Decimal floating-point
In z9: An implementation
and testing perspective

Although decimal arithmetic is widely used in commercial and
financial applications, the related computations are handled in
software. As a result, applications that use decimal data may
experience performance degradations. Use of the newly defined
decimal floating-point (DFP) format instead of binary floating-
point is expected to significantly improve the performance of such
applications. System z9™ is the first IBM machine to support the
DFP instructions. We present an overview of this implementation

A. Y. Duale
M. H. Decker
H.-G. Zipperer
M. Aharoni

T. J. Bohizic

and provide some measurement of the performance gained using
hardware assists. Various tools and techniques employed for the
DFP verification on unit, element, and system levels are presented
in detail. Several groups within IBM collaborated on the
verification of the new DFP facility, using a common reference

model to predict DFP results.

Introduction

Even though more than half of all commercial data

is represented in decimal format, the widely used and
hardware-implemented binary floating-point (BFP) unit
[1] does not perform decimal calculations with sufficient
precision. Applications compensate for this by using
software to perform decimal arithmetic, resulting in a
heavy performance penalty. The introduction of the
decimal floating-point (DFP) [2] facility in hardware is
expected to dramatically reduce the runtime of such
applications.

The DFP architecture was the first System z* project
designed for multiple platforms. More than 50 DFP
instructions were added to System z9* while the IEEE
Standard P754 [3] was still in the discussion phase. For
a timely response, it was decided to implement these
instructions mainly in millicode [4] while performing only
the most basic tasks in hardware. (Millicode is the vertical
microcode that executes on the processor.)

This paper provides an overview of the DFP
implementation and verification process. We describe the
use of System z hardware assists and the millicode
implementation of the DFP instruction set. The
introduction of the DFP format and instructions required
the development of new techniques and tools for all levels
of functional verification, from the unit through system
level. A major component used by all of these tools is the
reference model (RefMod). Various verification teams

collaborated on writing the RefMod. This paper
discusses the details of new techniques employed by
different IBM test-generation tools and describes the
successful collaboration among verification and test
teams. Experimental results on performance and
test coverage of the DFP instructions are given.

The remainder of the paper provides background
information on the DFP format, a discussion of its
implementation in System z9, and a description of the
verification tools employed to verify the correctness of
the implementation.

Background
A DFP operand consists of a sign bit, an exponent, and

a coefficient. The numerical value of the operand is
defined as

exponent

(—1)"*" X coefficient X 10 ,

DFP numbers are not normalized. Therefore, multiple
representations are possible for a single numerical value.
For example, 5 X 10? and 500 X 10° represent the same
numerical value. A set of representations of a single
numerical value is called a cohort. To enhance the
portability of DFP applications, IEEE Standard P754 [3]
defines a preferred exponent that is a function of the input
exponents for every arithmetic operation. This exponent
uniquely determines the representation selected for the

©Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of
this paper must be obtained from the Editor. 217

0018-8646/07/$5.00 © 2007 IBM

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

A. Y. DUALE ET AL.

218

Table 1 DFP operand descriptions.

Parameter Short Long Extended
Operand length (bits) 32 64 128
Precision (digits) 7 16 34

Minimum unbiased exponent —101 —398 —6,176
Exponent bias 101 398 6,176

Maximum unbiased exponent 90 369 6,111

Table 2 Encoding and decoding the DFP CF.

Leftmost Leftmost two bits of biased exponent
digit

0 1 2
0 00000 01000 10000
1 00001 01001 10001
2 00010 01010 10010
3 00011 01011 10011
4 00100 01100 10100
5 00101 01111 10101
6 00110 01111 10110
7 00111 01111 10111
8 11000 11010 11100
9 11001 11011 11101

final result. DFP operands are available in three formats:
short, long, and extended. The parameters of these
formats are summarized in Table 1.

The DFP facility shares the floating-point registers
(FPRs) with the binary and hexadecimal floating-point
facilities. Unlike the binary and hexadecimal floating-
point operands [1], the DFP operands are stored in a
specially encoded format called Densely Packed Decimal
(DPD). This format is specified by the IEEE Standard
P754 [3] and was originally proposed in [5]. The format
condenses the coefficient as compared with the Binary
Coded Decimal (BCD) encoding.

The DPD format comprises four fields [6]:

* S =sign (1 bit): 0 for positive and 1 for negative.

e CF = combination field, which consists of five bits in
all formats. For finite numbers, the CF field contains
the encoding of the leftmost digit together with the
leftmost two bits of the exponent. Special bit patterns
of this field, 11110b and 11111b, respectively define
infinity and NaN (not a number).

¢ BXCF = biased exponent continuation field, which
consists respectively of six, eight, and 12 bits for

A. Y. DUALE ET AL.

short, long, and extended. This field represents the
remaining bits of the biased exponent. In the case of a
NaN, the leftmost bit is set to 1 for a signaling NaN
and to 0 for a quiet NaN.

¢ CCF = coefficient continuation field, which consists
respectively of 20, 50, and 110 bits for short, long, and
extended. This field represents the remaining digits of
the coefficient, encoded in DPD blocks. Each DPD
block, called a declet, consists of ten bits representing
three decimal digits. Note that a BCD representation
of three decimal digits requires 12 bits. Since ten bits
encode 1,024 different strings, there are 24 redundant
strings. Therefore, a few of these three-digit blocks
have redundant encoding.

The DFP operands must be decoded before they are
used for execution and encoded before they are delivered
as results. More details on the encoding and decoding,
and on the encoded representation, can be found in the
following subsection.

DFP arithmetic operations are carried out as if they
first produced an intermediate result correct to infinite
precision and unbounded range. The intermediate result
is then rounded according to one of the DFP rounding
modes defined by the Floating-Point Control Register
(FPCR) to produce a final result in the format of the
destination operand. If the final result is exact and
has more than one possible representation, the
representation with the exponent closest to the preferred
exponent is selected. If the final result is inexact, the
representation with the smallest exponent is selected
to allow for minimum loss of precision bits in the
coefficient.

Decoding DFP numbers

The CF field can have two special values: NaN is
represented as 11111b, and infinity is represented as
11110b. All remaining values represent the leftmost
digit of the coefficient and the two leftmost bits of
the exponent, as indicated in Table 2.

The CCEF is divided into declets (i.e., ten-bit groups).
Each declet (pqr stu v wxy) is decoded to create three
BCD digits (abed efgh ijkm). The translation from three
four-bit BCD digits to a DPD declet is described in
Table 3. The reverse translation, from a DPD declet
to three four-bit BCD digits, is depicted in Table 4.

As an example, let us decode the DFP long number
0xABCDEF0123456789.

¢ The bit representation of the number is
1 01010 11110011 0111101111 0000000100
1000110100 0101011001 1110001001.

® The sign is 1b and therefore the number is negative.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

* The CF is 01010b and, according to Table 2, the
leftmost digit is 2 and the leftmost two bits of the
exponent are 01b.

e The BXCF is 11110011b (eight bits for the long
format). Combining the BXCF and the two leftmost
bits of the exponent gives a biased exponent of
0111110011b (i.e., 499). The unbiased exponent
becomes 101.

* The first declet (pqr stu v wxy) is 0111101111b. From
this, vxwst is 111111b. Therefore, according to
Table 4, the three BCD digits are 989.

* The second declet (pqgr stu v wxy) is 0000000100b. The
value of vxwst is 00100b, and the three BCD numbers
are defined as Opqr, Ostu, and Owxy, which translate
to the three digits of 004.

® The rest of the declets produce 434, 259, and 709.

Therefore, the DFP number with biased exponent is
2,989,004,434,259,709 X 10*°. Without the exponent
bias, the number is 2,989,004,434,259,709 % 10'°", or
2.989004434259709 X 10''°.

DFP implementation
The z9* is the first System z machine to support DFP.
Because the DFP standard [3] was not fully defined when
the z9 processor was developed, it was decided to add
only basic hardware support to the processor and to
implement the DFP instructions in millicode. Millicode
is the lowest layer of firmware in the System z and is
used, among other purposes, to implement complex
instructions where a hardware implementation is not
feasible, and to add functions to a product after the
hardware is finalized. It is a vertical microcode and is
written in a subset of the System z assembly language
together with millicode-only instructions known as milli-
ops. (For a detailed introduction to millicode, see [4].)
Although a millicode implementation does not deliver
the performance of a hardware implementation, it was
expected that the use of dedicated hardware support
would result in a speedup by a factor of 10 compared with
a pure software implementation. (A pure hardware
implementation should yield another performance
improvement of a factor of 10 or more [7].) The
millicode can access dedicated hardware through a
number of new milli-ops.

Hardware support

The millicode uses a private register set called Millicode
General-purpose Registers (MGRs). System z processors
have performed floating-point functions only by
hardware for a long time, and the millicode did not
even have easy access to the FPRs on prior processors.
To access the FPRs, two new milli-ops were added:

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Table 3 BCD-to-DPD conversion.

aei pgr stu v WXy
000 bed fgh 0 jkm
001 bed fgh 1 00m
010 bed jkh 1 0lm
011 bed 10h 1 Ilm
100 jkd fgh 1 10m
101 fgd 0lh 1 Ilm
110 jkd 00h 1 Ilm
111 0od 11h 1 Ilm

Table 4 DPD-to-BCD conversion.

vXWSt abed efgh ijkm
0---- Opqr Ostu Owxy
100-- Opqr Ostu 100y
101-- Opqr 100u Osty
110-- 100r Ostu Opqy
11100 100r Opqu 100y
11110 Opqr 100u 100y
11111 100r 100u 100y

¢ Extract FPR indirect (EXFDI): Load an MGR from
an FPR.

* Set FPR indirect (SFDI): Load an FPR from an
MGR.

The FPR number is determined by one of the four
possible register indirect tags [4]. During the millicode entry
phase for a non-hardwired System z instruction, the register
numbers of the relevant GPRs or FPRs (based on the
instruction format) are placed in the register indirect tags.
Thus, the millicode can simply refer to the first, second, or
third register operand of a System z instruction; it is not
required to know the actual register numbers.

Typically, due to the encoding of the DFP numbers (as
described in the background section), it is not possible to
perform DFP operations without decoding the numbers.
It is necessary to extract the exponent and coefficient
prior to the operation and to encode the final coefficient
and exponent again to form the result. Because both
decoding and encoding of the DPD format are frequent
tasks, the following milli-ops were added:

® FExtract exponent (EXPDR): Decode the CF and
BXCEF fields from the source register and write

A. Y. DUALE ET AL.

219

220

the exponent as a binary integer to the destination
register.

* [nsert exponent (IXPDR): Update the CF and BXCF
fields of the destination register from an integer in the
source register.

e Extract coefficient (EBCDR): Decode the BXCF and
CCF fields from the source register and write the
coefficient as a BCD number to the destination
register.

* Compress coefficient (CBCDR): Write all fields of the
destination register using a BCD number in the source
register as a coefficient and assuming an exponent of 0
and a positive sign.

Those milli-ops operate on MGRs as source and
destination, and most execute in one cycle. They exist in
different forms that allow, together with some simple
shifting and bit-masking operations, encoding and
decoding of all three proposed DFP formats.

The System z processors have always supported
arithmetic on packed fixed-point decimal numbers [6].
However, these instructions operate on operands in
storage. To allow decimal calculations in millicode
without the need to access storage, four further milli-ops
were added that perform BCD arithmetic on the contents
of millicode work registers:

¢ Add decimal register (APRR).

* Subtract decimal register (SPRR).
® Multiply decimal register (MPRR).
¢ Divide decimal register (DPRR).

APRR and SPRR are single-cycle instructions, whereas
MPRR and DPRR require multiple cycles. The four
milli-ops use the hardware components designed for
the System z decimal instructions. Therefore, the DFP
instructions benefit indirectly from the speed provided
by the fixed-point decimal hardware.

DFP instruction execution
With the hardware support described in the previous
section, the execution of a typical DFP instruction
becomes straightforward. A DFP source operand is
transferred from an FPR into an MGR and is decoded
into exponent, coefficient, and sign. On the basis of these
fields, the operand is classified as a finite number, infinity,
or NaN. For a dyadic operation (i.e., an instruction with
two input operands), the second source operand is
decoded and classified in the same manner. A branch
table handles the possible combinations of source
operands.

If one of the source operands is a special value (infinity
or NaN), the result is defined by IEEE Standard P754.

A. Y. DUALE ET AL.

Otherwise, the required calculation is performed on
exponents, coefficients, and signs. This yields an
intermediate result (still expressed as an exponent,
coefficient, and sign) with additional digits on the right
and a greater exponent range than that defined for the
DFP operand type. A sticky bit (i.e., the OR of all of
the remaining digits generated during the calculation
of the intermediate result) is kept for digits that have
been shifted out on the far right.

When the result has multiple representations, the
coefficient is shifted until the desired exponent is reached.
The intermediate result is then rounded according to the
DFP rounding mode. The additional digits and the sticky
bit are used to determine whether the result is exact,
has to be incremented in the least-significant digit, or
must be truncated.

This information is also kept in internal status bits.

If the exponent is outside the range for the result type
(underflow or overflow), one of the following, depending
on the DFP rounding mode and the setting of the IEEE
masks in the FPCR [6] results—a subnormal number,
zero, infinity, or a wrapped result. (The term IEEE mask
means mask bits as defined in IEEE P754, and similarly
for other IEEE terms.)

The rounded result, which now has the required
number of digits and the correct exponent range, is
encoded into DPD format and written into the
destination FPR. Finally, the status bits from the
rounding process are used to update the IEEE flags
in the FPCR and to raise an IEEE exception if
necessary.

Sample calculation
Let us assume that the DFP multiply long instruction

MDTR 4, 2, 6

is to be executed. This instruction operates on three
FPRs. The second and third operands (in FPRs 2 and 6)
designate the source. The product is to be placed in the
first operand (FPR 4).

Let us assume that FPR 2 contains
0x2DFCCI1AEBS53B3FBB and FPR 6 contains
0x223800000000000B. These DPD-encoded operands
represent the values +3,141,592,653,589,793 X 10713
(= 3.141592653589793) and +81 X 1 (= 81), respectively.

The millicode first moves the second and third
operands from their FPRs into two MGRs using EXFDI
instructions. It extracts the exponents and coefficients
using appropriate forms of the EXPDR and EBCDR
instructions. (For simplicity, let us ignore the sign.) We
now have, in four separate MGRs, the following values:
For the second operand, an exponent of —15 and a
coefficient of 0x3141592653589793; for the third

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

operand, an exponent of 0 and a coefficient of
0x0000000000000081.

The coefficients are represented as BCD numbers and
the exponents as binary integers. (For simplicity, let us
ignore the exponent bias.) Both operands are classified
as finite numbers.

The millicode now adds the exponents and multiplies
the coeflicients to form the intermediate result. Addition
of the exponents is performed with standard System z
arithmetic instructions for binary integers. For the
coefficients, however, we use the MPRR and APRR
instructions.

The multiplication of two 16-digit coefficients results
in a 32-digit intermediate coefficient in an MGR
pair. The intermediate result has a coefficient of
0x00000000000000254469004940773233 and an exponent
of —15. The preferred exponent for multiplication is
defined as the sum of the exponents of the source
operands, so our intermediate result already has the
required exponent. However, it has 18 significant digits,
which is two more than can be accommodated by the long
DFP format (16 digits).

This intermediate result is therefore shifted right,
incrementing the exponent by one for every digit, until it
has no more than 16 significant digits. A guard digit (i.e.,
the next digit calculated in the intermediate result beyond
the precision of the input operand) and a sticky bit are
kept on the right for rounding. The coefficient of the
intermediate result is now 0x2544690049407732, the
exponent is —13, the guard digit is 3, and the sticky bit is
1 (indicating that nonzero bits were shifted out on the
right beyond the guard digit).

Further assuming that the DFP rounding mode is
“round toward +, the coefficient now has to be
incremented in the least-significant digit because
the guard digit and sticky bit are not both 0. The
final result (now including the sign again) is
+2,544,690,049,407,733 X 10713 (= 254.4690049407733),
and this is encoded as 0x2A06C4C684981FB3 using the
CBCDR and IXPDR instructions. This value is written
into the first operand location (i.e., FPR 4) by an SFDI
instruction.

Finally, the millicode handles the IEEE-inexact
condition arising from the fact that the delivered result
differs in value from the infinite-precision result. If the
IEEE-inexact mask in the FPCR is 0, millicode sets the
IEEE-inexact flag in the FPCR. On the other hand, if
the mask is 1, the millicode raises a data exception.

Performance

To maximize the performance of the DFP
implementation, various algorithms were chosen in
accordance with the expected patterns of use. For
example, DFP add and subtract instructions, whose

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Table 5 DFP executions in cycles.

Operation Software Millicode
Add/subtract 652 to 1,060 100 to 150
Multiply 4,285 150 to 200
Divide 3,617 350 to 400

source operands have equal exponents, are implemented
on a fast path. With the un-normalized number format,
we expect this to be a much more frequent case than with
BFP numbers (e.g., all currency amounts will have two or
three decimal digits to the right of the radix point, and
therefore an exponent of —2 or —3). In addition, the
performance of the millicode was tuned with the aid of
a cycle simulator [8]. This allowed measurements to be
made and made it possible to change the code frequently
while the hardware was still under development. The
cycle simulator also assisted in finding hardware errors.

The execution time of the instructions is heavily
dependent on the data; therefore, only approximate
numbers can be given here. We compared the required
cycles for the long (16-digit) DFP calculations of
multiply, divide, add, and subtract with the cycles for
a similar implementation in pure software from [7].

As depicted in Table 5, the desired speedup of 10 over a
pure software implementation is achieved in most cases.

DFP verification

Several IBM teams collaborated on the verification of
the new DFP format in System z. The tools for test
generation included floating-point test generator (FPgen)
[9] for unit-level verification, architecture verification
generator (AVPgen) [10] for core-level (element sim)
verification, and systems assurance kernel (SAK) [11, 12]
for systems-level verification. Traditionally, each of these
verification teams developed and maintained its own
randomly generated test cases [13—19] and its result-
prediction codes. Because a completely new RefMod was
needed for the DFP, the effort was shared among all of
these tools.

The remainder of this section highlights the challenges
in writing the common RefMod. Detailed descriptions of
the various techniques and tools used to test the DFP
facility are provided.

Common DFP reference model

Because the DFP architecture was completely new, it
was expected to require substantial support from the
verification teams. The idea of sharing a RefMod among
the various tools came in response to the required effort.
The fact that significant commonality was expected
among various target platforms also justified the

A. Y. DUALE ET AL.

221

222

ozl eDFPcalc

line Cross-checker decNum

DFP RefMod

Application programming interface

‘ AVPgen‘ SAK ‘ FPgen

z/Architecture* primitives
DFP arithmetic and BCD primitives

DFP RefMod and the tools connected to it.

development of the RefMod. A new code development
methodology was employed, as depicted in Figure 1.

The goal was to reduce the System z development and
maintenance costs. Future platforms that exploit the DFP
architecture were taken into consideration and can easily
utilize the RefMod. The challenge was how to develop
code at several different sites in parallel while sharing the
source code. Decisions were made that the RefMod code
should be the following:

¢ Written in a platform suitable for all of the test tools.

* Modular, easy to maintain, and allowing several
parties in different geographical locations to
participate in its writing.

e Written in generic code to allow for ongoing updates
to specification and possible future development.

The code consists of an internal DFP calculator that
performs the actual arithmetic computations for any
given decimal format and an interface layer that handles
design peculiarities. There were many challenges in
developing a common RefMod that could meet the
requirements of various platforms and toolsets within a
System z platform. Each test tool had a different software
library, language (C, C™", PL/X), delivery platform, and
operating system (AIX*, Linux**, VM, SAK, and others).
Creating a common-source open library was paramount
in enabling debug and making quick fixes possible. The
methodology was to create a library of embedded source
code that utilizes a common language. SAK and ViCom,
for example, had to adopt and use C language within
their PL/X environments.

This single distributed development team approach
creates a potential risk by reducing the independent
validations of the architecture to a single point. To
mitigate this risk, the work was partitioned into

A. Y. DUALE ET AL.

independent subsets with peer reviews, and a unique
validation driver was developed to independently cross-
check the common verification code. The validation
driver (eDFPcalc) uses the decNumber package [20] as
an independent means of calculating DFP operations.
Additional architectural information was coded on top of
this base to provide a cross-checking RefMod (CCheck).
The decTest [20] language for describing test cases was
extended to handle the architectural components.

The CCheck is capable of generating test cases that can
be used as input to the decNumber [20], the RefMod, or
both concurrently. By using CCheck, we identified many
bugs in the RefMod before the machine was ready to be
tested, and thus our confidence in the correctness of the
RefMod was increased.

In summary, eDFPcalc provides the following:

* A standalone tool that can perform all DFP
instructions. It supports various input data types,
such as hex, real, engineering notation, special
numbers, and signed or unsigned BCD.

¢ Control over the rounding mode and the FPCR.

¢ The capability of running RefMod, decNum, or both.

* Additional command-line options for reporting such
entities as errors, error limits, progress, and trace
options.

¢ Display of arithmetic results and architected entities,
such as the FPCR.

* Pseudorandom generation of test cases comprising
random initial floating-point rounding modes, flags,
status, instructions, and input data.

¢ Result comparison of any combination of the
following sources:
¢ Results from the decNum package [20] extended

with architectural components.
* Results from the common RefMod.
¢ Handwritten expected results.

In addition to directed testing and random testing
of the RefMod, regression test suites (consisting of
thousands of tests per instruction) were generated to
check the proper operation of the RefMod. Each test case
in the regression suite is directed to cover some detail of
the specification of the instruction or a corner case of
the instruction behavior. These cases were defined as
constraints on the instruction operands or result, and
were run through FPgen (see the FPgen section below) to
generate pseudorandom test cases covering these cases.
The successful coverage of all cases was measured in
terms of coverage metrics (i.e., a fine-granularity
partitioning of the test space).

Figure 1 indicates the overall structure of the DFP
testing. The RefMod accepts inputs from different

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

test tools and applications, performs the required DFP
operations, and returns the results through the
application programming interface (API). The CCheck
generates DFP test cases and sends them to the RefMod,
decNumber, or both for simulation.

Systems assurance kernel

The systems assurance kernel (SAK), which consists of
an OS and a number of system-level test exercisers, has
been used to effectively test the architecture compliance
of System z machines for more than two decades.
Instruction streams consisting of hundreds of machine
instructions are created in a pseudorandom manner

[11, 12]. Such instruction streams are applied to both the
machine under test and SAK result-prediction units.

At each interrupt point, the accumulated results of the
current test case are compared. An error is reported if any
mismatch is detected in the architected resources (e.g.,
registers, storage, program status word) [11, 12]. SAK is
capable of running at the full speed of the machine under
test and supports hundreds of copies of different test
exercisers running concurrently. As a result, millions of
test cases can be generated and verified within a short
period of time.

SAK OS and test programs are written in PL/X. To
take advantage of the RefMod (which is written in C),
SAK was modified so that the SAK PL/X code can
interact with the RefMod code. The C executable
code contains its own program linkage and stack
manipulation. A call stack, which is separate from the
original PL/X call stack, was created for C programs.
PL/X-to-C call macros and C-to-PL/X call functions
provide the linkage between programs that are compiled
in two different languages.

The efficiency of pseudorandom test cases depends
mainly upon the test-case generation overhead. In DFP
testing, selecting meaningful operands may significantly
contribute to such overhead. Since the FPRs contain only
encoded data [20], substantial time may be spent on
generating these operands and encoding them. A means
of reducing such overhead is needed to speed up the test
process. Enhancing operand interdependency improves
the test quality because operand interdependency plays an
important role in overall test effectiveness. As mentioned
earlier, realizing DFP operand interdependency is
complicated because the operands are encoded so that
the same operand can be represented in a number of
different ways.

SAK employs a method designed to minimize efforts
spent on generating meaningful DFP data while
enhancing correlations among operands. During the test-
case build, the operands can be generated in three ways:
randomly, by targeting one of the DFP data classes (with

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

some bias toward the extremes), or from the previously
generated operands, as described below.

Once a DFP operand is generated, it is decided at
random whether or not to keep it for future use. A new
operand, A4, can be generated from a previously generated
one, B, by modifying a number of bits of B with a simple
logical (such as AND or OR) or shift operation.

The benefit of this is twofold: Because operand A4 is
derived from previously generated operands, operand
interdependency, and hence test-case quality, is enhanced.
For example, one can easily generate two numbers with
the same magnitude but different signs for the same
instruction. Second, the effort spent on generating new
operands is much less than the effort needed in generating
a new operand while enhancing the correlations among
the DFP operands. In this case, no decoding or encoding
is needed.

When a new operand is generated without going
through operand reuse, it is randomly decided whether
one of the entries of the lists of previously generated
operands can be replaced with this newly generated
operand. The fact that the lists are randomly updated
enables the method to maintain the dynamic nature of
the test-case generation.

Another method used for generating operand data is to
form operands from combinations of predefined DPD
sets. This step is useful especially when operands of the
same instruction are desired to have values that are the
same, but they are encoded differently, e.g., in different
forms of the redundant DPD.

For experimental purposes, the DFP ADTR (i.e., ADD) [6]
instruction has been run with different operand reuse
percentages. For simplicity, when an operand is to be
reused, only a single bit of the operand is inverted. Ten
copies of a SAK test exerciser were started on logical
partition of a z9 machine with five CPUs. Each copy was
aimed to run 100 million of the ADTR instruction and two
load instructions needed for each ADTR to load the input
operands. Therefore, each copy should run 300 million
instructions. The number of times that each of the
following cases occurred was monitored:

Case 1: |Opl| = |Op2| and Opl = Op2.

Case 2: Opl- and Op2-biased exponents are less than
max exponent, and the resultant exponent is greater
than max exponent.

The two extremes of the operand reuse show significant
improvements in terms of the number of instructions built
and executed per minute and the number of times that the
rare Case 1 is hit. When 90% of operand reuse is allowed,
the test exerciser was generating, executing, and
predicting as well as comparing results at a speed of
1,071,428 instructions per minute. On the other hand,

A. Y. DUALE ET AL.

223

224

Table 6 Case 1 and Case 2 occurrences and test time (100
million ADTR).

Operand Case 1 Case 2 Duration
reuse (%) (minutes)
0 78 13,680 285.3

10 239 14,368 284.77
20 222 14,860 284.74
30 284 15,421 284.68
40 343 15,372 284.62
50 301 15,394 284.53
60 344 16,050 284.45
70 444 16,789 284.30
80 458 16,954 283.21
90 592 18,140 280.10

the speed was 1,054,370 and 1,051,525 instructions per
minute when operand reuse was allowed to be 50% and
0%, respectively. (Even when operand reuse is not
permitted, Case 1 can happen, especially when the two
operands are +0 and —0.) Table 6 shows the number

of times each Case 1 and Case 2 occurred in different
operand reuse percentages. The table also indicates how
long it took for each of the test exerciser copies to
generate and execute, and predict and compare the results
of 300 million instructions (100 million ADTR instructions
and their 200 million related load instructions). The
slower copies should have taken a little bit longer if the
approach of running these copies was slightly modified.
Once a copy finishes its runs, the other copies experience
fewer CPU contentions and therefore run faster.

AVPgen

AVPgen is a generalized pseudorandom instruction
generator used to verify System z architecture [10] on a
machine design prior to fabrication [8, 21]. For DFP,
AVPgen was used to test the specific milli-ops assists and
the machine design in element sim. AVPgen supports an
input language for describing the instruction stream and
allows various constraints. This language can be generic
or specific in detailing instructions, operands, and data
values.

AVPgen supports hex and binary floating-point in
addition to other System z instructions. The floating-
point support includes various heuristics, algorithms, and
biasing schemes to generate interesting data values.
AVPgen was extended to support DFP and extrapolated
Schryer’s types [22], Hensel lifting, and Schmookler and
Parks algorithms [23] for handling decimal floating-point.
Additional extensions for AVPgen for DFP include

A. Y. DUALE ET AL.

randomization of possible multiple encodings and
preferred encoding (including NaNs) and various cohorts
(e.g., forms of zero or numbers with leading or trailing
zeros, and infinities). A subset of the biasing scheme used
by AVPgen is summarized in Table 7.

FPgen

FPgen, a random test generator for floating-point data
[24], was initially written for binary floating-point and
was extended to support DFP. FPgen supports a
powerful input language that allows defining a variety of
constraints on the input operands, on the final result, and
on the intermediate results. It is possible to define certain
relations between input operands and between input and
output operands. The input language used by FPgen
allows the definition of floating-point scenarios. On the
basis of these scenarios, FPgen generates the desired
pseudorandom test cases.

A floating-point verification plan is an important
complement to the FPgen capabilities as a constraint
solver. A generic test plan (GTP) was constructed for
floating-point to help engineers with FPU verification.
This GTP is based upon experience accumulated during
the verification of several processors in IBM along with a
deep knowledge and understanding of algorithms and
design of the floating-point unit (FPU). The GTP
contains many interesting cases to be checked in
simulation. It is coverage-oriented, comprising several
coverage models, each targeting a specific part of the
FPU or a particular feature of floating-point. These
models are implemented as input files for FPgen, so that
by running FPgen, the user receives pseudorandom test
cases that cover the tasks defined in the models.

The input definition language of FPgen allows
definition of constraints on DFP numbers as well as
on the DPD representation. It is possible to define
constraints on the DFP input operand in two ways:
on the sign, exponent and coefficient separately, or
on the number as a whole.

When constraining each of the fields separately, the
sign can be constrained to be plus or minus (or random).
The exponent can be constrained to be any single number
or any subrange within the legal range. The coefficient
can be constrained to be a given mask, in which each
digit is constrained to be some subset of the values in
{0, 1, ---, 9}. For example, it can be x, indicating that
any value is possible; it can be [0-4], meaning the values
{1, 2, 3, 4}; or it can be {1, 3, 5, 7, 9}, meaning any
odd digit.

Constraints on the number as a whole include three
possible types: The number can be constrained to have a
single value for each of the sign, exponent, and coefficient;
it can be constrained to include all numerically equivalent
representations of a single decimal value; or it can be a

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

range between two given values (including all of their
equivalent representations). The definition of the
constraints applies to the special values infinity and
NaN as well, though in a more limited fashion.

The constraint language for the intermediate result
contains everything that was specified for the input
operands. In addition, the intermediate result has a guard
digit and a sticky bit. Constraining the intermediate result
enables the definition of many interesting tasks for
verification, beyond those defined only through the
inputs. For example, it is possible to target specific
rounding cases, or many trailing or leading zeros in
the output, or cases of overflow.

Special focus was placed on verifying the peculiar
attributes of the DFP format compared with the
BFP format. For example, to verify the correct
implementation of the preferred exponent, we defined
a relation constraint between the exponent of the
intermediate result and the preferred exponent. With this
relation, the user can define constraints such as “The
preferred exponent of a divide double precision operation
is greater than the exponent of the intermediate result by
30.” Only a very rare combination of the inputs will give
such a test case.

In addition to defining constraints on the DFP number,
constraints on the DPD of the DFP numbers are defined.
Since this representation is not very meaningful
numerically, we limited our constraints here to include
only bit patterns.

The input data generated by DFP constraints is
translated to the DPD format for simulation. Because
there are several redundant representations in the DPD
format, one of the representations is selected at random
to provide testing coverage for all representations.

The FPgen GTP was expanded to include a test plan
for DFP. We describe a few examples of the various types
of models. The main distinction is made between models
that are suitable for all instructions and models that are
tailored for specific instructions. We give two examples
of the former and one example of the latter.

Some of the models aim to cover the entire DFP space.
For example, the basic types model for inputs contains a
list of number types, such as normal number, subnormal
number, zero, infinity, and NaN. The model consists of
one task for every combination of one input type with
another input type.

Other models are directed toward special features of
the design. One example is a model whose tasks are all
intermediate results in the overflow area. The tasks are
denser in the area of overflow that is near the maximal
normal value and become sparser as the numbers become
larger.

An example of a special model for divide is the model
in which the intermediate result is exact and, in addition,

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Table 7 AVPgen biasing scheme.

Full range of exponents biased toward endpoints,
numbers biased toward endpoints
¢ Selected from minimum exponent to maximum
exponent with higher probability of selecting
exponents at either end
* Random selection of fraction digits but biased to
endpoints

Small normalized numbers

Random leading zeros/max digits, followed by random
digit(s) or all zeros/max digit

Zeros (true, negative, various exponents)
Small exponent, leading zeros

One nonzero digit in denorm/subnormal
* One digit in fraction set to nonzero (1..9)

Denorm/subnormal
* Random digits biased toward endpoints
* Nearby min/max value

All fraction/coefficient digits either max or nonzero

Nmim Nmaxs Dmina Dmax
* Exact, random digit changed, nearby
¢ Smaller format representation and nearby

NaNs (random fractions, biased exponent continuation)
Infinity (random fractions, biased exponent continuation)
Random normalized

Schryer types and variants
* Various coefficient patterns

DFP specific
* Random clustering of values that can get
nonpreferred encodings
* Bias toward redundant code points (888 ... 999
tuples)
* Random forms of infinity/NaNs
* One digit, max, min, almost max/min
¢ Alternate cohort selection
* Preferred/nonpreferred encoding selection

Example of specialized biasing per instruction

Add/sub/compare
¢ Exponents in same proximity
* Equal exponents
* Equal values
¢ Biased random operands (see prior list)
* One operand zero
* One digit different
* Random fraction digit changed, same exponent
* Result with guard, sticky, and round bits are not zero
* Toward underflow
* Toward overflow
¢ Leading/trailing/interior zero result
* Ripple carry/borrow
® Result CCO/CC1/CC2/CC3 (where CC = condition
code)
* Exact zero difference
* Varied cohorts
¢ Preferred/nonpreferred encodings

A. Y. DUALE ET AL.

225

226

we enumerate all possible combinations of leading and
trailing zeros in the coefficient of the intermediate result
along with all relations between the exponent of the
intermediate result and the preferred exponent.

Conclusion

System z9 was the first machine to implement DFP. More
than 50 DFP instructions were implemented in millicode
with special milli-ops and hardware-assist facilities. Such
hardware-assist facilities enabled a speedup factor of 10
over the pure software implementation.

Different verification teams—including SAK, AVPgen,
FPgen, and ViCom—collaborated to test the DFP. Each
of these teams had to adjust its test strategies to reflect the
unique characteristics of the DFP operands. While
keeping the verification strategies independent, a
common reference model was developed to predict
the result of DFP instructions. The use of a common
reference brought substantial savings in development and
maintenance time. To minimize the risk of using a single
reference model, a cross-checker was used for validation.
The cross-checker predicts DFP calculations
independently on the basis of an external calculator.

Acknowledgments

We thank David Goodman and Ron Mahalik for their
contributions to the common reference model. Special
thanks go to Mike Cowlishaw for allowing us to reuse the
decNumber code, and to Eric M. Schwarz for his support
during this project.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds in the United States, other countries, or both.

References

1. G. Gerwig, H. Wetter, E. M. Schwarz, J. Haess, C. A.
Krygowski, B. M. Fleischer, and M. Kroener, “The IBM
eServer® z990 Floating-Point Unit,” IBM J. Res. & Dev. 48,
No. 3/4, 311-322 (2004).

2. M. F. Cowlishaw, “Decimal Floating-Point: Algorism for
Computers,” Proceedings of the 16th IEEE Symposium on
Computer Arithmetic, Santiago de Compostela, Spain, June
2003, pp. 104-111; see http://www2.hursley.ibm.com|decimal/
IEEE-cowlishaw-arithl16.pdf.

3. “Draft Standard for Floating-Point Arithmetic,” IEEE, Draft
1.2.5, October 4, 20006; see http://754r.ucbtest.org/drafts/
754r.html.

4. L. C. Heller and M. S. Farrell, “Millicode in an IBM zSeries™
Processor,” IBM J. Res. & Dev. 48, No. 3/4, 425-434 (2004).

5. M. Cowlishaw, “Densely Packed Decimal Encoding,” IEEE
Proc. Computers & Digital Tech. 149, No. 3, 102-104 (2002).

6. IBM Corporation, z/Architecture Principles of Operation
(SA22-7832); see http://publibz.boulder.ibm.com/epubs/pdf]
a2278324.pdf.

7. M. A. Erle, M. J. Schulte, and J. G. Linebarger, “Potential
Speedup with Decimal Floating-Point Hardware,”

A. Y. DUALE ET AL.

Proceedings of the 36th Asilomar Conference on Signals,
Systems, and Computers, Pacific Grove, CA, November 2002,
pp. 1073-1077.

8. B. Wile, M. P. Mullen, C. Hanson, D. G. Bair, K. M. Lasko,
P. J. Duffy, E. J. Kaminski, Jr., et al.,“Functional Verification
of the CMOS S/390 Parallel Enterprise Server® G4 System,”
IBM J. Res. & Dev. 41, No. 4/5, 549-566 (1997).

9. Floating-Point Test Generator—FPgen, IBM Corporation;
see http://www.haifa.ibm.com/projects/verification|fpgen.

10. A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair, B.
Rosen, M. Mullen, et al.,“AVPGEN—A Test Generator for
Architecture Verification Source,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 3, No. 2, 188-200 (1995).

11. A. Duale, T. Bohizic, M. Decker, D. Wittig, and G. Darling,
“Generation of Pseudo-Random Test Cases,” Proceedings of
the 6th World Multiconference on Systemics, Cybernetics and
Informatics (SCI), Orlando, FL, 2002, pp. 338-341.

12. A. Y. Duale, T. J. Bohizic, and D. W. Wittig, “Pseudo-
Random System Testing: Coverage Estimation and
Enhancement,” Proceedings of the International Conference on
Software Engineering Research and Practice, Las Vegas, NV,
June 2005, pp. 283-289.

13. M. Bailey, T. E. Moyers, and S. Ntafos, “An Application
of Random Testing,” Proceedings of the IEEE Military
Communications Conference, November 1995, pp. 1098-1102.

14. B. Beizer, Software Testing Techniques, Van Nostrand
Reinhold, New York, 1990.

15. T. Y. Chen and Y. T. Yu, “On the Relationship Between
Partition Testing and Random Testing,” IEEE Trans.
Software Eng. 20, No. 12, 977-980 (1994).

16. W. H. Debany, C. R. P. Hatmann, K. G. Mehrotra, and P. K.
Varshaney, “Comparison of Random Test Vector Generation
Strategies,” Proceedings of the IEEE International Conference
on Computer-Aided Design, Santa Clara, CA, November 1991,
pp. 244-247.

17. L. Fournier, Y. Arbetman, and M. Levinger, “Functional
Verification Methodology for Microprocessors Using the
Genesys Test-Program Generator,” Proceedings of the
Conference on Design Automation and Test, Munich,
Germany, 1999, pp. 434-441.

18. M. Karam and G. Saucier, “Functional Versus Random Test
Generation for Controllers and Finite State Machines,”
Proceedings of Euro ASIC, Paris, France, 1992, pp. 207-212.

19. S. C. Ntafos, “On Comparisons of Random, Partition, and
Proportional Partition Testing,” IEEE Trans. Software Eng.
27, No. 10, 949-960 (2001).

20. M. Cowlishaw, “The decNumber C Library,” Version 3.37,
IBM UK Laboratories, November 22, 2006; see http.//www2.
hursley.ibm.com/decimal|decnumber.pdf.

21. D. F. Ackerman, M. H. Decker, J. J. Gosselin, K. M. Lasko,
M. P. Mullen, R. E. Rosa, E. V. Valera, and B. Wile,
“Simulation of IBM Enterprise System/9000* Models 820 and
900,” IBM J. Res. & Dev. 36, No. 4, 751-764 (1992).

22. N. L. Schryer, “A Test of a Computer’s Floating-Point
Arithmetic Unit,” Computer Science Technical Report 89,
AT&T Bell Laboratories, 1981.

23. M. Parks, “Number-Theoretic Test Generation for Directed
Rounding,” IEEE Trans. Computers 49, No. 7, 651-658
(2000).

24. M. Aharoni, S. Asaf, L. Fournier, A. Koifman, and R. Nagel,
“FPgen—A Test Generation Framework for Datapath
Floating-Point Verification,” Proceedings of the Eighth IEEE
International High-Level Design Validation and Test Workshop
2003 (HLDVT03), November 2003, pp. 17-22.

Received March 10, 2006, accepted for publication
June 28, 2006, Internet publication January 16, 2007

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

Ali Y. Duale IBM Systems and Technology Group, 2455

South Road, Poughkeepsie, New York 12601 (duale@ibm.com).
Dr. Duale received B.E., M.E., and Ph.D. degrees, all in electrical
engineering, from the City University of New York. He is currently
a Senior Engineer and leads SAK CPU verification. He co-chaired
the 18th International Conference on Testing Communicating
Systems. He was recognized as a Modern Day Technology Leader
at the 2006 Black Engineer Award Conference. Dr. Duale holds a
U.S. patent and has published numerous technical papers in the
area of testing.

Mark H. Decker IBM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(mdecker@us.ibm.com). Mr. Decker received a B.S. degree in
electrical engineering from Carnegie Mellon University and an
M.S. degree in computer engineering from Syracuse University.
He is a Senior Technical Staff Member working in System z
architecture verification. He led and contributed to the common
DFP reference model development and created the DFP validation
driver. Mr. Decker holds several patents and received an IBM
Corporate Award for System z architecture verification.

Hans-Georg Zipperer [BM Systems and Technology Group,
IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse 220,
71032 Boeblingen, Germany (zipperer@de.ibm.com). Mr. Zipperer
received a Dipl.-Inform. degree in computer science from the
University of Stuttgart, Germany. He initially worked on the
System z G3 and G4 CMOS microprocessors, and later worked in
processor firmware development for System z, where he was a
member of the global millicode team. Mr. Zipperer is currently
working on the firmware for the next IBM System z and System p*
processors.

Merav Aharoni IBM Huaifa Research Laboratory,

Haifa University, Mount Carmel, Haifa 31905, Israel
(merav@il.ibm.com). Ms. Aharoni received her B.A. and M.A.
degrees in computer science from the Israel Institute of Technology
(Technion). She has been a Research Staff Member at the IBM
Haifa Research Laboratory since 2000. Ms. Aharoni is project
leader of FPgen, a deep-knowledge dedicated test generator for
floating-point.

Theodore J. Bohizic 1BM Systems and Technology

Group, 2455 South Road, Poughkeepsie, New York 12601
(bohizic@us.ibm.com). Mr. Bohizic is a Senior Technical Staff
Member. He spent more than 25 years developing verification tools
for multiple architecture and hardware platforms, concentrating on
automatic pseudorandom test generation. He led the IBM SAK
effort for many years. Mr. Bohizic’s current responsibility includes
a technical leadership in the System z emulation project.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

A. Y. DUALE ET AL.

227

