID1 button This button displays the PCHIDs (and the CSS.CHPIDs that map to them)

controlled by the selected STI. The display shows the PCHIDs/CSS.CHPIDs for

both STI links.

Search PCHID/CSS.CHPID button This button allows the user to enter a CSS.CHPIDs or PCHID value and search

for the STI that controls them. The result is a panel that displays which row the

controlling STI is on in the main display. This function can be used when the user

is having problems with one of the PCHIDs/CSS.CHPIDs and wants to see the

status of the STI that controls that channel.

1 PCHlD: physical channel ID; CSS.CHPID: channel subsystem set.channel path ID [6].

U. HELMICH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

182

theoretically can prevent the loss of resources. While RII

supports our strategy to achieve and maintain RAS on

zSeries servers as the best in the market, it has the

potential to evolve further and provide an important

building block for a variety of future service and recovery

applications.

Acknowledgments
Design, implementation, and test of the RII feature

required the effort of many workers in the Poughkeepsie,

Endicott, and Boeblingen laboratories. We thank the

many individuals (too numerous to list here) for their

many contributions over the years.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Teradyne
Inc. in the United States, other countries, or both.

References
1. C. R. Conklin, C. J. Hollenback, C. Mayer, and A. Winter,

‘‘Reducing Planned Outages for Book Hardware Maintenance
with Concurrent Book Replacement,’’ IBM J. Res. & Dev. 51,
No. 1/2, 157–171 (2007, this issue).

2. J. M. Hoke, P. W. Bond, T. Lo, F. S. Pidala, and G.
Steinbrueck, ‘‘Self-Timed Interface for S/390 I/O Subsystem
Interconnection,’’ IBM J. Res. & Dev. 43, No. 5/6, 829–846
(1999).

3. J. Probst, B. D. Valentine, C. Axnix, and K. Kuehl, ‘‘Flexible
Configuration and Concurrent Upgrade for the IBM eServer
z900,’’ IBM J. Res. & Dev. 46, No. 4/5, 551–558 (2002).

4. L. Spainhower and T. A. Gregg, ‘‘IBM S/390 Parallel
Enterprise Server G5 Fault Tolerance: A Historical
Perspective,’’ IBM J. Res. & Dev. 43, No. 5/6, 863–873 (1999).

5. D. J. Stigliani, Jr., T. E. Bubb, D. F. Casper, J. H. Chin, S. G.
Glassen, J. M. Hoke, V. A. Minassian, J. H. Quick, and C. H.
Whitehead, ‘‘IBM eServer z900 I/O Subsystem,’’ IBM J.
Res. & Dev. 46, No. 4/5, 421–445 (2002).

6. L. W. Wyman, H. M. Yudenfriend, J. S. Trotter, and K. J.
Oakes, ‘‘Multiple-Logical-Channel Subsystems: Increasing
zSeries I/O Scalability and Connectivity,’’ IBM J. Res. & Dev.
48, No. 3/4, 489–505 (2004).

7. T. A. Gregg, ‘‘S/390 CMOS Server I/O: The Continuing
Evolution,’’ IBM J. Res. & Dev. 41, No. 4/5, 449–462 (1997).

8. E. W. Chencinski, M. J. Becht, T. E. Bubb, C. G. Burwick,
J. Haess, M. M. Helms, J. M. Hoke, et al., ‘‘The Structure
of Chips and Links Comprising the IBM eServer z990 I/O
Subsystem,’’ IBM J. Res. & Dev. 48, No. 3/4, 449–459 (2004).

9. M. Mueller, L. C. Alves, W. Fischer, M. L. Fair, and I. Modi,
‘‘RAS Strategy for IBM S/390 G5 and G6,’’ IBM J. Res. &
Dev. 43, No. 5/6, 875–888 (1999).

10. A. Bieswanger, F. Hardt, A. Kreissig, H. Osterndorf, G. Stark,
and H. Weber, ‘‘Hardware Configuration Framework for the
IBM eServer z900,’’ IBM J. Res. & Dev. 46, No. 4/5, 537–550
(2002).

11. F. Baitinger, H. Elfering, G. Kreissig, D. Metz, J. Saalmueller,
and F. Scholz, ‘‘System Control Structure of the IBM eServer
z900,’’ IBM J. Res. & Dev. 46, No. 4/5, 523–535 (2002).

Received March 10, 2006; accepted for publication

Ulrich Helmich IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (helmich@de.ibm.com). Mr. Helmich
received an M.S. degree in physics from the University of Sussex
and a Dipl. Phys. degree from the University of Tuebingen,
Germany. His current responsibilities are zSeries I/O microcode
development, including first error data collection (FEDC) and
error-recovery code.

Michael Becht IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (bechtm@de.ibm.com). Mr. Becht received a
Dipl.-Inform. degree from the University of Stuttgart, Germany.
He is currently working on the hardware object model in zSeries
firmware development.

Michael J. Becht IBM Systems and Technology Group, 2455
South Road, Poughkeepsie, New York 12601 (becht@us.ibm.com).
Mr. Becht is a Staff Engineer in IBM eServer I/O hardware
development. He received his B.S. degree in electrical engineering
from the University of Delaware. Mr. Becht is currently engaged in
the development of next-generation I/O for zSeries
supercomputers.

Janet R. Easton IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(jeaston@us.ibm.com). Ms. Easton is a Senior Software Engineer
in processor firmware design and development. She received a B.S.
degree in computer science from the City University of New York.
Ms. Easton is working on current and future design of the zSeries
I/O subsystem.

Richard K. Errickson IBMS Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(rerricks@us.ibm.com). Mr. Errickson received a B.S. degree in
computer engineering from Lehigh University. He is a Senior
Engineer, working on the development of microcode for the I/O
subsystem for IBM eServer processors.

Tobias Gehrmann IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (gehrmann@de.ibm.com). Mr. Gehrmann
received a Dipl.-Ing. degree in technical computer science from the
University of Ravensburg-Weingarten, Germany. Mr. Gehrmann
is the team leader of the reset and recovery team.

Steven G. Glassen IBM Systems and Technology Group,
2455 South Road, Poughkeepsie, New York 12601
(glassen@us.ibm.com).

Seth R. Greenspan IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(sgreensp@us.ibm.com). Mr. Greenspan received a B.S. degree
in electrical engineering from the University of Connecticut. He
is a Senior Engineer who is currently involved in I/O hardware
development for the IBM Systems and Technology Group.
Mr. Greenspan has received four IBM Outstanding Technical
Achievement Awards.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 U. HELMICH ET AL.

183

June 13, 2006; Internet publication December 5, 2006

Frank Koeble IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (koeble@de.ibm.com). Mr. Koeble received
a Dipl. Ing. degree in computer science from the University of
Applied Sciences, Aalen, Germany. He is responsible for the
project management of the Boeblingen I/O Firmware Department.

Helge Lehmann IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (hhlehmann@de.ibm.com). Dr. Lehmann
is an Advisory Engineer in hardware development. He studied
mathematics and physics at the University of Cologne, where
he received a Ph.D. degree for numerical solutions of partial
differential equations. Dr. Lehman is working on future
strategies in the I/O area for zSeries systems.

Carl Mayer IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (carl@de.ibm.com). Mr. Mayer received a
Graduate Engineer degree in software engineering from the
University of Applied Sciences, Esslingen, Germany. He is
currently the team leader for the HOM and was the focal
person for the System z9 hot-plug function.

Jonathan S. Nikfarjam IBM Systems and Technology
Group, 2455 South Road, Poughkeepsie, New York 12601
(nikfarja@de.ibm.com). Mr. Nikfarjam received a B.S. degree
from the Duke University Pratt School of Engineering,
graduating summa cum laude with majors in mathematics,
electrical engineering, and computer science. He is engaged
in developing I/O firmware for IBM zSeries mainframes.

Forrest A. Schumacher IBM Systems and Technology
Group, 1701 North Street, Endicott, New York 13760. Mr.
Schumacher received a B.S. degree in mathematics from the State
University of New York at Binghamton. He is an Advisory
Engineer, working on the development of microcode for the
hardware management console SE for IBM eServer processors.

Willi Storz IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (storz@de.ibm.com). Mr. Storz studied
electrical engineering at the Fachhochschule Aalen, graduating in
1977. He is currently responsible for the firmware layer of error
recovery for I/O adapters and I/O STI networks in zSeries systems.

U. HELMICH ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

184

