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Model-based design (MBD) has been successfully applied in the
automotive, chemical, and aerospace industries. Here we discuss
the possible application of engineering-based MBD approaches to
drug discovery. One of the biggest challenges in drug discovery

is the high attrition rate of new drugs in development: Many
promising candidates prove ineffective or toxic in animal or human
testing. More often than not, these failures are the result of a poor
understanding of the molecular mechanisms of the biological
systems they target. Recent advances in biological systems
modeling make MBD an attractive approach to improve drug
development. We elaborate on the view that the pharmaceutical
industry should be able to use MBD to design new drugs more
effectively. There are significant differences between drug discovery
and traditional engineering that lead to specific MBD
requirements. We delineate those differences and introduce

suggestions to overcome them.

Introduction

One of the promises of systems biology is that the
systems-level understanding of biological pathways and
processes will allow for “smarter” drug development, as
described by Aksenov et al. [1], Apic et al. [2], and Nielsen
and Schoeberl [3]. The optimal therapeutic approach
and drug design are selected on the basis of a detailed
understanding of the drug mechanism of action, which
results in targeted therapeutics with higher efficacy and
fewer side effects. To achieve this goal, there is a need for
model-based drug design that allows for the rapid in silico
identification of the “optimal” target and identifies the
best mechanism of action (MOA)—e.g., small molecule
compared with antibody therapy, optimal inhibitor
affinity, target ligand or receptor, possible induction of
receptor internalization and degradation, and so forth.

In broad terms, successful model construction and
rapid application by research teams requires systematic
methods of building, annotating, analyzing, maintaining,
and sharing these mathematical models. Further,
successful models must bridge a virtual organizational
gap by facilitating their use by experimentalists as well as
by model creators.

Mathematical models of dynamic systems have long
been used in the automobile, chemical, and other
industries to support model-based component design and
plant control. The day when the pharmaceutical industry
can test a drug against a computational model with a high
degree of confidence may arrive in the not-too-distant
future. The computational approach is building
momentum in the pharmaceutical industry and is already
beginning to yield results. Mathematical models of
relatively small signal transduction or metabolic networks
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Model-based design scheme of an automatic transmission for an automobile. Black: Continuous sampling (differential equations); red:
fastest discrete sample time in the model; blue: hybrid sample times (a submodel containing blocks running at multiple sample times).
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could be the first building blocks in the systems
integration of many models into a more comprehensive,
higher-fidelity model—possibly even a multicell, full-
organ, or full-body model.

There are methodologies and tools that support model
construction, parameterization, aggregation, validation,
and analysis. The automotive, chemical, semiconductor,
and aerospace industries have been leaders in the
application of model-based design (MBD) tools and
have experienced significant improvement in design and
shortened product development cycles based on their use.
However, there is a key fundamental difference between
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modeling biological systems and modeling engineered
systems: the former is a reverse-engineering task.

Here we examine the applicability of mathematical
modeling methodologies and tools to the drug
development process. Although the modeling approaches
used in MBD have previously been applied in other
industries, the challenges faced by drug companies using
model-based design are more complex. One implication
is that most of the kinetic parameters and species
concentrations are unknown. More generally, the
challenges include the extreme “stiffness” of these
biochemical models, the high number of undetermined
parameters, the difficulty of use for modelers and
experimentalists, and the fact that model documentation
and annotation based on prior knowledge from literature
requires specialized software that combines the
methodology and knowledge gained in other areas.

Model-based desigh and model-based drug
design

In the early 1990s, industries such as automotive and
aerospace began to use software tools that facilitated the
construction and application of models. More than a
decade later, a complete MBD methodology has become
standard for the construction and application of models
in various design and development activities.
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Comparison of model-based-design methodologies in engineering and drug discovery.

Figure 1 shows a model of an automobile transmission
design using MBD. The model is composed of submodels
that represent the vehicle, transmission, engine, and
controller, which itself consists of the shift logic and shift
point (depicted as threshold) calculation. On the basis of
the driver’s input (i.e., brake or accelerator), the model
can be used to optimize system performance by shifting
gears to maintain the operation of the engine at
maximum fuel efficiency. Once the desired performance
is obtained, the controller (shown in the figure as the
shift logic and threshold calculation blocks) can be
implemented automatically via code generation and
tested, validated, and deployed on an embedded system.

In the case of model-based drug design (MBDD), the
objective is to identify the protein that will be targeted by
the novel drug and its best MOA. In contrast to the top-
down approach typically used in engineering, a bottom-
up strategy is favored in the early stages of the drug
design process. The critical networks implicated in the
disease of interest are initially identified and reverse-
engineered (pathway capture). Well-known signaling or
metabolic pathways can be reconstructed on the basis of
literature knowledge, and network inference methods
(e.g., Bayesian networks) can be applied to reverse-
engineer protein interaction or gene networks from large
datasets of protein or gene datasets, as elucidated by
Kholodenko et al. [4], Sachs et al. [5], and Needham et al.
[6]. The resulting model can then be used to identify drug
targets and determine the optimal MOA. After an initial
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validation with wet-lab experiments and model tuning,
the submodel can be used in the assembly of a more
encompassing model that accounts for pharmacokinetic
and pharmacodynamic effects (PK/PD), as depicted in
Figure 2. The final model, encompassing both signaling
pathway models and PK/PD models, can later be applied
in the clinic to identify responders (patient stratification).
However, all-encompassing models for MBDD, such

as the one shown in Figure 2, remain only a vision.
Submodels such as PK/PD models and signaling pathway
models are already being applied in the pharmaceutical
industry [7, 8].

The MBD and MBDD design processes are shown in
Figure 3. The first step in the construction of a model is to
gather the model requirements. It is important to define
the questions that the model should address and the
information available to support the model construction.
Throughout this activity, the model functions as a
knowledge aggregator by accumulating the collective
information known about the physical system and its
decomposition into subunits. The model may be
incomplete at this point, but through an iterative
process between model simulations and experiments, the
knowledge gaps can be filled during the design process. In
Figure 3, the highly iterative process is depicted by
double-ended arrows comparing the model with
experiments in each step of the MBDD. This is in
contrast to the traditional process of gathering
requirements in written specifications and building
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Table 1

Comparison of model-based design methodologies applied to engineering and to biology and drug discovery.

Engineering

Biology and drug discovery

Modeling strategy
Modularity and hierarchy

Model aggregation

Level of fidelity

Interdisciplinary level

Modeling goal

Model parameters

Analysis

Forward-engineered and designed

Modules are part of the design architecture
and have clear input and output characteristics

Submodels are plug-and-play because of the
clear application programming interface

Level of fidelity is increased as needed to reach
design goals

Modules are typically built by specific engineering
teams; control engineers work on control logic,
while mechanical engineers work on vehicle model

Robust controllers and code generation for
verification with embedded systems

Most parameters are directly measurable

Nonlinear models are used, but linear analysis
methods are established and widely applied

Reverse-engineered and inferred from literature

* Modules are difficult to ascertain initially
* Modules are discovered via model analysis

Variability of inputs and outputs according
to the comprehensiveness of the model makes
model aggregation from submodels difficult

Key components initially require a high level
of fidelity

Interdisciplinary teams are required throughout
the design process because of the need for high
fidelity

Plant model that is able to determine the best
MOA and best drug target

Many of the model parameters are typically
unknown and estimated with experimental data

Nonlinear systems analysis tools, bifurcation,
sensitivities, global optimization

Graphical representation Well-established notation

No standardized notation yet

simulations by writing software code. While written
specifications serve as static pieces of information for the
various stages of development, the model aggregates
information and requirements across teams.

It has been well established that the MBD
methodology has been successful in facilitating large-
system design and in reducing development cycles. It has
proven useful in concentrating system knowledge on a
single model and in facilitating model aggregation
through the reuse of component models. A comparison of
activities in the engineering and the drug development
processes, as summarized in Table 1, outlines ways in
which the methodology can be applied and highlights
areas in which new tools are needed to increase the
applicability of MBD to problems and challenges in drug
discovery.

Model decomposition—motifs and modularity
A first step in system architecture is to specify its
hierarchical decomposition into submodels and to specify
their interconnectivity. The modular approach allows
large and complex systems to be modeled in a more
manageable and transparent fashion. In addition, each
submodel can be individually built, validated, integrated,
and tested in the full system.

Using an automobile transmission as an example, the
initial model can be built with rough (low-fidelity)
submodels for each component, e.g., the engine,
transmission, and controller, all of which have well-
defined input and output characteristics. During the
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development process, specialized teams improve and
refine the submodels individually, increasing the fidelity
of the overall model. Each submodel encapsulates the
current state of the art and is updated with new
knowledge or technology as it becomes available.

Because a submodel encapsulates a distinct part, it can
be reused. For an automatic transmission, the controller
unit can be used in the development process of another
vehicle. The clear definition of the input and output
characteristics of each component is a prerequisite for the
“plug-and-play” approach to model building.

Because biological systems are characterized by large
and complex networks, the modular approach appears
to be appropriate. As depicted in Figure 2, this
approach appears to be applicable on the macro level
(tissue—organ—body) because the model components
can be identified by defined inputs and outputs [9-11].
However, on the micro level, where the models account
for protein or gene networks, it becomes difficult to
break the system down into modules. This is the main
difference between applying MBD to engineering and to
biology.

To meet drug design goals, a high-fidelity model of a
cancer cell and the tumor environment is needed, but little
is known about these systems. Therefore, it is difficult to
determine where low-fidelity models would be adequate.
To learn how to adequately approximate the system
behavior, a high-fidelity model is initially required.
Currently, high-fidelity models are obtained by reverse-
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engineering protein or gene networks. However,
depending on the design goal, very detailed submodels
might still be needed to appropriately model the active
mechanism of a particular drug.

In contrast to the engineering case, in which specialized
teams work on submodels, in MBDD interdisciplinary
teams are needed throughout the design methodology
because of the difficulty of defining modules in protein or
gene networks and achieving the required high-level
fidelity obtained by gathering experimental data and
continuously refining the model.

Unlike engineering models, biological submodels do
not have clear input and output characteristics; therefore,
model reuse and aggregation becomes more complex.
Rather than plug-and-play, the relationships among
submodels must be manually edited after several models
have been fused. For example, the mitogen-activated
kinase (MAPK) cascade submodel is ubiquitous in many
signaling pathways, but the nature of the interactions
between it and other submodels—e.g., the
phosphoinositide 3-kinases (PI3Ks) cascade—differs
from pathway to pathway in connectivity and strength.
Instead of plug-and-play, a strategy that uses a rule-based
scheme to create the crosstalk interactions between the
different submodels appears to be more adequate.

An additional complication of model aggregation
arises from the multiple occurrences of network motifs
(e.g., the same kinase or phosphatase) in different
signaling pathways. Thus, the combination of several
signaling pathway models is complicated by uncertainty
as to whether these network motifs use the same protein
pools or are spatially separated by, for example,
scaffolding proteins. This is reflected in the choice of
initial species concentrations (single or multiple pools)
and the value of the kinetic parameters. Experimental
data addressing both issues is needed in order to
parameterize the model appropriately and to obtain high
model fidelity.

As opposed to engineering models, in which most
parameters can be directly measured, kinetic parameters
in biological systems must often be inferred from large
and “noisy” datasets. This step in model refinement is
done with parameter estimation; however, because of the
large number of unknown parameters and the uncertainty
in their values, global optimization techniques are needed
[12]—more so than in engineering.

Model analysis: Drug target identification
Existing techniques such as identification, gain
quantification, sensitivity analysis, and optimal control
are well-developed areas of control theory commonly
applied in engineering. For engineering systems, even
though the models are nonlinear, the operating regions
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are generally known. This allows the system to be
linearized and analyzed using linear methods. Because
of the lack of well-characterized operating points in
biological systems, nonlinear analysis methods must be
used, and tools must be developed that can conveniently
facilitate the exploration of model behavior across
parameter space.

Sensitivity analysis is used as a bootstrap method
during model tuning to determine which parameters
should be estimated from experimental data. Given that
these represent the most sensitive nodes of the network,
the same analysis helps to identify the best drug targets
in the system [13, 14]. Because of the broad range of
its parameter values, the nonlinear system can display
a variety of stable and unstable behaviors. Often
bifurcation analysis is used to reveal regions of stability
or instability in the network [15]. This is helpful because
experiments can be specifically designed to observe
interesting nonlinear phenomena predicted by the model.
For instance, Hoffmann et al. [16] have developed a
computational model that accounts for the temporal
control of NF-kB activation by the coordinated
degradation and synthesis of I-kB proteins. The activity
of NF-kB is controlled by three different isoforms of IxB:
o, 3, and . The model predicted that IxBa is responsible
for the fast turn-off, and IkBf and IxBe function to
reduce the system oscillatory potential and stabilize
the NF-kB response. These model predictions were
experimentally confirmed, and Hoffmann et al. showed
that gene expression specificity is achieved by the signal
characteristics (i.e., persistent vs. transient NF-kB
signals). This example shows how bifurcation analysis
serves both to validate the model and to facilitate learning
about unexpected system behavior.

However, it is foreseeable not only that engineering
principles can be applied to biology, but that entirely new
theoretical problems arise when questions in the field of
systems biology are addressed with traditional control
theory [17]. It may be that in the long run, MBD as it
is applied to biological systems may advance the use
of MBD in other industries, and vice versa.

Graphical representation: Pathway
representation

The graphical language used to describe the automatic
transmission model example (Figure 1) consists of signals
flowing through the lines in the diagram between the
various system components, represented by blocks. The
mathematical operations represented by the blocks and
the data carried by the signals together represent an
unambiguous mathematical model of the system (such
models typically result in large systems of nonlinear
ordinary differential equations). In addition, the models
are typically hierarchical. For instance, in Figure 1 the
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block representing the state machine for the shifting logic
itself encapsulates lines and blocks that perform its
function. Thus, the modeler can quickly build models
by graphically adding blocks that contain underlying
mathematical models. This speeds up the model-building
process and makes it less error-prone. The semantics of
the graphical language are well defined and widely used in
control engineering. Other engineering domains (e.g.,
mechanical, electrical, and hydraulic) also have well-
defined graphical notation that is useful in specifying
models and communicating model architecture. An
important aspect of these semantics is that they are
capable of fully and unambiguously describing the
mathematical model underlying the diagram.

Biologists use less standardized symbols to describe
biological pathways—i.e., lines are used to represent
interactions between species, and blocks are used to
represent species and their concentration. Combinatorial
complexity arising from protein complex formation is not
accounted for in traditional graphical representations.
Conventions are beginning to appear (e.g., those
published by Kohn [18], Maimon and Browning [19], and
Kitano et al. [20]) that attempt to uniquely determine the
interaction type and therefore possibly the underlying
mathematics. However, these notations are still far from
the standardized representation used in engineering
disciplines. Current graphical representations of
pathways help interdisciplinary teams to communicate
but do not provide an executable model that can be used
for system simulation.

The granularity and size of protein and gene networks,
in addition to the fact that they are reverse-engineered
from large datasets, call for automatic graphical layout.
Similarly, such models are often composed of hundreds
to thousands of species, making manual graphical
construction and representation of the model almost
impossible.

Summary

About ten years ago, the first mathematical models

of signal transduction were published. These began
with subsystems in order to obtain a quantitative
understanding of processes such as receptor trafficking
[21], the signal transfer behavior of the MAPK cascade
[22], or larger models of signaling pathways [13, 23, 24].
The success of model construction and parameterization
was demonstrated by their experimental validation and
created interest in the drug discovery industry.

With the sequencing of the human genome and an
increased knowledge of the individual proteins that make
up cellular pathways, the pharmaceutical industry has
focused increasingly on individual molecules as targets
in their quest for targeted therapeutics. However, this
approach has not yet resulted in the delivery of the first
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systems biology drug, nor has it increased the number
of drug approvals or reduced the toxicity of drug
candidates. It is becoming evident that putative protein
targets for drugs must be understood in the greater
biological context in which they are active—molecular
interactions, biochemical pathways, cellular
compartments, tissues, and organs. To do this effectively,
scientists must embrace the notion that biology is
increasingly an engineering-based science and should take
advantage of the proven tools developed in other
engineering-based disciplines. The application of
computational and engineering tools to life sciences
research and drug discovery is beginning to provide a
detailed quantitative understanding of the interactions
occurring within biological systems; it promises to lead
to the development of novel, targeted drugs offering
improved efficacy and safety.
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