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Visualization of
complementary
systems biology
data with parallel
heatmaps

The interpretation of large-scale biological data can be aided by
the use of appropriate visualization tools. Heatmaps—pattern-
revealing aggregate views of data—have emerged as a preferred
technique for the display of genomics data, since they provide an
extra dimension of information in a two-dimensional display.
However, an increasing focus on the integration of data from
multiple sources has created a need for the display of additional
dimensions. To improve the identification of relationships between
co-expressed genes identified in microarray experiments, a parallel
dataset heatmap viewer has been developed for four-dimensional
data display. The flexible data entry structure of the parallel
heatmap viewer facilitates the display of both continuous and
discrete data. Specific examples are presented for the analysis of
diverse functional genomics yeast data related to gene regulation,
expression, and annotation. The parallel heatmap viewer enables
knowledgeable life science researchers to observe patterns and
properties within high-throughput genomics data in order to rapidly
identify biologically logical relationships.

Background
Systems biology research generates large, complex
datasets. While clustering algorithms can identify subsets
of genes that behave similarly, the interpretation of inter-
gene relationships can be difficult. In only a small subset
of cases can a biological theme be accurately ascribed
to a statistical grouping of genes. Interpretation is
complicated by the fact that popular clustering
algorithms are guaranteed to produce clusters, even if no
underlying biological process or statistical motivation
exists. Assessment and interpretation of clusters can be
simplified when data from multiple sources is correlated.
Examples of bioinformatics tools that facilitate such
integrative approaches include GoMiner [1], EASE [2],
FunSpec [3], and methods based on comparative analysis
across species (co-expression networks and interologs)
[4-6].

Visualization tools for assessment of correlations
offer an alternative approach based on accessing the
cumulative knowledge of human specialists—knowledge

that can be difficult to replicate computationally [7].
The scientific community has recognized the benefits

of visualization in data exploration and interpretation.
Numerous publications, workshops, and conferences
addressing these issues can be found through the IEEE
Computer Society [§] and ACM [9] Web sites. Improved
coordination across multiple views has received recent
emphasis [10, 11]. There exist tools designed to explore a
single source of information, as exemplified by Cytoscape
[12] and Osprey [13] for navigation of molecular
interaction data, Pathway Voyager [14] for KEGG [15]
metabolic pathway visualization, and the Reactome
knowledge base of biochemical pathways and biological
processes browser [16].

As the availability of complementary high-throughput
data is growing, we sought means to visually discover new
relationships within large and complex data. Heatmaps
are well established in genomics, provide a means to
rapidly identify relationships across large datasets,
and conveniently display continuous data through
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color intensity [17-20]. Most gene expression analysis
packages—from academic tools such as Cluster and
TreeView [17], Hierarchical Clustering Explorer (HCE)
[21, 22], GDS Browser [23], and Prism [24] to commercial
products such as the LION ArraySCOUT**, Agilent
GeneSpring**, and Spotfire DecisionSite** for functional
genomics—provide heatmap visualization tools that are
linked to clustering algorithms [25]. Layering of
complementary data into the visual display, however,
has been limited. The above-mentioned tools provide
visualization and annotation enhancements to support
cluster analysis, including dendrograms, scatterplots, line
graphs, detailed row and column descriptions, and links
to external annotations. Similarities between the Gene
Ontology project [26] annotations assigned to individual
genes [21, 27-29] can provide a useful, albeit limited, hint
at inter-gene relationships. While multidimensional
visualization tools for database exploration have long
been established [30, 31], we are not aware of established
bioinformatics tools that facilitate the visualization of
functional relationships from unrelated sources on a
global scale.

Our single most important objective is to enable
biologists to compare multiple gene-centric data sources
to discover significant functional relationships between
genes and characteristics. Examples of such gene-centric
data classes include gene expression profiles, binding sites
for transcription factors (TFs), Gene Ontology (GO)
terms, disease and pathway annotations, literature-based
associations, and subcellular localization. A thorough
search and examination of existing tools failed to identify
a ready solution. Possibilities of enhancements to the
existing GeneSpring and Spotfire tools were judged to
be neither practical nor affordable. In order to endow
researchers with the capacity to seek correlations between
such disparate classes of data, we developed the parallel
heatmap (PHM) viewer.

Implementation
To support the efficient manipulation of gene expression
data, the PHM viewer is embedded within the TG
Services GenePilot** microarray data analysis package.'
In the current version of GenePilot, the PHM viewer is
accessed via the hierarchical clustering (HC) results
screen. A freeware version, GenePilot-Lite Edition,
retains the HC algorithm and the full complement of
visualization features, allowing all researchers to conduct
rapid comparisons of parallel datasets.

Figure 1 shows the parallel heatmap viewer interface.
The left pane contains the complete hierarchically
clustered gene expression data and dendrogram for

'A complete description of GenePilot features and download instructions may be

found on the official GenePilot website (http://www.genepilot.com/). A detailed guide
to the use of the PHM viewer is available on the project website (http://www.cisreg.ca/
raf| PHM|).
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the elutriation-synchronized yeast cell-cycle time-series
dataset [32], with corresponding predictions of TF
binding sites generated with the MSCAN software [33]
using a collection of yeast-binding profiles [34]. A selected
cluster (red dendrogram) is magnified in the right pane.
The detailed view contains clear column and row
headings and color-coded cell-cycle stages for the
expression data. The cell-cycle color tag legend in the top
right corner identifies individual M, G1, S, and G2 cell-
cycle stages. The top heatmap row in the expanded view
represents the average column values for all genes in the
selected cluster. Finally, the twelve most commonly
shared GO annotations for the selected group of

genes are shown between the TF heatmap and the row
headings. This view is dynamic and will change for each
subselection of genes in the expanded view cluster.

The cluster visualization tools can support display of
complete genome-scale data and selected subsets of genes.
In the latter case, researchers can magnify a specific
cluster for a detailed view with annotations and row and
column names. Gene-centric annotation information can
be accessed automatically from a number of sources,
including Stanford SOURCE [35]. Columns of a selected
cluster can be reordered by user-predefined categories
(e.g., converting between treatment types and cell types)
or clustered on the basis of Pearson Correlation
Coeflicients or Euclidean distance. Data normalization
and color palettes can be dynamically applied to enhance
interpretation.

In the PHM viewer, a complementary dataset can be
displayed. Any selected cluster can then be examined in
detail from two perspectives, and the columns of each set
individually reordered. The PHM viewer manages the
correct alignment and order of rows (genes) for both
panes and between both datasets. To facilitate this,
matching identifiers must be available between the
annotation fields for each set (e.g., official gene names
or accession numbers from a common database). A
complete one-to-one match is not required. In the case of
multiple rows with identical names in the parallel dataset,
only the first instance is displayed. Once relationships are
observed, the user has the option to output bitmap image
files for archival and communication purposes.

Results and discussion

Datasets

Diverse classes of high-throughput genomics data are
available for the single-celled yeast Saccharomyces
cerevisiae. Results from several of the yeast genomics
studies have been prepared for direct import into
GenePilot and are available at http.//www.cisreg.ca/raf]
PHM)|. These include gene expression datasets [32], Gene
Ontology annotations generated from the Saccharomyces
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Parallel heatmap viewer interface.

Genome Database (SGD**) Gene Ontology Term Finder
[36], transcription factor binding site predictions
produced by the MSCAN software [33] using a collection
of yeast-binding profiles [34], and chromatin immuno-
precipitation (ChIP) results generated with microarrays
(“ChIP on Chip”) [37]. In all datasets, the rows represent
yeast genes, uniquely referenced by the systematic

name obtained from the SGD [38]. GenePilot permits
the inclusion of multiple column classification and
supervision vectors, which makes it possible to tag each
column with multiple labels. This enables the user to
visualize the information in multiple ways (for instance,
grouping columns by array identification numbers). In
the sample gene expression data, two vectors are included
representing the stages of cell-cycle progression. In
addition to the expression data, a file is provided
containing the GO terms associated with each yeast
gene—a file that may be used with any yeast dataset.

Correlations between in vivo and in silico binding
sites

The identification of regulatory elements in the promoters
of co-expressed genes can be a challenge. Computational
prediction of transcription factor binding sites produces
numerous false predictions. Alternatively, high-
throughput ChIP methods produce complicated results
that may reflect the inclusion of false positives or

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006

instances in which TFs are present at a specific location
because of protein—protein interactions rather than direct
binding to DNA. Because the two classes of data appear
independent and complementary, we sought to determine
whether there were relationships that could be visually
distinguished in genome-scale data. A database of
binding profiles for yeast transcription factors [34]

was screened against all yeast gene promoters using the
MSCAN algorithm [33] in order to produce a combined
probability score for all potential binding sites for each
TF in each gene.

Figure 2 shows the correlations of transcription factor
binding-site predictions generated by the MSCAN
software [33] using a collection of five distinct yeast-
binding profiles (Gal4, Gen4, Leu3, Rebl, and Stel2) [34],
and microarray-assessed chromatin immunoprecipitation
results (“ChIP on Chip”) [37]. The figure is a compilation
of PHM views of different gene groups with identical
column orders, saved as bitmap images. TFs from the
ChIP dataset are color-coded and grouped according to
the primary functions of the target genes via a column
classification vector. The dark gray rows under MSCAN
predictions for TF Gen4 indicate that no TF binding was
predicted for prediction thresholds used in the analysis.
Arrows indicating the location of the matching individual
TF in both datasets were added to ease interpretation.
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Correlations between in vivo and in silico binding sites.

R. M. PODOWSKI ET AL. IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006



For several TFs, there was a clear relationship between
the computational predictions and genome-scale ChIP
data. For instance, the binding data for both Gal4 and
Leu3 shows strong agreement between computational
predictions and ChIP results. In the cases of Gcn4 and
Rebl, a subset of the genes shows good agreement
between the two data classes; however, a significant
portion is not supported. Visualization does not facilitate
uniformly convincing observations, as demonstrated for
the set of genes known to be regulated by Stel2 and
where both MSCAN and ChIP data implicate other TFs.

Correlation between TF binding sites and gene
expression patterns
Numerous algorithms have emerged to identify over-
represented sequence motifs in the promoters of co-
expressed genes. While many methods identify the
sequence patterns de novo, the set of TFs for which
binding properties have been defined continues to grow.
Therefore, new methods are emerging to identify an
overabundance of predicted sites for characterized TFs
(e.g., Toucan [39] and oPOSSUM [40]). Visual inspection
appears to be a powerful means of assessing these
relationships while the statistical methods mature.
Figure 3 shows the correlation between gene expression
and MSCAN predictions for a gene set derived from a co-
expressed set of yeast genes related to cell-cycle gene
expression with an unknown mediating TF, as defined
by Getz et al. [41]. Gene expression data was derived
from the elutriation-synchronized, yeast cell-cycle gene
expression data collection [32] and shows an induction
peak at 120 minutes during the G1 stage, followed by a
secondary peak at 270 minutes during the G2 stage. It
was previously indicated that there is a strong correlation
between an over-represented pattern in the regulatory
regions and the binding of the TF PAC [34]. Using
the PHM viewer, we clustered genes on the basis of
the cell-cycle pattern of expression and displayed the
computational prediction of binding sites. This view
provides strong support for the link of PAC to G1 stage-
specific expression in the cell cycle; however, it is clear
that not all genes in the expression cluster are linked with
PAC binding sites. From the visualization, it appears
that additional transcription factors may play a role.
Specifically, regulation by RRPE is predicted for a
majority of genes showing elevated expression at 120
minutes (G1 stage) and 270 minutes (G2 stage). This
visual correlation is not apparent for the genes that are
not up-regulated in G2.

Summary

The traditional use of heatmaps for visual verification of
gene expression profile relationships and dependencies is
just one approach to deriving knowledge from genomic
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Expression MSCAN

Correlation between gene expression and MSCAN predictions.

data. With the PHM viewer, we have demonstrated that
diverse data sources, when examined together, can be
used to increase understanding. The examples presented
here sampled information from continuous sources,
including gene expression time series and experimental
and computational protein—-DNA binding predictions.
Discrete data sources can be used with equal ease. A
discrete example dataset is provided on the PHM project
website [42] in the form of GO annotations [36]. Other
informative discrete information can be used—for
example, disease associations derived from literature,
tissue specificity, and metabolic pathway associations.
Our experiences with both wet-lab and computational
genomics data led us to develop this simple yet powerful
tool to readily cross-examine complementary
information. It can help build confidence, form a
consensus, and provide a basis to question assumptions
resting upon highly specialized approaches or sources.
The parallel heatmap viewer enables knowledgeable life
science researchers to observe patterns and properties
within high-throughput genomics data in order to rapidly
identify biologically logical relationships. The viewer is
written in Java®™ and is platform-independent. It is
free for academic use, and use of the Lite Edition is
unrestricted. For non-academic use and for GenePilot
program availability, see [43]. Supplemental figures to
this paper can be found at [42].
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