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In order to achieve a comprehensive understanding of complex
biological systems, researchers must develop new techniques that
incorporate key features of the system across all relevant spatial
and temporal scales. Recent advances in molecular biology and
genetics have generated a wealth of experimental data that
provides details with respect to gene-expression patterns and
individual gene and protein functions, but integration of this
information into meaningful knowledge of the complete system is a
challenge borne by a new scientific era dependent on computational
tools. In this paper, we review new computational techniques,
developed to reconstruct single-cell biochemical networks for
generating quantitative descriptions of network properties, and
agent-based models designed to study multicell interactions
important in tissue patterning. We also discuss the challenges and
promises of combining these approaches in a single quantitative
framework for advancing medical care for diseases that arise from
a multitude of factors.

Introduction

The last several years have produced an explosion of

biological data. The complete genome sequences of

hundreds of organisms have now been published [1], and

the activities of these genomes are being characterized

with gene microarray technologies at a dizzying pace [2].

Furthermore, protein–protein interaction experiments,

fluorescent microscopy, and mass spectrometry are

generating data on how the corresponding proteins

interact with one another. However, the efficient

generation of large amounts of data (i.e., ‘‘high-

throughput’’ data) alone does not drive further biological

discovery. Additionally, the systematic integration and

interrogation of the data often facilitates the discovery

process [3]. Thus, there is an ever-growing need to

develop quantitative, computational frameworks for

analyzing the properties of these biological systems [4].

The elucidation of glycolytic reaction mechanisms

(energy-generating metabolic processes) ushered in

decades of work to characterize entire metabolic

networks [5]. Similarly, the characterization of the lac

operon genes [6] led to the characterization of regulatory

networks [7]. The discovery of phosphorylated tyrosine

residues and the functioning of G-protein-coupled

receptors has resulted in an entire field of cellular signal

transduction in which current efforts are generating

extensive ‘‘wiring diagrams’’ that indicate relationships

between components in signaling networks [8].

Quantitative reconstructions of some networks now

exist [9]. While the high-throughput data on which

these reconstructions are based depends on population

averages, experimental systems are being created that

characterize component interactions on a single-cell level

[10].

Current biological research at the multicell level,

or tissue level, has also emerged from quantitative

approaches. The progression in scientific knowledge of

cardiovascular physiology is an excellent example. One of

the first quantitative hypotheses in this field related fluid

flux in the circulation to the oncotic (swelling) and

hydrostatic pressures that develop in tissues [11]. Later,

a mathematical model of radial oxygen diffusion from
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capillaries into surrounding muscle was developed that

predicted the maximum distance that oxygen can diffuse

into the tissue and provided a theoretical framework for

understanding capillary bed architectures in tissue [12].

More recently, continuum models have been used to

describe vascular wall remodeling [13], and finite element

models have suggested and validated new mechanisms of

microvascular network function, structure, and growth

[14, 15].

An ongoing challenge requires researchers to relate

biological information across temporal and spatial scales,

and computational approaches have proven beneficial

in advancing scientific understanding. Two examples

illustrate the multiscale modeling of biological processes.

First, the pioneering work of Hodgkin and Huxley

connected ionic current flow with neural function [16],

and the complex interplay between collections of neurons

and brain behavior is now the subject of further

mathematical analysis [17]. Second, many molecular

components of the immune system have been

characterized and subjected to extensive computational

modeling and analysis [18]. These examples and others

require researchers to investigate components (e.g., ion

channels) of targeted cellular and tissue function. One

example of tissue function is signal propagation in the

form of a cardiac action potential that mediates the

beating of the heart.

However, in order to connect genomic information

with tissue function, there is a need to associate properties

of genome-scale intracellular networks with tissue-

level patterning and behavior (Figure 1). (The term

intracellular networks refers to systems of biochemical,

biomechanical, and bioelectrical signals inside a cell that

are transmitted by cellular constituents such as DNA,

RNA, and protein.) This review presents recent efforts

to make this connection using genome-scale network-

analysis techniques and agent-based modeling

approaches. Note that multiscale techniques based on

continuum models and sets of differential equations are

currently under development. First, recent work is

presented on reconstructing cellular biochemical

networks that integrate genomic, transcriptomic, and

proteomic data in a mathematical formalism that can be

used to generate quantitative descriptions of network

properties. The subsequent section discusses efforts

to generate agent-based models of multicellular

development in vascular and embryonic tissue—

models that have been extensively validated with in vivo

experimentation. Finally, we outline the challenges and

promises of integrating these disparate length and time

scales in a quantitative framework for advancing medical

care in diseases as diverse as cancer and cardiovascular

pathology. These multiscale efforts attempt to build a

conceptual and functional linkage between intracellular

and extracellular processes for the prediction and

understanding of tissue patterns and adaptations to

environmental stimuli.

Intracellular networks

The systems analysis of an intracellular network consists

of two steps. The first step is the network reconstruction

of the relevant chemical compounds and reactions. The

second step is the analysis of this reconstructed network

using computational techniques. These two steps are

highly interconnected, and each process of sequentially

rebuilding and analyzing the network can generate

hypotheses for further interrogation.

Network reconstruction

The reconstruction process involves the integration of

various high-throughput experimental data, and each

dataset provides only one perspective on intracellular

mechanisms and activities [8]. For example, expression

array data can indicate which genes are on or off at a

given time point, but cannot indicate which protein

products interact with one another. A reconstruction

provides a framework for representing the collection of

intracellular activities. Thus, the reconstruction of the

Figure 1

Coupling intracellular networks with tissue-level physiology. The 
phenotype of a given cell is a function of many proteins, metabo-
lites, and their associated interactions. Tissue-level physiology 
arises from a collection of the phenotypes of the individual cells. 
Each scale of biological investigation has at its disposal a unique 
set of experimental techniques and analysis methods. The 
challenge remains to integrate the molecular network detail with 
the multicellular network that gives rise to human pathologies 
(e.g., cancer and cardiovascular disease).

Stress–strain
relationships,
microscopy, immuno-
histochemistry,
physical dimensions,
differentiated state  

Data: Genome sequence,
 protein–protein
 interaction maps,
 gene expression
 arrays  

Agent-based models,
constitutive equations 

Analysis: Flux-balance analysis,
 network-based
 pathway analysis 
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gene network provides a concise collection of existing

hypotheses for a given system.

There are three principal types of networks for which

reconstructions exist. Metabolic networks consist

primarily of reactions that convert substrates (e.g.,

glucose) into products for biosynthetic and energy

demands [e.g., amino acids and ATP (adenosine

triphosphate)]. Regulatory networks comprise the set

of relationships between proteins and the genes they

regulate. Signaling networks consist of the interactions

between proteins and metabolites that together transduce

extracellular signals into intracellular events. Although

the interconnectivity of these three networks is becoming

increasingly clear [19], they are typically segregated in

standard textbook descriptions.

Process of reconstruction

Each network involves a set of chemical transformations

that can be represented as a set of stoichiometric

reactions (i.e., reactions that are defined by a mass

balance of reactants and products) in a matrix

formalism (see Figure 2). The rows and columns of

the stoichiometric matrix correspond respectively to

compounds and their associated reactions. The elements

of the matrix correspond to the stoichiometric coefficients

in the associated reactions.

The first step in network reconstruction is to collect

available high-throughput data for the system of interest.

For example, the annotated genome sequence helps to

identify which enzymatic reactions are available to a

metabolic network. Expression arrays can indicate

which genes are active in the cell type or system to be

reconstructed. The reconstructions should be cell-

type- or organism-specific where possible; otherwise, the

subsequent analysis may not generate predictions that

can be experimentally verified. Furthermore, the

environmental conditions in which the data were

generated should be well defined. For example, growth

experiments in media with unknown constituents are

difficult to incorporate in network reconstructions. It is

difficult to analyze and generate quantitative predictions

if the cell is exposed to an unknown variety of nutrients

and growth factors.

The next step involves scanning the annotated genome

and incorporating the associated stoichiometric reactions

in a database or spreadsheet format. The use of the

genome ensures that all reactions and activities can be

accounted for as much as possible. In other words, by

considering the entire genome in the analysis, researchers

are taking into consideration all of the molecular

components that could contribute to the system behavior.

The outcome of this step is a well ‘‘curated’’ file with a list

of the reactions occurring in the given system. This

reconstruction then becomes the basis for further

analysis. Significantly, the reconstruction itself is of

tremendous interest, independent of the analyses that are

performed on it. First, it provides a concise format for

identifying what is present or absent in a given organism

and can serve as a structured framework for refining

annotations. Additionally, the stoichiometric

reconstruction forces the researcher to ask questions

that might otherwise be neglected. For example, in the

reconstruction of a signaling network, we may identify

genes corresponding to given receptor and adaptor

proteins for a given signaling pathway. However, to

generate a stoichiometric reconstruction, we may need to

include information from mass spectrometry or yeast

two-hybrid experiments to ascertain whether the given

proteins are in monomeric or dimeric forms. The

spreadsheet or database file generated for the

reconstruction organizes the information that would

otherwise be restricted to an individual researcher’s

knowledge base or to an unsorted collection of the

literature. Stoichiometric reconstructions have produced

a valuable new understanding of metabolic processes [20].

However, even without a stoichiometric level of detail for

a given biological system, the process of reconstruction

described above still generates immensely informative

results [8].

Status of existing network reconstructions

The genome-scale metabolic networks of several

microbial species have been reconstructed [9]. Certainly

Figure 2

Stoichiometric reconstruction of three typical cellular signaling 
reactions. The first reaction involves the binding of a ligand to a 
receptor protein. The second reaction comprises the dimerization 
of the receptor protein after it has bound to the ligand. The third 
reaction involves the autophosphorylation (with a phosphate 
group, P) of the dimerized receptor. The stoichiometric matrix is 
formed with rows corresponding to compounds and columns 
corresponding to reactions R. The elements of the matrix 
correspond to the stoichiometric coefficients of the corresponding 
compound in the corresponding reaction. 
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the most extensively reconstructed metabolic network is

that of Escherichia coli [21]. To date, this reconstruction

accounts for more than 1,000 open reading frames (i.e.,

DNA sequences that encode part or all of a protein) of

the predicted 4,311 open reading frames in the E. coli

genome. Additional metabolic systems have also been

reconstructed; for example, glycolysis in the pathogen

Trypanosoma brucei was reconstructed in order to

understand its biochemical regulation in the bloodstream

[22]. The regulatory network of E. coli was also

reconstructed and used to predict the changes in gene

expression and the resultant growth phenotypes under a

variety of ‘‘knockouts’’ and environmental conditions

[23]. (The term knockouts refers to experimental

perturbations in which a gene has been functionally

‘‘knocked out’’ or effectively deleted through genetic

manipulations.) The regulatory networks associated

with developmental processes in sea urchins and other

organisms were reconstructed and analyzed [7]. Perhaps

the signaling system for which the most extensive

reconstructions exist is associated with the epidermal

growth factor receptor [24, 25]. Recently, the

stoichiometric reconstruction of the JAK–STAT

signaling network in the human B-cell was used to

quantify structural and topological properties of the

network [26]. (JAK stands for Janus Kinase; STAT stands

for Signal Transducers and Activators of Transcription.

The JAK–STAT pathway refers to a family of signaling

pathways that are important for immune response.)

Challenges to network reconstruction

The primary challenge to current reconstruction efforts is

a lack of data for given biological systems, as well as the

significant amount of effort required to generate and

curate an organism-specific stoichiometric matrix. For

example, a large-scale reconstruction is difficult to initiate

without a sequenced genome, or without a knowledge of

the genes that are active in a particular differentiated cell.

Without the data describing the intracellular network, the

network can be reconstructed with limited confidence.

However, the low-confidence reconstruction is still a

powerful tool, because it provides a starting point for

making predictions and focusing research efforts to

characterize the less-characterized components and

interactions. The laborious process of reconstruction and

testing may also be improved with automated efforts to

integrate high-throughput data into a mathematical

representation. Some efforts at automated network

generation are emerging [27].

Network analysis

The analysis of a given network is intimately connected

to the reconstruction process. Computational analysis

can generate predictions regarding growth rates of

cells, the effect of gene knockouts, and the secretion

rate of byproducts of biochemical reactions. These

predictions can then be used to evaluate whether a

given reaction should be included in the reconstruction.

Thus, the analysis of a given network can lead to

refinements of the network reconstruction itself.

The example of the identification of the gene in

Helicobacter pylori, a bacterium that causes gastric

cancer, corresponding to malate dehydrogenase is

described elsewhere [28].

Analysis techniques

Three general categories of analysis techniques have been

applied to genome-scale reconstructions. Although the

detailed implementation of these methods is beyond the

scope of this review, the general approaches are described

below.

The first analysis category involves approaches that

identify single states (e.g., reaction flux distributions) of

the cell subject to a given criterion, such as a criterion

relating to the maximum growth rate of a cell. These

approaches address, in part, the challenge of accounting

for uncertainty in model parameters and experimental

data by mathematically stating bounds that ‘‘confine’’

a network (e.g., thermodynamic constraints) and then

identifying an ‘‘objective’’ that the cell is optimized to

achieve. An example objective is a flux distribution that

results in the maximum growth rate possible. These

techniques include flux-balance analysis (FBA) [29],

minimization of metabolic adjustment (MOMA) [30], and

energy balance analysis (EBA) [31]. The input to each of

these approaches is the stoichiometric matrix for a given

system, a set of constraints on how the reactions are

used (e.g., maximum substrate uptake rates), and an

objective function (e.g., maximum growth rate). The

output of each of these approaches is a distribution

of flux values for all of the reactions that effectively

provides a ‘‘state’’ of the given network. Because the

calculation of these distributions is typically performed

with linear programming (a mathematical technique for

finding the maximum value of a given function subject

to a set of mathematical criteria [32]), the calculation

can be performed efficiently for relatively large

biochemical networks.

The second type of analysis techniques involves

network-based pathways, and these techniques have been

applied at a genome scale. These approaches involve the

calculation of ‘‘mass-balanced’’ pathways through a

network (in which stoichiometric relationships are not

violated). Network-based pathways have been calculated

for metabolic networks [33] and have led to quantitative

descriptions of several network properties (described

below). More recently, this network-based pathway

S. M. PEIRCE ET AL. IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006

604



approach has been applied to a cellular signaling network

[26].

The final analysis category includes Monte Carlo

sampling procedures. Typically, the values for the

reaction fluxes are varied, subject to upper and lower

bounds of the flux through a reaction, and network

properties are subsequently characterized. For example,

researchers have implemented a sampling algorithm to

characterize the distribution of fluxes in the metabolic

network of the bacterium Escherichia coli [34]. The

distribution of reaction fluxes was found to be highly

uneven in situations in which a small number of reactions

dominated a significant portion of the network activity.

Random sampling was also used to calculate the

dynamics of large-scale reaction networks [35].

Systems-level properties

Each of these analysis techniques can be used to generate

systems-level descriptions of key cellular phenotypes and

network behaviors. We provide two examples below.

Correlated reaction sets are groups of reactions that

function together. They have been defined as unbiased

modules (groups of reactions or components with a

common function) in biochemical networks [36].

Researchers have identified these reaction sets in the

JAK–STAT cellular signaling network in the human B-

cell [26], as well as in the metabolic networks of a variety

of microorganisms [37–39]. Because correlated reaction

sets are groups of reactions that are functionally related,

they provide information for hypotheses for regulatory

structure. Indeed, expression array data indicates that the

genes corresponding to these groups of reactions are

coordinately regulated (see [36] for a description).

The term pathway redundancy refers to the number of

independent routes for which a given set of inputs into a

network are converted into a given set of outputs out of

the network. This system property was quantified with

extreme pathway analysis, a computational tool to

study biochemical networks [40]. For the bacterium

H. influenzae, an average of 46 independent routes exist to

convert minimal nutritional media into amino acids and

associated byproducts [40]. For the bacterium H. pylori,

under relatively similar conditions, an average of two

independent routes exist [41]. Although the relative sizes

of the genomes and associated metabolic network

reconstructions are similar for both organisms, a

significantly higher degree of pathway redundancy exists

in H. influenzae. This characteristic may be indicative of

the ecological niches in which the two organisms reside.

For example, H. pylori is located primarily in the highly

acidic gastric lining; H. influenzae can be found in

environments that undergo a wider variability. Thus,

perhaps the metabolic network of H. pylori is ‘‘fine-

tuned’’ to its very specific ecological niche.

Tissue-level patterning

Biological tissue is a composite of cellular and acellular

material arranged in structures and substructures whose

organization is often characterized by a repetition in

patterns. The regularity of tissue patterns persists as long

as the tissue is in a dynamically stable or a quiescent state.

However, the structural and functional properties of

tissues can be altered during physiological growth and

pathological events, and often these events lead to

changes in the arrangement of cells and acellular material,

giving rise to new tissue patterns.

Biological tissues are considered ‘‘complex systems’’

because of their multifaceted composition and the

interrelated spatial and temporal dynamics that

characterize the way in which tissues adapt (e.g., alter

their structure and function) to external stimuli. For

example, in humans, tissues adapt to changing

environmental conditions, changes in lifestyle, or the

onset of disease. Understanding tissue patterning

processes, particularly processes that arise in response

to disease, is central to many areas of medicine, and

advances in this area can contribute to the engineering of

artificial tissues; the optimization of pharmacological

therapies for heart disease, diabetes, and cancer;

decreasing the incidence of birth defects; and more

informed use of medical diagnostic techniques such as

magnetic resonance imaging and ultrasound. Reaching

the ultimate goal of understanding the basic science of

tissue patterning, and being able to manipulate relevant

processes in disease detection, treatment, and resolution,

requires the following elements: 1) identification and

characterization of the molecular, cellular, and acellular

components of the tissue; 2) conceptualization of the way

the components interact with one another; 3) spatial

and temporal integration of cellular behaviors with the

molecular signals that drive them; and 4) simulation with

quantitative computation of these events. We believe that

useful advances can be made only with the help of

computational techniques that effectively consider the

biological complexities across multiple length scales—

from molecules to tissue-level behaviors.

Agent-based models (defined in the following section)

have recently been used to study an array of different

biological processes spanning molecular to organism

to population levels of detail, and include research

into DNA sequence evolution [42], ion channel

electropotentials in heart arrhythmia [43], cell

proliferation of contact-inhibited cells [44], avascular

tumor growth [45], granuloma formation during

M. tuberculosis infection [46], and the organization of

rocky mussel beds on intertidal shores [47]. Here, the

focus is on the use of a model in the area of tissue

patterning. In the following section, we 1) provide an

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006 S. M. PEIRCE ET AL.

605



overview of the general concept of agent-based modeling,

2) review agent-based models that have been used to

study different tissue-patterning processes, 3) describe

how tissue-level properties can be elucidated from agent-

based modeling approaches, and 4) outline the challenges

of using this modeling technique to study tissue

patterning.

Concept of agent-based models in tissue patterning

Agent-based simulations assume that local interactions of

autonomous members of a population (i.e., agents), give

rise to global, or emergent, phenomena. Example agents

used in models from past research include immune cells in

tuberculosis studies. Each agent is programmed with rules

that govern its behavior. In many studies, researchers

permit the agents to cooperate or compete. Agents also

sometimes navigate the surrounding environment, whose

properties can vary over space and time. The underlying

philosophy of this ‘‘bottom-up’’ modeling technique is

that relatively simple rules for agent interaction can

generate complex systems-level outcomes observed in the

real world. This concept is highly compatible with the

biology of tissue patterning, in which local cell–cell

interactions are considered to be of primary importance

in generating cellular responses from which emergent

tissue-level properties arise. Agent-based simulations are

useful for understanding tissue patterning because the

simulations are computationally efficient, allow for

spatially heterogeneous cell behaviors, and mimic

the autonomy with which biological cells interact.

Agents and state variables

Agent-based models are composed of individual agents

that have individual attributes, or state variables, as well

as the ability to change their state variables within a range

of finite values. In biological models, state variables can

represent phenotypic states, protein expression levels, a

proliferative state, a migratory state (a state in which

the full complement of proteins required for the cell

to move is expressed), or any other cell ‘‘behavior’’ or

environmental condition that may affect the cell, such

as local extracellular matrix composition or diffusible

growth factor concentration [48, 49]. At discrete time

points, agents can change states in parallel with one

another by interacting with their neighboring agents

within the computational framework [50]. In agent-

based modeling of biological phenomena, a single agent

frequently represents a single cell [44, 48, 49], and agent-

based models may be composed of thousands of

interacting agents. However, it is important to note

that depending on the biological process being modeled,

agents can be defined to represent animal populations

(in ecological studies), molecules, or subsets of tissues

components. The state variables for each individual agent

can be recorded at discrete time points, enabling tracking

of the state history of an individual agent. In this way, the

phenotypic state (expression levels of a particular protein

by a particular cell) of a simulated cell can be monitored

over time and correlated with other dynamic cellular

or environmental changes within the context of the

entire simulated tissue (Figure 3). In Figure 3, the

Figure 3
Relationship among agents, state variables, and simulation space. Shown here is an isometric view of 2D simulation space. Mobile agents 
(blue) represent individual biological cells seeded on an immobile scaffold that is represented by a discretization as pixels that are labeled 
with Cartesian coordinates. Examples of state variables for a given time are shown for a single agent. State variables for individual agents 
or a collection of agents can be plotted with time.

State variables:
• Cell age � 10 hours
• Expression of Protein-A � 20 picograms
• Concentration of extracellular matrix at this location � 0.2 picograms
• Time until division � 13 hours
• Cell type � endothelial cell   
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phrase concentration of extracellular matrix refers to

the concentration of the protein that constitutes the

extracellular matrix, such as collagen, elastin, or

fibronectin. Expression of protein-A refers to the

concentration of a different protein, for example a

diffusible growth factor in the extracellular space.

Spatial distribution of agents

Agent-based models can allow agents to operate within

the confines of a one-, two-, or three-dimensional space

that is divided into a discrete array, such as a grid

represented by adjacent pixels. In these cases, each grid

square is like a cell in a table; it is annotated with

coordinates to describe its location and corresponds to

an actual geometrical location in the modeled system.

Subsets of agents can be programmed to move within the

defined space, transitioning from pixel to neighboring

pixel with time (Figure 3).

Agent rules

Agents are governed by rules that define initial

conditions, boundary conditions, agent–agent

interactions, and agent–pixel interactions. Individual

agents can be prompted to respond to rules while taking

into consideration their own state history and that of

neighboring agents and pixels. Thus, agent-based models

are deterministic in that individual agents follow rules

that prescribe how their state will change in the next time

step given information relating to the current time step.

Rules, such as those listed in Table 1, are often obtained

from real data and greatly influence the predictions made

by agent-based models. Therefore, it is critical that the

rules be accurate and used with appropriate spatial and

temporal scaling that is suitable both for the

computational framework and for the simulated

biological processes.

Agent-based models of microvascular patterning

and embryogenesis

Peirce et al. have published two agent-based simulations

that address two different biological patterning processes:

1) microvascular patterning in response to mechanical

and biochemical factors in the adult mammal [49], and 2)

cell and extracellular morphogenesis during embryonic

development [48]. These two tissue-patterning events are

similar with respect to the individual cell and molecular

components and processes that drive them, such as cell

migration, proliferation, and apoptosis, but they differ in

scope and complexity. The former simulation included

the behaviors of more than 1,000 cells over a 14-day time

period, while the latter was much simpler, involving

only 200 cells and five simulated hours. Despite these

differences, both simulations employed the same

computational platform, NetLogo [51], modeled the

tissue in two dimensions, represented single cells by single

agents, defined the initial simulated tissue geometry in the

simulation space using data directly from the analogous

in vivo system that was being modeled, assigned rules

based on independent data, and were validated through

independent bench-top experiments.

The studies described here were among the first to

demonstrate the physiological relevance of using an agent-

based simulation to study tissue-patterning processes in

vertebrate animals in vivo or in whole living tissues.

Table 1 Example rules that govern subsets of agents that represent different cell types (endothelial cell and smooth muscle cell). Brackets

indicate concentration of the enclosed reactants. (NO: nitric oxide; VE: vascular/endothelial; PDGF–BB: platelet-derived growth factor,

isoform designation BB; TGF: transforming growth factor; pM: picomoles; Rbound: concentration of receptor protein bound to the ligand.)

Agent Parameter Rule

Endothelial cell Steady-state production of NO NO (pM/hr) ¼ 10

b-adrenergic-receptor-mediated

production of NO

NO (pM/hr) ¼ 5 3 (0.01 3 b � Rbound)

Expression of cell adhesion molecule

VE–cadherin when contacting another cell

Expression (fold above steady state) ¼
2 3 (number of neighbors)

Steady-state proliferation rate Cell doubling time (hours) ¼ 2,000

Smooth muscle cell Contraction in response to NO as a

percentage of maximally dilated (relaxed)

state

Percent contracted ¼ [NO]2

Proliferation rate in response to PDGF–BB

growth factor

Cell doupling time (hours) ¼ 40 þ 82.8

3 (e�3.2[PDGF-BB]) � 0.15[PDGF–BB]

Fold change in smooth muscle myosin

heavy-chain expression in response to

TGF–b growth factor

Expression (amount above steady state) ¼
0.73 3 ln([TGF�b]) þ 1.1
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Microvascular patterning

Patterning of the microcirculation in the adult animal

occurs when existing microvessels (capillaries, arterioles,

and venules) are stimulated to ‘‘structurally remodel’’ by

growing in length or diameter, by sprouting into new

branches, and by regressing. Such patterning takes place

during naturally occurring processes, such as exercise,

and in a number of pathological events, such as tumor

growth, heart disease, and wound healing. Spatial and

temporal coordination of cell behaviors caused by an

array of diffusible molecular signals, or growth factors,

is essential in orchestrating a properly patterned

microvascular network [52]. In order to capture the

multicellular ‘‘circuitry’’ of the tissue-level process of

patterning in a blood vessel network, Peirce et al. [49]

developed a quantitative agent-based computational

simulation that was based on the integration of cell

behaviors, which were independently reported by various

researchers, and molecular mechanisms previously

published in the literature. The simulation incorporated

initial microvascular patterns of real tissues derived from

small-animal studies. The tissue-level responses to two

environmental stimuli were assessed: 1) network-wide

changes in hemodynamic mechanical stresses, and 2)

exogenous focal delivery of a pro-angiogenic growth

factor, namely vascular endothelial growth factor

(VEGF). (The term angiogenesis refers to the formation

of new blood vessels. Focal delivery is delivery to a specific

location in the tissue.) The agent-based model predicted

increases in total vascular length and contractile vessel

length at various time points after stimulation of 14 days

of elapsed time. Predictions were verified by comparison

with measured values obtained in analogous but

independent in vivo studies. Thus, this work appropriately

incorporated independent data (which described growth

factor production and diffusion, as well as cellular

proliferation, migration, and differentiation) in a

computational framework that provided an accurate

description of emergent vascular patterning phenomena.

This kind of simulation had value because it allowed

researchers to identify a functional module of interrelated

processes—a combination of molecular signals and

cellular behaviors that give rise to tissue-patterning events

observed experimentally. Using this model, researchers

may systematically perturb the various component signals

in order to identify drug targets for either enhancing

vascular growth (in ischemic disorders) or limiting it

(in tumorogenesis).

Embryogenesis

Several researchers have described the cellular motions

and molecular machinery that give rise to organized

tissues during embryogenesis in the frog Xenopus laevis

[53, 54]. As individual cells in stratified layers of the

blastocoel roof (BCR) are intercalated during

embryogenesis, the tissue thins and lengthens.

(A blastocoel is the fluid-filled central cavity of the

embryonic blastula.) Meanwhile, a fibronectin (FN) layer

is deposited at the underside of the BCR as an organized

pattern of extracellular matrix, and cell layers evolve.

Researchers currently do not know the extent to which

soluble growth factor signaling, distributed mechanical

tension forces, cell-to-cell adhesion signaling, or other

molecularly mediated aspects of the biology drive these

behaviors. Better understanding of the dynamic interplay

between the coordinated signals and responses that direct

an appropriate tissue-patterning response requires a

framework in which to compute the effects of these

interacting factors over the relevant tissue geometry in

space and time. Longo et al. [48] developed a simulation

that accurately predicted the total time for BCR thinning

of the Xenopus laevis embryo (approximately 4.5 hours)

based on independently obtained cell migration rates

and well-characterized nearest-neighbor cell-to-cell

interactions (Figure 4). Verified by independent data from

experimental studies, the simulations also predicted a

temporal increase in FN matrix assembly on the

underside of the BCR that resembles fibrillogenesis

in the embryo. (The term fibrillogenesis refers to the

development of fine fibrils normally present in collagen

fibers of connective tissue.) When a multicell implant was

placed in the simulated BCR, the simulation predicted

accurate spatial dispersion patterns of the implanted cells

when compared with those measured in the analogous

in vivo intervention, namely the implantation of a plug

of green fluorescent protein-labeled cells in an actual

embryo.

Figure 4

Blastocoel roof (BCR) thinning process in the frog Xenopus 
laevis. As the embryo develops (a), the cells of the BCR (box) 
rearrange by the interdigitation shown in (b), causing this tissue to 
become thin over the course of about five hours. For a detailed 
description of this process, see Keller [53].

(a)

(b)
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Tissue-level properties

The development of the two simulations described above

can be considered an initial success, as each contributed

to the understanding of the tissue-patterning process in

ways not achievable through experimentation alone; each

simulation now serves as an analysis tool for testing

future hypotheses in silico before valuable resources and

time are expended on bench-top experiments. For many

reasons, physical experiments with living tissues may not

be adequate for supplying insight. For example, actual

tissues frequently present technical barriers to the

isolation and manipulation of individual variables

without perturbing other variables that affect the system

response. Even in controlled genetic manipulations in

which one gene is ‘‘knocked out’’ (effectively removed),

compensatory mechanisms exist that interfere with our

understanding of the actual effect of a particular

manipulation. However, using computational

simulations, it is feasible to isolate and vary individual

variables without interfering with other parts of the

system. For example, the aforementioned microvascular

patterning simulation was able to identify a functional

patterning ‘‘module’’ (a unique combination of

biochemical signals and cellular behaviors). This module

consisted of four different cell types, four different cell

behaviors, and three different growth factor proteins

capable of quantitatively predicting vascular length

increases and arterial formation, which are key aspects

of vessel network patterning, in response to clinically

relevant environmental stimuli. Future work is needed

to assess the ability of the simulation to predict other

relevant patterning metrics, such as vessel branching in

the network. A computational tool that predicts tissue-

patterning responses, such as increases in vascular length,

is useful because the predictions can direct further

research aimed at artificially ‘‘engineering’’ blood vessel

networks with a desired vascularity—or designing

therapeutic treatments (drug-delivery schemes) to

alternatively enhance or limit vessel growth in different

disease states such as tissue injury or tumor growth.

The model of frog Xenopus laevis embryogenesis was

capable of making independent predictions about many

aspects of the BCR thinning process, all of which were

verified by direct experimentation. The simulation was

also used to test a novel hypothesis: that epithelial cells

differentially adhere to the FN layer in the BCR, and cell-

residency time is proportional to FN deposition and

fibrillogenesis in the BCR. When this hypothesis was

incorporated as an agent rule, the simulation predicted

accurate FN deposition, thus supporting this new

hypothesis, which can now be tested in the in vivo system.

The results of this work suggest that an agent-based

approach can be especially useful in instances in which

specific experimental strategies may not be immediately

obvious or existing experimental techniques may be too

crude to permit isolation and parameterization of

individual key variables.

Challenges of using agent-based models in tissue

patterning

The accuracy of the governing rules for agent-based

modeling of biological systems has a critical impact on

the predictive capability of the simulation. The modeler

is dependent on the use of well-founded rules for

agent behavior; however, if the rules are accurate and

independently obtained from the current experimental

study that is being used to validate the simulation, the

predictions are likely to be valid because they are rooted

in previously obtained experimental data and not

generated only from theory. In practice, however, our

ability to develop agent-based models for studying

complex biological systems can be hindered by a lack

of reliable raw data from which to generate agent rules.

Researchers should also be careful not to make more

assumptions than the minimum needed to describe the

phenomena, because this may give researchers an

incorrect understanding of the biological process and

yield a computationally inefficient model that also

produces incorrect results. Numerous questions can arise

when considering simulations that employ agent-based

models. For example, how does the modeler know when

enough rules have been incorporated? Is the simplest

explanation (e.g., one using the fewest rules) the most

accurate one? Often modelers attempt to address these

concerns by performing a parametric analysis of the state

variables (variables that describe the physical attributes,

or characteristics, of the agent) to identify key

parameters, bottlenecks in the system, or outcomes that

are particularly sensitive to possible variations in the

relevant parameter settings. The term bottlenecks refers

to rate-limiting biochemical reactions or biological

processes. Furthermore, agent-based models are

particularly prone to becoming unstable if rules do not

provide adequate feedback loops or ‘‘stop’’ conditions.

Thus, it is the modeler’s responsibility to screen for and

safeguard against such instabilities, which may contribute

to errors in the predictions. Finally, despite the relative

computational efficiency of agent-based modeling

techniques, the large number of cells, interactions, pixels,

and rules needed to simulate biological systems can

undermine the feasibility of this approach. Despite

these challenges, we believe that the use of agent-based

computational techniques to integrate and compute

genomic and proteomic information in the context of

multicell tissues will expedite a basic understanding of

biological patterning processes and the extent to which

they can be manipulated for therapeutic purposes.
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Diversity of applications in human disease

Cancer

The challenges that face research efforts in cancer

therapies emphasize the tremendous need to couple

quantitative analysis of intracellular networks with tissue-

level physiology. The idea of treating cancer as a

molecular disease, as a function of malfunctioning

intracellular proteins, has led to the development of

effective drug therapies that use imatinib mesylate.

Imatinib is an inhibitor of the enzyme bcr–abl kinase,

which is constitutively active (always present) in chronic

myeloid leukemia (CML) [55]. (The terms bcr and abl

respectively stand for breakpoint cluster region and

Abelson, the name of a leukemia virus that carries a

similar protein.) The treatment of CML patients with

imatinib has been tremendously successful in that it has

extended life expectancy in roughly 70% of treated

patients. Additional tyrosine kinases are potential

targets for developing new cancer therapeutics [55].

The idea of treating cancer as a developmental, or

tissue-level, disease has also made significant progress. It is

becoming increasingly clear that cell–cell and extracellular

interactions are critical components of tumor progression

[56]. For example, as a tumor reaches a critical size, its

growth becomes highly dependent on a blood supply to

meet metabolic demands and overcome oxygen and

nutrient diffusion limitations. A recently developed

anti-VEGF (vascular endothelial growth factor) drug,

bevacizumab, has demonstrated effective antivascular

effects to inhibit tumor growth [57]. A similar drug

called Endostatin** was used in animal studies to assess

a large set of signaling pathways associated with its anti-

angiogenic effects [58]. Genome-wide expression profiling,

RT–PCR (reverse transcriptase–polymerase chain

reaction), and phosphorylation analysis indicated highly

interconnected roles of key proteins (such as NF–jB,
STAT, TNF, AP–1), and other signaling pathways.

NF–jB is a multisubunit transcription factor. STAT

stands for Signal Transducers and Activators of

Transcription. TNF stands for tumor necrosis factor,

and AP–1 is a transcription factor.

Researchers consider the tissue-level and molecular-

level components of cancer in order to develop

therapeutics. Clearly, both perspectives will prove to be

fruitful avenues for research into the progression of the

disease. Tissue-level and molecular-level concerns also

suggest a need for a multiscale approach that can

quantitatively integrate molecular detail of intracellular

networks with tissue-level analysis and experimentation.

With such a coupling, researchers should be able to

characterize the mechanism behind the anti-tumor-

growth effects of a drug such as Endostatin.

Coronary heart disease

Coronary heart disease is a complex pathological

condition because it involves both bottom-up (molecular)

and top-down (tissue) mechanisms and interactions. It

can be considered a molecular disease that results in

adverse tissue-level behaviors, such as those produced by

oxidation of LDL (low-density lipoprotein) cholesterol

via free radical damage leading to the development of

fatty streaks in the blood vessel wall. Tissue-level

behaviors, such as alterations in blood vessel wall

geometry due to atherosclerotic plaque formation, can

reinforce malfunctions at the molecular level, such as

increased levels of circulating pro-inflammatory

regulatory proteins called cytokines. Thus, this particular

disease is well suited to investigation by using a combined

computational approach that incorporates molecular-

level detail with cellular-level patterning within the tissue.

A common pharmacological treatment for early-stage

coronary heart disease is the systemic administration of

beta-adrenergic receptor blocking agents, commonly

known as ‘‘beta-blockers.’’ Beta-blockers competitively

inhibit the binding of adrenaline to beta-1 and/or beta-2

adrenergic receptors on cardiac and smooth muscle cells,

which slows nerve impulses to the heart [59]. This

decreases heart rate, contractility, and blood pressure

[60, 61]. Despite widespread administration of these drugs

in the clinic, the underlying molecular mechanisms by

which beta-blockers mitigate heart disease are not well

understood. Because a single molecule, such as a beta-

adrenergic receptor–agonist, can elicit varying cellular

responses in different interacting cell types that may

be collaborative or competing (i.e., either beneficial in

preventing heart disease or destructive and augmenting

heart disease), the details of these interactions may not be

obvious using experimental approaches alone. In these

instances, identifying cause-and-effect interactions can

prove to be a frustrating endeavor without using a tool to

access and manipulate the individual components within

the framework of the entire system. In a multiscale

computational approach, however, the integrated and

complex mechanisms underlying this accepted treatment

may potentially be elucidated and individually assessed

in the context of the whole system.

In future research, one may construct a network

analysis of the signaling cascade that describes all

of the events subsequent to adrenaline binding to beta-

receptors, including the intracellular molecular details

leading to cross-bridge cycling during muscle contraction

in cardiac and vascular smooth muscle cells [62–64]. The

term cross-bridge cycling refers to the molecular

interactions that cause a muscle cell to contract or

shorten, thereby providing forces to operate the muscle

tissue. The direct effect of beta-blockers on vascular

endothelial cell nitric oxide production may also be taken
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into account [65]. The network analysis may provide

quantitative data describing both the contractile state of

individual muscle cells and the nitric oxide production

of endothelial cells given adrenaline–receptor and

antagonist–receptor binding distributions. This

information may be passed to a corresponding agent-

based simulation that may preserve the input–output

relationships of each cell-type-specific network while

scaling up to the multicell tissue space. If, for example,

the modeled tissue space were a portion of the ventricular

wall perfused by a major coronary artery, the agent-based

model would enable real-time computation of both

localized cardiomyocyte contraction (which would

directly affect metabolic demand) and vascular tone in the

blood vessels that feed the tissue space (which would be

affected by metabolic demand) (Figure 5). In Figure 5, the

three downward-pointing arrows represent the binding

of beta-blocker to beta-receptor for different phases of

cardiac functioning. The ‘‘seesaw’’ in Figure 5 indicates

that these two tissue-level processes (metabolic demand

and vascular tone) are delicately balanced in the cells of

the heart tissue, and functionally linked to each other,

so that a change in one causes a change in the other.

Labels at the bottom of the figure in red indicate

responses to the beta-blocker, while labels in black

indicate responses to adrenaline. Ultimately, the

simulation may predict the interactions between beta-

blocker modulation of blood supply (via vascular tone)

and beta-blocker modulation of tissue metabolic demand

(via cardiomyocyte contraction). When the physiological

manifestations of both processes exceed a certain

threshold, the metabolic demand will exceed the chemical

supply, and an eventual heart attack may ensue.

Coupling the network-level interactions with multiple

cells in an agent-based model would allow the

investigator to intervene in the biology at one level

of scale (e.g., to simulate a drug interaction), and the

simulation would propagate that intervention through the

single-cell and multi-cell scales up to the tissue level,

where clinically accessible physiological results (cardiac

output, heart rate, or blood pressure) could be correlated

with patient data. The pairing of these two computational

techniques would allow systematic isolation and

alteration of individual parameters affected by beta-

blockers, thereby providing spatially and temporally

detailed insight into cause-and-effect properties of this

complex system.

Challenges of multiscale integration
Several challenges with respect to the coupling of

intracellular network analysis with tissue-level physiology

have been discussed above. Conceptual advances will be

required to marry the available quantitative techniques

with the analysis of biological systems that evolve and are

very difficult to elucidate. A significant need exists to

develop the computational infrastructure required for

such sophisticated analyses.

Relatively few systems have been extensively

characterized from the molecular and physiological

perspectives. For example, the genome of the frog

Xenopus laevis, a model organism for developmental

biology and tissue patterning, has not yet been sequenced.

Researchers must constantly assess whether the available

data is ‘‘sufficient.’’ We can generate high-throughput

datasets for many organisms under many conditions, but

biological systems adapt to changing environments. This

fundamental property motivates the need for novel

modeling approaches that can account for the inherent

flexibility in biology [66].

In addition, each high-throughput experimental

technology merely creates ‘‘snapshots’’ of particular

aspects of a cell, and researchers will likely always lack

‘‘complete’’ data for a given system. All datasets also have

a level of inaccuracy associated with the particular

technology being used. Computational techniques will

have to account for this level of uncertainty in the

biological system.

Other questions remain. For example, is there a need to

describe all of the processes of the cell with network-level

information before researchers can achieve reasonable

predictive capabilities and worthwhile simulations? Or is

it sufficient to make assumptions at particular levels of

Figure 5

Schematic representation of multiscale computational approach 
capable of integrating gene-network-level data with cell behaviors 
and with tissue-level function for the purpose of understanding the 
mechanisms behind beta-blocker therapy in coronary heart disease.
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complexity in order to make useful predictions and

generate novel avenues for therapeutic developments?

The answers to these questions require multiscale

network analysis.

The existing software and analytical tools used for

intracellular network analysis and agent-based analysis

have developed independently. To integrate these

different scales in biology, a need exists for interfacing

software and database schemas and ontologies that can

seamlessly pass information between the interacting tools.

In addition, tissue-patterning problems will require three-

dimensional implementations of agent-based modeling

techniques. Some intracellular network analyses are

classified as NP-complete problems (a computer science

term for describing problems that cannot be solved

efficiently) and will thus likely require reformulations

to generate useful results [33]. The computational

infrastructure for scaling and calibrating spatial and

temporal information will be required at the molecular-

and tissue-level interface because molecular events can

occur on the order of picoseconds while tissues can evolve

over the lifetime of an organism.

Conclusions
Researchers who wish to develop useful and realistic

integrated modeling approaches to systems biology must

design and specify practical deliverables for both basic

scientific and therapeutic use. Reaching these goals may

require more than one approach, and a simulation

technique that is suitable for generating a mechanistic

understanding of the basic science may not necessarily

be of practical use in drug development. Building

quantitative simulations that span spatial and temporal

scales requires the researchers to consider the available

data from various perspectives, and often the exercise of

model building leads to insightful, novel hypotheses and

reveals gaps in current understanding that must be filled.

To assess the potential of an integrated modeling

approach, it is necessary to provide experimental

validation of key model predictions. This validation is

best accomplished by performing analogous interventions

in both the computational and in vivo environments.

Interventions will be specific to the biological system and

will most likely be limited to what is experimentally

feasible. For example, in embryogenesis studies, an

intervention may consist of transplanting a genetically

engineered patch of cells to a genetically normal and

unmodified (i.e., wild-type) embryo and monitoring the

activities of the mutant cells. Researchers must ensure

that metrics obtained in each setting are analogous and

require little or no scaling to enable accurate comparison

between in vivo measurements and computationally

predicted datasets. To ensure a reliable assessment of

the model’s validity based on existing data, it is also

necessary to keep the results of experimental studies used

for model verification separate from the simulation rules

or inputs. In other words, the rules and parameters that

comprise the simulation should obviously not be derived

from the output of the experimental study that will

ultimately be used to verify the simulation.

The results of agent-based simulations can sometimes

suggest future biological experiments that test model

results and that may eventually lead to new medical

treatments. Even simple rules assigned to interacting

agents can yield surprisingly complex behaviors that are

difficult to predict when studying isolated components.

Past studies have sometimes employed differential

equations to help researchers understand cell behavior

in an aggregate way. On the other hand, the agents

of in-silico modeling make decisions in response to

environmental parameters, and unusual activity of just

a small set of cells can alter the overall system behavior

in profound ways.

In conclusion, a central debate in biology has long

revolved around a question that still stands today: Are

tissue structures and functions determined strictly by

precise information stored as genetic material, or do they

develop as a result of interactions of cells and tissues with

their environment? Valuable insight has been provided

by gene knockout studies that remove the impact of a

single gene and then determine the tissue physiology

in its absence [67–69]. However, to fully answer

these questions, researchers require a quantitative,

computational framework that is capable of integrating

genetic data with environmental stimuli in order to

connect molecular mechanisms to tissue-level physiology

and pathology.

**Trademark, service mark, or registered trademark of EntreMed,
Inc. in the United States, other countries, or both.
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