Computational multiscale
modeling in the IUPS
Physiome Project: Modeling
cardiac electromechanics

We present a computational modeling and numerical simulation
framework that enables the integration of multiple physics and
spatiotemporal scales in models of physiological systems. This
framework is the foundation of the IUPS (International Union
of Physiological Sciences) Physiome Project. One novel aspect

is the use of CellML, an annotated mathematical representation
language, to specify model- and simulation-specific equations.
Models of cardiac electromechanics at the cellular, tissue, and
organ spatial scales are outlined to illustrate the development and
implementation of the framework. We quantify the computational
demands of performing simulations using such models and compare
models of differing biophysical detail. Applications to other
physiological systems are also discussed.
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Introduction

Mathematical modeling may be used to integrate data
from electrical and mechanical cardiac experiments in
order to test hypotheses that are concerned with multiple
spatiotemporal scales and functions. This kind of
integration across a variety of size and time scales is
among the most advanced examples of organ system
modeling [1-3]. A goal of the IUPS (International Union
of Physiological Sciences, www.iups.org) Physiome
Project (www.physiome.org.nz) is to develop the
technology and methods required to simulate the
behavior of biological organisms via numerical
simulations using computational and mathematical
models. Such simulations require the integration of
multiple types of physics over a wide variety of spatial
and temporal ranges, for example, spatial scales of 107"
meters for subcellular structures up to approximately
one meter for the human body, and molecular events
occurring on the 10 °-second time scale up to the human
lifetime of the order of 10° seconds (Figure 1).

As the complexity of computational models increases,
formal vocabularies are needed to reduce the growing
heterogeneity of biological and mathematical expressions.
Standards are being developed to formalize the
description of experimental data and mathematical
models of physiological processes [4, 5]. Ontologies that
incorporate semantic descriptions of modeling concepts

eliminate ambiguities in the modeling environment. To
this end, ontologies and representation languages that
include these ontologies are being developed under the
TUPS Physiome Project, which facilitates communication
of biological models to researchers through tools for
building, sharing, interpreting, and visualizing models [6].

With the development of these languages comes the
ability to create and populate repositories of models that
are freely available for use by the scientific community.
Currently, the most advanced of the “physiome”
representation languages is CellML, a markup
language based on open standards. Initially designed
for application to models of cellular electrophysiology
and reaction pathway models, CellML has since been
used in a wide range of mathematical models, including
constitutive laws for continuum mechanics. The term
physiome refers to the quantitative and integrated
description of the functional behavior of the physiological
state of an individual or species.

In this paper, we review the development of a
computational modeling framework that enables
scientists to perform numerical simulations using models
of integrative physiological function across the cellular,
tissue, and organ spatial scales. The framework was
initially developed with a focus on overcoming
the problem of modeling the tightly coupled
electromechanical function of the heart, but the
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Hierarchy of spatial scales used in the IUPS Physiome Project, which concerns elements in the dashed box. Below the dashed box are
protein and molecular size scales. (a) The current Auckland virtual human torso model. (b) Textured virtual heart. (c) Volume rendering
of a piece of tissue removed from the left ventricular free wall of a rat heart. (d) Diagram of an idealized cardiac muscle cell based on
electron microscope images. (e) Structural representation of the cardiac sarcoplasmic-reticulum calcium ATPase protein with two bound
calcium atoms. (f) Amino-acid sequence for the protein in (e). (g) Detailed view of the atomic structure of the protein in (e), with the two
calcium atoms shown in white.
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implementation is sufficiently general that applications to
other areas of modeling are underway.

The framework we have developed allows the use of
CellML for the specification of model- and simulation-
specific mathematical equations—for example, cellular
electrophysiology models and passive mechanical
functions. The simulation framework is built upon the
extensive base provided by the CMISS software package
developed at the Bioengineering Institute at The
University of Auckland, New Zealand. CMISS is an
interactive computer program for Continuum Mechanics,
Image analysis, Signal processing and System
identification. It is also a modeling environment that
allows the application of several mathematical techniques
to a variety of complex bioengineering problems.

CellML

CelIML (www.cellml.org) is an XML-based language
developed by the Bioengineering Institute at The
University of Auckland [4] (originally in collaboration
with Physiome Sciences Inc., but now entirely supported
by New Zealand’s Public Good Science Funding).
CellML is a language designed to store and exchange
computer-based biological models; where appropriate,
the language builds upon existing XML standards such as
MathML (www.w3.org/Math) for the specification of
mathematical equations and the Resource Description
Framework (www.w3.0org/RDF) for the encapsulation of
metadata.

CelIML provides a relatively basic set of tags that can
be used to mark up complex interactions between a set of
mathematical equations represented in the MathML
language. See Figure 2 for an example of CellML code.
Although CellML clearly provides a means for making
models available to researchers for validation and study,
these models must also be published and peer-reviewed
before being accepted by the modeling community [7].

Through the use of CelIML and the open-source tools
that are now becoming available (cellml.sourceforge.net),
an author of a model is able to describe a model in such a
way that others are able to incorporate it into their own
computational codes or simulation package of choice.
The model equations can be specified just once and used
in all implementations and publications of the model.
Similarly, all boundary and initial conditions required for
a particular computational experiment can be specified
just once and used by the community. With the
establishment of a publicly accessible repository of
models and simulation tools, authors are able to submit
validated models and simulation results to ensure that
other investigators are able to accurately reproduce their
simulations. In this paradigm, the onus of model validity
no longer rests with the model user, but with the model
author and the software engineers who implement the

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006

<component name="IbCa">
<variable name="IbCa" units="pA_per_pF"
public_interface="out"/>
<variable name="g_bCa" units="nS_per_pF"
public_interface="in"/>
<variable name="Vm" units="mV"
public_interface="in"/>
<variable name="E_Ca" units="mV"
public_interface="in"/>
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply id="i_bCa_calculation"><eq/>
<ci>IbCa</ci>
<apply><times/>
<ci>g_bhCa</ci>
<apply><minus/>

<ci>V</ci>
<ci>E_Ca</ci>
</apply>
</apply>
</apply>
</math>
</component>

Sample piece of CellML code representing the background
calcium current found in cardiac cells and defined by the equation
Lica = &hca Vi — E¢,)- In this component (the smallest functional
unit in a CellML model), we define the current variable IbCa as an
output, and the parameters of the equation (conductance g_bCa,
membrane potential Vm, and reversal potential E_Ca) as inputs. The
subscript “b” stands for background, and g is the variable for
conductance.

CellML application libraries and tools. The repository of
models and simulation results consists of data that the
author asserts is an accurate representation of a model,
it provides a much larger basis for testing the code

and ensuring robustness and compatibility.

As model repositories are being developed, researchers
need to be confident that a given representation or
implementation of a model is “accurate”—that is, the
degree to which the representation or implementation
reflects the reference description of the model, or the
accuracy with which the underlying phenomena
represented by the model are reproduced. Standards are
being developed that will address these concerns [8] and
will be incorporated into CellML models through the use
of curation metadata that will be crucial for the general
acceptance and use of a CellML model repository.

The CelIML model repository contains models from
peer-reviewed journal publications. When researchers
make a CellML version of a published model available in
the repository, this does not guarantee that the model is
error-free, because the original publication may have
errors, and the corresponding CellML model versions, for
issues of provenance, must faithfully reproduce the
mathematics in the paper, errors included. However, it is
clearly desirable to create a second version of the CellML-
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encoded model in which various checks have been carried
out, including 1) checking that the defined units of
measurement are consistent; 2) checking that all
parameters and initial conditions are defined; and
ultimately 3) checking that running the model reproduces
the results published in the paper. As the CellML
standard and the model repository gain acceptance by
journals, it should be possible to work with authors to
achieve this refined version of the model at the time of
publication. For example, such refinement has happened
during publication of a metabolic model [9]. A further
level of model curation is anticipated in which models are
checked for the extent to which they satisfy physical
constraints such as conservation of mass, momentum,
and charge in chemical and physical interactions.

Owing to the completely generic specification of the
language, CellML has a much broader range of
applicability than the name suggests. CellML is
considered to be a language suitable for the description
of annotated mathematics, i.e., the specification
of mathematical equations using MathML, the
interrelationships between equations, and the connections
between variables contained in the equations. Model
authors and users are further able to annotate models by
using metadata associated with any data contained in the
model.

Other XML-based languages have been developed to
aid the exchange of mathematical models within various
scientific communities. These languages have tended to be
tied to specific domains in terms of their use and the
actual definition of the language syntax. For example,
CellML is often compared to the Systems Biology
Markup Language (SBML), which is currently
specifically for use with biochemical network models,
although future development plans for the language begin
to introduce concepts similar to those in CellML. A
particularly powerful feature introduced in CellML 1.1
is the ability to reuse models, or parts of models, by
“importing” the relevant mathematical equations and
variable definitions into a new model. As we have
suggested, the generic syntax used in the CellML
language implies no specific domain of application, which
allows its use in a wide variety of scenarios that allow
model authors to annotate models with domain-specific
metadata.

CMISS

As mentioned, CMISS (www.cmiss.org) is a
computational package for modeling the structure and
function of biological systems. In particular, it is designed
to model the anatomy and behavior of organ systems
(e.g., cardiovascular, respiratory, and special sense
organs) from the component organs (e.g., heart, lungs,
and eyes), while also considering the cellular and
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subcellular scales and the coupling that occurs between
and within all of these levels. Equations derived from
physical laws of conservation, such as conservation of
mass, momentum, and charge, are solved in order to
predict the integrative behavior of an organ, given
descriptions of the anatomical structure and tissue
properties. The tissue properties used in these organ
simulations can incorporate tissue structure and cellular
processes, together with spatial variation of the
parameters, such as parameters associated with
mechanical compliance and electrical conductivity, that
characterize these processes. CMISS has facilities for
fitting models to geometric data derived from various
imaging modalities (e.g., MRI, CT, and ultrasound) and
has a rich set of tools that permit graphical interaction
with the models and display of simulation results. A
graphical user interface, an interactive console-based
interpreter, or batch-mode scripting may be used to
control CMISS.

CMISS originated in the doctoral work of Peter
Hunter [10] as a finite-element program for stress analysis
of large deformations in the heart. The package has since
evolved into a general-purpose biological-systems
modeling tool, used in the areas of continuum
mechanics, image analysis, signal processing, and system
identification. Recently, work has begun to modularize
CMISS in order to enable the development of specialized
and focused tools for various medical and other
applications. The main academic goal of CMISS is to
support the [IUPS Physiome Project. See [6] for a detailed
review of the abilities of CMISS in relation to the heart.

As the Physiome Project evolves, it is essential to
provide both programmer and user access to the
technologies being developed. For example, application
developers must be able to access the model repositories
and the data contained within model-representation
documents, while users must be able to interact with
specific models and perform simulations. To achieve this
support, the user interface of CMISS is separated from
the main application and is released under an open-source
license. As part of this software evolution, standard
application program interfaces (APIs) are being
developed for various components of the software, which
is being divided into separate modules that can be linked
into external applications.

With the development of these modules, customized
user interfaces can be created for specific modeling or
simulation platforms along with interfaces capable of
browsing model repositories. To aid in the sharing of
information, most of these interfaces will be “Web-
deliverable” either through the use of standard web
technology or via a Mozilla extension that implements
the APIs of the open-source CMISS modules. Mozilla
extensions are applications that can be added into an
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existing Mozilla-based web browser (e.g., Firefox** or
Mozilla) to provide extended functionality. Using this
extension, graphical interfaces to Physiome technology
can be specified using the XML user interface language
(XUL) and delivered via the Internet to any XUL-
enabled client such as the Firefox web browser.

Incorporation of CellML into CMISS

Our goal was to implement a process for enabling the
specification of model-specific mathematical equations in
CMISS through CellML. For example, prior to this
work, a new cellular model in CMISS was implemented
by writing the equations in Fortran and adding this to
the CMISS code base. This method has two main
disadvantages: The author of the Fortran code is usually
translating a published piece of work, which can lead to
human errors in the translation, and the generated code is
very specific to CMISS and thus not easily transferred
to another modeling or simulation package. This also
assumes that the published model itself is free from
errors. Like problems associated with cellular models, the
hard-coding of other mathematical equations into the
CMISS code base has disadvantages.

To avoid these problems, CMISS is capable of
importing mathematical models from CellML (Figure 3).
This provides the ability to store and simulate models
in an open standard, even though the models may
conceivably originate from various sources.

The first step in implementing this ability in CMISS
required us to develop a standard API for use when
accessing a CellML model description. The most recent
API implementations are freely available from the
CellML website, cellml.sourceforge.net. With an API
defined, the ability to import CellML was added to
CMISS, allowing the definition of mathematical models
via CellML. This also required the capability of
translating the mathematical expressions from the
CellML model (stored as MathML) into a dynamically
loadable object that can be utilized by CMISS during
a given simulation. Given the structure defined by
MathML, the translation to such an object is reasonably
straightforward (Figure 4).

Using the described approach, a scientist can develop a
cellular model using software that is well suited to single-
cell modeling or that may be used in experimental work.
If the software is capable of exporting CellML, it is
possible to use a cellular model and perform tissue and
whole heart simulations that are based on the model.

In order to import CellML models into tissue
representations, we must be able to specify spatial
variations of these models and their parameters within the
larger-scale model. For example, when modeling the
spread of excitation from the pacemaker cells in the sino-
atrial node into the atria, a modeler would typically use
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[lustration of the way CellML can be used to facilitate the
development of mathematical models using domain-specific
software, while allowing the models to be easily incorporated into
tissue- and organ-level models. The cellular modeling and simula-
tion packages listed at left are examples of software that currently
or soon will have the ability to read CellML models.

_______________________________
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Write out the equations in a format : shared .
suitable for the language required. = object .
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Compiler : : :
Compile and link the generated code . ® -
into an object ready to be used by the ! CMISS .

application (CMISS). Soooooooooo

Ilustration of the work flow involved in the generation of code
suitable for use in CMISS from a CellML source. The upper
dashed box encapsulates the processes that are internal to the
CellML API implementation, and the lower encapsulates those
internal to CMISS. The Math processor is independent and
external to both of these. The Math processor may require
simplification of the equations. The Math writer may also require
the appropriate sorting of equations for the language being used.
For the Process part, the model may come from an XML file,
through a connection to a database or through another application.
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(@ (b)

Examples showing the variation of the g,, and g /gy, parameters
through the ventricular wall. In (a), g,, is 0.0005 mS - mm~2 at the
endocardial surface (blue), 0.005 mS - mm~2 in the midmyocar-
dium, and 0.011 mS - mm~?2 at the epicardial surface (red). In (b),
8x./8x, 15 19 at the endocardial surface (yellow), 7 in the midmyo-
cardium, and 23 at the epicardial surface (red). The geometry is a
wedge taken from a left-ventricle wall of the porcine ventricular
model, and the parameter variation is described in [26]. Variables
used: g, membrane conductance; g, g,, conductances for the
slow and rapid potassium currents; zo, transient outward current.

different cellular electrophysiological models for each of
these two regions of tissue. The variation of channel
distributions through the ventricular wall of the heart
(Figure 5) is another example of the need for spatial
variation. Here, the modeler may want the same
equations represented at all points in the ventricles,

but needs to specify spatial distributions of channel
densities.

Multiscale modeling of cardiac electromechanics
The modeling framework that we have developed uses
cellular models of cardiac electromechanics to drive
the dynamic functional behavior of tissue and organ
continuum models. Electrical excitation and mechanical
deformation at the tissue and organ spatial scales, in turn,
modulate changes in cellular model material properties.
Cardiac cellular electrophysiological modeling is a well-
established field with numerous existing models that
cover a large range of species and cellular phenotypes (see
[7, 11, 12] for recent reviews). Similarly, the mechanical
behavior of cardiac cells has been extensively investigated
through the use of mathematical models. In recent years,
modeling of cellular metabolism and energetics [13, 14]
has been considered an established field, and this
modeling has gained prominence because of its relevance
to many dysfunctions of the heart. Each of these
functions is closely integrated within a cardiac cell, and
some models have been developed that reflect this tight
coupling at the cellular or subcellular level [13, 15].
Another approach requires the development of methods
that enable independent models to be coupled together,
and this approach has been shown to work particularly
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well when coupling cellular electrophysiological and
mechanical models [16].

Cellular models have been developed with varying
levels of biophysical detail. For example, when modeling
various phenomena, different approximations can be
made to simplify the cellular model in order to
dramatically decrease the computational demands
required for simulations using these models. Thus,
cellular models are typically identified as either “low-
dimensional” or “biophysically based” models. Low-
dimensional models are used to represent gross
behavior of the system, sometimes based on the use of
mathematical analysis to reduce complex models, given
certain constraints. A classical low-dimensional model of
the cellular action potential is the FitzZHugh—Nagumo
model [17, 18], based on a phase-plane analysis of the
Hodgkin—Huxley nerve axon model [19] and modified in
several cardiac-specific action potential models [20, 21].

In contrast to the relatively simple equations of low-
dimensional models, biophysical cellular models attempt
to accurately represent detailed physiological processes
and mechanisms that underlie the phenomena being
modeled. In the case of cardiac electrophysiology at the
whole-cell spatial scale, this includes the dynamics of
various ionic species and the gating kinetics of various
proteins to permit or block the transport of ions between
distinct compartments. Such models generally consist of
large systems of stiff ordinary differential equations.
Models based on the work of C. Luo and Y. Rudy
[22, 23] and D. Noble [24] have been widely used and
adapted to various specific situations. As the quantity
and quality of experimental data and techniques improve,
greater biophysical detail can be extracted. Furthermore,
models are now being developed to reproduce the effects
of genetic mutations that govern the dynamics of
specific transmembrane ion channels. These models
are beginning to incorporate more realistic stochastic
behavior of protein populations contained in single
cells or populations of entire cells, leading to significant
increases in the complexity of the models [15, 25, 26].

Modeling cardiac electromechanics on a spatial scale
larger than for the single-cell models described above
requires the coupling of two processes: the spread of
electrical excitation through the tissue and the mechanical
response of the tissue. In a normal mammalian heart,
the spreading wave of electrical excitation triggers
contraction of the cardiac muscle, which is responsible
for the pumping blood. While the aforementioned
two processes can be modeled independently, it is well
established that mechanisms of excitation—contraction
coupling and mechano-electrical feedback are tightly
linked [27].

A large body of research exists for modeling the spread
of electrical excitation throughout cardiac tissue as well as
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the whole heart [12, 28]. Continuum models are based on
the assumption that the length scales of the physically
observable phenomena are large in comparison to the
underlying discrete structure of the material. Our group
has developed numerical simulation techniques for
solving continuum models of electrical excitation, based
either on the bidomain model (i.e., a model involving
solving for intra- and extra-cellular potential fields,
assuming two interpenetrating domains) [29, 30] or an
eikonal-type model for activation times, which involves
instantaneous solving for electrical activation times
throughout the solution domain [31].

Although we have the tools to model the full bidomain
model, in this work we have reduced the complexity of
the simulations by using the simplified monodomain
model [32] and neglecting the effect of extracellular
potential on the electromechanical behavior of the tissue.
These assumptions are valid when simulating the normal
spread of electrical excitation, but the full bidomain
model would be required in other circumstances, such
as when defibrillation shocks are being applied [33].
Complexity reduction allows a significant saving in terms
of computational cost in both memory requirements and
solution times.

Similarly, a large body of research also exists for
modeling the mechanical behavior of cardiac tissue (see
[28] and [34] for reviews). In the past, many models of
cardiac mechanics considered only the passive properties
of the muscle for reasons of model complexity and the
lack of experimental data during the systolic phase of the
cardiac cycle (i.e., during the contraction of isolated tissue
preparations). This allowed quasi-static models of finite-
deformation elasticity to be applied to the heart with
great success. Finite-element continuum models of
cardiac mechanics are the most prevalent in this field, and
the use of high-order interpolation of fields, in which our
group specializes, is well suited to these types of models.

The development of models of electrophysiology and
mechanics has largely occurred independently, and only
recently have we begun to obtain the computational
power and experimental data required to develop models
of electromechanics in cardiac tissue. Various approaches
have been used in the development of cardiac
electromechanics models providing varying levels of
physiological detail and interactions between electrical
and mechanical processes. Such tissue models
consider tight interaction between mechanics and
electrophysiology using low-dimensional cellular models
[35-37], and also models with less interaction between the
mechanics and electrophysiology during a simulation
(e.g., either excitation—contraction coupling or mechano-
electrical feedback). These latter models are based on
more biophysically detailed cellular models (e.g., [38—40]).
In this case, models have typically solved for electrical
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activation times and used these times to trigger local
active contraction of the cardiac tissue. The activation
times can be computed either from a simulation of
electrical activation or through the use of an eikonal
model to solve for activation times directly [31]. In these
loosely coupled frameworks, the spread of electrical
activation is calculated independently of both mechanical
deformation and mechano-electrical feedback
mechanisms such as stretch-activated channels and
calcium buffering by contractile proteins.

In the work described in the current paper, we have
used a large-scale, high-order-interpolation, finite-
element-based method for solving mechanics, coupled to
a small-scale, low-order interpolation method for solving
electrical activation in order to produce a technique for
the numerical solution of biophysically detailed cardiac
electromechanics models [41]. Our tightly coupled
framework uses cellular models of electromechanics to
drive the dynamic functional behavior of the model, while
the properties of the cellular models are modulated by
both the electrical excitation and the deforming
mechanical model.

Owing to the computational resources required for
modeling three-dimensional electromechanics, we have
been limited to simulations that use either complex
cellular models with simplified (small) geometrical
models or low-dimensional cellular models with more
anatomically based (large) geometries. Here we present
results obtained from a cube of tissue, and some
preliminary results from a simplified geometric model
of the cardiac left ventricle, as an illustration of the
application of the framework discussed above. Further
analysis and discussion of the left-ventricular results can
be found elsewhere [41].

Results

We first present simulation results from the cube shown in
Figure 6. We performed simulations to investigate the
response of this tissue block to the applied electrical
stimulus using two cellular electromechanics models:

a low-dimensional and a biophysical model. The low-
dimensional model was obtained through the coupling
of the Fenton—Karma (FK) cardiac action potential
model [42] to the Hunter—-McCulloch—ter Keurs (HMT)
mechanics model [43], following the procedure described
in [16]. For the biophysical model, we coupled the HMT
mechanics model to the most recent of the Luo—Rudy-
based models developed to investigate various genetic
mutations [25, 26, 44], with the addition of a more
biophysically detailed model of calcium dynamics [45].
In the following, we denote the low-dimensional model
as the FK-HMT model and the biophysical model

as the N-LRd-HMT model.
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(b)

(a) Geometry and boundary conditions used for the cardiac cube
model. The overall cube measures 4 X 4 X 4 mm, consisting of 64
unit cubes. The nodes represented by green spheres are fixed in
the y—z plane and that represented by the gold diamond is
restricted to slide along the x-axis. The solid cylinders within the
cube indicate the fiber orientation. An electrical stimulus is
applied on the x = 4 face, indicated by the red face of the cube. (b)
Spatial locations for the cellular transients presented in Figure 7.

Figure 7 illustrates a summary of the results from the
biophysical simulation using the N-LRd-HMT cellular
model for the tissue cube shown in Figure 6. In
Figures 7(a) and 7(b), the wave of electrical activation can
be seen advancing through the cube from the stimulus
(isoelectric surfaces are shown in color, with blue and red
shading respectively representing the most negative and
the most positive potentials). Following activation, the
adjacent tissue contracts along the fiber direction [shown
in Figure 6(a)] due to the dynamic development of
tension within the cells triggered by the electrical
excitation (the axis of cardiac cells is aligned with the fiber
direction). Given the incompressible nature of cardiac
tissue, expansion occurs in the other two dimensions.
Following excitation, the tissue recovers and returns to
the initial resting state.

Figure 7(c) shows key transients from the cellular
models at the spatial locations within the tissue cube
shown in Figure 6(b). The transients shown include the
cellular action potentials, dynamic tension, and a measure
of cellular length. These transients show the smooth
propagation of electrical excitation through the tissue,
from the cyan point on the stimulated face to the red
point farthest from the stimulus. Following a time delay
(where electrical excitation triggers internal cellular
processes that give rise to tension generation), the
dynamic tensions of the cells begin to rise, causing the
cells to shorten and hence causing the tissue to contract.
Also illustrated is the initial stretch of tissue in regions
distal to the stimulus due to the passive cells being
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stretched as the actively contracting tissue acts against the
applied displacement boundary conditions, as described
in Figure 6. As tissue is activated, it follows a similar
contraction transient.

The dip into negative tension shown in Figure 7(c) was
unexpected and was initially thought to result from poor
numerical convergence. Further investigation revealed
that this was not the case, and that the negative dip could
be attributed to mismatched material parameters and
deficiencies in the model. Material parameters for
the cellular, electrical activation, and finite elasticity
components of the model have been taken from previous
studies in which the parameter values of each component
have largely been established independently. Further
material parameter estimation studies are required to
determine a more appropriate set of parameters in order
to better match experimental observations. Such studies
are currently expensive to perform because of the
computational requirements of these simulations
(Figure 8). In addition to material parameter mismatches,
acknowledged deficiencies exist in the active contraction
model that contribute to non-physiological behavior in
both the initial phase of the tension transient and during
relaxation. These deficiencies have been addressed at
the cellular level in a recent study [46].

Both the FK-HMT and N-LRd-HMT cube models
consist of 64 high-order finite elements used for the
solution of the equations of finite deformation elasticity
and 46,656 low-order finite elements for the electrical
propagation solution representing 35,937 cells at a
spacing of 0.125 mm. The simulations were performed on
an IBM eServer* p690 computer (frequently referred to
as “Regatta”) with 32 1.3-GHz POWER4* processors
and 32 GB of main memory.

The simulation using the FK-HMT cellular model
required approximately 550 MB of memory while the
N-LRdA-HMT model required 1.5 GB, which will be of
concern for model extension to more realistic geometries
that require millions of cells. CPU and wall clock times
for these simulations are summarized in Figure 8, with
the simulations performed using eight processors and the
shared-memory parallel implementation of CMISS. In
Figure 8, the simulation time for each of the models is
split into the three main components: solution of the
electrical activation model, solution of the finite elasticity
mechanics model, and the update step transferring data
between the two models to integrate the feedback effects.

As shown in Figure 8, the main difference in solution
time between the FK-HMT and N-LRd-HMT models
is due to the electrical propagation model. In this step,
the full cellular model is integrated over a time step at
each of the 35,937 cells in the tissue cube, and the extra
complexity in the biophysical N-LRd-HMT cellular
model significantly increases the computational
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Comparison of the total computational times for the FK—-HMT and
N-LRd-HMT cube electromechanics models. CPU time is the
total computational time required across all processors for the
simulations. Wall clock time is the actual duration of the
simulations. The ratio of the wall clock to CPU times provides an
indication of the speedup obtained through the use of the
multiprocessor machine.

FK-HMT update
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time required for model solution. During the mechanics
solution step, no temporal integration is required in order
to update the steady-state active tension solution, so we
simply evaluate the algebraic expressions defined in the
HMT model. If we were to use a more numerically
complex mechanics model (see [15] for an example), we
would expect an increase in computational time for the
mechanics solution step similar to that shown in Figure 8
between the activation solution steps for the FK-HMT
model and those for the N-LRd-HMT model. The
time-dependent, dynamic component of active force
development is included in the starting solution of each
mechanics time step, but we neglect changes in the
dynamic component during the application of numerical
length perturbations in order to facilitate the numerical
techniques being used to solve the finite elasticity model.
In summary, the relatively simple FK-HMT-based
model of a 4 X 4 X 4-mm tissue cube required 550 MB
of memory and 43 hours of compute time (wall clock)
to perform a one-second contraction simulation.
The N-LRd-HMT-based model, which includes a
biophysically detailed model of cellular electrophysiology,
required 1.5 GB of memory and 61 hours of compute time.
These numbers obviously have a serious potential impact
when simulations on more complex geometries within a
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reasonable time period are under consideration. We have,
however, recently extended this work to a simplified
model of the left ventricle (LV) of the heart [41].

Figures 9 and 10 present the results of a simulation of
the contractile portion of the cardiac cycle in a simple left-
ventricular geometry. At the cellular level, this model
consists of the FK-HMT electromechanics model
described above. The pole-zero constitutive law [47] is
used to describe the passive mechanical behavior of
the tissue microstructure. A constant-volume cavity
constraint provides the dynamic pressure load applied
to the endocardial surface of the LV model during the
isovolumic contraction and ejection phases of the cycle.
During ejection, the cavity model extends beyond the
basal plane of the LV endocardial surface, corresponding
to the quantity of blood exiting the ventricular cavity.

The model presented in Figures 9 and 10 consisted of
only 320,000 cells, much fewer than would be required for
a spatially converged solution of the electrical activation
model, but adequate for this initial study. This simulation
was performed on the same IBM p690 machine described
above, and memory requirements peaked at 4 GB. The
one-second simulation required 304 hours of compute
time (wall clock) running on 12 processors.

From the comparison of the FK-HMT and N-LRd-
HMT cube models above, we predict that models of
the LV using the N-LRd-HMT model would require
approximately 12 GB of memory and 430 hours of
compute time. However, the more complex biophysical
N-LRd-HMT model may be unsolvable on such a
coarse discretization for the electrical activation model.
As we move to more realistic geometrical models, the
computational requirements would increase even further.

Discussion

We have developed a novel computational modeling
framework for the simulation of cardiac
electromechanics. We have shown how our framework
can be used for simulations that use geometric models
that vary from tissue-block models to ventricular models.
This framework enables the development and testing

of new hypotheses associated with ventricular pacing,
myocardial ischemia, and defibrillation. The most
significant drawback in the framework highlighted by the
simulations presented above is the sheer amount of
computational time required to obtain these results.
This computational limitation currently precludes

the embedding of detailed cellular models in more
anatomically based geometries. By combining the
N-LRd-HMT model with existing anatomically based
models of the heart [48, 49], a model could be created that
accounts for mechano-electrical feedback and stretch
dependence in an anatomically based ventricular
geometry via the tight-coupling solution procedure
outlined above. This coupling between cellular
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Figure 10

Simulation results of the active contraction and ejection of blood using the rotationally symmetric left-ventricular geometry shown in Figure 9(a).
The green lines show the undeformed geometry and the colored surfaces indicate membrane electrical potential, using the color scale in (g).
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contraction and activation has been proposed as a
possible mechanism underpinning the heterogeneous
electromechanical delay that is required to simultaneously
produce physiological spatio-temporal sequences of both
activation and contraction [39].

Our framework is sufficiently general that, through the
use of CellML, new cell models can be accommodated
without changing the existing software tools. Thus, as the
rapid increase of computational resources continues, we
anticipate that we will soon be using this framework with
more detailed anatomy and biophysically based cell
models. As an illustration of this, we performed the above
cube simulations using a new IBM pSeries* 595 with
256 GB of memory and 64 1.9-GHz IBM POWER5*
processors. The N-LRd-HMT-based simulation, which
required 61 hours of compute time on the p690 machine
using eight processors, ran in eleven hours using 32
processors on the p595. This shows the increased
computational performance of the newer machine
and provides the platform to perform more complex
computations. In addition to simply obtaining larger and
faster computers, we are also investigating many areas
of algorithmic and software design that will provide
even greater improvements in computational cost. For
example, speed increases may be obtained by compilation
of CelIML models into optimized descriptions using
lookup tables and partial evaluation, the use of multigrid
techniques and adaptive local mesh refinement, and
altering code design to make use of distributed massively
parallel processing environments.

Further application of the research described above
has also begun in other organ systems that involve
electromechanics. For example, the musculoskeletal
system is a large system in which modeling of
electromechanics is important to the understanding
of function. While the detail of the skeletal muscle
electromechanics differs from that of cardiac muscle, the
underlying methods we have developed for the cardiac
models are equally applicable to skeletal muscle [50].
With CelIML, it is straightforward to replace the cardiac
cellular models with skeletal muscle models, and
simulations of knee flexion, for example, have been
performed [51].

Like skeletal muscle, smooth muscle undergoes active
contraction in response to electrical stimuli. While
skeletal and cardiac muscle involve somewhat similar
time scales, smooth muscle is significantly slower. Again,
the underlying modeling framework developed in this
work is capable of representing models of contracting
smooth muscle. Initial investigation of this class of
muscles is currently underway in the modeling of an
active bronchial airway [52]. The computational modeling
framework discussed in this paper provides a simulation
environment for the integration of various physics

D. NICKERSON ET AL.

approaches over multiple space and time scales. As
such, the framework provides an ideal platform for the
development of innovative models of human physiology
in order to aid medical sciences in clinical diagnosis and
drug discovery.
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