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When the PLS8 64-bit GNU compiler collection front end was
introduced with the IBM z990 system, it laid the foundation to
move toward an open-standard development environment for the
i390 layer of IBM System z™ host firmware. However, when the
2990 system was developed, the proprietary project development
library system and the table of contents object file format for i390
code were still being used. With the IBM System z9™, we have
moved to a fully open-standard development environment. This
paper describes the steps we took to get there, to improve code
performance, development efficiency, and regression testing, and to
develop base functionality for important System z9 features such as
enhanced driver maintenance. We also discuss plans to further
enhance the development environment for future systems.

Overview

IBM System z* host firmware runs on the System z
processor hardware. It provides the z/Architecture*
interface (I/O processing instructions and complex
processor instructions) and reliability, availability, and
serviceability functions such as hardware reset and
recovery, concurrent maintenance, and capacity on
demand.

System z host firmware consists of two levels. The first
is the lower-level millicode layer. This layer is written in
assembly language and runs directly on the z9* processor
hardware. It is used to implement performance-critical
functions or functions that require direct control of the
underlying hardware structures. The millicode layer
has to be adjusted for each new System z hardware
generation. The second firmware level, which runs on top
of the millicode layer and can use functionality provided
by the millicode, is the higher-level internal 390 (1390)
code. It is written primarily in PL8 or C and implements
functions that are less performance-critical or too
complex to code in assembly language. An advantage of
the 1390 code layer is that most parts of it do not have to
be adjusted for each new System z processor generation
because the underlying millicode layer deals with most of

the hardware-specific handling. (See [1] for a discussion
of the firmware stack running on a System z.)

Since the advent of the 2990, the 1390 firmware layer
has been compiled using the GNU compiler collection
(GCCO). Using GCC version 3.3 instead of version 2.95
for the System z9 enabled us to take advantage of the
enhanced 7990 z/Architecture instruction set. Also, code
coverage measurements for 1390 are now supported by
using the standard GNU coverage support.

The library and build environments have been changed
from the project development library (PDL) system under
virtual machine (VM) to concurrent versions system
(CVS) and software construction (SCons) under Linux**,
which allows the use of standard open-source tools such
as Red Hat** Package Manager (RPM) or Python**. We
explain how this new development environment improves
the development efficiency and the turnaround time to
build code for each one of the more than 80 1390
developers.

To eliminate the last proprietary piece in the
development environment, the 1390 object file format was
changed from the table of contents (TOC) format to the
industry-standard executable and linkage format (ELF).
The advantages and savings of moving to ELF are
described.
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The new object file format of an 1390 load required
a new 1390 loader—the ELF loader. This new loader
performs the 1390 load process for loading initial
microcode and applying concurrent microcode fix [a
method to apply required microcode patches (e.g., for
problem fixes) without requiring a system shutdown], also
known as concurrent patch. Compared with previous
machines, the functionality of this loader for concurrent
patch was significantly enhanced to provide the base
functionality for the enhanced driver maintenance feature
for 1390. For example, one requirement for enhanced
driver maintenance was support for new global data
variables and their initialization. Also, the loader now
supports 1390 function pointers, which can be used for
registration and callback routines. This greatly improves
decoupling of code and ease of maintenance for adding
new procedures for future releases of the System z9.
Finally, this paper provides a perspective on how this
open-standard development environment for 1390 can be
further enhanced for future systems.

Continued development of the PL8

GCC compiler

With the IBM eServer* z990, we used the open-source
GCC [2] for compiling our firmware written in high-level
programming languages. We could take advantage of
the ability of GCC to produce code for the System z
processor architecture. This ability is implemented by the
System z compiler back end provided by the IBM Linux-
on-zSeries™ project. Most of the high-level firmware code
is written in PL8, an IBM proprietary programming
language derived from PL/1. In order to translate PL8
code, a GCC front end for PL8 was developed. GCC with
an integrated PL8 front end is called the GNU PLS8
compiler, or GPLS compiler.

The PL8 front end reads the PL8 code and builds
up data structures understood by the core of the GCC,
commonly called the middle end. The middle end carries
into effect all optimizations and triggers platform-
dependent code production done by the compiler back
end. Both the System z back end and the PLS8 front end
have been described in former issues of this journal [3, 4].
This section focuses on how and why we continued to
use the GCC for the IBM System z9.

The GCC is an ever-evolving project. The performance
of the code it produces is continuously being improved by
new methods of optimization implemented in the core
compiler and by the exploitation of new hardware
features or instructions by the back end. Fixes for
compiler mistakes included with new compiler versions
are as welcome as simplifications of the interface between
the front end and the middle end. With the 2990 we used
GCC version 2.95. Staying with this version would have
deprived us of the advantages of improved compiler
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versions, and it would have had some other drawbacks.
The firmware compiler is part of a tool chain composed
of preprocessor, compiler, assembler, linker, and other
tools such as the GNU coverage measurement tool
(GCOV) and tools to analyze and modify object files,
such as objdump and objcopy. Newer versions of these
tools will not be interoperable forever with GCC 2.95,
and the wider the gap between the GPL8 compiler based
on GCC 2.95 and current GCC development, the more
troublesome will be an adaptation of the PLS front end to
the current GCC—an adaptation that will be unavoidable
someday. It was therefore decided to invest the effort of
continually adapting the PL8 front end to the current
GCC version. For the System z9, we use a GPL8 compiler
based on GCC 3.3.

Most of the firmware code deals with hardware setup,
recovery, and configuration tasks. This code is not
performance-critical with respect to time, but there is
performance-critical code that handles I/O requests and
requires firmware support. One system performance
parameter is the number of I/O requests initiated by a
start-subchannel instruction that can be handled per
second. Improvements in the System z9 start-subchannel
capacity result primarily from three factors: the faster
clock speed of the hardware; the System z9 firmware
compiler, which supports the performance increase by its
instruction scheduler that was optimized for the pipeline
that was introduced with the 2990 processors; and the
exploitation of the long-displacement facility, an
instruction set that allows the specification of relative
address offsets of up to 1 MB and the addressing of data
areas of up to 1 MB with the same base register [5]. After
all, 2.1 percent of the System z9 firmware instructions use
the long (20-bit) displacement, thus avoiding additional
instructions dealing with address computation and the
stalls related to them.

GCC 3.3 introduces thread local storage (TLS) support
for the System z. TLS provides the ability to have unique
static storage assigned to each thread, a concept that
opens interesting prospects with respect to the firmware
static variables that exist as local data variables of
each processing unit (PU). Thus, keeping pace with the
current compiler development allows a further approach
to open standards in the future.

The interface between a front end and the GCC core
compiler is quite complex. GCC 3.3 starts simplifying this
interface by introducing so-called language hooks. A
language hook is just a function pointer that is set by the
front end and allows a callback from the middle end to
the front end. This gives the front end an opportunity to
influence the optimization process or to build up data
structures when they are needed by the middle end. The
introduction of language hooks clearly shows a trend that
is welcomed by compiler front-end developers. GCC
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development focuses more and more on simplifying the
introduction of compiler front-end extensions, and
GCC 4.0 consequently continues this development. This
means that adaptations to new GCC versions for the
PL8 front end can be done more safely and simply.
GPLS8 compiler development also involves maintenance
of the PL8 language. The System z must steadily meet
higher demands with respect to hot-plugging new
hardware and offering continuous availability. Firmware
code structures must comply with these demands. For the
first time, the System z9 firmware exploits function
pointers, enabling dynamic registration of firmware
components. The PL8 language provided basic function-
pointer support, but it was not implemented by GPLS for
the z990 system. For the System z9 system, the language
definition was extended in order to add strong type
checking with function pointer assignments and to make
the use of function pointers as easy as the use of any
variable.

Moving toward an open-source build
environment

A cornerstone of the modernization of the firmware
development environment was to replace the proprietary
source-control and build systems with standard open-
source tools. The challenges of migrating project source
files from the old to the new source-control system and
the motivation to choose SCons as the build system are
discussed in the next sections.

From PDL to CVS

The VM-based PDL used in System z systems prior to
System z9 used a tree structure in which the nodes of the
tree represented different release levels. The node names
had a length of four characters so that information such
as the name of the project to which the library level
belonged had to be encoded with a single character.
The PDL tree structure with four-character node names
encoding the release-level information can be shown as
follows:

DG2R

/ \
DG3R DG2I

where D is the development library, G is the abbreviation
for the project name, the numerals are the specification of
project rollout (code for the second and third project
rollout), and R is the normal release level.

During the build process, files not found in a lower
level were automatically searched for in higher levels.
Therefore, the lower levels stored only changed files;
unchanged files were inherited from higher levels.

All sources were stored on a conversational monitor
system (CMS) disk on a flat file system in which the last
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four characters of the filename extension represented the
library level to which the file belonged. Together with a
separator character ($), only three characters remained
for the real filename extension because CMS has an 8.8-
character limitation for filenames. Longer extensions
were abbreviated (.p18inc — .p8i), and shorter ones
extended (.c — .c__).

When importing the sources from PDL to CVS
using a network file system (NFS) mount of the CMS
disks, a shell script sorted all files into directories that
corresponded to their library level, taking care of the
PDL inheritance scheme and translating the filename
extensions back from the PDL encoding scheme.

The timestamps of the PDL files were not a reliable
mechanism to determine whether a file had changed since
the last shadowing operation because, by removing a file
from a lower level, a potentially older file from a higher
level could become the current one for the lower level.
Thus, all files always had to be copied starting from the
highest level, and files from lower levels had to overwrite
the previously copied files where necessary. Copying
sources from a CMS NFS mount to a CVS working copy
is done as follows:

Step 1: bbihrrun.p8i$dg2r — dg2r/bbihrrun.pl8inc
bbihrrun.p8i$dg2r — dg3r/bbihrrun.pl8inc
Step 2: bbihrrun.p8i$dg3r — dg3r/bbihrrun.pl8inc

Because of the reverse delta storage mechanism of
CVS, only files whose content had changed from the last
shadowing operation created a new revision in CVS.

This CVS shadow of the PDL library was the base for
the migration to a Linux-based development environment
for System z9. Owing to the flat CMS file system, the
component to which a source file belonged in PDL could
be distinguished only by a naming convention, such as
using the first four characters of the filename as an
indication for the component (e.g., BBIGxxxx for all
files belonging to the 1390 reset component). For the
Linux-based development environment, each component
was given its own subdirectory (e.g., src/reset). A Perl
script was used to sort all source files into their target
component subdirectories on the basis of regular
expressions for the filenames (e.g., by default all files
starting with BBIG were placed in the src/reset
subdirectory).

The script also replaced dollar characters in filenames
with underscores, because a dollar sign in a UNIX** shell
refers to an environment variable, and handling filenames
containing dollar signs in a UNIX shell is cumbersome at
best. A simple shell script using sed, the stream editor
program, fixed the include statements in the source files
accordingly. 197
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The include directives in PL8 source files do not
contain a filename extension and, because the CMS file
system—unlike a Linux file system—is case-insensitive,
sources could contain mixed-case include directives
(such as %MACINCL BBIeerms;). The PL8 preprocessor
has been modified to always translate filenames to
lowercase and append .p18inc as an extension before
looking for a file in the file system. The consequence
is that PLS files, unlike C files, must now always be
lowercase.

SCons

For the initial CVS shadow of the PDL library, a makefile
(a file that describes how a system is built) was written
that, together with Linux versions of the build tools,
allowed firmware code to be built on Linux. Nevertheless,
experience with this makefile led to the conclusion that
make would not be a good choice for a production build
system, and after some evaluation SCons [6] was finally
chosen. The primary differences between make and SCons
are discussed in the following sections.

* Dependency handling
A build target is dependent not only on a primary
source file, but also on the include files directly
and indirectly included by the primary source file.
Whenever one of these input files changes, the build
target has to be rebuilt. In addition, the dependency
tree for the build target has to be updated when
include files are being added or removed. Make can
include dependency information generated by an
external dependency generator (e.g., a compiler) and
can therefore take care of rebuilding a target when the
timestamp of an include file changes. However, trying
to automatically keep the dependency information
itself up to date can become quite challenging,
especially when dependencies are removed and
the former input files no longer exist. Therefore,
make is typically used only with static dependency
information generated by an explicit dependency
generation step (typically invoked with a make dep
command). Such static dependency information can
rapidly become outdated, potentially resulting in
inconsistent build results.

SCons not only takes care of such include file
dependencies automatically, but it also includes
changes in the build commands (e.g., using different
compiler flags) or other arbitrary information in
the dependency tree. Also, while make relies on
timestamps to decide whether a target has to be
rebuilt, SCons can instead use MDS5 message-digest
algorithm hashes of the file contents so that build
targets are rebuilt whenever the content of a source
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file has changed since the last build, even when the
target seems to be newer than the source. This is
especially important with backing builds, as discussed
next.

* Backing build support
In this project, all of the more than 80 1390 code
developers have access to a central server. It would
be a waste of resources if everyone had to build all
currently active maintenance releases from scratch,
especially when the number of parallel maintenance
streams is high. Therefore, the sources and build
results of all currently relevant releases are kept below
a central directory, and the active maintenance and
development streams are automatically updated and
rebuilt periodically. These central directories are
called backing builds. A developer keeps only modified
sources locally and sets a pointer to the desired
backing build. The build system then takes all sources
and build results that do not exist locally from the
backing build.

Make has only limited support for backing builds
and, in combination with the requirement for
subdirectories and automatic updates of dependency
information, the situation gets even worse. SCons, on
the other hand, has full built-in support for backing
builds and, because of its use of MDS5 hashes, can
handle a scenario in which a locally modified source
is removed after a local build, so that the source
from the backing build becomes the relevant source.
Because it is likely that the source in the backing build
has an older timestamp than the local build result,
make would consider the build target up to date.
SCons, on the other hand, detects that the content of
the source file has changed from the last build and
rebuilds the target again with the source from the
backing build.

* Maintainability and extensibility
Complex makefiles tend to become difficult to read
and maintain. SCons, however, is written in Python
[7] and uses Python for the build rule specifications.
The control files are therefore easier to understand
and, with the full power of an object-oriented
scripting language at hand, even complex build rules
or complete build procedures are relatively easy to
implement.

A major difference from the PDL environment is the
turnaround time that can be achieved in the Linux-based
development environment. In the PDL environment,

a developer had to start all compile and link tasks
manually, one after the other. If an include file was
changed that had been used by more than a few
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sources, recompiling all dependent files manually
became impractical. Therefore, the file had to be
released more or less untested to a special library level,
and a librarian then had to be asked to process that
level. The resulting build failures could then be analyzed
by the developer, and an updated file had to be re-
released. This step had to be repeated until the library
build was clean, whereupon a librarian could promote
the file to its intended destination library level.

In the Linux-based development environment, a
developer has to specify only the final build target, and
SCons automatically determines which build steps, such
as compile and link, have to be executed, on the basis
of rules defined in a configuration file called SConscript.
The time required to build a complete code load is
proportional to the impact of a source change.
Optimizations in the SConscript keep the startup time
short when only a single source compile is requested.

Development tools

All build tools (the PL8 compiler, for example) are
available as standard RPMs. By installing SCons and
CVS plus three RPMs containing i390-specific tools, each
Linux system can be used for 1390 firmware development.
While CVS requires a network connection to the CVS
server, the build system also works disconnected, thereby
allowing development on a standalone workstation, such
as a Lenovo Thinkpad**, without a permanent
connection to a central server.

All 1390 RPMs are relocatable and, with a script such
as that in Figure 1, multiple versions of the same RPM
can be kept on a system. This makes it possible, for
example, to phase in a new compiler version with the
current development stream while all maintenance
streams stay with the old compiler version for reasons
of stability, and both streams can be built on the same
system. The SConscript automatically detects and uses
the required RPM versions.

The move to Linux as the development platform also
allows the use of tools such as the Ctags source tagging
system or the Doxygen documentation generator.

Move from TOC to ELF

The original toolset of the 1390 environment that was
used up to and including System z990 was based on the
TOC format. This format is the base of the file format
used for IBM AIX* on the PowerPC* architecture; it is
called the common object file format (see [8], pp. 47-92
for an explanation of object file formats). In this format a
set of related source files are compiled and linked together
into modules. Each data segment of these modules
contains a TOC section which contains the pointer list of
the module that points to the global variables inside and
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#!/bin/sh
PKGNAME="rpm -qp ${1?}°
if [ "x$PKGNAME" != "x" ]
then
PREFIX="rpm -q --info -p ${1} | awk '/Relocations:/ { print $5

UMASK="umask"

PERM="expr 777 - ${UMASK}"

install -d --mode=${PERM} ${PREFIX}/${PKGNAME}/rpm

rpm --verbose --initdb --dbpath ${PREFIX}/${PKGNAME}/rpm
rpm -U -F --oldpackage --test ${1}

if [ $? -eq 0 ]
then
rpm --verbose -i --prefix ${PREFIX}/${PKGNAME} --dbpath

${PREFIX}/${PKGNAME}/rpm ${1} -nodeps
i
i

Simple script to install different versions of the same RPM in
different directories.

outside the module. This TOC also contains pointers to
the TOC and addresses of external procedures. At load
time during system startup, the TOC loader of the system
is responsible for relocating the unresolved symbols.
Missing symbols therefore cannot be detected before the
TOC loader runs; instead, they result in a late link error
during initial microcode load (IML), and system startup
will fail. In addition to the name of an external symbol
that must be resolved at load time, this format also
provides a hash as a numerical value of the interface to
check whether an external symbol has the right type.

Because each module has its own TOC, the TOC
pointer must be reloaded for intermodule calls. For a call
from one module to another, the TOC binder in the
library creates a specific, very efficient, TOC-unique glue
code to be called instead of the external function. This
glue code is responsible for reloading the TOC pointer
when calling in to and when returning from the external
function. This adds a small overhead for external calls
compared with internal calls, forcing the system design to
place related functions in the same module. Levine [§]
gives a good overview of the loader process and load-time
relocation.

In 1390, the split into multiple modules was required
basically to overcome the 4-KB TOC limitation. The
limitation was in effect up to and including Enterprise
Systems Architecture/390*, which allowed addressing
only 4 KB of data with the same base register because
it supported only 12-bit displacement fields [5].

These 1390 TOC modules were not true modules in the
sense of a modular code structure with loadable modules
that can be plugged into the system or unplugged to
introduce or remove functionality. The split into modules
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™ @ address 0x1000

PU local data PU n
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@ address 0xF000

Relocations and multiple data area handling in non-PIC mode.

was required only because of the 4-KB TOC limitation.
For a functional 1390 system, it was not possible to load
only a subset of the modules; all of the modules always
had to be loaded to resolve all external references.

The 4-KB TOC limitation no longer applies in the
z/Architecture because of the introduction of the long-
displacement facility [5]. Thus, there was no longer
any reason to split the code into multiple modules for
System z9. Being able to place all i390 code in one module
makes it possible to perform the final link step within the
library rather than on the machine at runtime. This
eliminates the requirement for the TOC-unique glue
code for intermodule calls and significantly lowers the
dependency on the TOC format. Instead, a more standard
link format could be considered—the widely used ELF
format—which is predominant on Linux. Moving to
ELF eliminated the need to port the existing TOC binary
utilities (binutils) support, high-level assembler, and
proprietary TOC binder from the VM-based development
tool chain to a Linux-based development environment. It
also eliminated the need to continue TOC format support
in the GCC compiler back end.

The ELF format has two modes: the position-
independent code (PIC) mode and non-PIC mode (see [8],
pp. 169-176 for a discussion of PIC mode). The non-PIC
code directly implements accesses from the code to the
data section by having relative relocations in the code
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(read only) section. This is shown in Figure 2: To access
the variable glob_z, its address is loaded by using a Load
Address Relative Long (LARL %Rz, glob_z) instruction.

In the PIC case, a global offset table (GOT) is
generated by the linker for all symbols and put into the
executable. A GOT is basically a list of symbol addresses,
and data accesses from the code in the PIC mode are done
indirectly by looking up the data addresses in the GOT.
Figure 3 illustrates this. For example, to access variable
glob_z, the pointer to it is first loaded from the GOT into
the general-purpose register Rz using a Load LG %Rz,
glob_z@GOT instruction. Subsequent accesses to glob_z
are done using Rz as a base register. The standard GNU
compiler generates code to load the GOT pointer in the
prolog of each function that accesses static (i.e., non-
automatic) variables. The code to reload the GOT pointer
has a somewhat higher performance impact than the glue
code in the TOC format, but in the ELF format it is
normally used only for shared libraries, which are
currently not used in the System z 1390 firmware
environment.

Unfortunately, none of these modes could be used
right away for i390. To understand this, one additional
requirement must be mentioned: 1390 supports two types
of static global variables. One type is called PU local data.
It is accessible by only one processor of the symmetric
multiprocessor system and is duplicated for every
processor in the system. The other type, called system
global data, is accessible by all processors as shared data
and exists only once in the system. Until the advent of the
7990 system, this PU local data variables setup was
achieved by the loader of the system by duplicating the
PU local data section and TOC for each processor in the
system. Each TOC pointer was initially set up to point to
the TOC of the specific processor. Because the glue code
replaces the TOC when doing a transition from one
module to another, each processor is able to access only
its own PU local variables and the shared variables; it
cannot access the PU local data areas of other processors.
In that respect, the concept of using a GOT to address the
PU local data variables is quite similar to the old TOC
concept.

Using the thread local storage (TLS) concept
introduced with GCC 3.3 would have been another
option to handle the PU local data requirements of 1390,
but when 1390 development for System z9 began, the
GCC 3.3 TLS support was still under development. The
decision was made not to use it for System z9, but rather
to use the GOT concept as a staged approach to open-
source standards for 1390 code.

From this description of the PU local data
requirements for 1390, it can be seen that the non-PIC
code does not work in this environment because it is not
possible to access PU local data variables, which reside at
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Relocations and multiple data area handling in 1390 code.

different addresses for each PU. A relative relocation
from the code (which exists only once in the system) to
multiple data areas (a 1-to-n relocation) is not possible.
As can be seen in Figure 2, one cannot directly (i.e.,
without table lookup) refer to variables 1ocal_i on PU 0
and 1ocal_i on PU n using the same LARL instruction
because these variables are stored at different machine
addresses.

On the other hand, the PIC code reloads the GOT
pointer in the prolog of each function. This method does
not support the concept of multiple GOTs because it is
not possible to load a different GOT pointer for each
processor from the function prolog. The function prolog
exists only once in the system, that is to say, in the code
area, which would again make this a 1-to-n relocation,
which is not possible.

To overcome this problem and still use ELF, the GCC
was changed so that it does not set the GOT pointer in
the function prolog of the compiled firmware. Instead, the
system sets up the GOT pointer once at system startup.
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1390 ELF file layout and HSA storage layout.

Having this compiler in place, the 1390 code could be
restructured to consist of only a single image instead of
multiple modules.

New i390 ELF loader

The new 1390 code format in ELF object file mode, which
consists of only a single image, required a new loader
program for the IML and concurrent 1390 code update
process. Figure 4 shows the layout of the 1390 code ELF
object file [9] and how it is mapped into the hardware
system area (HSA) of a System z9. The color code is used
to show which parts of the file are copied into which
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locations in memory (e.g., the orange shows the location
of the GOT section in the file, and how it is copied
multiple times into memory).

IML loader operation

The ELF file header and program header table are left
unchanged in HSA. The code segment is copied to the
target HSA location, and room for another code segment
is allocated for later use as alternate code area for the
concurrent 1390 code update process. Then the system
global data area is copied from the 1390 code load file to
HSA and extended by as many zero bytes as needed to
hold the uninitialized portion of system global data,
which is not contained in the ELF code load file. At

the end of the system global data area, some extra space
is reserved for new system global data variables that

are introduced with a new 1390 code load during the
concurrent application of 1390 code. Following this area,
the GOT section is copied, and room for an alternate
GOT section is reserved. The PU local data area section
is also copied and extended as needed to hold the
uninitialized PU local data variables, with space reserved
at the end to support new PU local data variables. The
primary and alternate GOT and PU local data areas
are then duplicated for every processor in the system.
Following these data areas, ELF control structures
needed for 1390 loader operation, such as the symbol
table and relocation tables, are copied.

The access from the code to the data is accomplished
by looking up the address of a variable in the GOT. The
System z ELF application binary interface [10] defines
general-purpose register (GPR) 12 as the GOT pointer.
This pointer is initially loaded into GPR 12 by the 1390
runtime environment, which resides in the PU local data
sections. A System z processor enters 1390 mode by means
of a special restart interruption using an 1390 restart new
program status word that is set up by the 1390 loader to
point to the runtime environment of that processor. Since
the runtime environment resides in the PU local data
section (main_entry in Figure 3), it exists once per
processor and can load the correct GOT pointer for this
processor into GPR 12 using a LARL instruction. To
allow each processor to access its own PU local data
variables, the addresses of data variables in the GOTs for
each processor have to be updated by the 1390 loader
to reflect the correct PU local data address for each
processor. Figure 3 shows the most important relocations
in 1390 code that illustrate the IML loader operation and
1390 code structure, as described above.

Concurrent i390 code update

Concurrent microcode update is an important
characteristic of System z systems. It means that code
fixes and updates can be installed and activated
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concurrently with normal system operation while
operating systems and customer applications continue to
run. Concurrent 1390 code update is accomplished by
copying the new 1390 code section in the alternate code
section (reserved during IML) while preserving the old
1390 static data variables that reflect the state of the
system. To make this work, the concurrent 1390 loader
has to update the references from the new code to
correctly point to the old static data variables. In the PIC
mode, there are no direct references between code and
data; all references are done indirectly via the GOT. Thus,
the loader has only to copy the new GOT that comes with
the new code into the alternate GOT areas for each
processor and then update the data addresses in the new
GOT to point to the corresponding old data variables. All
required updates and relocations are performed in a
background process concurrently with normal system
operation. When this process is finished, the system is
synchronized and switched to the new code load.

Support for adding static data variables

A considerable restriction for concurrent 1390 code
update prior to the advent of System z9 was that it

was not possible to add new data variables during this
process. The layout of the static data areas could not be
changed, and the data areas could not be extended. This
prohibited the concurrent addition of new functionality,
which typically requires new control data.

The System z9 concurrent loader introduced support
for adding new data variables concurrently, as follows.
The loader compares the symbol table of the new code
load with the existing symbol table to identify new data
variables that are introduced with the new code load.
When a new data variable is found, it is copied into the
space that was reserved during IML at the end of the
existing data areas. The GOT entry holding the address of
the new variable is already contained in the new GOT
that came with the new code load. Only the content of the
GOT entry has to be corrected to point to the new
location of the variable. There is also initialization
routine support for new variables: Whenever the loader
finds a new variable, it searches for a corresponding
initialization routine, which is identified by a special
naming convention. All identified initialization routines
are called with the highest priority after the switch to
the new code load so that they can perform runtime
initialization of the added variables before the new code
accesses them for the first time. (See [11] for examples of
the ways in which this feature enabled enhanced driver
maintenance and is exploited there.) Similarly, it is now
possible to delete existing static variables that are no
longer needed by the new code load. (See [12] for a more
detailed description of the process of adding and
removing static variables.)
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Function pointer support for i390

System z9 now fully supports the use of function pointers
in 1390. Function pointers are widely used in high-level
programming languages instead of a procedure name
literal string to refer to a specific procedure. They

allow decoupling and modularization of code and ease
the addition of new functionality into already existing
computer systems. They do this, for example, by allowing
registration of a new function at a base service provider
such as a function recovery manager or communication
handler service, or by providing support for procedure
callback.

However, prior to the advent of System z9, there was
no real concurrent 1390 code update support for function
pointers in i390. The problem was that function pointers
are basically just addresses that can be stored anywhere
in the 1390 data areas. The concurrent loader had no
knowledge of the locations of these function pointers, nor
did it know how many of them existed. There were no
relocation table entries that showed the relationship of a
function pointer to the corresponding target procedure.
After a concurrent 1390 code update, the addresses of
target procedures of function pointers changed, but the
concurrent loader could not correct the function pointers
because it was not able to find them. Figure 5(a)
illustrates this problem.

To overcome this restriction, the concept of smart
function pointers was introduced [13] [Figure 5(b)]. Smart
function pointers are not just data structures that contain
the target procedure address, like plain function pointers;
instead, they are generated by the GPL8 compiler as a
data structure that contains a relative branch instruction
to the target procedure. It is important that the smart
function pointers are part of the data section (not the
code or the GOT section of the 1390 code load) because
they must be preserved across concurrent i390 code
updates. The fact that smart function pointers are located
in the data section differentiates them from the procedure
linkage table stubs that are used by Linux. In Linux, the
procedure linkage table stubs exist in the GOT section,
which is replaced during concurrent patch. By using a
relative branch instruction for the smart function
pointers, a relocation entry is generated in the ELF
relocation tables for each of the pointers, which can be
used by the concurrent loader to identify all locations in
the data area that have to be updated when the address of
a target procedure of a smart function pointer changes.
Since this update is part of the normal concurrent loader
operation, no special code had to be added in the loader
to support concurrent 1390 code update for 1390 function
pointers.

Outlook

The work described in this paper is being continued for
future generations of the zSeries. The agenda includes
such topics as the following:
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Old code New code

foo: > f00':

Data

P~ Variable containing function pointer foo

(@)

Old code New code

foo:

Function descriptor area

> function_descriptor .G.foo:
Jg foo

Data

b Variable containing function pointer foo

(b)

Concurrent 1390 code update: (a) plain function pointers; (b)
smart function pointers.

* Updating the GPLS compiler to be based on GCC 4.1:

The new version of the GCC family includes support
for the new instructions introduced with the

System z9, such as the add fullword immediate
instruction, which improves the performance of
thread local storage accesses. Using this compiler,
one can consider using the thread local storage
instead of the GOT concept for the PU local storage
accesses. It is also quite interesting that, since the
introduction of GCC 4.0, a new brand of compiler
optimizations are being added at the middle end.
Before, all of the optimizations were performed at
the level of machine instructions (Register Transfer
Language trees) where much of the information
about the original code structure was no longer
available. These so-called general optimizer
improvements should help to make 1390 code faster
and smaller without extra work at the PL8 front end.
Supporting C++ for i390 development: With the latest
versions of GCC, the compiler has fewer dependencies
on external libraries. With GCC 4.0, it is already
possible to write C++ programs that do not have any 203
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call to G11ibc, thus allowing the use of C++ for 1390
development. Using C++ offers multiple advantages:
Among others, it is an object-oriented language that
allows the use of new programming paradigms, it
can be used as a more robust C compiler with array
boundary checks and linker-type checks, and it
supports templates.

e Integrated Development Environment (IDE) for i390
development: The current development requires the
use of separate tools for the different tasks: SCons to
build the targets, CVS to store the source code, dump-
extractor to analyze the memory dumps, and so on.
As a result, each developer must first be aware of the
existence of the different tools, then understand the
possibilities each one offers, and then learn how to use
them (which generally implies writing text commands
in a Linux console). This could be made easier by
providing an IDE for microcode development. The
open-source platform-independent Eclipse framework
is being considered. Eclipse might be extended to add
support for writing in PL8, compiling code, CVS
inspection, and debugging.

e Code measurements: Many code-measurement tools
are available, but in the past not all of them have been
supported for the PL8 language. Using GCC allowed
the introduction of code coverage measurements for
PL8 with GCOV. The next GPL8 compiler will
provide even more support for software metrics.
Apart from McCabe’s Cyclomatic Complexity [14, 15]
and Halstead’s Metrics [16], we will survey metrics
that are PL8-specific or indicate code figures regarded
as error-prone within firmware development.

Conclusion

It has been shown that compiler development within a
firmware department allows quick responses to changed
requirements and the ability to quickly implement
improvements and new features needed for high-quality
firmware development. Moving to a Linux-based
development environment eliminates the need for
proprietary tools and makes it possible to utilize industry-
standard toolsets and open-source software verified by

a large user community. This also makes the 1390
development environment much more attractive,
especially to new colleagues when they begin working at
IBM. Introducing the new ELF loader eliminated severe
restrictions in the area of concurrent 1390 code update
and allowed us to significantly enhance continuous
availability for our customers by creating features such as
enhanced driver maintenance. On the basis of the agenda
described in the Outlook section, we can conclude that
there will be many more improvements to come.
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