
Open-standard
development
environment for
IBM System z9
host firmware

C. Axnix
T. Hendel

M. Mueller
A. Nuñez Mencias

H. Penner
S. Usenbinz

When the PL8 64-bit GNU compiler collection front end was
introduced with the IBM z990 system, it laid the foundation to
move toward an open-standard development environment for the
i390 layer of IBM System ze host firmware. However, when the
z990 system was developed, the proprietary project development
library system and the table of contents object file format for i390
code were still being used. With the IBM System z9e, we have
moved to a fully open-standard development environment. This
paper describes the steps we took to get there, to improve code
performance, development efficiency, and regression testing, and to
develop base functionality for important System z9 features such as
enhanced driver maintenance. We also discuss plans to further
enhance the development environment for future systems.

Overview

IBM System z* host firmware runs on the System z

processor hardware. It provides the z/Architecture*

interface (I/O processing instructions and complex

processor instructions) and reliability, availability, and

serviceability functions such as hardware reset and

recovery, concurrent maintenance, and capacity on

demand.

System z host firmware consists of two levels. The first

is the lower-level millicode layer. This layer is written in

assembly language and runs directly on the z9* processor

hardware. It is used to implement performance-critical

functions or functions that require direct control of the

underlying hardware structures. The millicode layer

has to be adjusted for each new System z hardware

generation. The second firmware level, which runs on top

of the millicode layer and can use functionality provided

by the millicode, is the higher-level internal 390 (i390)

code. It is written primarily in PL8 or C and implements

functions that are less performance-critical or too

complex to code in assembly language. An advantage of

the i390 code layer is that most parts of it do not have to

be adjusted for each new System z processor generation

because the underlying millicode layer deals with most of

the hardware-specific handling. (See [1] for a discussion

of the firmware stack running on a System z.)

Since the advent of the z990, the i390 firmware layer

has been compiled using the GNU compiler collection

(GCC). Using GCC version 3.3 instead of version 2.95

for the System z9 enabled us to take advantage of the

enhanced z990 z/Architecture instruction set. Also, code

coverage measurements for i390 are now supported by

using the standard GNU coverage support.

The library and build environments have been changed

from the project development library (PDL) system under

virtual machine (VM) to concurrent versions system

(CVS) and software construction (SCons) under Linux**,

which allows the use of standard open-source tools such

as Red Hat** Package Manager (RPM) or Python**. We

explain how this new development environment improves

the development efficiency and the turnaround time to

build code for each one of the more than 80 i390

developers.

To eliminate the last proprietary piece in the

development environment, the i390 object file format was

changed from the table of contents (TOC) format to the

industry-standard executable and linkage format (ELF).

The advantages and savings of moving to ELF are

described.

�Copyright 2007 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 C. AXNIX ET AL.

195

0018-8646/07/$5.00 ª 2007 IBM



The new object file format of an i390 load required

a new i390 loader—the ELF loader. This new loader

performs the i390 load process for loading initial

microcode and applying concurrent microcode fix [a

method to apply required microcode patches (e.g., for

problem fixes) without requiring a system shutdown], also

known as concurrent patch. Compared with previous

machines, the functionality of this loader for concurrent

patch was significantly enhanced to provide the base

functionality for the enhanced driver maintenance feature

for i390. For example, one requirement for enhanced

driver maintenance was support for new global data

variables and their initialization. Also, the loader now

supports i390 function pointers, which can be used for

registration and callback routines. This greatly improves

decoupling of code and ease of maintenance for adding

new procedures for future releases of the System z9.

Finally, this paper provides a perspective on how this

open-standard development environment for i390 can be

further enhanced for future systems.

Continued development of the PL8
GCC compiler
With the IBM eServer* z990, we used the open-source

GCC [2] for compiling our firmware written in high-level

programming languages. We could take advantage of

the ability of GCC to produce code for the System z

processor architecture. This ability is implemented by the

System z compiler back end provided by the IBM Linux-

on-zSeries* project. Most of the high-level firmware code

is written in PL8, an IBM proprietary programming

language derived from PL/1. In order to translate PL8

code, a GCC front end for PL8 was developed. GCC with

an integrated PL8 front end is called the GNU PL8

compiler, or GPL8 compiler.

The PL8 front end reads the PL8 code and builds

up data structures understood by the core of the GCC,

commonly called the middle end. The middle end carries

into effect all optimizations and triggers platform-

dependent code production done by the compiler back

end. Both the System z back end and the PL8 front end

have been described in former issues of this journal [3, 4].

This section focuses on how and why we continued to

use the GCC for the IBM System z9.

The GCC is an ever-evolving project. The performance

of the code it produces is continuously being improved by

new methods of optimization implemented in the core

compiler and by the exploitation of new hardware

features or instructions by the back end. Fixes for

compiler mistakes included with new compiler versions

are as welcome as simplifications of the interface between

the front end and the middle end. With the z990 we used

GCC version 2.95. Staying with this version would have

deprived us of the advantages of improved compiler

versions, and it would have had some other drawbacks.

The firmware compiler is part of a tool chain composed

of preprocessor, compiler, assembler, linker, and other

tools such as the GNU coverage measurement tool

(GCOV) and tools to analyze and modify object files,

such as objdump and objcopy. Newer versions of these

tools will not be interoperable forever with GCC 2.95,

and the wider the gap between the GPL8 compiler based

on GCC 2.95 and current GCC development, the more

troublesome will be an adaptation of the PL8 front end to

the current GCC—an adaptation that will be unavoidable

someday. It was therefore decided to invest the effort of

continually adapting the PL8 front end to the current

GCC version. For the System z9, we use a GPL8 compiler

based on GCC 3.3.

Most of the firmware code deals with hardware setup,

recovery, and configuration tasks. This code is not

performance-critical with respect to time, but there is

performance-critical code that handles I/O requests and

requires firmware support. One system performance

parameter is the number of I/O requests initiated by a

start-subchannel instruction that can be handled per

second. Improvements in the System z9 start-subchannel

capacity result primarily from three factors: the faster

clock speed of the hardware; the System z9 firmware

compiler, which supports the performance increase by its

instruction scheduler that was optimized for the pipeline

that was introduced with the z990 processors; and the

exploitation of the long-displacement facility, an

instruction set that allows the specification of relative

address offsets of up to 1 MB and the addressing of data

areas of up to 1 MB with the same base register [5]. After

all, 2.1 percent of the System z9 firmware instructions use

the long (20-bit) displacement, thus avoiding additional

instructions dealing with address computation and the

stalls related to them.

GCC 3.3 introduces thread local storage (TLS) support

for the System z. TLS provides the ability to have unique

static storage assigned to each thread, a concept that

opens interesting prospects with respect to the firmware

static variables that exist as local data variables of

each processing unit (PU). Thus, keeping pace with the

current compiler development allows a further approach

to open standards in the future.

The interface between a front end and the GCC core

compiler is quite complex. GCC 3.3 starts simplifying this

interface by introducing so-called language hooks. A

language hook is just a function pointer that is set by the

front end and allows a callback from the middle end to

the front end. This gives the front end an opportunity to

influence the optimization process or to build up data

structures when they are needed by the middle end. The

introduction of language hooks clearly shows a trend that

is welcomed by compiler front-end developers. GCC

C. AXNIX ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

196



development focuses more and more on simplifying the

introduction of compiler front-end extensions, and

GCC 4.0 consequently continues this development. This

means that adaptations to new GCC versions for the

PL8 front end can be done more safely and simply.

GPL8 compiler development also involves maintenance

of the PL8 language. The System z must steadily meet

higher demands with respect to hot-plugging new

hardware and offering continuous availability. Firmware

code structures must comply with these demands. For the

first time, the System z9 firmware exploits function

pointers, enabling dynamic registration of firmware

components. The PL8 language provided basic function-

pointer support, but it was not implemented by GPL8 for

the z990 system. For the System z9 system, the language

definition was extended in order to add strong type

checking with function pointer assignments and to make

the use of function pointers as easy as the use of any

variable.

Moving toward an open-source build
environment
A cornerstone of the modernization of the firmware

development environment was to replace the proprietary

source-control and build systems with standard open-

source tools. The challenges of migrating project source

files from the old to the new source-control system and

the motivation to choose SCons as the build system are

discussed in the next sections.

From PDL to CVS

The VM-based PDL used in System z systems prior to

System z9 used a tree structure in which the nodes of the

tree represented different release levels. The node names

had a length of four characters so that information such

as the name of the project to which the library level

belonged had to be encoded with a single character.

The PDL tree structure with four-character node names

encoding the release-level information can be shown as

follows:

DG2R
= n

DG3R DG2I

where D is the development library, G is the abbreviation

for the project name, the numerals are the specification of

project rollout (code for the second and third project

rollout), and R is the normal release level.

During the build process, files not found in a lower

level were automatically searched for in higher levels.

Therefore, the lower levels stored only changed files;

unchanged files were inherited from higher levels.

All sources were stored on a conversational monitor

system (CMS) disk on a flat file system in which the last

four characters of the filename extension represented the

library level to which the file belonged. Together with a

separator character ($), only three characters remained

for the real filename extension because CMS has an 8.8-

character limitation for filenames. Longer extensions

were abbreviated (.pl8inc ! .p8i), and shorter ones

extended (.c ! .c__).

When importing the sources from PDL to CVS

using a network file system (NFS) mount of the CMS

disks, a shell script sorted all files into directories that

corresponded to their library level, taking care of the

PDL inheritance scheme and translating the filename

extensions back from the PDL encoding scheme.

The timestamps of the PDL files were not a reliable

mechanism to determine whether a file had changed since

the last shadowing operation because, by removing a file

from a lower level, a potentially older file from a higher

level could become the current one for the lower level.

Thus, all files always had to be copied starting from the

highest level, and files from lower levels had to overwrite

the previously copied files where necessary. Copying

sources from a CMS NFS mount to a CVS working copy

is done as follows:

Step 1: bbihrrun.p8i$dg2r ! dg2r/bbihrrun.pl8inc

bbihrrun.p8i$dg2r ! dg3r/bbihrrun.pl8inc

Step 2: bbihrrun.p8i$dg3r ! dg3r/bbihrrun.pl8inc

Because of the reverse delta storage mechanism of

CVS, only files whose content had changed from the last

shadowing operation created a new revision in CVS.

This CVS shadow of the PDL library was the base for

the migration to a Linux-based development environment

for System z9. Owing to the flat CMS file system, the

component to which a source file belonged in PDL could

be distinguished only by a naming convention, such as

using the first four characters of the filename as an

indication for the component (e.g., BBIGxxxx for all

files belonging to the i390 reset component). For the

Linux-based development environment, each component

was given its own subdirectory (e.g., src/reset). A Perl

script was used to sort all source files into their target

component subdirectories on the basis of regular

expressions for the filenames (e.g., by default all files

starting with BBIG were placed in the src/reset

subdirectory).

The script also replaced dollar characters in filenames

with underscores, because a dollar sign in a UNIX** shell

refers to an environment variable, and handling filenames

containing dollar signs in a UNIX shell is cumbersome at

best. A simple shell script using sed, the stream editor

program, fixed the include statements in the source files

accordingly.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 C. AXNIX ET AL.

197



The include directives in PL8 source files do not

contain a filename extension and, because the CMS file

system—unlike a Linux file system—is case-insensitive,

sources could contain mixed-case include directives

(such as %MACINCL BBIeerms;). The PL8 preprocessor

has been modified to always translate filenames to

lowercase and append .pl8inc as an extension before

looking for a file in the file system. The consequence

is that PL8 files, unlike C files, must now always be

lowercase.

SCons

For the initial CVS shadow of the PDL library, a makefile

(a file that describes how a system is built) was written

that, together with Linux versions of the build tools,

allowed firmware code to be built on Linux. Nevertheless,

experience with this makefile led to the conclusion that

make would not be a good choice for a production build

system, and after some evaluation SCons [6] was finally

chosen. The primary differences between make and SCons

are discussed in the following sections.

� Dependency handling

A build target is dependent not only on a primary

source file, but also on the include files directly

and indirectly included by the primary source file.

Whenever one of these input files changes, the build

target has to be rebuilt. In addition, the dependency

tree for the build target has to be updated when

include files are being added or removed. Make can

include dependency information generated by an

external dependency generator (e.g., a compiler) and

can therefore take care of rebuilding a target when the

timestamp of an include file changes. However, trying

to automatically keep the dependency information

itself up to date can become quite challenging,

especially when dependencies are removed and

the former input files no longer exist. Therefore,

make is typically used only with static dependency

information generated by an explicit dependency

generation step (typically invoked with a make dep

command). Such static dependency information can

rapidly become outdated, potentially resulting in

inconsistent build results.

SCons not only takes care of such include file

dependencies automatically, but it also includes

changes in the build commands (e.g., using different

compiler flags) or other arbitrary information in

the dependency tree. Also, while make relies on

timestamps to decide whether a target has to be

rebuilt, SCons can instead use MD5 message-digest

algorithm hashes of the file contents so that build

targets are rebuilt whenever the content of a source

file has changed since the last build, even when the

target seems to be newer than the source. This is

especially important with backing builds, as discussed

next.
� Backing build support

In this project, all of the more than 80 i390 code

developers have access to a central server. It would

be a waste of resources if everyone had to build all

currently active maintenance releases from scratch,

especially when the number of parallel maintenance

streams is high. Therefore, the sources and build

results of all currently relevant releases are kept below

a central directory, and the active maintenance and

development streams are automatically updated and

rebuilt periodically. These central directories are

called backing builds. A developer keeps only modified

sources locally and sets a pointer to the desired

backing build. The build system then takes all sources

and build results that do not exist locally from the

backing build.

Make has only limited support for backing builds

and, in combination with the requirement for

subdirectories and automatic updates of dependency

information, the situation gets even worse. SCons, on

the other hand, has full built-in support for backing

builds and, because of its use of MD5 hashes, can

handle a scenario in which a locally modified source

is removed after a local build, so that the source

from the backing build becomes the relevant source.

Because it is likely that the source in the backing build

has an older timestamp than the local build result,

make would consider the build target up to date.

SCons, on the other hand, detects that the content of

the source file has changed from the last build and

rebuilds the target again with the source from the

backing build.
� Maintainability and extensibility

Complex makefiles tend to become difficult to read

and maintain. SCons, however, is written in Python

[7] and uses Python for the build rule specifications.

The control files are therefore easier to understand

and, with the full power of an object-oriented

scripting language at hand, even complex build rules

or complete build procedures are relatively easy to

implement.

A major difference from the PDL environment is the

turnaround time that can be achieved in the Linux-based

development environment. In the PDL environment,

a developer had to start all compile and link tasks

manually, one after the other. If an include file was

changed that had been used by more than a few

C. AXNIX ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

198



sources, recompiling all dependent files manually

became impractical. Therefore, the file had to be

released more or less untested to a special library level,

and a librarian then had to be asked to process that

level. The resulting build failures could then be analyzed

by the developer, and an updated file had to be re-

released. This step had to be repeated until the library

build was clean, whereupon a librarian could promote

the file to its intended destination library level.

In the Linux-based development environment, a

developer has to specify only the final build target, and

SCons automatically determines which build steps, such

as compile and link, have to be executed, on the basis

of rules defined in a configuration file called SConscript.

The time required to build a complete code load is

proportional to the impact of a source change.

Optimizations in the SConscript keep the startup time

short when only a single source compile is requested.

Development tools

All build tools (the PL8 compiler, for example) are

available as standard RPMs. By installing SCons and

CVS plus three RPMs containing i390-specific tools, each

Linux system can be used for i390 firmware development.

While CVS requires a network connection to the CVS

server, the build system also works disconnected, thereby

allowing development on a standalone workstation, such

as a Lenovo Thinkpad**, without a permanent

connection to a central server.

All i390 RPMs are relocatable and, with a script such

as that in Figure 1, multiple versions of the same RPM

can be kept on a system. This makes it possible, for

example, to phase in a new compiler version with the

current development stream while all maintenance

streams stay with the old compiler version for reasons

of stability, and both streams can be built on the same

system. The SConscript automatically detects and uses

the required RPM versions.

The move to Linux as the development platform also

allows the use of tools such as the Ctags source tagging

system or the Doxygen documentation generator.

Move from TOC to ELF
The original toolset of the i390 environment that was

used up to and including System z990 was based on the

TOC format. This format is the base of the file format

used for IBM AIX* on the PowerPC* architecture; it is

called the common object file format (see [8], pp. 47–92

for an explanation of object file formats). In this format a

set of related source files are compiled and linked together

into modules. Each data segment of these modules

contains a TOC section which contains the pointer list of

the module that points to the global variables inside and

outside the module. This TOC also contains pointers to

the TOC and addresses of external procedures. At load

time during system startup, the TOC loader of the system

is responsible for relocating the unresolved symbols.

Missing symbols therefore cannot be detected before the

TOC loader runs; instead, they result in a late link error

during initial microcode load (IML), and system startup

will fail. In addition to the name of an external symbol

that must be resolved at load time, this format also

provides a hash as a numerical value of the interface to

check whether an external symbol has the right type.

Because each module has its own TOC, the TOC

pointer must be reloaded for intermodule calls. For a call

from one module to another, the TOC binder in the

library creates a specific, very efficient, TOC-unique glue

code to be called instead of the external function. This

glue code is responsible for reloading the TOC pointer

when calling in to and when returning from the external

function. This adds a small overhead for external calls

compared with internal calls, forcing the system design to

place related functions in the same module. Levine [8]

gives a good overview of the loader process and load-time

relocation.

In i390, the split into multiple modules was required

basically to overcome the 4-KB TOC limitation. The

limitation was in effect up to and including Enterprise

Systems Architecture/390*, which allowed addressing

only 4 KB of data with the same base register because

it supported only 12-bit displacement fields [5].

These i390 TOC modules were not true modules in the

sense of a modular code structure with loadable modules

that can be plugged into the system or unplugged to

introduce or remove functionality. The split into modules

Figure 1

Simple script to install different versions of the same RPM in 

different directories.

#!/bin/sh

PKGNAME=`rpm -qp ${1?}`

if [ "x$PKGNAME" != "x" ]

then

  PREFIX=`rpm -q --info -p ${1} | awk '/Relocations:/ { print $5

}'`

  UMASK=`umask`

  PERM=`expr 777 - ${UMASK}`

  install -d --mode=${PERM} ${PREFIX}/${PKGNAME}/rpm

  rpm --verbose --initdb --dbpath ${PREFIX}/${PKGNAME}/rpm

  rpm -U -F --oldpackage --test ${1}

  if [ $? -eq 0 ]

  then

    rpm --verbose -i --prefix ${PREFIX}/${PKGNAME} --dbpath

${PREFIX}/${PKGNAME}/rpm ${1} –nodeps

  fi

fi                 

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 C. AXNIX ET AL.

199



was required only because of the 4-KB TOC limitation.

For a functional i390 system, it was not possible to load

only a subset of the modules; all of the modules always

had to be loaded to resolve all external references.

The 4-KB TOC limitation no longer applies in the

z/Architecture because of the introduction of the long-

displacement facility [5]. Thus, there was no longer

any reason to split the code into multiple modules for

System z9. Being able to place all i390 code in one module

makes it possible to perform the final link step within the

library rather than on the machine at runtime. This

eliminates the requirement for the TOC-unique glue

code for intermodule calls and significantly lowers the

dependency on the TOC format. Instead, a more standard

link format could be considered—the widely used ELF

format—which is predominant on Linux. Moving to

ELF eliminated the need to port the existing TOC binary

utilities (binutils) support, high-level assembler, and

proprietary TOC binder from the VM-based development

tool chain to a Linux-based development environment. It

also eliminated the need to continue TOC format support

in the GCC compiler back end.

The ELF format has two modes: the position-

independent code (PIC) mode and non-PIC mode (see [8],

pp. 169–176 for a discussion of PIC mode). The non-PIC

code directly implements accesses from the code to the

data section by having relative relocations in the code

(read only) section. This is shown in Figure 2: To access

the variable glob_z, its address is loaded by using a Load

Address Relative Long (LARL %Rz, glob_z) instruction.

In the PIC case, a global offset table (GOT) is

generated by the linker for all symbols and put into the

executable. A GOT is basically a list of symbol addresses,

and data accesses from the code in the PIC mode are done

indirectly by looking up the data addresses in the GOT.

Figure 3 illustrates this. For example, to access variable

glob_z, the pointer to it is first loaded from the GOT into

the general-purpose register Rz using a Load LG %Rz,

glob_z@GOT instruction. Subsequent accesses to glob_z

are done using Rz as a base register. The standard GNU

compiler generates code to load the GOT pointer in the

prolog of each function that accesses static (i.e., non-

automatic) variables. The code to reload the GOT pointer

has a somewhat higher performance impact than the glue

code in the TOC format, but in the ELF format it is

normally used only for shared libraries, which are

currently not used in the System z i390 firmware

environment.

Unfortunately, none of these modes could be used

right away for i390. To understand this, one additional

requirement must be mentioned: i390 supports two types

of static global variables. One type is called PU local data.

It is accessible by only one processor of the symmetric

multiprocessor system and is duplicated for every

processor in the system. The other type, called system

global data, is accessible by all processors as shared data

and exists only once in the system. Until the advent of the

z990 system, this PU local data variables setup was

achieved by the loader of the system by duplicating the

PU local data section and TOC for each processor in the

system. Each TOC pointer was initially set up to point to

the TOC of the specific processor. Because the glue code

replaces the TOC when doing a transition from one

module to another, each processor is able to access only

its own PU local variables and the shared variables; it

cannot access the PU local data areas of other processors.

In that respect, the concept of using a GOT to address the

PU local data variables is quite similar to the old TOC

concept.

Using the thread local storage (TLS) concept

introduced with GCC 3.3 would have been another

option to handle the PU local data requirements of i390,

but when i390 development for System z9 began, the

GCC 3.3 TLS support was still under development. The

decision was made not to use it for System z9, but rather

to use the GOT concept as a staged approach to open-

source standards for i390 code.

From this description of the PU local data

requirements for i390, it can be seen that the non-PIC

code does not work in this environment because it is not

possible to access PU local data variables, which reside at

Figure 2

Relocations and multiple data area handling in non-PIC mode.

PU local data PU 1

Code  

System global data

glob_z

...
i390_dsp:
...

LARL %Rx, local_i

LARL %Rz, glob_z  

 

PU local data PU 0

local_i (on PU 0)
@ address 0x1000

PU local data PU n

? 

? 

R_
39

0_
PC

32
DB

L

R_
39

0_
PC

32
DB

L

R_
39

0_
PC

32
DB

L

local_i (on PU n)
@ address 0xF000

C. AXNIX ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

200



different addresses for each PU. A relative relocation

from the code (which exists only once in the system) to

multiple data areas (a 1-to-n relocation) is not possible.

As can be seen in Figure 2, one cannot directly (i.e.,

without table lookup) refer to variables local_i on PU 0

and local_i on PU n using the same LARL instruction

because these variables are stored at different machine

addresses.

On the other hand, the PIC code reloads the GOT

pointer in the prolog of each function. This method does

not support the concept of multiple GOTs because it is

not possible to load a different GOT pointer for each

processor from the function prolog. The function prolog

exists only once in the system, that is to say, in the code

area, which would again make this a l-to-n relocation,

which is not possible.

To overcome this problem and still use ELF, the GCC

was changed so that it does not set the GOT pointer in

the function prolog of the compiled firmware. Instead, the

system sets up the GOT pointer once at system startup.

Having this compiler in place, the i390 code could be

restructured to consist of only a single image instead of

multiple modules.

New i390 ELF loader

The new i390 code format in ELF object file mode, which

consists of only a single image, required a new loader

program for the IML and concurrent i390 code update

process. Figure 4 shows the layout of the i390 code ELF

object file [9] and how it is mapped into the hardware

system area (HSA) of a System z9. The color code is used

to show which parts of the file are copied into which

Figure 4

i390 ELF file layout and HSA storage layout.

ELF header

PU local data segment 

GOT segment

System global

data segment

Program header table

ELF information

- Section header table

- Sections such as

   symbol table,

   relocation  tables, ...    

Code segment,

read-only data Code/read-only data

System global data

and uninitialized

system global data 

Reserved system

global data

Reserved

PU 0 local data

PU 0 local data and

uninitialized

PU 0 local data 

GOT PU 0 

GOT PU max

GOT PU 1 

ELF header

Program header table

Symbol table 

0 � 40800000

0 � 40801000

Page

boundary

...

Alternate code/

read-only data area 

Alternate GOT PU 0

Alternate GOT PU 1

Alternate GOT PU max 

Alternate symbol table

PU 1 local data and

uninitialized PU 1

local data 

PU max local data and

uninitialized PU max

local data 

Reserved PU 1

local data

Reserved

PU max local data

Relocation tables

PU 0 section

on page

boundary 

PU 1 section

on page

boundary 

PU max

section

on page

boundary 

Figure 3

Relocations and multiple data area handling in i390 code.

GOT PU 1  

Code  

System global data

glob_z

...
i390_dsp:
...

LG %Rx, local_i@GOT

LG %Rz, glob_z@GOT

R_390_GOT20

R_
39
0_
GO
TP
CD
BL

R_
39

0_
GO

T2
0

R_390_64

GOT PU 0  

PU local data PU 0

local_i (on PU 0)

_main_stack

main_entry:
LARL, %R12, _GOT
.LC1   .quad  I390_DSP
LARL %R15, _main_stack

local_i@GOT
glob_z@GOT 

PU local data PU n

local_i (on PU n)

_main_stack

main_entry:
LARL, %R12, _GOT
.LC1   .quad  I390_DSP
LARL %R15, _main_stack

GOT PU n

local_i@GOT
glob_z@GOT

R_390_PC32DBL

R_390_64

R_
39
0_
64

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 C. AXNIX ET AL.

201



locations in memory (e.g., the orange shows the location

of the GOT section in the file, and how it is copied

multiple times into memory).

IML loader operation

The ELF file header and program header table are left

unchanged in HSA. The code segment is copied to the

target HSA location, and room for another code segment

is allocated for later use as alternate code area for the

concurrent i390 code update process. Then the system

global data area is copied from the i390 code load file to

HSA and extended by as many zero bytes as needed to

hold the uninitialized portion of system global data,

which is not contained in the ELF code load file. At

the end of the system global data area, some extra space

is reserved for new system global data variables that

are introduced with a new i390 code load during the

concurrent application of i390 code. Following this area,

the GOT section is copied, and room for an alternate

GOT section is reserved. The PU local data area section

is also copied and extended as needed to hold the

uninitialized PU local data variables, with space reserved

at the end to support new PU local data variables. The

primary and alternate GOT and PU local data areas

are then duplicated for every processor in the system.

Following these data areas, ELF control structures

needed for i390 loader operation, such as the symbol

table and relocation tables, are copied.

The access from the code to the data is accomplished

by looking up the address of a variable in the GOT. The

System z ELF application binary interface [10] defines

general-purpose register (GPR) 12 as the GOT pointer.

This pointer is initially loaded into GPR 12 by the i390

runtime environment, which resides in the PU local data

sections. A System z processor enters i390 mode by means

of a special restart interruption using an i390 restart new

program status word that is set up by the i390 loader to

point to the runtime environment of that processor. Since

the runtime environment resides in the PU local data

section (main_entry in Figure 3), it exists once per

processor and can load the correct GOT pointer for this

processor into GPR 12 using a LARL instruction. To

allow each processor to access its own PU local data

variables, the addresses of data variables in the GOTs for

each processor have to be updated by the i390 loader

to reflect the correct PU local data address for each

processor. Figure 3 shows the most important relocations

in i390 code that illustrate the IML loader operation and

i390 code structure, as described above.

Concurrent i390 code update

Concurrent microcode update is an important

characteristic of System z systems. It means that code

fixes and updates can be installed and activated

concurrently with normal system operation while

operating systems and customer applications continue to

run. Concurrent i390 code update is accomplished by

copying the new i390 code section in the alternate code

section (reserved during IML) while preserving the old

i390 static data variables that reflect the state of the

system. To make this work, the concurrent i390 loader

has to update the references from the new code to

correctly point to the old static data variables. In the PIC

mode, there are no direct references between code and

data; all references are done indirectly via the GOT. Thus,

the loader has only to copy the new GOT that comes with

the new code into the alternate GOT areas for each

processor and then update the data addresses in the new

GOT to point to the corresponding old data variables. All

required updates and relocations are performed in a

background process concurrently with normal system

operation. When this process is finished, the system is

synchronized and switched to the new code load.

Support for adding static data variables

A considerable restriction for concurrent i390 code

update prior to the advent of System z9 was that it

was not possible to add new data variables during this

process. The layout of the static data areas could not be

changed, and the data areas could not be extended. This

prohibited the concurrent addition of new functionality,

which typically requires new control data.

The System z9 concurrent loader introduced support

for adding new data variables concurrently, as follows.

The loader compares the symbol table of the new code

load with the existing symbol table to identify new data

variables that are introduced with the new code load.

When a new data variable is found, it is copied into the

space that was reserved during IML at the end of the

existing data areas. The GOT entry holding the address of

the new variable is already contained in the new GOT

that came with the new code load. Only the content of the

GOT entry has to be corrected to point to the new

location of the variable. There is also initialization

routine support for new variables: Whenever the loader

finds a new variable, it searches for a corresponding

initialization routine, which is identified by a special

naming convention. All identified initialization routines

are called with the highest priority after the switch to

the new code load so that they can perform runtime

initialization of the added variables before the new code

accesses them for the first time. (See [11] for examples of

the ways in which this feature enabled enhanced driver

maintenance and is exploited there.) Similarly, it is now

possible to delete existing static variables that are no

longer needed by the new code load. (See [12] for a more

detailed description of the process of adding and

removing static variables.)

C. AXNIX ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

202



Function pointer support for i390

System z9 now fully supports the use of function pointers

in i390. Function pointers are widely used in high-level

programming languages instead of a procedure name

literal string to refer to a specific procedure. They

allow decoupling and modularization of code and ease

the addition of new functionality into already existing

computer systems. They do this, for example, by allowing

registration of a new function at a base service provider

such as a function recovery manager or communication

handler service, or by providing support for procedure

callback.

However, prior to the advent of System z9, there was

no real concurrent i390 code update support for function

pointers in i390. The problem was that function pointers

are basically just addresses that can be stored anywhere

in the i390 data areas. The concurrent loader had no

knowledge of the locations of these function pointers, nor

did it know how many of them existed. There were no

relocation table entries that showed the relationship of a

function pointer to the corresponding target procedure.

After a concurrent i390 code update, the addresses of

target procedures of function pointers changed, but the

concurrent loader could not correct the function pointers

because it was not able to find them. Figure 5(a)

illustrates this problem.

To overcome this restriction, the concept of smart

function pointers was introduced [13] [Figure 5(b)]. Smart

function pointers are not just data structures that contain

the target procedure address, like plain function pointers;

instead, they are generated by the GPL8 compiler as a

data structure that contains a relative branch instruction

to the target procedure. It is important that the smart

function pointers are part of the data section (not the

code or the GOT section of the i390 code load) because

they must be preserved across concurrent i390 code

updates. The fact that smart function pointers are located

in the data section differentiates them from the procedure

linkage table stubs that are used by Linux. In Linux, the

procedure linkage table stubs exist in the GOT section,

which is replaced during concurrent patch. By using a

relative branch instruction for the smart function

pointers, a relocation entry is generated in the ELF

relocation tables for each of the pointers, which can be

used by the concurrent loader to identify all locations in

the data area that have to be updated when the address of

a target procedure of a smart function pointer changes.

Since this update is part of the normal concurrent loader

operation, no special code had to be added in the loader

to support concurrent i390 code update for i390 function

pointers.

Outlook

The work described in this paper is being continued for

future generations of the zSeries. The agenda includes

such topics as the following:

� Updating the GPL8 compiler to be based on GCC 4.1:

The new version of the GCC family includes support

for the new instructions introduced with the

System z9, such as the add fullword immediate

instruction, which improves the performance of

thread local storage accesses. Using this compiler,

one can consider using the thread local storage

instead of the GOT concept for the PU local storage

accesses. It is also quite interesting that, since the

introduction of GCC 4.0, a new brand of compiler

optimizations are being added at the middle end.

Before, all of the optimizations were performed at

the level of machine instructions (Register Transfer

Language trees) where much of the information

about the original code structure was no longer

available. These so-called general optimizer

improvements should help to make i390 code faster

and smaller without extra work at the PL8 front end.

� Supporting Cþþ for i390 development: With the latest

versions of GCC, the compiler has fewer dependencies

on external libraries. With GCC 4.0, it is already

possible to write Cþþ programs that do not have any

Figure 5

Concurrent i390 code update: (a) plain function pointers; (b) 

smart function pointers. 

Old code 
...
foo:
... 

Data

Variable containing function pointer foo

New code
...
foo':
...

Function descriptor area 

function_descriptor .G.foo:
jg     foo  

Old code 

...
foo: 
...

Data

Variable containing function pointer foo

New code

...
foo':
...

(a)

(b)

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 C. AXNIX ET AL.

203



call to Glibc, thus allowing the use of Cþþ for i390

development. Using Cþþ offers multiple advantages:

Among others, it is an object-oriented language that

allows the use of new programming paradigms, it

can be used as a more robust C compiler with array

boundary checks and linker-type checks, and it

supports templates.
� Integrated Development Environment (IDE) for i390

development: The current development requires the

use of separate tools for the different tasks: SCons to

build the targets, CVS to store the source code, dump-

extractor to analyze the memory dumps, and so on.

As a result, each developer must first be aware of the

existence of the different tools, then understand the

possibilities each one offers, and then learn how to use

them (which generally implies writing text commands

in a Linux console). This could be made easier by

providing an IDE for microcode development. The

open-source platform-independent Eclipse framework

is being considered. Eclipse might be extended to add

support for writing in PL8, compiling code, CVS

inspection, and debugging.
� Code measurements: Many code-measurement tools

are available, but in the past not all of them have been

supported for the PL8 language. Using GCC allowed

the introduction of code coverage measurements for

PL8 with GCOV. The next GPL8 compiler will

provide even more support for software metrics.

Apart fromMcCabe’s Cyclomatic Complexity [14, 15]

and Halstead’s Metrics [16], we will survey metrics

that are PL8-specific or indicate code figures regarded

as error-prone within firmware development.

Conclusion

It has been shown that compiler development within a

firmware department allows quick responses to changed

requirements and the ability to quickly implement

improvements and new features needed for high-quality

firmware development. Moving to a Linux-based

development environment eliminates the need for

proprietary tools and makes it possible to utilize industry-

standard toolsets and open-source software verified by

a large user community. This also makes the i390

development environment much more attractive,

especially to new colleagues when they begin working at

IBM. Introducing the new ELF loader eliminated severe

restrictions in the area of concurrent i390 code update

and allowed us to significantly enhance continuous

availability for our customers by creating features such as

enhanced driver maintenance. On the basis of the agenda

described in the Outlook section, we can conclude that

there will be many more improvements to come.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation in the United States,
other countries, or both.

**Trademark, service mark, or registered trademark of Linus
Torvalds, Red Hat, Inc., Python Software Foundation, The Open
Group, or Lenovo in the United States, other countries, or both.

References
1. J. von Buttlar, H. Böhm, R. Ernst, A. Horsch, A. Kohler,

H. Schein, M. Stetter, and K. Theurich, ‘‘z/CECSIM: An
Efficient and Comprehensive Microcode Simulator for the
IBM eServer z900,’’ IBM J. Res. & Dev. 46, No. 4/5, 607–615
(2002).

2. GCC Online Documentation; see http://gcc.gnu.org/
onlinedocs/.

3. D. Edelsohn, W. Gellerich, M. Hagog, D. Naishlos, M.
Namolaru, E. Pasch, H. Penner, U. Weigand, and A. Zaks,
‘‘Contributions to the GNU Compiler Collection,’’ IBM Syst.
J. 44, No. 2, 259–278 (2005).

4. W. Gellerich, T. Hendel, R. Land, H. Lehmann, M. Mueller,
P. H. Oden, and H. Penner, ‘‘The GNU 64-Bit PL8 Compiler:
Toward an Open Standard Environment for Firmware
Development,’’ IBM J. Res. & Dev. 48, No. 3/4, 543–556
(2004).

5. IBM Corporation, zArchitecture Principles of Operation
(SA22-7832-04); see http://www-03.ibm.com/servers/eserver/
zseries/zos/bkserv/r7pdf/zarchpops.html.

6. The SCons Foundation; see www.scons.org.
7. Python Software Foundation, The Python Programming

Language; see www.python.org.
8. J. R. Levin, Linkers and Loaders, Morgan Kaufmann

Publishers, San Francisco, CA, 2000; ISBN 1-55860-496–0.
9. ELF-64 Object File Format, Version 1.5, Draft 2, May 27,

1998; see http://downloads.openwatcom.org/ftp/devel/docs/
elf-64-gen.pdf.

10. IBM Corporation, zSeries ELF Application Binary Interface
Supplement; see http://www.freestandards.org/spec/ELF/
zSeries/lzsabi0_zSeries.html.

11. A. Muehlbach, B. D. Valentine, D. Immel, M. S. Bomar, and
T. V. Bolan, ‘‘Concurrent Driver Upgrade: Method to
Eliminate Scheduled System Outages for New Function
Releases,’’ IBM J. Res. & Dev. 51, No. 1/2, 185–193
(2007, this issue).

12. C. Axnix, H. Penner, and M. Mueller, ‘‘Method and System
for Applying Patches to a Computer Program Concurrently
with Its Execution,’’ U.S. Patent Application No.
DE920040070US1, March 10, 2006.

13. C. Axnix, H. Penner, and M. Mueller, ‘‘Method and System
for Generating and Applying Patches to a Computer Program
Concurrently with Its Execution,’’ U.S. Patent Application
No. DE920050025US1, June 21, 2006.

14. T. J. McCabe and A. H. Watson, ‘‘Software Complexity,’’
Crosstalk 7, No. 12, 5–9 (1994).

15. T. J. McCabe and C. W. Butler, ‘‘Design Complexity
Measurement and Testing,’’ Commun. ACM 32, No. 12,
1415–1425 (1989).

16. M. H. Halstead, Elements of Software Science (Operating and
Programming Systems Series), Elsevier Science, Inc., New
York, 1977; ISBN 0444002057.

Received March 10, 2006; accepted for publication

C. AXNIX ET AL. IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007

204

May 1, 2006; Internet publication December 6, 2006



Christine Axnix IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (caxnix@de.ibm.com). Ms. Axnix is a
Senior Engineer in zSeries processor firmware development. She
received the Dipl. Ing. degree in electrical engineering from the
Berufsakademie, Stuttgart, Germany. In 1989 she joined the IBM
development laboratories in Boeblingen, where she initially worked
on S/390* processor and coupling architecture verification test
programs. She has also worked on various S/390 and zSeries
projects in the i390 code area, including hardware initialization
and reset, the communication interface between support element
and CEC, capacity on demand, and initial firmware load and
concurrent firmware maintenance for System z9. Ms. Axnix is
currently leading the design for the capacity-on-demand functions
for the IBM System z9 follow-on project.

Torsten Hendel IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (hendelt@de.ibm.com). Mr. Hendel studied
software engineering at the University of Stuttgart and graduated
with an M.A. degree in computer science. He works in zSeries
processor firmware development in the areas of i390 kernel
functions, virtualization, and SCLP. Mr. Hendel is currently the
leader of GPL8 development and has responsibility for the PL8
front end and firmware-specific back end.

Michael Mueller IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (mulm@de.ibm.com). Mr. Mueller is a
Distinguished Engineer responsible for the platform architecture
and design of the reliability, availability, and serviceability of IBM
iSeries*, pSeries*, and zSeries eServers. He studied electrical
engineering at the University of Stuttgart, receiving his Dipl. Ing.
degree in 1985. He joined IBM that same year, working in the
S/370* Product Assurance Test Laboratory at Boeblingen. Mr.
Mueller has held various positions in S/390 microcode
development and system design.

Angel Nuñez Mencias IBM Systems and Technology
Group, IBM Deutschland Entwicklung GmbH, Schoenaicherstrasse
220, 71032 Boeblingen, Germany (anunez@de.ibm.com).
Mr. Nuñez Mencias received an Ingenieur degree in
telecommunications from the Polytechnic University of Madrid
and an M.S. degree in electrical engineering and computer science
from the University of Stuttgart in 2004. He completed an M.B.A.
degree from the National University of Distance Education in
2005. He joined IBM in 2002 and has worked on i390-related
projects, including the ELF loader and the GPL8 compiler.

Hartmut Penner IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (hpenner@de.ibm.com). Mr. Penner studied
computer science at the University of Kaiserslautern and
graduated in 1996 with an M.S. degree, joining IBM that same
year. He worked on the development of the zSeries back end for
GCC and is working on the Linux port for zSeries. Mr. Penner is
currently working on a firmware stack for high-volume power
systems.

Stefan Usenbinz IBM Systems and Technology Group, IBM
Deutschland Entwicklung GmbH, Schoenaicherstrasse 220, 71032
Boeblingen, Germany (usenbinz@de.ibm.com). Mr. Usenbinz is an
Advisory Engineer in zSeries Processor Firmware Development.
After studying at the University of Cooperative Education
Stuttgart, he became a graduate engineer and joined the IBM
development laboratories in Boeblingen in 1997. He has worked in
the area of RAS and is currently leading the design for the service
element–CEC communication interface for the next-generation
zSeries systems.

IBM J. RES. & DEV. VOL. 51 NO. 1/2 JANUARY/MARCH 2007 C. AXNIX ET AL.

205


