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Model-based design (MBD) has been successfully applied in the
automotive, chemical, and aerospace industries. Here we discuss
the possible application of engineering-based MBD approaches to
drug discovery. One of the biggest challenges in drug discovery
is the high attrition rate of new drugs in development: Many
promising candidates prove ineffective or toxic in animal or human
testing. More often than not, these failures are the result of a poor
understanding of the molecular mechanisms of the biological
systems they target. Recent advances in biological systems
modeling make MBD an attractive approach to improve drug
development. We elaborate on the view that the pharmaceutical
industry should be able to use MBD to design new drugs more
effectively. There are significant differences between drug discovery
and traditional engineering that lead to specific MBD
requirements. We delineate those differences and introduce
suggestions to overcome them.

Introduction

One of the promises of systems biology is that the

systems-level understanding of biological pathways and

processes will allow for ‘‘smarter’’ drug development, as

described by Aksenov et al. [1], Apic et al. [2], and Nielsen

and Schoeberl [3]. The optimal therapeutic approach

and drug design are selected on the basis of a detailed

understanding of the drug mechanism of action, which

results in targeted therapeutics with higher efficacy and

fewer side effects. To achieve this goal, there is a need for

model-based drug design that allows for the rapid in silico

identification of the ‘‘optimal’’ target and identifies the

best mechanism of action (MOA)—e.g., small molecule

compared with antibody therapy, optimal inhibitor

affinity, target ligand or receptor, possible induction of

receptor internalization and degradation, and so forth.

In broad terms, successful model construction and

rapid application by research teams requires systematic

methods of building, annotating, analyzing, maintaining,

and sharing these mathematical models. Further,

successful models must bridge a virtual organizational

gap by facilitating their use by experimentalists as well as

by model creators.

Mathematical models of dynamic systems have long

been used in the automobile, chemical, and other

industries to support model-based component design and

plant control. The day when the pharmaceutical industry

can test a drug against a computational model with a high

degree of confidence may arrive in the not-too-distant

future. The computational approach is building

momentum in the pharmaceutical industry and is already

beginning to yield results. Mathematical models of

relatively small signal transduction or metabolic networks
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could be the first building blocks in the systems

integration of many models into a more comprehensive,

higher-fidelity model—possibly even a multicell, full-

organ, or full-body model.

There are methodologies and tools that support model

construction, parameterization, aggregation, validation,

and analysis. The automotive, chemical, semiconductor,

and aerospace industries have been leaders in the

application of model-based design (MBD) tools and

have experienced significant improvement in design and

shortened product development cycles based on their use.

However, there is a key fundamental difference between

modeling biological systems and modeling engineered

systems: the former is a reverse-engineering task.

Here we examine the applicability of mathematical

modeling methodologies and tools to the drug

development process. Although the modeling approaches

used in MBD have previously been applied in other

industries, the challenges faced by drug companies using

model-based design are more complex. One implication

is that most of the kinetic parameters and species

concentrations are unknown. More generally, the

challenges include the extreme ‘‘stiffness’’ of these

biochemical models, the high number of undetermined

parameters, the difficulty of use for modelers and

experimentalists, and the fact that model documentation

and annotation based on prior knowledge from literature

requires specialized software that combines the

methodology and knowledge gained in other areas.

Model-based design and model-based drug
design
In the early 1990s, industries such as automotive and

aerospace began to use software tools that facilitated the

construction and application of models. More than a

decade later, a complete MBD methodology has become

standard for the construction and application of models

in various design and development activities.

Figure 1
Model-based design scheme of an automatic transmission for an automobile. Black: Continuous sampling (differential equations); red: 
fastest discrete sample time in the model; blue: hybrid sample times (a submodel containing blocks running at multiple sample times).
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Model-based drug design scheme for an anticancer drug.
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Figure 1 shows a model of an automobile transmission

design using MBD. The model is composed of submodels

that represent the vehicle, transmission, engine, and

controller, which itself consists of the shift logic and shift

point (depicted as threshold) calculation. On the basis of

the driver’s input (i.e., brake or accelerator), the model

can be used to optimize system performance by shifting

gears to maintain the operation of the engine at

maximum fuel efficiency. Once the desired performance

is obtained, the controller (shown in the figure as the

shift logic and threshold calculation blocks) can be

implemented automatically via code generation and

tested, validated, and deployed on an embedded system.

In the case of model-based drug design (MBDD), the

objective is to identify the protein that will be targeted by

the novel drug and its best MOA. In contrast to the top-

down approach typically used in engineering, a bottom-

up strategy is favored in the early stages of the drug

design process. The critical networks implicated in the

disease of interest are initially identified and reverse-

engineered ( pathway capture). Well-known signaling or

metabolic pathways can be reconstructed on the basis of

literature knowledge, and network inference methods

(e.g., Bayesian networks) can be applied to reverse-

engineer protein interaction or gene networks from large

datasets of protein or gene datasets, as elucidated by

Kholodenko et al. [4], Sachs et al. [5], and Needham et al.

[6]. The resulting model can then be used to identify drug

targets and determine the optimal MOA. After an initial

validation with wet-lab experiments and model tuning,

the submodel can be used in the assembly of a more

encompassing model that accounts for pharmacokinetic

and pharmacodynamic effects (PK/PD), as depicted in

Figure 2. The final model, encompassing both signaling

pathway models and PK/PD models, can later be applied

in the clinic to identify responders (patient stratification).

However, all-encompassing models for MBDD, such

as the one shown in Figure 2, remain only a vision.

Submodels such as PK/PD models and signaling pathway

models are already being applied in the pharmaceutical

industry [7, 8].

The MBD and MBDD design processes are shown in

Figure 3. The first step in the construction of a model is to

gather the model requirements. It is important to define

the questions that the model should address and the

information available to support the model construction.

Throughout this activity, the model functions as a

knowledge aggregator by accumulating the collective

information known about the physical system and its

decomposition into subunits. The model may be

incomplete at this point, but through an iterative

process between model simulations and experiments, the

knowledge gaps can be filled during the design process. In

Figure 3, the highly iterative process is depicted by

double-ended arrows comparing the model with

experiments in each step of the MBDD. This is in

contrast to the traditional process of gathering

requirements in written specifications and building

Figure 3
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simulations by writing software code. While written

specifications serve as static pieces of information for the

various stages of development, the model aggregates

information and requirements across teams.

It has been well established that the MBD

methodology has been successful in facilitating large-

system design and in reducing development cycles. It has

proven useful in concentrating system knowledge on a

single model and in facilitating model aggregation

through the reuse of component models. A comparison of

activities in the engineering and the drug development

processes, as summarized in Table 1, outlines ways in

which the methodology can be applied and highlights

areas in which new tools are needed to increase the

applicability of MBD to problems and challenges in drug

discovery.

Model decomposition—motifs and modularity
A first step in system architecture is to specify its

hierarchical decomposition into submodels and to specify

their interconnectivity. The modular approach allows

large and complex systems to be modeled in a more

manageable and transparent fashion. In addition, each

submodel can be individually built, validated, integrated,

and tested in the full system.

Using an automobile transmission as an example, the

initial model can be built with rough (low-fidelity)

submodels for each component, e.g., the engine,

transmission, and controller, all of which have well-

defined input and output characteristics. During the

development process, specialized teams improve and

refine the submodels individually, increasing the fidelity

of the overall model. Each submodel encapsulates the

current state of the art and is updated with new

knowledge or technology as it becomes available.

Because a submodel encapsulates a distinct part, it can

be reused. For an automatic transmission, the controller

unit can be used in the development process of another

vehicle. The clear definition of the input and output

characteristics of each component is a prerequisite for the

‘‘plug-and-play’’ approach to model building.

Because biological systems are characterized by large

and complex networks, the modular approach appears

to be appropriate. As depicted in Figure 2, this

approach appears to be applicable on the macro level

(tissue–organ–body) because the model components

can be identified by defined inputs and outputs [9–11].

However, on the micro level, where the models account

for protein or gene networks, it becomes difficult to

break the system down into modules. This is the main

difference between applying MBD to engineering and to

biology.

To meet drug design goals, a high-fidelity model of a

cancer cell and the tumor environment is needed, but little

is known about these systems. Therefore, it is difficult to

determine where low-fidelity models would be adequate.

To learn how to adequately approximate the system

behavior, a high-fidelity model is initially required.

Currently, high-fidelity models are obtained by reverse-

Table 1 Comparison of model-based design methodologies applied to engineering and to biology and drug discovery.

Engineering Biology and drug discovery

Modeling strategy Forward-engineered and designed Reverse-engineered and inferred from literature

Modularity and hierarchy Modules are part of the design architecture

and have clear input and output characteristics

� Modules are difficult to ascertain initially
� Modules are discovered via model analysis

Model aggregation Submodels are plug-and-play because of the

clear application programming interface

Variability of inputs and outputs according

to the comprehensiveness of the model makes

model aggregation from submodels difficult

Level of fidelity Level of fidelity is increased as needed to reach

design goals

Key components initially require a high level

of fidelity

Interdisciplinary level Modules are typically built by specific engineering

teams; control engineers work on control logic,

while mechanical engineers work on vehicle model

Interdisciplinary teams are required throughout

the design process because of the need for high

fidelity

Modeling goal Robust controllers and code generation for

verification with embedded systems

Plant model that is able to determine the best

MOA and best drug target

Model parameters Most parameters are directly measurable Many of the model parameters are typically

unknown and estimated with experimental data

Analysis Nonlinear models are used, but linear analysis

methods are established and widely applied

Nonlinear systems analysis tools, bifurcation,

sensitivities, global optimization

Graphical representation Well-established notation No standardized notation yet
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engineering protein or gene networks. However,

depending on the design goal, very detailed submodels

might still be needed to appropriately model the active

mechanism of a particular drug.

In contrast to the engineering case, in which specialized

teams work on submodels, in MBDD interdisciplinary

teams are needed throughout the design methodology

because of the difficulty of defining modules in protein or

gene networks and achieving the required high-level

fidelity obtained by gathering experimental data and

continuously refining the model.

Unlike engineering models, biological submodels do

not have clear input and output characteristics; therefore,

model reuse and aggregation becomes more complex.

Rather than plug-and-play, the relationships among

submodels must be manually edited after several models

have been fused. For example, the mitogen-activated

kinase (MAPK) cascade submodel is ubiquitous in many

signaling pathways, but the nature of the interactions

between it and other submodels—e.g., the

phosphoinositide 3-kinases (PI3Ks) cascade—differs

from pathway to pathway in connectivity and strength.

Instead of plug-and-play, a strategy that uses a rule-based

scheme to create the crosstalk interactions between the

different submodels appears to be more adequate.

An additional complication of model aggregation

arises from the multiple occurrences of network motifs

(e.g., the same kinase or phosphatase) in different

signaling pathways. Thus, the combination of several

signaling pathway models is complicated by uncertainty

as to whether these network motifs use the same protein

pools or are spatially separated by, for example,

scaffolding proteins. This is reflected in the choice of

initial species concentrations (single or multiple pools)

and the value of the kinetic parameters. Experimental

data addressing both issues is needed in order to

parameterize the model appropriately and to obtain high

model fidelity.

As opposed to engineering models, in which most

parameters can be directly measured, kinetic parameters

in biological systems must often be inferred from large

and ‘‘noisy’’ datasets. This step in model refinement is

done with parameter estimation; however, because of the

large number of unknown parameters and the uncertainty

in their values, global optimization techniques are needed

[12]—more so than in engineering.

Model analysis: Drug target identification
Existing techniques such as identification, gain

quantification, sensitivity analysis, and optimal control

are well-developed areas of control theory commonly

applied in engineering. For engineering systems, even

though the models are nonlinear, the operating regions

are generally known. This allows the system to be

linearized and analyzed using linear methods. Because

of the lack of well-characterized operating points in

biological systems, nonlinear analysis methods must be

used, and tools must be developed that can conveniently

facilitate the exploration of model behavior across

parameter space.

Sensitivity analysis is used as a bootstrap method

during model tuning to determine which parameters

should be estimated from experimental data. Given that

these represent the most sensitive nodes of the network,

the same analysis helps to identify the best drug targets

in the system [13, 14]. Because of the broad range of

its parameter values, the nonlinear system can display

a variety of stable and unstable behaviors. Often

bifurcation analysis is used to reveal regions of stability

or instability in the network [15]. This is helpful because

experiments can be specifically designed to observe

interesting nonlinear phenomena predicted by the model.

For instance, Hoffmann et al. [16] have developed a

computational model that accounts for the temporal

control of NF-jB activation by the coordinated

degradation and synthesis of I-jB proteins. The activity

of NF-jB is controlled by three different isoforms of IjB:
a, b, and e. The model predicted that IjBa is responsible

for the fast turn-off, and IjBb and IjBe function to

reduce the system oscillatory potential and stabilize

the NF-jB response. These model predictions were

experimentally confirmed, and Hoffmann et al. showed

that gene expression specificity is achieved by the signal

characteristics (i.e., persistent vs. transient NF-jB
signals). This example shows how bifurcation analysis

serves both to validate the model and to facilitate learning

about unexpected system behavior.

However, it is foreseeable not only that engineering

principles can be applied to biology, but that entirely new

theoretical problems arise when questions in the field of

systems biology are addressed with traditional control

theory [17]. It may be that in the long run, MBD as it

is applied to biological systems may advance the use

of MBD in other industries, and vice versa.

Graphical representation: Pathway
representation
The graphical language used to describe the automatic

transmission model example (Figure 1) consists of signals

flowing through the lines in the diagram between the

various system components, represented by blocks. The

mathematical operations represented by the blocks and

the data carried by the signals together represent an

unambiguous mathematical model of the system (such

models typically result in large systems of nonlinear

ordinary differential equations). In addition, the models

are typically hierarchical. For instance, in Figure 1 the
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block representing the state machine for the shifting logic

itself encapsulates lines and blocks that perform its

function. Thus, the modeler can quickly build models

by graphically adding blocks that contain underlying

mathematical models. This speeds up the model-building

process and makes it less error-prone. The semantics of

the graphical language are well defined and widely used in

control engineering. Other engineering domains (e.g.,

mechanical, electrical, and hydraulic) also have well-

defined graphical notation that is useful in specifying

models and communicating model architecture. An

important aspect of these semantics is that they are

capable of fully and unambiguously describing the

mathematical model underlying the diagram.

Biologists use less standardized symbols to describe

biological pathways—i.e., lines are used to represent

interactions between species, and blocks are used to

represent species and their concentration. Combinatorial

complexity arising from protein complex formation is not

accounted for in traditional graphical representations.

Conventions are beginning to appear (e.g., those

published by Kohn [18], Maimon and Browning [19], and

Kitano et al. [20]) that attempt to uniquely determine the

interaction type and therefore possibly the underlying

mathematics. However, these notations are still far from

the standardized representation used in engineering

disciplines. Current graphical representations of

pathways help interdisciplinary teams to communicate

but do not provide an executable model that can be used

for system simulation.

The granularity and size of protein and gene networks,

in addition to the fact that they are reverse-engineered

from large datasets, call for automatic graphical layout.

Similarly, such models are often composed of hundreds

to thousands of species, making manual graphical

construction and representation of the model almost

impossible.

Summary
About ten years ago, the first mathematical models

of signal transduction were published. These began

with subsystems in order to obtain a quantitative

understanding of processes such as receptor trafficking

[21], the signal transfer behavior of the MAPK cascade

[22], or larger models of signaling pathways [13, 23, 24].

The success of model construction and parameterization

was demonstrated by their experimental validation and

created interest in the drug discovery industry.

With the sequencing of the human genome and an

increased knowledge of the individual proteins that make

up cellular pathways, the pharmaceutical industry has

focused increasingly on individual molecules as targets

in their quest for targeted therapeutics. However, this

approach has not yet resulted in the delivery of the first

systems biology drug, nor has it increased the number

of drug approvals or reduced the toxicity of drug

candidates. It is becoming evident that putative protein

targets for drugs must be understood in the greater

biological context in which they are active—molecular

interactions, biochemical pathways, cellular

compartments, tissues, and organs. To do this effectively,

scientists must embrace the notion that biology is

increasingly an engineering-based science and should take

advantage of the proven tools developed in other

engineering-based disciplines. The application of

computational and engineering tools to life sciences

research and drug discovery is beginning to provide a

detailed quantitative understanding of the interactions

occurring within biological systems; it promises to lead

to the development of novel, targeted drugs offering

improved efficacy and safety.
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