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Although decimal arithmetic is widely used in commercial and
financial applications, the related computations are handled in
software. As a result, applications that use decimal data may
experience performance degradations. Use of the newly defined
decimal floating-point (DFP) format instead of binary floating-
point is expected to significantly improve the performance of such
applications. System z9e is the first IBM machine to support the
DFP instructions. We present an overview of this implementation
and provide some measurement of the performance gained using
hardware assists. Various tools and techniques employed for the
DFP verification on unit, element, and system levels are presented
in detail. Several groups within IBM collaborated on the
verification of the new DFP facility, using a common reference
model to predict DFP results.

Introduction
Even though more than half of all commercial data

is represented in decimal format, the widely used and

hardware-implemented binary floating-point (BFP) unit

[1] does not perform decimal calculations with sufficient

precision. Applications compensate for this by using

software to perform decimal arithmetic, resulting in a

heavy performance penalty. The introduction of the

decimal floating-point (DFP) [2] facility in hardware is

expected to dramatically reduce the runtime of such

applications.

The DFP architecture was the first System z* project

designed for multiple platforms. More than 50 DFP

instructions were added to System z9* while the IEEE

Standard P754 [3] was still in the discussion phase. For

a timely response, it was decided to implement these

instructions mainly in millicode [4] while performing only

the most basic tasks in hardware. (Millicode is the vertical

microcode that executes on the processor.)

This paper provides an overview of the DFP

implementation and verification process. We describe the

use of System z hardware assists and the millicode

implementation of the DFP instruction set. The

introduction of the DFP format and instructions required

the development of new techniques and tools for all levels

of functional verification, from the unit through system

level. A major component used by all of these tools is the

reference model (RefMod). Various verification teams

collaborated on writing the RefMod. This paper

discusses the details of new techniques employed by

different IBM test-generation tools and describes the

successful collaboration among verification and test

teams. Experimental results on performance and

test coverage of the DFP instructions are given.

The remainder of the paper provides background

information on the DFP format, a discussion of its

implementation in System z9, and a description of the

verification tools employed to verify the correctness of

the implementation.

Background
A DFP operand consists of a sign bit, an exponent, and

a coefficient. The numerical value of the operand is

defined as

ð�1Þsign 3 coefficient3 10
exponent

:

DFP numbers are not normalized. Therefore, multiple

representations are possible for a single numerical value.

For example, 5 3 102 and 500 3 100 represent the same

numerical value. A set of representations of a single

numerical value is called a cohort. To enhance the

portability of DFP applications, IEEE Standard P754 [3]

defines a preferred exponent that is a function of the input

exponents for every arithmetic operation. This exponent

uniquely determines the representation selected for the
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final result. DFP operands are available in three formats:

short, long, and extended. The parameters of these

formats are summarized in Table 1.

The DFP facility shares the floating-point registers

(FPRs) with the binary and hexadecimal floating-point

facilities. Unlike the binary and hexadecimal floating-

point operands [1], the DFP operands are stored in a

specially encoded format called Densely Packed Decimal

(DPD). This format is specified by the IEEE Standard

P754 [3] and was originally proposed in [5]. The format

condenses the coefficient as compared with the Binary

Coded Decimal (BCD) encoding.

The DPD format comprises four fields [6]:

� S ¼ sign (1 bit): 0 for positive and 1 for negative.
� CF¼ combination field, which consists of five bits in

all formats. For finite numbers, the CF field contains

the encoding of the leftmost digit together with the

leftmost two bits of the exponent. Special bit patterns

of this field, 11110b and 11111b, respectively define

infinity and NaN (not a number).
� BXCF ¼ biased exponent continuation field, which

consists respectively of six, eight, and 12 bits for

short, long, and extended. This field represents the

remaining bits of the biased exponent. In the case of a

NaN, the leftmost bit is set to 1 for a signaling NaN

and to 0 for a quiet NaN.
� CCF ¼ coefficient continuation field, which consists

respectively of 20, 50, and 110 bits for short, long, and

extended. This field represents the remaining digits of

the coefficient, encoded in DPD blocks. Each DPD

block, called a declet, consists of ten bits representing

three decimal digits. Note that a BCD representation

of three decimal digits requires 12 bits. Since ten bits

encode 1,024 different strings, there are 24 redundant

strings. Therefore, a few of these three-digit blocks

have redundant encoding.

The DFP operands must be decoded before they are

used for execution and encoded before they are delivered

as results. More details on the encoding and decoding,

and on the encoded representation, can be found in the

following subsection.

DFP arithmetic operations are carried out as if they

first produced an intermediate result correct to infinite

precision and unbounded range. The intermediate result

is then rounded according to one of the DFP rounding

modes defined by the Floating-Point Control Register

(FPCR) to produce a final result in the format of the

destination operand. If the final result is exact and

has more than one possible representation, the

representation with the exponent closest to the preferred

exponent is selected. If the final result is inexact, the

representation with the smallest exponent is selected

to allow for minimum loss of precision bits in the

coefficient.

Decoding DFP numbers

The CF field can have two special values: NaN is

represented as 11111b, and infinity is represented as

11110b. All remaining values represent the leftmost

digit of the coefficient and the two leftmost bits of

the exponent, as indicated in Table 2.

The CCF is divided into declets (i.e., ten-bit groups).

Each declet (pqr stu v wxy) is decoded to create three

BCD digits (abcd efgh ijkm). The translation from three

four-bit BCD digits to a DPD declet is described in

Table 3. The reverse translation, from a DPD declet

to three four-bit BCD digits, is depicted in Table 4.

As an example, let us decode the DFP long number

0xABCDEF0123456789.

� The bit representation of the number is

1 01010 11110011 0111101111 0000000100

1000110100 0101011001 1110001001.
� The sign is 1b and therefore the number is negative.

Table 1 DFP operand descriptions.

Parameter Short Long Extended

Operand length (bits) 32 64 128

Precision (digits) 7 16 34

Minimum unbiased exponent �101 �398 �6,176

Exponent bias 101 398 6,176

Maximum unbiased exponent 90 369 6,111

Table 2 Encoding and decoding the DFP CF.

Leftmost

digit

Leftmost two bits of biased exponent

0 1 2

0 00000 01000 10000

1 00001 01001 10001

2 00010 01010 10010

3 00011 01011 10011

4 00100 01100 10100

5 00101 01111 10101

6 00110 01111 10110

7 00111 01111 10111

8 11000 11010 11100

9 11001 11011 11101
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� The CF is 01010b and, according to Table 2, the

leftmost digit is 2 and the leftmost two bits of the

exponent are 01b.
� The BXCF is 11110011b (eight bits for the long

format). Combining the BXCF and the two leftmost

bits of the exponent gives a biased exponent of

0111110011b (i.e., 499). The unbiased exponent

becomes 101.
� The first declet (pqr stu v wxy) is 0111101111b. From

this, vxwst is 111111b. Therefore, according to

Table 4, the three BCD digits are 989.
� The second declet (pqr stu v wxy) is 0000000100b. The

value of vxwst is 00100b, and the three BCD numbers

are defined as 0pqr, 0stu, and 0wxy, which translate

to the three digits of 004.
� The rest of the declets produce 434, 259, and 709.

Therefore, the DFP number with biased exponent is

2,989,004,434,259,709 3 10499. Without the exponent

bias, the number is 2,989,004,434,259,709 3 10101, or

2.989004434259709 3 10116.

DFP implementation
The z9* is the first System z machine to support DFP.

Because the DFP standard [3] was not fully defined when

the z9 processor was developed, it was decided to add

only basic hardware support to the processor and to

implement the DFP instructions in millicode. Millicode

is the lowest layer of firmware in the System z and is

used, among other purposes, to implement complex

instructions where a hardware implementation is not

feasible, and to add functions to a product after the

hardware is finalized. It is a vertical microcode and is

written in a subset of the System z assembly language

together with millicode-only instructions known as milli-

ops. (For a detailed introduction to millicode, see [4].)

Although a millicode implementation does not deliver

the performance of a hardware implementation, it was

expected that the use of dedicated hardware support

would result in a speedup by a factor of 10 compared with

a pure software implementation. (A pure hardware

implementation should yield another performance

improvement of a factor of 10 or more [7].) The

millicode can access dedicated hardware through a

number of new milli-ops.

Hardware support

The millicode uses a private register set called Millicode

General-purpose Registers (MGRs). System z processors

have performed floating-point functions only by

hardware for a long time, and the millicode did not

even have easy access to the FPRs on prior processors.

To access the FPRs, two new milli-ops were added:

� Extract FPR indirect (EXFDI): Load an MGR from

an FPR.
� Set FPR indirect (SFDI): Load an FPR from an

MGR.

The FPR number is determined by one of the four

possible register indirect tags [4]. During themillicode entry

phase for a non-hardwired System z instruction, the register

numbers of the relevant GPRs or FPRs (based on the

instruction format) are placed in the register indirect tags.

Thus, the millicode can simply refer to the first, second, or

third register operand of a System z instruction; it is not

required to know the actual register numbers.

Typically, due to the encoding of the DFP numbers (as

described in the background section), it is not possible to

perform DFP operations without decoding the numbers.

It is necessary to extract the exponent and coefficient

prior to the operation and to encode the final coefficient

and exponent again to form the result. Because both

decoding and encoding of the DPD format are frequent

tasks, the following milli-ops were added:

� Extract exponent (EXPDR): Decode the CF and

BXCF fields from the source register and write

Table 4 DPD-to-BCD conversion.

vxwst abcd efgh ijkm

0 - - - - 0pqr 0stu 0wxy

100 - - 0pqr 0stu 100y

101 - - 0pqr 100u 0sty

110 - - 100r 0stu 0pqy

11100 100r 0pqu 100y

11110 0pqr 100u 100y

11111 100r 100u 100y

Table 3 BCD-to-DPD conversion.

aei pqr stu v wxy

000 bcd fgh 0 jkm

001 bcd fgh 1 00m

010 bcd jkh 1 01m

011 bcd 10h 1 11m

100 jkd fgh 1 10m

101 fgd 01h 1 11m

110 jkd 00h 1 11m

111 00d 11h 1 11m
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the exponent as a binary integer to the destination

register.
� Insert exponent (IXPDR): Update the CF and BXCF

fields of the destination register from an integer in the

source register.
� Extract coefficient (EBCDR): Decode the BXCF and

CCF fields from the source register and write the

coefficient as a BCD number to the destination

register.
� Compress coefficient (CBCDR): Write all fields of the

destination register using a BCD number in the source

register as a coefficient and assuming an exponent of 0

and a positive sign.

Those milli-ops operate on MGRs as source and

destination, and most execute in one cycle. They exist in

different forms that allow, together with some simple

shifting and bit-masking operations, encoding and

decoding of all three proposed DFP formats.

The System z processors have always supported

arithmetic on packed fixed-point decimal numbers [6].

However, these instructions operate on operands in

storage. To allow decimal calculations in millicode

without the need to access storage, four further milli-ops

were added that perform BCD arithmetic on the contents

of millicode work registers:

� Add decimal register (APRR).
� Subtract decimal register (SPRR).
� Multiply decimal register (MPRR).
� Divide decimal register (DPRR).

APRR and SPRR are single-cycle instructions, whereas

MPRR and DPRR require multiple cycles. The four

milli-ops use the hardware components designed for

the System z decimal instructions. Therefore, the DFP

instructions benefit indirectly from the speed provided

by the fixed-point decimal hardware.

DFP instruction execution

With the hardware support described in the previous

section, the execution of a typical DFP instruction

becomes straightforward. A DFP source operand is

transferred from an FPR into an MGR and is decoded

into exponent, coefficient, and sign. On the basis of these

fields, the operand is classified as a finite number, infinity,

or NaN. For a dyadic operation (i.e., an instruction with

two input operands), the second source operand is

decoded and classified in the same manner. A branch

table handles the possible combinations of source

operands.

If one of the source operands is a special value (infinity

or NaN), the result is defined by IEEE Standard P754.

Otherwise, the required calculation is performed on

exponents, coefficients, and signs. This yields an

intermediate result (still expressed as an exponent,

coefficient, and sign) with additional digits on the right

and a greater exponent range than that defined for the

DFP operand type. A sticky bit (i.e., the OR of all of

the remaining digits generated during the calculation

of the intermediate result) is kept for digits that have

been shifted out on the far right.

When the result has multiple representations, the

coefficient is shifted until the desired exponent is reached.

The intermediate result is then rounded according to the

DFP rounding mode. The additional digits and the sticky

bit are used to determine whether the result is exact,

has to be incremented in the least-significant digit, or

must be truncated.

This information is also kept in internal status bits.

If the exponent is outside the range for the result type

(underflow or overflow), one of the following, depending

on the DFP rounding mode and the setting of the IEEE

masks in the FPCR [6] results—a subnormal number,

zero, infinity, or a wrapped result. (The term IEEE mask

means mask bits as defined in IEEE P754, and similarly

for other IEEE terms.)

The rounded result, which now has the required

number of digits and the correct exponent range, is

encoded into DPD format and written into the

destination FPR. Finally, the status bits from the

rounding process are used to update the IEEE flags

in the FPCR and to raise an IEEE exception if

necessary.

Sample calculation

Let us assume that the DFP multiply long instruction

MDTR 4, 2, 6

is to be executed. This instruction operates on three

FPRs. The second and third operands (in FPRs 2 and 6)

designate the source. The product is to be placed in the

first operand (FPR 4).

Let us assume that FPR 2 contains

0x2DFCC1AEB53B3FBB and FPR 6 contains

0x223800000000000B. These DPD-encoded operands

represent the values þ3,141,592,653,589,793 3 10�15

(¼ 3.141592653589793) and þ81 3 1 (¼ 81), respectively.

The millicode first moves the second and third

operands from their FPRs into two MGRs using EXFDI

instructions. It extracts the exponents and coefficients

using appropriate forms of the EXPDR and EBCDR

instructions. (For simplicity, let us ignore the sign.) We

now have, in four separate MGRs, the following values:

For the second operand, an exponent of�15 and a

coefficient of 0x3141592653589793; for the third
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operand, an exponent of 0 and a coefficient of

0x0000000000000081.

The coefficients are represented as BCD numbers and

the exponents as binary integers. (For simplicity, let us

ignore the exponent bias.) Both operands are classified

as finite numbers.

The millicode now adds the exponents and multiplies

the coefficients to form the intermediate result. Addition

of the exponents is performed with standard System z

arithmetic instructions for binary integers. For the

coefficients, however, we use the MPRR and APRR

instructions.

The multiplication of two 16-digit coefficients results

in a 32-digit intermediate coefficient in an MGR

pair. The intermediate result has a coefficient of

0x00000000000000254469004940773233 and an exponent

of �15. The preferred exponent for multiplication is

defined as the sum of the exponents of the source

operands, so our intermediate result already has the

required exponent. However, it has 18 significant digits,

which is two more than can be accommodated by the long

DFP format (16 digits).

This intermediate result is therefore shifted right,

incrementing the exponent by one for every digit, until it

has no more than 16 significant digits. A guard digit (i.e.,

the next digit calculated in the intermediate result beyond

the precision of the input operand) and a sticky bit are

kept on the right for rounding. The coefficient of the

intermediate result is now 0x2544690049407732, the

exponent is�13, the guard digit is 3, and the sticky bit is

1 (indicating that nonzero bits were shifted out on the

right beyond the guard digit).

Further assuming that the DFP rounding mode is

‘‘round toward þ’’, the coefficient now has to be

incremented in the least-significant digit because

the guard digit and sticky bit are not both 0. The

final result (now including the sign again) is

þ2,544,690,049,407,733 3 10�13 (¼ 254.4690049407733),

and this is encoded as 0x2A06C4C684981FB3 using the

CBCDR and IXPDR instructions. This value is written

into the first operand location (i.e., FPR 4) by an SFDI

instruction.

Finally, the millicode handles the IEEE-inexact

condition arising from the fact that the delivered result

differs in value from the infinite-precision result. If the

IEEE-inexact mask in the FPCR is 0, millicode sets the

IEEE-inexact flag in the FPCR. On the other hand, if

the mask is 1, the millicode raises a data exception.

Performance

To maximize the performance of the DFP

implementation, various algorithms were chosen in

accordance with the expected patterns of use. For

example, DFP add and subtract instructions, whose

source operands have equal exponents, are implemented

on a fast path. With the un-normalized number format,

we expect this to be a much more frequent case than with

BFP numbers (e.g., all currency amounts will have two or

three decimal digits to the right of the radix point, and

therefore an exponent of �2 or �3). In addition, the

performance of the millicode was tuned with the aid of

a cycle simulator [8]. This allowed measurements to be

made and made it possible to change the code frequently

while the hardware was still under development. The

cycle simulator also assisted in finding hardware errors.

The execution time of the instructions is heavily

dependent on the data; therefore, only approximate

numbers can be given here. We compared the required

cycles for the long (16-digit) DFP calculations of

multiply, divide, add, and subtract with the cycles for

a similar implementation in pure software from [7].

As depicted in Table 5, the desired speedup of 10 over a

pure software implementation is achieved in most cases.

DFP verification
Several IBM teams collaborated on the verification of

the new DFP format in System z. The tools for test

generation included floating-point test generator (FPgen)

[9] for unit-level verification, architecture verification

generator (AVPgen) [10] for core-level (element sim)

verification, and systems assurance kernel (SAK) [11, 12]

for systems-level verification. Traditionally, each of these

verification teams developed and maintained its own

randomly generated test cases [13–19] and its result-

prediction codes. Because a completely new RefMod was

needed for the DFP, the effort was shared among all of

these tools.

The remainder of this section highlights the challenges

in writing the common RefMod. Detailed descriptions of

the various techniques and tools used to test the DFP

facility are provided.

Common DFP reference model

Because the DFP architecture was completely new, it

was expected to require substantial support from the

verification teams. The idea of sharing a RefMod among

the various tools came in response to the required effort.

The fact that significant commonality was expected

among various target platforms also justified the

Table 5 DFP executions in cycles.

Operation Software Millicode

Add/subtract 652 to 1,060 100 to 150

Multiply 4,285 150 to 200

Divide 3,617 350 to 400
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development of the RefMod. A new code development

methodology was employed, as depicted in Figure 1.

The goal was to reduce the System z development and

maintenance costs. Future platforms that exploit the DFP

architecture were taken into consideration and can easily

utilize the RefMod. The challenge was how to develop

code at several different sites in parallel while sharing the

source code. Decisions were made that the RefMod code

should be the following:

� Written in a platform suitable for all of the test tools.
� Modular, easy to maintain, and allowing several

parties in different geographical locations to

participate in its writing.
� Written in generic code to allow for ongoing updates

to specification and possible future development.

The code consists of an internal DFP calculator that

performs the actual arithmetic computations for any

given decimal format and an interface layer that handles

design peculiarities. There were many challenges in

developing a common RefMod that could meet the

requirements of various platforms and toolsets within a

System z platform. Each test tool had a different software

library, language (C, Cþþ, PL/X), delivery platform, and

operating system (AIX*, Linux**, VM, SAK, and others).

Creating a common-source open library was paramount

in enabling debug and making quick fixes possible. The

methodology was to create a library of embedded source

code that utilizes a common language. SAK and ViCom,

for example, had to adopt and use C language within

their PL/X environments.

This single distributed development team approach

creates a potential risk by reducing the independent

validations of the architecture to a single point. To

mitigate this risk, the work was partitioned into

independent subsets with peer reviews, and a unique

validation driver was developed to independently cross-

check the common verification code. The validation

driver (eDFPcalc) uses the decNumber package [20] as

an independent means of calculating DFP operations.

Additional architectural information was coded on top of

this base to provide a cross-checking RefMod (CCheck).

The decTest [20] language for describing test cases was

extended to handle the architectural components.

The CCheck is capable of generating test cases that can

be used as input to the decNumber [20], the RefMod, or

both concurrently. By using CCheck, we identified many

bugs in the RefMod before the machine was ready to be

tested, and thus our confidence in the correctness of the

RefMod was increased.

In summary, eDFPcalc provides the following:

� A standalone tool that can perform all DFP

instructions. It supports various input data types,

such as hex, real, engineering notation, special

numbers, and signed or unsigned BCD.
� Control over the rounding mode and the FPCR.
� The capability of running RefMod, decNum, or both.
� Additional command-line options for reporting such

entities as errors, error limits, progress, and trace

options.
� Display of arithmetic results and architected entities,

such as the FPCR.
� Pseudorandom generation of test cases comprising

random initial floating-point rounding modes, flags,

status, instructions, and input data.
� Result comparison of any combination of the

following sources:
� Results from the decNum package [20] extended

with architectural components.
� Results from the common RefMod.
� Handwritten expected results.

In addition to directed testing and random testing

of the RefMod, regression test suites (consisting of

thousands of tests per instruction) were generated to

check the proper operation of the RefMod. Each test case

in the regression suite is directed to cover some detail of

the specification of the instruction or a corner case of

the instruction behavior. These cases were defined as

constraints on the instruction operands or result, and

were run through FPgen (see the FPgen section below) to

generate pseudorandom test cases covering these cases.

The successful coverage of all cases was measured in

terms of coverage metrics (i.e., a fine-granularity

partitioning of the test space).

Figure 1 indicates the overall structure of the DFP

testing. The RefMod accepts inputs from different

Figure 1

DFP RefMod and the tools connected to it.

DFP RefMod

DFP arithmetic and BCD primitives

z/Architecture* primitives

Application programming interface

AVPgen SAK ViCom

eDFPcalc 

Cross-checker decNum
Command

line 

FPgen
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test tools and applications, performs the required DFP

operations, and returns the results through the

application programming interface (API). The CCheck

generates DFP test cases and sends them to the RefMod,

decNumber, or both for simulation.

Systems assurance kernel

The systems assurance kernel (SAK), which consists of

an OS and a number of system-level test exercisers, has

been used to effectively test the architecture compliance

of System z machines for more than two decades.

Instruction streams consisting of hundreds of machine

instructions are created in a pseudorandom manner

[11, 12]. Such instruction streams are applied to both the

machine under test and SAK result-prediction units.

At each interrupt point, the accumulated results of the

current test case are compared. An error is reported if any

mismatch is detected in the architected resources (e.g.,

registers, storage, program status word) [11, 12]. SAK is

capable of running at the full speed of the machine under

test and supports hundreds of copies of different test

exercisers running concurrently. As a result, millions of

test cases can be generated and verified within a short

period of time.

SAK OS and test programs are written in PL/X. To

take advantage of the RefMod (which is written in C),

SAK was modified so that the SAK PL/X code can

interact with the RefMod code. The C executable

code contains its own program linkage and stack

manipulation. A call stack, which is separate from the

original PL/X call stack, was created for C programs.

PL/X-to-C call macros and C-to-PL/X call functions

provide the linkage between programs that are compiled

in two different languages.

The efficiency of pseudorandom test cases depends

mainly upon the test-case generation overhead. In DFP

testing, selecting meaningful operands may significantly

contribute to such overhead. Since the FPRs contain only

encoded data [20], substantial time may be spent on

generating these operands and encoding them. A means

of reducing such overhead is needed to speed up the test

process. Enhancing operand interdependency improves

the test quality because operand interdependency plays an

important role in overall test effectiveness. As mentioned

earlier, realizing DFP operand interdependency is

complicated because the operands are encoded so that

the same operand can be represented in a number of

different ways.

SAK employs a method designed to minimize efforts

spent on generating meaningful DFP data while

enhancing correlations among operands. During the test-

case build, the operands can be generated in three ways:

randomly, by targeting one of the DFP data classes (with

some bias toward the extremes), or from the previously

generated operands, as described below.

Once a DFP operand is generated, it is decided at

random whether or not to keep it for future use. A new

operand, A, can be generated from a previously generated

one, B, by modifying a number of bits of B with a simple

logical (such as AND or OR) or shift operation.

The benefit of this is twofold: Because operand A is

derived from previously generated operands, operand

interdependency, and hence test-case quality, is enhanced.

For example, one can easily generate two numbers with

the same magnitude but different signs for the same

instruction. Second, the effort spent on generating new

operands is much less than the effort needed in generating

a new operand while enhancing the correlations among

the DFP operands. In this case, no decoding or encoding

is needed.

When a new operand is generated without going

through operand reuse, it is randomly decided whether

one of the entries of the lists of previously generated

operands can be replaced with this newly generated

operand. The fact that the lists are randomly updated

enables the method to maintain the dynamic nature of

the test-case generation.

Another method used for generating operand data is to

form operands from combinations of predefined DPD

sets. This step is useful especially when operands of the

same instruction are desired to have values that are the

same, but they are encoded differently, e.g., in different

forms of the redundant DPD.

For experimental purposes, the DFP ADTR (i.e., ADD) [6]

instruction has been run with different operand reuse

percentages. For simplicity, when an operand is to be

reused, only a single bit of the operand is inverted. Ten

copies of a SAK test exerciser were started on logical

partition of a z9 machine with five CPUs. Each copy was

aimed to run 100 million of the ADTR instruction and two

load instructions needed for each ADTR to load the input

operands. Therefore, each copy should run 300 million

instructions. The number of times that each of the

following cases occurred was monitored:

Case 1: jOp1j ¼ jOp2j and Op1 !¼ Op2.

Case 2: Op1- and Op2-biased exponents are less than

max exponent, and the resultant exponent is greater

than max exponent.

The two extremes of the operand reuse show significant

improvements in terms of the number of instructions built

and executed per minute and the number of times that the

rare Case 1 is hit. When 90% of operand reuse is allowed,

the test exerciser was generating, executing, and

predicting as well as comparing results at a speed of

1,071,428 instructions per minute. On the other hand,
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the speed was 1,054,370 and 1,051,525 instructions per

minute when operand reuse was allowed to be 50% and

0%, respectively. (Even when operand reuse is not

permitted, Case 1 can happen, especially when the two

operands are þ0 and �0.) Table 6 shows the number

of times each Case 1 and Case 2 occurred in different

operand reuse percentages. The table also indicates how

long it took for each of the test exerciser copies to

generate and execute, and predict and compare the results

of 300 million instructions (100 million ADTR instructions

and their 200 million related load instructions). The

slower copies should have taken a little bit longer if the

approach of running these copies was slightly modified.

Once a copy finishes its runs, the other copies experience

fewer CPU contentions and therefore run faster.

AVPgen

AVPgen is a generalized pseudorandom instruction

generator used to verify System z architecture [10] on a

machine design prior to fabrication [8, 21]. For DFP,

AVPgen was used to test the specific milli-ops assists and

the machine design in element sim. AVPgen supports an

input language for describing the instruction stream and

allows various constraints. This language can be generic

or specific in detailing instructions, operands, and data

values.

AVPgen supports hex and binary floating-point in

addition to other System z instructions. The floating-

point support includes various heuristics, algorithms, and

biasing schemes to generate interesting data values.

AVPgen was extended to support DFP and extrapolated

Schryer’s types [22], Hensel lifting, and Schmookler and

Parks algorithms [23] for handling decimal floating-point.

Additional extensions for AVPgen for DFP include

randomization of possible multiple encodings and

preferred encoding (including NaNs) and various cohorts

(e.g., forms of zero or numbers with leading or trailing

zeros, and infinities). A subset of the biasing scheme used

by AVPgen is summarized in Table 7.

FPgen

FPgen, a random test generator for floating-point data

[24], was initially written for binary floating-point and

was extended to support DFP. FPgen supports a

powerful input language that allows defining a variety of

constraints on the input operands, on the final result, and

on the intermediate results. It is possible to define certain

relations between input operands and between input and

output operands. The input language used by FPgen

allows the definition of floating-point scenarios. On the

basis of these scenarios, FPgen generates the desired

pseudorandom test cases.

A floating-point verification plan is an important

complement to the FPgen capabilities as a constraint

solver. A generic test plan (GTP) was constructed for

floating-point to help engineers with FPU verification.

This GTP is based upon experience accumulated during

the verification of several processors in IBM along with a

deep knowledge and understanding of algorithms and

design of the floating-point unit (FPU). The GTP

contains many interesting cases to be checked in

simulation. It is coverage-oriented, comprising several

coverage models, each targeting a specific part of the

FPU or a particular feature of floating-point. These

models are implemented as input files for FPgen, so that

by running FPgen, the user receives pseudorandom test

cases that cover the tasks defined in the models.

The input definition language of FPgen allows

definition of constraints on DFP numbers as well as

on the DPD representation. It is possible to define

constraints on the DFP input operand in two ways:

on the sign, exponent and coefficient separately, or

on the number as a whole.

When constraining each of the fields separately, the

sign can be constrained to be plus or minus (or random).

The exponent can be constrained to be any single number

or any subrange within the legal range. The coefficient

can be constrained to be a given mask, in which each

digit is constrained to be some subset of the values in

f0, 1, � � � , 9g. For example, it can be x, indicating that

any value is possible; it can be [0–4], meaning the values

f1, 2, 3, 4g; or it can be f1, 3, 5, 7, 9g, meaning any

odd digit.

Constraints on the number as a whole include three

possible types: The number can be constrained to have a

single value for each of the sign, exponent, and coefficient;

it can be constrained to include all numerically equivalent

representations of a single decimal value; or it can be a

Table 6 Case 1 and Case 2 occurrences and test time (100

million ADTR).

Operand

reuse (%)

Case 1 Case 2 Duration

(minutes)

0 78 13,680 285.3

10 239 14,368 284.77

20 222 14,860 284.74

30 284 15,421 284.68

40 343 15,372 284.62

50 301 15,394 284.53

60 344 16,050 284.45

70 444 16,789 284.30

80 458 16,954 283.21

90 592 18,140 280.10
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range between two given values (including all of their

equivalent representations). The definition of the

constraints applies to the special values infinity and

NaN as well, though in a more limited fashion.

The constraint language for the intermediate result

contains everything that was specified for the input

operands. In addition, the intermediate result has a guard

digit and a sticky bit. Constraining the intermediate result

enables the definition of many interesting tasks for

verification, beyond those defined only through the

inputs. For example, it is possible to target specific

rounding cases, or many trailing or leading zeros in

the output, or cases of overflow.

Special focus was placed on verifying the peculiar

attributes of the DFP format compared with the

BFP format. For example, to verify the correct

implementation of the preferred exponent, we defined

a relation constraint between the exponent of the

intermediate result and the preferred exponent. With this

relation, the user can define constraints such as ‘‘The

preferred exponent of a divide double precision operation

is greater than the exponent of the intermediate result by

30.’’ Only a very rare combination of the inputs will give

such a test case.

In addition to defining constraints on the DFP number,

constraints on the DPD of the DFP numbers are defined.

Since this representation is not very meaningful

numerically, we limited our constraints here to include

only bit patterns.

The input data generated by DFP constraints is

translated to the DPD format for simulation. Because

there are several redundant representations in the DPD

format, one of the representations is selected at random

to provide testing coverage for all representations.

The FPgen GTP was expanded to include a test plan

for DFP. We describe a few examples of the various types

of models. The main distinction is made between models

that are suitable for all instructions and models that are

tailored for specific instructions. We give two examples

of the former and one example of the latter.

Some of the models aim to cover the entire DFP space.

For example, the basic types model for inputs contains a

list of number types, such as normal number, subnormal

number, zero, infinity, and NaN. The model consists of

one task for every combination of one input type with

another input type.

Other models are directed toward special features of

the design. One example is a model whose tasks are all

intermediate results in the overflow area. The tasks are

denser in the area of overflow that is near the maximal

normal value and become sparser as the numbers become

larger.

An example of a special model for divide is the model

in which the intermediate result is exact and, in addition,

Table 7 AVPgen biasing scheme.

Full range of exponents biased toward endpoints,

numbers biased toward endpoints
� Selected from minimum exponent to maximum

exponent with higher probability of selecting

exponents at either end
� Random selection of fraction digits but biased to

endpoints

Small normalized numbers

Random leading zeros/max digits, followed by random

digit(s) or all zeros/max digit

Zeros (true, negative, various exponents)

Small exponent, leading zeros

One nonzero digit in denorm/subnormal
� One digit in fraction set to nonzero (1..9)

Denorm/subnormal
� Random digits biased toward endpoints
� Nearby min/max value

All fraction/coefficient digits either max or nonzero

Nmin, Nmax, Dmin, Dmax

� Exact, random digit changed, nearby
� Smaller format representation and nearby

NaNs (random fractions, biased exponent continuation)

Infinity (random fractions, biased exponent continuation)

Random normalized

Schryer types and variants
� Various coefficient patterns

DFP specific
� Random clustering of values that can get

nonpreferred encodings
� Bias toward redundant code points (888 . . . 999
tuples)
� Random forms of infinity/NaNs
� One digit, max, min, almost max/min
� Alternate cohort selection
� Preferred/nonpreferred encoding selection

Example of specialized biasing per instruction

Add/sub/compare
� Exponents in same proximity
� Equal exponents
� Equal values
� Biased random operands (see prior list)
� One operand zero
� One digit different
� Random fraction digit changed, same exponent
� Result with guard, sticky, and round bits are not zero
� Toward underflow
� Toward overflow
� Leading/trailing/interior zero result
� Ripple carry/borrow
� Result CC0/CC1/CC2/CC3 (where CC ¼ condition

code)
� Exact zero difference
� Varied cohorts
� Preferred/nonpreferred encodings

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 A. Y. DUALE ET AL.

225



we enumerate all possible combinations of leading and

trailing zeros in the coefficient of the intermediate result

along with all relations between the exponent of the

intermediate result and the preferred exponent.

Conclusion
System z9 was the first machine to implement DFP. More

than 50 DFP instructions were implemented in millicode

with special milli-ops and hardware-assist facilities. Such

hardware-assist facilities enabled a speedup factor of 10

over the pure software implementation.

Different verification teams—including SAK, AVPgen,

FPgen, and ViCom—collaborated to test the DFP. Each

of these teams had to adjust its test strategies to reflect the

unique characteristics of the DFP operands. While

keeping the verification strategies independent, a

common reference model was developed to predict

the result of DFP instructions. The use of a common

reference brought substantial savings in development and

maintenance time. To minimize the risk of using a single

reference model, a cross-checker was used for validation.

The cross-checker predicts DFP calculations

independently on the basis of an external calculator.
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