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The interpretation of large-scale biological data can be aided by
the use of appropriate visualization tools. Heatmaps—pattern-
revealing aggregate views of data—have emerged as a preferred
technique for the display of genomics data, since they provide an
extra dimension of information in a two-dimensional display.
However, an increasing focus on the integration of data from
multiple sources has created a need for the display of additional
dimensions. To improve the identification of relationships between
co-expressed genes identified in microarray experiments, a parallel
dataset heatmap viewer has been developed for four-dimensional
data display. The flexible data entry structure of the parallel
heatmap viewer facilitates the display of both continuous and
discrete data. Specific examples are presented for the analysis of
diverse functional genomics yeast data related to gene regulation,
expression, and annotation. The parallel heatmap viewer enables
knowledgeable life science researchers to observe patterns and
properties within high-throughput genomics data in order to rapidly
identify biologically logical relationships.

Background

Systems biology research generates large, complex

datasets. While clustering algorithms can identify subsets

of genes that behave similarly, the interpretation of inter-

gene relationships can be difficult. In only a small subset

of cases can a biological theme be accurately ascribed

to a statistical grouping of genes. Interpretation is

complicated by the fact that popular clustering

algorithms are guaranteed to produce clusters, even if no

underlying biological process or statistical motivation

exists. Assessment and interpretation of clusters can be

simplified when data from multiple sources is correlated.

Examples of bioinformatics tools that facilitate such

integrative approaches include GoMiner [1], EASE [2],

FunSpec [3], and methods based on comparative analysis

across species (co-expression networks and interologs)

[4–6].

Visualization tools for assessment of correlations

offer an alternative approach based on accessing the

cumulative knowledge of human specialists—knowledge

that can be difficult to replicate computationally [7].

The scientific community has recognized the benefits

of visualization in data exploration and interpretation.

Numerous publications, workshops, and conferences

addressing these issues can be found through the IEEE

Computer Society [8] and ACM [9] Web sites. Improved

coordination across multiple views has received recent

emphasis [10, 11]. There exist tools designed to explore a

single source of information, as exemplified by Cytoscape

[12] and Osprey [13] for navigation of molecular

interaction data, Pathway Voyager [14] for KEGG [15]

metabolic pathway visualization, and the Reactome

knowledge base of biochemical pathways and biological

processes browser [16].

As the availability of complementary high-throughput

data is growing, we sought means to visually discover new

relationships within large and complex data. Heatmaps

are well established in genomics, provide a means to

rapidly identify relationships across large datasets,

and conveniently display continuous data through
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color intensity [17–20]. Most gene expression analysis

packages—from academic tools such as Cluster and

TreeView [17], Hierarchical Clustering Explorer (HCE)

[21, 22], GDS Browser [23], and Prism [24] to commercial

products such as the LION ArraySCOUT**, Agilent

GeneSpring**, and Spotfire DecisionSite** for functional

genomics—provide heatmap visualization tools that are

linked to clustering algorithms [25]. Layering of

complementary data into the visual display, however,

has been limited. The above-mentioned tools provide

visualization and annotation enhancements to support

cluster analysis, including dendrograms, scatterplots, line

graphs, detailed row and column descriptions, and links

to external annotations. Similarities between the Gene

Ontology project [26] annotations assigned to individual

genes [21, 27–29] can provide a useful, albeit limited, hint

at inter-gene relationships. While multidimensional

visualization tools for database exploration have long

been established [30, 31], we are not aware of established

bioinformatics tools that facilitate the visualization of

functional relationships from unrelated sources on a

global scale.

Our single most important objective is to enable

biologists to compare multiple gene-centric data sources

to discover significant functional relationships between

genes and characteristics. Examples of such gene-centric

data classes include gene expression profiles, binding sites

for transcription factors (TFs), Gene Ontology (GO)

terms, disease and pathway annotations, literature-based

associations, and subcellular localization. A thorough

search and examination of existing tools failed to identify

a ready solution. Possibilities of enhancements to the

existing GeneSpring and Spotfire tools were judged to

be neither practical nor affordable. In order to endow

researchers with the capacity to seek correlations between

such disparate classes of data, we developed the parallel

heatmap (PHM) viewer.

Implementation
To support the efficient manipulation of gene expression

data, the PHM viewer is embedded within the TG

Services GenePilot** microarray data analysis package.1

In the current version of GenePilot, the PHM viewer is

accessed via the hierarchical clustering (HC) results

screen. A freeware version, GenePilot–Lite Edition,

retains the HC algorithm and the full complement of

visualization features, allowing all researchers to conduct

rapid comparisons of parallel datasets.

Figure 1 shows the parallel heatmap viewer interface.

The left pane contains the complete hierarchically

clustered gene expression data and dendrogram for

the elutriation-synchronized yeast cell-cycle time-series

dataset [32], with corresponding predictions of TF

binding sites generated with the MSCAN software [33]

using a collection of yeast-binding profiles [34]. A selected

cluster (red dendrogram) is magnified in the right pane.

The detailed view contains clear column and row

headings and color-coded cell-cycle stages for the

expression data. The cell-cycle color tag legend in the top

right corner identifies individual M, G1, S, and G2 cell-

cycle stages. The top heatmap row in the expanded view

represents the average column values for all genes in the

selected cluster. Finally, the twelve most commonly

shared GO annotations for the selected group of

genes are shown between the TF heatmap and the row

headings. This view is dynamic and will change for each

subselection of genes in the expanded view cluster.

The cluster visualization tools can support display of

complete genome-scale data and selected subsets of genes.

In the latter case, researchers can magnify a specific

cluster for a detailed view with annotations and row and

column names. Gene-centric annotation information can

be accessed automatically from a number of sources,

including Stanford SOURCE [35]. Columns of a selected

cluster can be reordered by user-predefined categories

(e.g., converting between treatment types and cell types)

or clustered on the basis of Pearson Correlation

Coefficients or Euclidean distance. Data normalization

and color palettes can be dynamically applied to enhance

interpretation.

In the PHM viewer, a complementary dataset can be

displayed. Any selected cluster can then be examined in

detail from two perspectives, and the columns of each set

individually reordered. The PHM viewer manages the

correct alignment and order of rows (genes) for both

panes and between both datasets. To facilitate this,

matching identifiers must be available between the

annotation fields for each set (e.g., official gene names

or accession numbers from a common database). A

complete one-to-one match is not required. In the case of

multiple rows with identical names in the parallel dataset,

only the first instance is displayed. Once relationships are

observed, the user has the option to output bitmap image

files for archival and communication purposes.

Results and discussion

Datasets

Diverse classes of high-throughput genomics data are

available for the single-celled yeast Saccharomyces

cerevisiae. Results from several of the yeast genomics

studies have been prepared for direct import into

GenePilot and are available at http://www.cisreg.ca/raf/

PHM/. These include gene expression datasets [32], Gene

Ontology annotations generated from the Saccharomyces

1A complete description of GenePilot features and download instructions may be
found on the official GenePilot website (http://www.genepilot.com/). A detailed guide
to the use of the PHM viewer is available on the project website (http://www.cisreg.ca/
raf/PHM/).
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Genome Database (SGD**) Gene Ontology Term Finder

[36], transcription factor binding site predictions

produced by the MSCAN software [33] using a collection

of yeast-binding profiles [34], and chromatin immuno-

precipitation (ChIP) results generated with microarrays

(‘‘ChIP on Chip’’) [37]. In all datasets, the rows represent

yeast genes, uniquely referenced by the systematic

name obtained from the SGD [38]. GenePilot permits

the inclusion of multiple column classification and

supervision vectors, which makes it possible to tag each

column with multiple labels. This enables the user to

visualize the information in multiple ways (for instance,

grouping columns by array identification numbers). In

the sample gene expression data, two vectors are included

representing the stages of cell-cycle progression. In

addition to the expression data, a file is provided

containing the GO terms associated with each yeast

gene—a file that may be used with any yeast dataset.

Correlations between in vivo and in silico binding

sites

The identification of regulatory elements in the promoters

of co-expressed genes can be a challenge. Computational

prediction of transcription factor binding sites produces

numerous false predictions. Alternatively, high-

throughput ChIP methods produce complicated results

that may reflect the inclusion of false positives or

instances in which TFs are present at a specific location

because of protein–protein interactions rather than direct

binding to DNA. Because the two classes of data appear

independent and complementary, we sought to determine

whether there were relationships that could be visually

distinguished in genome-scale data. A database of

binding profiles for yeast transcription factors [34]

was screened against all yeast gene promoters using the

MSCAN algorithm [33] in order to produce a combined

probability score for all potential binding sites for each

TF in each gene.

Figure 2 shows the correlations of transcription factor

binding-site predictions generated by the MSCAN

software [33] using a collection of five distinct yeast-

binding profiles (Gal4, Gcn4, Leu3, Reb1, and Ste12) [34],

and microarray-assessed chromatin immunoprecipitation

results (‘‘ChIP on Chip’’) [37]. The figure is a compilation

of PHM views of different gene groups with identical

column orders, saved as bitmap images. TFs from the

ChIP dataset are color-coded and grouped according to

the primary functions of the target genes via a column

classification vector. The dark gray rows under MSCAN

predictions for TF Gcn4 indicate that no TF binding was

predicted for prediction thresholds used in the analysis.

Arrows indicating the location of the matching individual

TF in both datasets were added to ease interpretation.

Figure 1
Parallel heatmap viewer interface.
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Figure 2
Correlations between in vivo and in silico binding sites.
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For several TFs, there was a clear relationship between

the computational predictions and genome-scale ChIP

data. For instance, the binding data for both Gal4 and

Leu3 shows strong agreement between computational

predictions and ChIP results. In the cases of Gcn4 and

Reb1, a subset of the genes shows good agreement

between the two data classes; however, a significant

portion is not supported. Visualization does not facilitate

uniformly convincing observations, as demonstrated for

the set of genes known to be regulated by Ste12 and

where both MSCAN and ChIP data implicate other TFs.

Correlation between TF binding sites and gene

expression patterns

Numerous algorithms have emerged to identify over-

represented sequence motifs in the promoters of co-

expressed genes. While many methods identify the

sequence patterns de novo, the set of TFs for which

binding properties have been defined continues to grow.

Therefore, new methods are emerging to identify an

overabundance of predicted sites for characterized TFs

(e.g., Toucan [39] and oPOSSUM [40]). Visual inspection

appears to be a powerful means of assessing these

relationships while the statistical methods mature.

Figure 3 shows the correlation between gene expression

and MSCAN predictions for a gene set derived from a co-

expressed set of yeast genes related to cell-cycle gene

expression with an unknown mediating TF, as defined

by Getz et al. [41]. Gene expression data was derived

from the elutriation-synchronized, yeast cell-cycle gene

expression data collection [32] and shows an induction

peak at 120 minutes during the G1 stage, followed by a

secondary peak at 270 minutes during the G2 stage. It

was previously indicated that there is a strong correlation

between an over-represented pattern in the regulatory

regions and the binding of the TF PAC [34]. Using

the PHM viewer, we clustered genes on the basis of

the cell-cycle pattern of expression and displayed the

computational prediction of binding sites. This view

provides strong support for the link of PAC to G1 stage-

specific expression in the cell cycle; however, it is clear

that not all genes in the expression cluster are linked with

PAC binding sites. From the visualization, it appears

that additional transcription factors may play a role.

Specifically, regulation by RRPE is predicted for a

majority of genes showing elevated expression at 120

minutes (G1 stage) and 270 minutes (G2 stage). This

visual correlation is not apparent for the genes that are

not up-regulated in G2.

Summary
The traditional use of heatmaps for visual verification of

gene expression profile relationships and dependencies is

just one approach to deriving knowledge from genomic

data. With the PHM viewer, we have demonstrated that

diverse data sources, when examined together, can be

used to increase understanding. The examples presented

here sampled information from continuous sources,

including gene expression time series and experimental

and computational protein–DNA binding predictions.

Discrete data sources can be used with equal ease. A

discrete example dataset is provided on the PHM project

website [42] in the form of GO annotations [36]. Other

informative discrete information can be used—for

example, disease associations derived from literature,

tissue specificity, and metabolic pathway associations.

Our experiences with both wet-lab and computational

genomics data led us to develop this simple yet powerful

tool to readily cross-examine complementary

information. It can help build confidence, form a

consensus, and provide a basis to question assumptions

resting upon highly specialized approaches or sources.

The parallel heatmap viewer enables knowledgeable life

science researchers to observe patterns and properties

within high-throughput genomics data in order to rapidly

identify biologically logical relationships. The viewer is

written in Java** and is platform-independent. It is

free for academic use, and use of the Lite Edition is

unrestricted. For non-academic use and for GenePilot

program availability, see [43]. Supplemental figures to

this paper can be found at [42].
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