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intracellular network
analysis with tissue-
patterning simulations

In order to achieve a comprehensive understanding of complex
biological systems, researchers must develop new techniques that
incorporate key features of the system across all relevant spatial
and temporal scales. Recent advances in molecular biology and
genetics have generated a wealth of experimental data that
provides details with respect to gene-expression patterns and
individual gene and protein functions, but integration of this
information into meaningful knowledge of the complete system is a
challenge borne by a new scientific era dependent on computational
tools. In this paper, we review new computational techniques,
developed to reconstruct single-cell biochemical networks for
generating quantitative descriptions of network properties, and
agent-based models designed to study multicell interactions
important in tissue patterning. We also discuss the challenges and
promises of combining these approaches in a single quantitative
framework for advancing medical care for diseases that arise from
a multitude of factors.

Introduction
The last several years have produced an explosion of
biological data. The complete genome sequences of
hundreds of organisms have now been published [1], and
the activities of these genomes are being characterized
with gene microarray technologies at a dizzying pace [2].
Furthermore, protein—protein interaction experiments,
fluorescent microscopy, and mass spectrometry are
generating data on how the corresponding proteins
interact with one another. However, the efficient
generation of large amounts of data (i.e., “high-
throughput” data) alone does not drive further biological
discovery. Additionally, the systematic integration and
interrogation of the data often facilitates the discovery
process [3]. Thus, there is an ever-growing need to
develop quantitative, computational frameworks for
analyzing the properties of these biological systems [4].
The elucidation of glycolytic reaction mechanisms
(energy-generating metabolic processes) ushered in
decades of work to characterize entire metabolic
networks [5]. Similarly, the characterization of the lac

operon genes [6] led to the characterization of regulatory
networks [7]. The discovery of phosphorylated tyrosine
residues and the functioning of G-protein-coupled
receptors has resulted in an entire field of cellular signal
transduction in which current efforts are generating
extensive “wiring diagrams” that indicate relationships
between components in signaling networks [8].
Quantitative reconstructions of some networks now
exist [9]. While the high-throughput data on which
these reconstructions are based depends on population
averages, experimental systems are being created that
characterize component interactions on a single-cell level
[10].

Current biological research at the multicell level,
or tissue level, has also emerged from quantitative
approaches. The progression in scientific knowledge of
cardiovascular physiology is an excellent example. One of
the first quantitative hypotheses in this field related fluid
flux in the circulation to the oncotic (swelling) and
hydrostatic pressures that develop in tissues [11]. Later,
a mathematical model of radial oxygen diffusion from
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Coupling intracellular networks with tissue-level physiology. The
phenotype of a given cell is a function of many proteins, metabo-
lites, and their associated interactions. Tissue-level physiology
arises from a collection of the phenotypes of the individual cells.
Each scale of biological investigation has at its disposal a unique
set of experimental techniques and analysis methods. The
challenge remains to integrate the molecular network detail with
the multicellular network that gives rise to human pathologies
(e.g., cancer and cardiovascular disease).

Agent-based models,
constitutive equations

capillaries into surrounding muscle was developed that
predicted the maximum distance that oxygen can diffuse
into the tissue and provided a theoretical framework for
understanding capillary bed architectures in tissue [12].
More recently, continuum models have been used to
describe vascular wall remodeling [13], and finite element
models have suggested and validated new mechanisms of
microvascular network function, structure, and growth
[14, 15].

An ongoing challenge requires researchers to relate
biological information across temporal and spatial scales,
and computational approaches have proven beneficial
in advancing scientific understanding. Two examples
illustrate the multiscale modeling of biological processes.
First, the pioneering work of Hodgkin and Huxley
connected ionic current flow with neural function [16],
and the complex interplay between collections of neurons
and brain behavior is now the subject of further
mathematical analysis [17]. Second, many molecular
components of the immune system have been
characterized and subjected to extensive computational
modeling and analysis [18]. These examples and others
require researchers to investigate components (e.g., ion
channels) of targeted cellular and tissue function. One
example of tissue function is signal propagation in the
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form of a cardiac action potential that mediates the
beating of the heart.

However, in order to connect genomic information
with tissue function, there is a need to associate properties
of genome-scale intracellular networks with tissue-
level patterning and behavior (Figure 1). (The term
intracellular networks refers to systems of biochemical,
biomechanical, and bioelectrical signals inside a cell that
are transmitted by cellular constituents such as DNA,
RNA, and protein.) This review presents recent efforts
to make this connection using genome-scale network-
analysis techniques and agent-based modeling
approaches. Note that multiscale techniques based on
continuum models and sets of differential equations are
currently under development. First, recent work is
presented on reconstructing cellular biochemical
networks that integrate genomic, transcriptomic, and
proteomic data in a mathematical formalism that can be
used to generate quantitative descriptions of network
properties. The subsequent section discusses efforts
to generate agent-based models of multicellular
development in vascular and embryonic tissue—
models that have been extensively validated with in vivo
experimentation. Finally, we outline the challenges and
promises of integrating these disparate length and time
scales in a quantitative framework for advancing medical
care in diseases as diverse as cancer and cardiovascular
pathology. These multiscale efforts attempt to build a
conceptual and functional linkage between intracellular
and extracellular processes for the prediction and
understanding of tissue patterns and adaptations to
environmental stimuli.

Intracellular networks

The systems analysis of an intracellular network consists
of two steps. The first step is the network reconstruction
of the relevant chemical compounds and reactions. The
second step is the analysis of this reconstructed network
using computational techniques. These two steps are
highly interconnected, and each process of sequentially
rebuilding and analyzing the network can generate
hypotheses for further interrogation.

Network reconstruction

The reconstruction process involves the integration of
various high-throughput experimental data, and each
dataset provides only one perspective on intracellular
mechanisms and activities [8]. For example, expression
array data can indicate which genes are on or off at a
given time point, but cannot indicate which protein
products interact with one another. A reconstruction
provides a framework for representing the collection of
intracellular activities. Thus, the reconstruction of the
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gene network provides a concise collection of existing
hypotheses for a given system.

There are three principal types of networks for which
reconstructions exist. Metabolic networks consist
primarily of reactions that convert substrates (e.g.,
glucose) into products for biosynthetic and energy
demands [e.g., amino acids and ATP (adenosine
triphosphate)]. Regulatory networks comprise the set
of relationships between proteins and the genes they
regulate. Signaling networks consist of the interactions
between proteins and metabolites that together transduce
extracellular signals into intracellular events. Although
the interconnectivity of these three networks is becoming
increasingly clear [19], they are typically segregated in
standard textbook descriptions.

Process of reconstruction

Each network involves a set of chemical transformations
that can be represented as a set of stoichiometric
reactions (i.e., reactions that are defined by a mass
balance of reactants and products) in a matrix
formalism (see Figure 2). The rows and columns of

the stoichiometric matrix correspond respectively to
compounds and their associated reactions. The elements
of the matrix correspond to the stoichiometric coefficients
in the associated reactions.

The first step in network reconstruction is to collect
available high-throughput data for the system of interest.
For example, the annotated genome sequence helps to
identify which enzymatic reactions are available to a
metabolic network. Expression arrays can indicate
which genes are active in the cell type or system to be
reconstructed. The reconstructions should be cell-
type- or organism-specific where possible; otherwise, the
subsequent analysis may not generate predictions that
can be experimentally verified. Furthermore, the
environmental conditions in which the data were
generated should be well defined. For example, growth
experiments in media with unknown constituents are
difficult to incorporate in network reconstructions. It is
difficult to analyze and generate quantitative predictions
if the cell is exposed to an unknown variety of nutrients
and growth factors.

The next step involves scanning the annotated genome
and incorporating the associated stoichiometric reactions
in a database or spreadsheet format. The use of the
genome ensures that all reactions and activities can be
accounted for as much as possible. In other words, by
considering the entire genome in the analysis, researchers
are taking into consideration all of the molecular
components that could contribute to the system behavior.
The outcome of this step is a well “curated” file with a list
of the reactions occurring in the given system. This
reconstruction then becomes the basis for further
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Stoichiometric reconstruction of three typical cellular signaling
reactions. The first reaction involves the binding of a ligand to a
receptor protein. The second reaction comprises the dimerization
of the receptor protein after it has bound to the ligand. The third
reaction involves the autophosphorylation (with a phosphate
group, P) of the dimerized receptor. The stoichiometric matrix is
formed with rows corresponding to compounds and columns
corresponding to reactions R. The elements of the matrix
correspond to the stoichiometric coefficients of the corresponding
compound in the corresponding reaction.

analysis. Significantly, the reconstruction itself is of
tremendous interest, independent of the analyses that are
performed on it. First, it provides a concise format for
identifying what is present or absent in a given organism
and can serve as a structured framework for refining
annotations. Additionally, the stoichiometric
reconstruction forces the researcher to ask questions
that might otherwise be neglected. For example, in the
reconstruction of a signaling network, we may identify
genes corresponding to given receptor and adaptor
proteins for a given signaling pathway. However, to
generate a stoichiometric reconstruction, we may need to
include information from mass spectrometry or yeast
two-hybrid experiments to ascertain whether the given
proteins are in monomeric or dimeric forms. The
spreadsheet or database file generated for the
reconstruction organizes the information that would
otherwise be restricted to an individual researcher’s
knowledge base or to an unsorted collection of the
literature. Stoichiometric reconstructions have produced
a valuable new understanding of metabolic processes [20].
However, even without a stoichiometric level of detail for
a given biological system, the process of reconstruction
described above still generates immensely informative
results [8].

Status of existing network reconstructions

The genome-scale metabolic networks of several
microbial species have been reconstructed [9]. Certainly
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the most extensively reconstructed metabolic network is
that of Escherichia coli [21]. To date, this reconstruction
accounts for more than 1,000 open reading frames (i.e.,
DNA sequences that encode part or all of a protein) of
the predicted 4,311 open reading frames in the E. coli
genome. Additional metabolic systems have also been
reconstructed; for example, glycolysis in the pathogen
Trypanosoma brucei was reconstructed in order to
understand its biochemical regulation in the bloodstream
[22]. The regulatory network of E. coli was also
reconstructed and used to predict the changes in gene
expression and the resultant growth phenotypes under a
variety of “knockouts” and environmental conditions
[23]. (The term knockouts refers to experimental
perturbations in which a gene has been functionally
“knocked out” or effectively deleted through genetic
manipulations.) The regulatory networks associated
with developmental processes in sea urchins and other
organisms were reconstructed and analyzed [7]. Perhaps
the signaling system for which the most extensive
reconstructions exist is associated with the epidermal
growth factor receptor [24, 25]. Recently, the
stoichiometric reconstruction of the JAK-STAT
signaling network in the human B-cell was used to
quantify structural and topological properties of the
network [26]. (JAK stands for Janus Kinase; STAT stands
for Signal Transducers and Activators of Transcription.
The JAK-STAT pathway refers to a family of signaling
pathways that are important for immune response.)

Challenges to network reconstruction

The primary challenge to current reconstruction efforts is
a lack of data for given biological systems, as well as the
significant amount of effort required to generate and
curate an organism-specific stoichiometric matrix. For
example, a large-scale reconstruction is difficult to initiate
without a sequenced genome, or without a knowledge of
the genes that are active in a particular differentiated cell.
Without the data describing the intracellular network, the
network can be reconstructed with limited confidence.
However, the low-confidence reconstruction is still a
powerful tool, because it provides a starting point for
making predictions and focusing research efforts to
characterize the less-characterized components and
interactions. The laborious process of reconstruction and
testing may also be improved with automated efforts to
integrate high-throughput data into a mathematical
representation. Some efforts at automated network
generation are emerging [27].

Network analysis

The analysis of a given network is intimately connected
to the reconstruction process. Computational analysis
can generate predictions regarding growth rates of

S. M. PEIRCE ET AL.

cells, the effect of gene knockouts, and the secretion
rate of byproducts of biochemical reactions. These
predictions can then be used to evaluate whether a
given reaction should be included in the reconstruction.
Thus, the analysis of a given network can lead to
refinements of the network reconstruction itself.

The example of the identification of the gene in
Helicobacter pylori, a bacterium that causes gastric
cancer, corresponding to malate dehydrogenase is
described elsewhere [28].

Analysis techniques

Three general categories of analysis techniques have been
applied to genome-scale reconstructions. Although the
detailed implementation of these methods is beyond the
scope of this review, the general approaches are described
below.

The first analysis category involves approaches that
identify single states (e.g., reaction flux distributions) of
the cell subject to a given criterion, such as a criterion
relating to the maximum growth rate of a cell. These
approaches address, in part, the challenge of accounting
for uncertainty in model parameters and experimental
data by mathematically stating bounds that “confine”

a network (e.g., thermodynamic constraints) and then
identifying an “objective” that the cell is optimized to
achieve. An example objective is a flux distribution that
results in the maximum growth rate possible. These
techniques include flux-balance analysis (FBA) [29],
minimization of metabolic adjustment (MOMA) [30], and
energy balance analysis (EBA) [31]. The input to each of
these approaches is the stoichiometric matrix for a given
system, a set of constraints on how the reactions are
used (e.g., maximum substrate uptake rates), and an
objective function (e.g., maximum growth rate). The
output of each of these approaches is a distribution

of flux values for all of the reactions that effectively
provides a “state” of the given network. Because the
calculation of these distributions is typically performed
with linear programming (a mathematical technique for
finding the maximum value of a given function subject
to a set of mathematical criteria [32]), the calculation
can be performed efficiently for relatively large
biochemical networks.

The second type of analysis techniques involves
network-based pathways, and these techniques have been
applied at a genome scale. These approaches involve the
calculation of “mass-balanced” pathways through a
network (in which stoichiometric relationships are not
violated). Network-based pathways have been calculated
for metabolic networks [33] and have led to quantitative
descriptions of several network properties (described
below). More recently, this network-based pathway
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approach has been applied to a cellular signaling network
[26].

The final analysis category includes Monte Carlo
sampling procedures. Typically, the values for the
reaction fluxes are varied, subject to upper and lower
bounds of the flux through a reaction, and network
properties are subsequently characterized. For example,
researchers have implemented a sampling algorithm to
characterize the distribution of fluxes in the metabolic
network of the bacterium Escherichia coli [34]. The
distribution of reaction fluxes was found to be highly
uneven in situations in which a small number of reactions
dominated a significant portion of the network activity.
Random sampling was also used to calculate the
dynamics of large-scale reaction networks [35].

Systems-level properties

Each of these analysis techniques can be used to generate
systems-level descriptions of key cellular phenotypes and
network behaviors. We provide two examples below.

Correlated reaction sets are groups of reactions that
function together. They have been defined as unbiased
modules (groups of reactions or components with a
common function) in biochemical networks [36].
Researchers have identified these reaction sets in the
JAK-STAT cellular signaling network in the human B-
cell [26], as well as in the metabolic networks of a variety
of microorganisms [37-39]. Because correlated reaction
sets are groups of reactions that are functionally related,
they provide information for hypotheses for regulatory
structure. Indeed, expression array data indicates that the
genes corresponding to these groups of reactions are
coordinately regulated (see [36] for a description).

The term pathway redundancy refers to the number of
independent routes for which a given set of inputs into a
network are converted into a given set of outputs out of
the network. This system property was quantified with
extreme pathway analysis, a computational tool to
study biochemical networks [40]. For the bacterium
H. influenzae, an average of 46 independent routes exist to
convert minimal nutritional media into amino acids and
associated byproducts [40]. For the bacterium H. pylori,
under relatively similar conditions, an average of two
independent routes exist [41]. Although the relative sizes
of the genomes and associated metabolic network
reconstructions are similar for both organisms, a
significantly higher degree of pathway redundancy exists
in H. influenzae. This characteristic may be indicative of
the ecological niches in which the two organisms reside.
For example, H. pylori is located primarily in the highly
acidic gastric lining; H. influenzae can be found in
environments that undergo a wider variability. Thus,
perhaps the metabolic network of H. pylori is “fine-
tuned” to its very specific ecological niche.
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Tissue-level patterning

Biological tissue is a composite of cellular and acellular
material arranged in structures and substructures whose
organization is often characterized by a repetition in
patterns. The regularity of tissue patterns persists as long
as the tissue is in a dynamically stable or a quiescent state.
However, the structural and functional properties of
tissues can be altered during physiological growth and
pathological events, and often these events lead to
changes in the arrangement of cells and acellular material,
giving rise to new tissue patterns.

Biological tissues are considered “complex systems”
because of their multifaceted composition and the
interrelated spatial and temporal dynamics that
characterize the way in which tissues adapt (e.g., alter
their structure and function) to external stimuli. For
example, in humans, tissues adapt to changing
environmental conditions, changes in lifestyle, or the
onset of disease. Understanding tissue patterning
processes, particularly processes that arise in response
to disease, is central to many areas of medicine, and
advances in this area can contribute to the engineering of
artificial tissues; the optimization of pharmacological
therapies for heart disease, diabetes, and cancer;
decreasing the incidence of birth defects; and more
informed use of medical diagnostic techniques such as
magnetic resonance imaging and ultrasound. Reaching
the ultimate goal of understanding the basic science of
tissue patterning, and being able to manipulate relevant
processes in disease detection, treatment, and resolution,
requires the following elements: 1) identification and
characterization of the molecular, cellular, and acellular
components of the tissue; 2) conceptualization of the way
the components interact with one another; 3) spatial
and temporal integration of cellular behaviors with the
molecular signals that drive them; and 4) simulation with
quantitative computation of these events. We believe that
useful advances can be made only with the help of
computational techniques that effectively consider the
biological complexities across multiple length scales—
from molecules to tissue-level behaviors.

Agent-based models (defined in the following section)
have recently been used to study an array of different
biological processes spanning molecular to organism
to population levels of detail, and include research
into DNA sequence evolution [42], ion channel
electropotentials in heart arrhythmia [43], cell
proliferation of contact-inhibited cells [44], avascular
tumor growth [45], granuloma formation during
M. tuberculosis infection [46], and the organization of
rocky mussel beds on intertidal shores [47]. Here, the
focus is on the use of a model in the area of tissue
patterning. In the following section, we 1) provide an

S. M. PEIRCE ET AL.

605



606

State variables:

* Cell age = 10 hours

* Expression of Protein-A = 20 picograms
* Concentration of extracellular matrix at this location = 0.2 picograms
* Time until division = 13 hours
* Cell type = endothelial cell
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Relationship among agents, state variables, and simulation space. Shown here is an isometric view of 2D simulation space. Mobile agents
(blue) represent individual biological cells seeded on an immobile scaffold that is represented by a discretization as pixels that are labeled
with Cartesian coordinates. Examples of state variables for a given time are shown for a single agent. State variables for individual agents

or a collection of agents can be plotted with time.

overview of the general concept of agent-based modeling,
2) review agent-based models that have been used to
study different tissue-patterning processes, 3) describe
how tissue-level properties can be elucidated from agent-
based modeling approaches, and 4) outline the challenges
of using this modeling technique to study tissue
patterning.

Concept of agent-based models in tissue patterning
Agent-based simulations assume that local interactions of
autonomous members of a population (i.e., agents), give
rise to global, or emergent, phenomena. Example agents
used in models from past research include immune cells in
tuberculosis studies. Each agent is programmed with rules
that govern its behavior. In many studies, researchers
permit the agents to cooperate or compete. Agents also
sometimes navigate the surrounding environment, whose
properties can vary over space and time. The underlying
philosophy of this “bottom-up” modeling technique is
that relatively simple rules for agent interaction can
generate complex systems-level outcomes observed in the
real world. This concept is highly compatible with the
biology of tissue patterning, in which local cell—cell
interactions are considered to be of primary importance
in generating cellular responses from which emergent
tissue-level properties arise. Agent-based simulations are
useful for understanding tissue patterning because the
simulations are computationally efficient, allow for
spatially heterogeneous cell behaviors, and mimic

the autonomy with which biological cells interact.
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Agents and state variables

Agent-based models are composed of individual agents
that have individual attributes, or state variables, as well
as the ability to change their state variables within a range
of finite values. In biological models, state variables can
represent phenotypic states, protein expression levels, a
proliferative state, a migratory state (a state in which
the full complement of proteins required for the cell

to move is expressed), or any other cell “behavior” or
environmental condition that may affect the cell, such
as local extracellular matrix composition or diffusible
growth factor concentration [48, 49]. At discrete time
points, agents can change states in parallel with one
another by interacting with their neighboring agents
within the computational framework [50]. In agent-
based modeling of biological phenomena, a single agent
frequently represents a single cell [44, 48, 49], and agent-
based models may be composed of thousands of
interacting agents. However, it is important to note

that depending on the biological process being modeled,
agents can be defined to represent animal populations
(in ecological studies), molecules, or subsets of tissues
components. The state variables for each individual agent
can be recorded at discrete time points, enabling tracking
of the state history of an individual agent. In this way, the
phenotypic state (expression levels of a particular protein
by a particular cell) of a simulated cell can be monitored
over time and correlated with other dynamic cellular

or environmental changes within the context of the
entire simulated tissue (Figure 3). In Figure 3, the

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006



Table 1  Example rules that govern subsets of agents that represent different cell types (endothelial cell and smooth muscle cell). Brackets
indicate concentration of the enclosed reactants. (NO: nitric oxide; VE: vascular/endothelial; PDGF-BB: platelet-derived growth factor,
isoform designation BB; TGF: transforming growth factor; pM: picomoles; Ryoung: concentration of receptor protein bound to the ligand.)

Agent Parameter

Rule

Endothelial cell Steady-state production of NO

p-adrenergic-receptor-mediated
production of NO

Expression of cell adhesion molecule
VE-cadherin when contacting another cell

Steady-state proliferation rate

Smooth muscle cell

Contraction in response to NO as a

NO (pM/hr) = 10
NO (pM/hr) =5X (001 X ﬁ - Rbound)

Expression (fold above steady state) =
2 X (number of neighbors)

Cell doubling time (hours) = 2,000

Percent contracted = [NOJ?

percentage of maximally dilated (relaxed)

state

Proliferation rate in response to PDGF-BB

growth factor

Fold change in smooth muscle myosin
heavy-chain expression in response to

TGF-p growth factor

Cell doupling time (hours) = 40 + 82.8
X (e”*HPPGE-BEly _ () 15[PDGF-BB]

Expression (amount above steady state) =
0.73 X In([TGF-p]) + 1.1

phrase concentration of extracellular matrix refers to
the concentration of the protein that constitutes the
extracellular matrix, such as collagen, elastin, or
fibronectin. Expression of protein-A refers to the
concentration of a different protein, for example a
diffusible growth factor in the extracellular space.

Spatial distribution of agents

Agent-based models can allow agents to operate within
the confines of a one-, two-, or three-dimensional space
that is divided into a discrete array, such as a grid
represented by adjacent pixels. In these cases, each grid
square is like a cell in a table; it is annotated with
coordinates to describe its location and corresponds to
an actual geometrical location in the modeled system.
Subsets of agents can be programmed to move within the
defined space, transitioning from pixel to neighboring
pixel with time (Figure 3).

Agent rules

Agents are governed by rules that define initial
conditions, boundary conditions, agent—agent
interactions, and agent—pixel interactions. Individual
agents can be prompted to respond to rules while taking
into consideration their own state history and that of
neighboring agents and pixels. Thus, agent-based models
are deterministic in that individual agents follow rules
that prescribe how their state will change in the next time
step given information relating to the current time step.
Rules, such as those listed in Table 1, are often obtained
from real data and greatly influence the predictions made
by agent-based models. Therefore, it is critical that the
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rules be accurate and used with appropriate spatial and
temporal scaling that is suitable both for the
computational framework and for the simulated
biological processes.

Agent-based models of microvascular patterning
and embryogenesis

Peirce et al. have published two agent-based simulations
that address two different biological patterning processes:
1) microvascular patterning in response to mechanical
and biochemical factors in the adult mammal [49], and 2)
cell and extracellular morphogenesis during embryonic
development [48]. These two tissue-patterning events are
similar with respect to the individual cell and molecular
components and processes that drive them, such as cell
migration, proliferation, and apoptosis, but they differ in
scope and complexity. The former simulation included
the behaviors of more than 1,000 cells over a 14-day time
period, while the latter was much simpler, involving
only 200 cells and five simulated hours. Despite these
differences, both simulations employed the same
computational platform, NetLogo [51], modeled the
tissue in two dimensions, represented single cells by single
agents, defined the initial simulated tissue geometry in the
simulation space using data directly from the analogous
in vivo system that was being modeled, assigned rules
based on independent data, and were validated through
independent bench-top experiments.

The studies described here were among the first to
demonstrate the physiological relevance of using an agent-
based simulation to study tissue-patterning processes in
vertebrate animals in vivo or in whole living tissues.
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Blastocoel roof (BCR) thinning process in the frog Xenopus
laevis. As the embryo develops (a), the cells of the BCR (box)
rearrange by the interdigitation shown in (b), causing this tissue to
become thin over the course of about five hours. For a detailed
description of this process, see Keller [53].

Microvascular patterning

Patterning of the microcirculation in the adult animal
occurs when existing microvessels (capillaries, arterioles,
and venules) are stimulated to “structurally remodel” by
growing in length or diameter, by sprouting into new
branches, and by regressing. Such patterning takes place
during naturally occurring processes, such as exercise,
and in a number of pathological events, such as tumor
growth, heart disease, and wound healing. Spatial and
temporal coordination of cell behaviors caused by an
array of diffusible molecular signals, or growth factors,
is essential in orchestrating a properly patterned
microvascular network [52]. In order to capture the
multicellular “circuitry” of the tissue-level process of
patterning in a blood vessel network, Peirce et al. [49]
developed a quantitative agent-based computational
simulation that was based on the integration of cell
behaviors, which were independently reported by various
researchers, and molecular mechanisms previously
published in the literature. The simulation incorporated
initial microvascular patterns of real tissues derived from
small-animal studies. The tissue-level responses to two
environmental stimuli were assessed: 1) network-wide
changes in hemodynamic mechanical stresses, and 2)
exogenous focal delivery of a pro-angiogenic growth
factor, namely vascular endothelial growth factor
(VEGF). (The term angiogenesis refers to the formation
of new blood vessels. Focal delivery is delivery to a specific
location in the tissue.) The agent-based model predicted
increases in total vascular length and contractile vessel
length at various time points after stimulation of 14 days
of elapsed time. Predictions were verified by comparison
with measured values obtained in analogous but
independent in vivo studies. Thus, this work appropriately
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incorporated independent data (which described growth
factor production and diffusion, as well as cellular
proliferation, migration, and differentiation) in a
computational framework that provided an accurate
description of emergent vascular patterning phenomena.
This kind of simulation had value because it allowed
researchers to identify a functional module of interrelated
processes—a combination of molecular signals and
cellular behaviors that give rise to tissue-patterning events
observed experimentally. Using this model, researchers
may systematically perturb the various component signals
in order to identify drug targets for either enhancing
vascular growth (in ischemic disorders) or limiting it
(in tumorogenesis).

Embryogenesis

Several researchers have described the cellular motions
and molecular machinery that give rise to organized
tissues during embryogenesis in the frog Xenopus laevis
[53, 54]. As individual cells in stratified layers of the
blastocoel roof (BCR) are intercalated during
embryogenesis, the tissue thins and lengthens.

(A blastocoel is the fluid-filled central cavity of the
embryonic blastula.) Meanwhile, a fibronectin (FN) layer
is deposited at the underside of the BCR as an organized
pattern of extracellular matrix, and cell layers evolve.
Researchers currently do not know the extent to which
soluble growth factor signaling, distributed mechanical
tension forces, cell-to-cell adhesion signaling, or other
molecularly mediated aspects of the biology drive these
behaviors. Better understanding of the dynamic interplay
between the coordinated signals and responses that direct
an appropriate tissue-patterning response requires a
framework in which to compute the effects of these
interacting factors over the relevant tissue geometry in
space and time. Longo et al. [48] developed a simulation
that accurately predicted the total time for BCR thinning
of the Xenopus laevis embryo (approximately 4.5 hours)
based on independently obtained cell migration rates
and well-characterized nearest-neighbor cell-to-cell
interactions (Figure 4). Verified by independent data from
experimental studies, the simulations also predicted a
temporal increase in FN matrix assembly on the
underside of the BCR that resembles fibrillogenesis

in the embryo. (The term fibrillogenesis refers to the
development of fine fibrils normally present in collagen
fibers of connective tissue.) When a multicell implant was
placed in the simulated BCR, the simulation predicted
accurate spatial dispersion patterns of the implanted cells
when compared with those measured in the analogous
in vivo intervention, namely the implantation of a plug
of green fluorescent protein-labeled cells in an actual
embryo.
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Tissue-level properties
The development of the two simulations described above
can be considered an initial success, as each contributed
to the understanding of the tissue-patterning process in
ways not achievable through experimentation alone; each
simulation now serves as an analysis tool for testing
future hypotheses in silico before valuable resources and
time are expended on bench-top experiments. For many
reasons, physical experiments with living tissues may not
be adequate for supplying insight. For example, actual
tissues frequently present technical barriers to the
isolation and manipulation of individual variables
without perturbing other variables that affect the system
response. Even in controlled genetic manipulations in
which one gene is “knocked out” (effectively removed),
compensatory mechanisms exist that interfere with our
understanding of the actual effect of a particular
manipulation. However, using computational
simulations, it is feasible to isolate and vary individual
variables without interfering with other parts of the
system. For example, the aforementioned microvascular
patterning simulation was able to identify a functional
patterning “module” (a unique combination of
biochemical signals and cellular behaviors). This module
consisted of four different cell types, four different cell
behaviors, and three different growth factor proteins
capable of quantitatively predicting vascular length
increases and arterial formation, which are key aspects
of vessel network patterning, in response to clinically
relevant environmental stimuli. Future work is needed
to assess the ability of the simulation to predict other
relevant patterning metrics, such as vessel branching in
the network. A computational tool that predicts tissue-
patterning responses, such as increases in vascular length,
is useful because the predictions can direct further
research aimed at artificially “engineering” blood vessel
networks with a desired vascularity—or designing
therapeutic treatments (drug-delivery schemes) to
alternatively enhance or limit vessel growth in different
disease states such as tissue injury or tumor growth.
The model of frog Xenopus laevis embryogenesis was
capable of making independent predictions about many
aspects of the BCR thinning process, all of which were
verified by direct experimentation. The simulation was
also used to test a novel hypothesis: that epithelial cells
differentially adhere to the FN layer in the BCR, and cell-
residency time is proportional to FN deposition and
fibrillogenesis in the BCR. When this hypothesis was
incorporated as an agent rule, the simulation predicted
accurate FN deposition, thus supporting this new
hypothesis, which can now be tested in the in vivo system.
The results of this work suggest that an agent-based
approach can be especially useful in instances in which
specific experimental strategies may not be immediately
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obvious or existing experimental techniques may be too
crude to permit isolation and parameterization of
individual key variables.

Challenges of using agent-based models in tissue
patterning

The accuracy of the governing rules for agent-based
modeling of biological systems has a critical impact on
the predictive capability of the simulation. The modeler
is dependent on the use of well-founded rules for

agent behavior; however, if the rules are accurate and
independently obtained from the current experimental
study that is being used to validate the simulation, the
predictions are likely to be valid because they are rooted
in previously obtained experimental data and not
generated only from theory. In practice, however, our
ability to develop agent-based models for studying
complex biological systems can be hindered by a lack
of reliable raw data from which to generate agent rules.
Researchers should also be careful not to make more
assumptions than the minimum needed to describe the
phenomena, because this may give researchers an
incorrect understanding of the biological process and
yield a computationally inefficient model that also
produces incorrect results. Numerous questions can arise
when considering simulations that employ agent-based
models. For example, how does the modeler know when
enough rules have been incorporated? Is the simplest
explanation (e.g., one using the fewest rules) the most
accurate one? Often modelers attempt to address these
concerns by performing a parametric analysis of the state
variables (variables that describe the physical attributes,
or characteristics, of the agent) to identify key
parameters, bottlenecks in the system, or outcomes that
are particularly sensitive to possible variations in the
relevant parameter settings. The term bottlenecks refers
to rate-limiting biochemical reactions or biological
processes. Furthermore, agent-based models are
particularly prone to becoming unstable if rules do not
provide adequate feedback loops or “stop” conditions.
Thus, it is the modeler’s responsibility to screen for and
safeguard against such instabilities, which may contribute
to errors in the predictions. Finally, despite the relative
computational efficiency of agent-based modeling
techniques, the large number of cells, interactions, pixels,
and rules needed to simulate biological systems can
undermine the feasibility of this approach. Despite

these challenges, we believe that the use of agent-based
computational techniques to integrate and compute
genomic and proteomic information in the context of
multicell tissues will expedite a basic understanding of
biological patterning processes and the extent to which
they can be manipulated for therapeutic purposes.
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Diversity of applications in human disease

Cancer

The challenges that face research efforts in cancer
therapies emphasize the tremendous need to couple
quantitative analysis of intracellular networks with tissue-
level physiology. The idea of treating cancer as a
molecular disease, as a function of malfunctioning
intracellular proteins, has led to the development of
effective drug therapies that use imatinib mesylate.
Imatinib is an inhibitor of the enzyme bcr—abl kinase,
which is constitutively active (always present) in chronic
myeloid leukemia (CML) [55]. (The terms bcr and abl
respectively stand for breakpoint cluster region and
Abelson, the name of a leukemia virus that carries a
similar protein.) The treatment of CML patients with
imatinib has been tremendously successful in that it has
extended life expectancy in roughly 70% of treated
patients. Additional tyrosine kinases are potential
targets for developing new cancer therapeutics [55].

The idea of treating cancer as a developmental, or
tissue-level, disease has also made significant progress. It is
becoming increasingly clear that cell-cell and extracellular
interactions are critical components of tumor progression
[56]. For example, as a tumor reaches a critical size, its
growth becomes highly dependent on a blood supply to
meet metabolic demands and overcome oxygen and
nutrient diffusion limitations. A recently developed
anti-VEGF (vascular endothelial growth factor) drug,
bevacizumab, has demonstrated effective antivascular
effects to inhibit tumor growth [57]. A similar drug
called Endostatin®* was used in animal studies to assess
a large set of signaling pathways associated with its anti-
angiogenic effects [58]. Genome-wide expression profiling,
RT-PCR (reverse transcriptase—polymerase chain
reaction), and phosphorylation analysis indicated highly
interconnected roles of key proteins (such as NF—«B,
STAT, TNF, AP-1), and other signaling pathways.
NF-xB is a multisubunit transcription factor. STAT
stands for Signal Transducers and Activators of
Transcription. TNF stands for tumor necrosis factor,
and AP-1 is a transcription factor.

Researchers consider the tissue-level and molecular-
level components of cancer in order to develop
therapeutics. Clearly, both perspectives will prove to be
fruitful avenues for research into the progression of the
disease. Tissue-level and molecular-level concerns also
suggest a need for a multiscale approach that can
quantitatively integrate molecular detail of intracellular
networks with tissue-level analysis and experimentation.
With such a coupling, researchers should be able to
characterize the mechanism behind the anti-tumor-
growth effects of a drug such as Endostatin.

S. M. PEIRCE ET AL.

Coronary heart disease
Coronary heart disease is a complex pathological
condition because it involves both bottom-up (molecular)
and top-down (tissue) mechanisms and interactions. It
can be considered a molecular disease that results in
adverse tissue-level behaviors, such as those produced by
oxidation of LDL (low-density lipoprotein) cholesterol
via free radical damage leading to the development of
fatty streaks in the blood vessel wall. Tissue-level
behaviors, such as alterations in blood vessel wall
geometry due to atherosclerotic plaque formation, can
reinforce malfunctions at the molecular level, such as
increased levels of circulating pro-inflammatory
regulatory proteins called cytokines. Thus, this particular
disease is well suited to investigation by using a combined
computational approach that incorporates molecular-
level detail with cellular-level patterning within the tissue.

A common pharmacological treatment for early-stage
coronary heart disease is the systemic administration of
beta-adrenergic receptor blocking agents, commonly
known as “beta-blockers.” Beta-blockers competitively
inhibit the binding of adrenaline to beta-1 and/or beta-2
adrenergic receptors on cardiac and smooth muscle cells,
which slows nerve impulses to the heart [59]. This
decreases heart rate, contractility, and blood pressure
[60, 61]. Despite widespread administration of these drugs
in the clinic, the underlying molecular mechanisms by
which beta-blockers mitigate heart disease are not well
understood. Because a single molecule, such as a beta-
adrenergic receptor—agonist, can elicit varying cellular
responses in different interacting cell types that may
be collaborative or competing (i.e., either beneficial in
preventing heart disease or destructive and augmenting
heart disease), the details of these interactions may not be
obvious using experimental approaches alone. In these
instances, identifying cause-and-effect interactions can
prove to be a frustrating endeavor without using a tool to
access and manipulate the individual components within
the framework of the entire system. In a multiscale
computational approach, however, the integrated and
complex mechanisms underlying this accepted treatment
may potentially be elucidated and individually assessed
in the context of the whole system.

In future research, one may construct a network
analysis of the signaling cascade that describes all
of the events subsequent to adrenaline binding to beta-
receptors, including the intracellular molecular details
leading to cross-bridge cycling during muscle contraction
in cardiac and vascular smooth muscle cells [62-64]. The
term cross-bridge cycling refers to the molecular
interactions that cause a muscle cell to contract or
shorten, thereby providing forces to operate the muscle
tissue. The direct effect of beta-blockers on vascular
endothelial cell nitric oxide production may also be taken
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into account [65]. The network analysis may provide
quantitative data describing both the contractile state of
individual muscle cells and the nitric oxide production
of endothelial cells given adrenaline-receptor and
antagonist—receptor binding distributions. This
information may be passed to a corresponding agent-
based simulation that may preserve the input—output
relationships of each cell-type-specific network while
scaling up to the multicell tissue space. If, for example,
the modeled tissue space were a portion of the ventricular
wall perfused by a major coronary artery, the agent-based
model would enable real-time computation of both
localized cardiomyocyte contraction (which would
directly affect metabolic demand) and vascular tone in the
blood vessels that feed the tissue space (which would be
affected by metabolic demand) (Figure 5). In Figure 5, the
three downward-pointing arrows represent the binding
of beta-blocker to beta-receptor for different phases of
cardiac functioning. The “seesaw” in Figure 5 indicates
that these two tissue-level processes (metabolic demand
and vascular tone) are delicately balanced in the cells of
the heart tissue, and functionally linked to each other,
so that a change in one causes a change in the other.
Labels at the bottom of the figure in red indicate
responses to the beta-blocker, while labels in black
indicate responses to adrenaline. Ultimately, the
simulation may predict the interactions between beta-
blocker modulation of blood supply (via vascular tone)
and beta-blocker modulation of tissue metabolic demand
(via cardiomyocyte contraction). When the physiological
manifestations of both processes exceed a certain
threshold, the metabolic demand will exceed the chemical
supply, and an eventual heart attack may ensue.
Coupling the network-level interactions with multiple
cells in an agent-based model would allow the
investigator to intervene in the biology at one level
of scale (e.g., to simulate a drug interaction), and the
simulation would propagate that intervention through the
single-cell and multi-cell scales up to the tissue level,
where clinically accessible physiological results (cardiac
output, heart rate, or blood pressure) could be correlated
with patient data. The pairing of these two computational
techniques would allow systematic isolation and
alteration of individual parameters affected by beta-
blockers, thereby providing spatially and temporally
detailed insight into cause-and-effect properties of this
complex system.

Challenges of multiscale integration

Several challenges with respect to the coupling of
intracellular network analysis with tissue-level physiology
have been discussed above. Conceptual advances will be
required to marry the available quantitative techniques
with the analysis of biological systems that evolve and are
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and with tissue-level function for the purpose of understanding the
mechanisms behind beta-blocker therapy in coronary heart disease.

very difficult to elucidate. A significant need exists to
develop the computational infrastructure required for
such sophisticated analyses.

Relatively few systems have been extensively
characterized from the molecular and physiological
perspectives. For example, the genome of the frog
Xenopus laevis, a model organism for developmental
biology and tissue patterning, has not yet been sequenced.
Researchers must constantly assess whether the available
data is “sufficient.” We can generate high-throughput
datasets for many organisms under many conditions, but
biological systems adapt to changing environments. This
fundamental property motivates the need for novel
modeling approaches that can account for the inherent
flexibility in biology [66].

In addition, each high-throughput experimental
technology merely creates “snapshots” of particular
aspects of a cell, and researchers will likely always lack
“complete” data for a given system. All datasets also have
a level of inaccuracy associated with the particular
technology being used. Computational techniques will
have to account for this level of uncertainty in the
biological system.

Other questions remain. For example, is there a need to
describe all of the processes of the cell with network-level
information before researchers can achieve reasonable
predictive capabilities and worthwhile simulations? Or is
it sufficient to make assumptions at particular levels of
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complexity in order to make useful predictions and
generate novel avenues for therapeutic developments?
The answers to these questions require multiscale
network analysis.

The existing software and analytical tools used for
intracellular network analysis and agent-based analysis
have developed independently. To integrate these
different scales in biology, a need exists for interfacing
software and database schemas and ontologies that can
seamlessly pass information between the interacting tools.
In addition, tissue-patterning problems will require three-
dimensional implementations of agent-based modeling
techniques. Some intracellular network analyses are
classified as NP-complete problems (a computer science
term for describing problems that cannot be solved
efficiently) and will thus likely require reformulations
to generate useful results [33]. The computational
infrastructure for scaling and calibrating spatial and
temporal information will be required at the molecular-
and tissue-level interface because molecular events can
occur on the order of picoseconds while tissues can evolve
over the lifetime of an organism.

Conclusions
Researchers who wish to develop useful and realistic
integrated modeling approaches to systems biology must
design and specify practical deliverables for both basic
scientific and therapeutic use. Reaching these goals may
require more than one approach, and a simulation
technique that is suitable for generating a mechanistic
understanding of the basic science may not necessarily
be of practical use in drug development. Building
quantitative simulations that span spatial and temporal
scales requires the researchers to consider the available
data from various perspectives, and often the exercise of
model building leads to insightful, novel hypotheses and
reveals gaps in current understanding that must be filled.
To assess the potential of an integrated modeling
approach, it is necessary to provide experimental
validation of key model predictions. This validation is
best accomplished by performing analogous interventions
in both the computational and in vivo environments.
Interventions will be specific to the biological system and
will most likely be limited to what is experimentally
feasible. For example, in embryogenesis studies, an
intervention may consist of transplanting a genetically
engineered patch of cells to a genetically normal and
unmodified (i.e., wild-type) embryo and monitoring the
activities of the mutant cells. Researchers must ensure
that metrics obtained in each setting are analogous and
require little or no scaling to enable accurate comparison
between in vivo measurements and computationally
predicted datasets. To ensure a reliable assessment of
the model’s validity based on existing data, it is also
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necessary to keep the results of experimental studies used
for model verification separate from the simulation rules
or inputs. In other words, the rules and parameters that
comprise the simulation should obviously not be derived
from the output of the experimental study that will
ultimately be used to verify the simulation.

The results of agent-based simulations can sometimes
suggest future biological experiments that test model
results and that may eventually lead to new medical
treatments. Even simple rules assigned to interacting
agents can yield surprisingly complex behaviors that are
difficult to predict when studying isolated components.
Past studies have sometimes employed differential
equations to help researchers understand cell behavior
in an aggregate way. On the other hand, the agents
of in-silico modeling make decisions in response to
environmental parameters, and unusual activity of just
a small set of cells can alter the overall system behavior
in profound ways.

In conclusion, a central debate in biology has long
revolved around a question that still stands today: Are
tissue structures and functions determined strictly by
precise information stored as genetic material, or do they
develop as a result of interactions of cells and tissues with
their environment? Valuable insight has been provided
by gene knockout studies that remove the impact of a
single gene and then determine the tissue physiology
in its absence [67-69]. However, to fully answer
these questions, researchers require a quantitative,
computational framework that is capable of integrating
genetic data with environmental stimuli in order to
connect molecular mechanisms to tissue-level physiology
and pathology.

**Trademark, service mark, or registered trademark of EntreMed,
Inc. in the United States, other countries, or both.
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