Subject index for papers in Volume 50

Each index entry below is accompanied by an author's name and a page number; the author index contains the title of the paper and the names of coauthors, if any.

Subject	Author	Page	The Pathway Editor: A tool for		
Algorithms An approximation to the greedy			managing complex biological networks	Sorokin	561
algorithm for differential compression Braids and fibers: Language constructs with architectural support for	Agarwal	149	Carrier transport Germanium channel MOSFETs: Opportunities and challenges	Shang	377
adaptive responses to memory latencies Machine learning methods for	Bacon	209	Carrier transport in small structures Continuous MOSFET performance		
transcription data integration Self-adapting numerical software	Holloway	631	increase with device scaling: The role of strain and channel material innovations	Antoniadis	363
(SANS) effort	Dongarra	223		rintomadis	505
Arrays Design considerations for MRAM Biology and biomedical studies	Maffitt	25	Circuit and device technology High-performance CMOS variability in the 65-nm regime and beyond Limited switch dynamic logic circuits	Bernstein	433
A spatially detailed myofilament model as a basis for large-scale biological			for high-speed low-power circuit design Optimizing CMOS technology	Belluomini	277
simulations An assessment of the role of computing	Hussan	583	for maximum performance Silicon CMOS devices beyond scaling	Frank Haensch	419 339
in systems biology Computational multiscale modeling in	Burbeck	529	Three-dimensional integrated circuits Ultralow-voltage, minimum-energy	Topol	491
the IUPS Physiome Project: Modeling cardiac electromechanics Graph data management for molecular	Nickerson	617	CMOS	Hanson	469
and cell biology Machine learning methods for	Eckman	545	CMOS Advanced high- κ dielectric stacks with		
transcription data integration Model-based design approaches in drug discovery: A parallel to traditional	Holloway	631	polySi and metal gates: Recent progress and current challenges Emerging nanoscale silicon devices taking advantage of nanostructure	Gusev	387
engineering approaches Multiscale biosystems integration:	Schoeberl	645	physics High-performance CMOS variability	Hiramoto	411
Coupling intracellular network analysis with tissue-patterning			in the 65-nm regime and beyond Limited switch dynamic logic circuits	Bernstein	433
simulations The Pathway Editor: A tool for	Peirce	601	for high-speed low-power circuit design	Belluomini	277
managing complex biological networks Visualization of complementary systems	Sorokin	561	Optimizing CMOS technology for maximum performance Product-representative "at speed" test	Frank	419
biology data with parallel heatmaps	Podowski	575	structures for CMOS characterization Silicon CMOS devices beyond scaling	Ketchen Haensch	451 339
Biotechnology A spatially detailed myofilament model as a basis for large-scale biological			Ultralow-voltage, minimum-energy CMOS	Hanson	469
simulations An assessment of the role of computing	Hussan	583	Compilers and interpreters Systems research challenges: A scale-out		
in systems biology	Burbeck	529	perspective	Agerwala	173
Computational multiscale modeling in the IUPS Physiome Project: Modeling	NT 1	617	Computation An approximation to the greedy		
cardiac electromechanics Machine learning methods for	Nickerson	617	algorithm for differential compression	Agarwal	149
transcription data integration Multiscale biosystems integration: Coupling intracellular network	Holloway	631	Computational methods Machine learning methods for transcription data integration	Holloway	631
analysis with tissue-patterning simulations	Peirce	601	Self-adapting numerical software (SANS) effort	Dongarra	223

Computer applications Building web services for scientific grid applications	Kandaswamy	249	Dielectrics Advanced high- κ dielectric stacks with polySi and metal gates: Recent		207
Computer architecture Application of full-system simulation in exploratory system design and			progress and current challenges Drug design Model-based design approaches in drug	Gusev	387
development Decomposing the load–store queue by function for power reduction	Peterson	321	discovery: A parallel to traditional engineering approaches	Schoeberl	645
and scalability IBM Intelligent Bricks project—	Baugh	287	Electroluminescence Highly efficient room-temperature tunnel spin injector using		
Petabytes and beyond Reliability of modular mesh-connected	Wilcke	181	CoFe/MgO(001)	Jiang	111
intelligent storage brick systems Systems research challenges: A scale-out	Fleiner	199	Error detection and correction		
perspective Computer organization and design	Agerwala	173	HeapMon: A helper-thread approach to programmable, automatic, and low-overhead memory bug detection	Shetty	261
Application of full-system simulation in exploratory system design and development	Peterson	321	Fault tolerance IBM Intelligent Bricks project— Petabytes and beyond	Wilcke	181
Decomposing the load–store queue by function for power reduction			Films, magnetic	WIICKE	101
and scalability	Baugh	287	Two-level BEOL processing for rapid	G : 11	4.
IBM Intelligent Bricks project— Petabytes and beyond	Wilcke	181	iteration in MRAM development	Gaidis	41
Reliability of modular mesh-connected intelligent storage brick systems Systems research challenges: A scale-out	Fleiner	199	Films, semiconductor Continuous MOSFET performance increase with device scaling: The		
perspective Victim management in a cache	Agerwala	173	role of strain and channel material innovations	Antoniadis	363
hierarchy	Franaszek	507	Geonomic and proteomic analysis		
Computer system availability IBM Intelligent Bricks project—			Model-based design approaches in drug discovery: A parallel to traditional		
Petabytes and beyond	Wilcke	181	engineering approaches	Schoeberl	645
Reliability of modular mesh-connected intelligent storage brick systems	Fleiner	199	Visualization of complementary systems biology data with parallel heatmaps	Podowski	575
Computing, grid Building web services for scientific grid			Graph theory Graph data management for molecular		
applications	Kandaswamy	249	and cell biology	Eckman	545
Cooling IBM Intelligent Bricks project— Petabytes and beyond	Wilcke	181	Graphics The Pathway Editor: A tool for managing complex biological		
Data, structures and accessing		101	networks	Sorokin	561
Graph data management for molecular and cell biology Visualization of complementary systems	Eckman	545	Hall effect Toward dissipationless spin transport in semiconductors	Bernevig	141
biology data with parallel heatmaps	Podowski	575	Insulators	Bernevig	141
Databases, relational Graph data management for molecular and cell biology	Eckman	545	Advanced high- κ dielectric stacks with polySi and metal gates: Recent progress and current challenges	Gusev	387
Device design			Integrated circuit design		
Application of full-system simulation in exploratory system design and			Optimizing CMOS technology for maximum performance	Frank	419
development Decomposing the load–store queue	Peterson	321	Ultralow-voltage, minimum-energy CMOS	Hanson	469
by function for power reduction and scalability	Baugh	287	Integrated circuits Three-dimensional integrated circuits	T1	401
Design considerations for MRAM Development of the magnetic tunnel	Maffitt	25	Interconnection technology	Topol	491
junction MRAM at IBM: From first junctions to a 16-Mb MRAM			Two-level BEOL processing for rapid	0.11	41
demonstrator chip Modeling wire delay, area, power,	Gallagher	5	iteration in MRAM development Interfaces	Gaidis	41
and performance in a simulation	Carta	211	Continuous MOSFET performance		
infrastructure Spintronics—A retrospective and	Carter	311	increase with device scaling: The role of strain and channel material		
perspective	Wolf	101	innovations	Antoniadis	363

The Pathway Editor: A tool for managing complex biological networks	Sorokin	561	adaptive responses to memory latencies HeapMon: A helper-thread approach to	Bacon	209
Junctions Rapid-turnaround characterization			programmable, automatic, and low- overhead memory bug detection Victim management in a cache	Shetty	261
methods for MRAM development Single-domain model for toggle MRAM	Abraham Worledge	55 69	hierarchy	Franaszek	507
Large-scale computing Decomposing the load–store queue by function for power reduction	D 1	207	Memory (computer) management Braids and fibers: Language constructs with architectural support for adaptive responses to memory		
and scalability Limited switch dynamic logic circuits for high-speed low-power circuit	Baugh	287	latencies Victim management in a cache	Bacon	209
design	Belluomini	277	hierarchy Memory, cache	Franaszek	507
Logic design and technology Decomposing the load–store queue by function for power reduction	Dough	207	High-quality ISA synthesis for low- power cache designs in embedded microprocessors	Cheng	299
and scalability Limited switch dynamic logic circuits for high-speed low-power circuit	Baugh	287	Victim management in a cache hierarchy	Franaszek	507
design	Belluomini	277	Memory, random-access Development of the magnetic tunnel		
Magnetic random access memory (MRAM) Design considerations for MRAM Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM	Maffitt	25	junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip Microprocessor systems and applications	Gallagher	5
demonstrator chip Rapid-turnaround characterization	Gallagher	5	Application of full-system simulation in exploratory system design and	Peterson	321
methods for MRAM development Single-domain model for toggle MRAM Spin angular momentum transfer in	Abraham Worledge	55 69	development Decomposing the load—store queue by function for power reduction	reterson	321
current-perpendicular nanomagnetic junctions	Sun	81	and scalability Modeling wire delay, area, power, and performance in a simulation	Baugh	287
Spintronics—A retrospective and perspective Two-level BEOL processing for rapid	Wolf	101	infrastructure	Carter	311
iteration in MRAM development Magnetics—studies and structures	Gaidis	41	Models and modeling A spatially detailed myofilament model as a basis for large-scale biological		502
Bipolar spintronics: Fundamentals and applications Development of the magnetic tunnel	Žutić	121	simulations Application of full-system simulation in exploratory system design and	Hussan	583
junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip	Gallagher	5	development Computational multiscale modeling in the IUPS Physiome Project: Modeling	Peterson	321
Highly efficient room-temperature tunnel spin injector using	C		cardiac electromechanics Model-based design approaches in drug	Nickerson	617
CoFe/MgO(001) Rapid-turnaround characterization methods for MRAM development	Jiang Abraham	111 55	discovery: A parallel to traditional engineering approaches Modeling wire delay, area, power,	Schoeberl	645
Single-domain model for toggle MRAM Spin angular momentum transfer in current-perpendicular nanomagnetic	Worledge	69	and performance in a simulation infrastructure Multiscale biosystems integration:	Carter	311
junctions Magnetoresistance	Sun	81	Coupling intracellular network analysis with tissue-patterning simulations	Peirce	601
Spintronics—A retrospective and perspective	Wolf	101	Single-domain model for toggle MRAM Molecular structure modeling	Worledge	69
Manufacturing Product-representative "at speed" test structures for CMOS characterization	Ketchen	451	A spatially detailed myofilament model as a basis for large-scale biological simulations	Hussan	583
Mathematical functions and techniques Machine learning methods for	11-11	(21	Multimedia Three-dimensional integrated circuits	Topol	491
transcription data integration Memory (computer) design and technology Braids and fibers: Language constructs	Holloway	631	Nanoscale structures and devices Emerging nanoscale silicon devices taking advantage of nanostructure		
with architectural support for			physics	Hiramoto	411

Spin angular momentum transfer in current-perpendicular nanomagnetic junctions	Sun	81	Toward dissipationless spin transport in semiconductors	Bernevig	141
Numerical integration Self-adapting numerical software			Silicon Optimizing CMOS technology for maximum performance	Frank	419
(SANS) effort	Dongarra	223	Ultralow-voltage, minimum-energy CMOS	Hanson	469
Operating systems Systems research challenges: A scale-out perspective	Agerwala	173	Silicon–germanium Continuous MOSFET performance increase with device scaling: The		
Parallel processing Systems research challenges: A scale-out perspective	Agerwala	173	role of strain and channel material innovations Germanium channel MOSFETs: Opportunities and challenges	Antoniadis Shang	363 377
Performance analysis Optimizing CMOS technology for maximum performance Performance and environment	Frank	419	Silicon-on-insulator (SOI) Germanium channel MOSFETs: Opportunities and challenges	Shang	377
monitoring for continuous program optimization	Caşcaval	239	Simulation		
Product-representative "at speed" test structures for CMOS characterization	Ketchen	451	A spatially detailed myofilament model as a basis for large-scale biological simulations	Hussan	583
Physics, solid state Bipolar spintronics: Fundamentals and applications Emerging nanoscale silicon devices	Žutić	121	An assessment of the role of computing in systems biology Application of full-system simulation in exploratory system design and	Burbeck	529
taking advantage of nanostructure	Hiramoto	411	development Computational multiscale modeling in	Peterson	321
Silicon CMOS devices beyond scaling Toward dissipationless spin transport in semiconductors	Haensch Bernevig	339 141	the IUPS Physiome Project: Modeling cardiac electromechanics Modeling wire delay, area, power,	Nickerson	617
Power management High-performance CMOS variability in the 65-nm regime and beyond	Bernstein	433	and performance in a simulation infrastructure Multiscale biosystems integration: Coupling intracellular network	Carter	311
High-quality ISA synthesis for low- power cache designs in embedded			analysis with tissue-patterning simulations	Peirce	601
microprocessors Optimizing CMOS technology	Cheng	299	Spintronics		
for maximum performance Ultralow-voltage, minimum-energy	Frank	419	Bipolar spintronics: Fundamentals and applications	Žutić	121
CMOS	Hanson	469	Design considerations for MRAM Development of the magnetic tunnel	Maffitt	25
Process control and development Three-dimensional integrated circuits	Topol	491	junction MRAM at IBM: From first junctions to a 16-Mb MRAM	Callaghan	5
Programming systems High-quality ISA synthesis for low- power cache designs in embedded			demonstrator chip Highly efficient room-temperature tunnel spin injector using	Gallagher	5
microprocessors Performance and environment	Cheng	299	CoFe/MgO(001) Rapid-turnaround characterization	Jiang	111
monitoring for continuous program optimization	Caşcaval	239	methods for MRAM development Single-domain model for toggle MRAM Spin angular momentum transfer in	Abraham Worledge	55 69
Semiconductor devices Silicon CMOS devices beyond scaling	Haensch	339	current-perpendicular nanomagnetic junctions	Sun	81
Semiconductor technology			Spintronics—A retrospective and perspective	Wolf	101
Continuous MOSFET performance increase with device scaling: The			Toward dissipationless spin transport in semiconductors	Bernevig	141
role of strain and channel material innovations Optimizing CMOS technology	Antoniadis	363	Two-level BEOL processing for rapid iteration in MRAM development	Gaidis	41
for maximum performance Ultralow-voltage, minimum-energy	Frank	419	Testing HeapMon: A helper-thread approach to		
CMOS	Hanson	469	programmable, automatic, and low- overhead memory bug detection	Shetty	261
Semiconductors Highly efficient room-temperature tunnel spin injector using CoFe/MgO(001)	Jiang	111	Testing, chip Rapid-turnaround characterization methods for MRAM development	Abraham	55

Two-level BEOL processing for rapid iteration in MRAM development	Gaidis	41
Testing, circuit Product-representative "at speed" test structures for CMOS characterization	Ketchen	451
Transistors Optimizing CMOS technology for maximum performance Ultralow-voltage, minimum-energy	Frank	419
CMOS	Hanson	469
Transistors, bipolar Bipolar spintronics: Fundamentals and applications	Žutić	121
Web services Building web services for scientific grid applications	Kandaswamy	249