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We present a computational modeling and numerical simulation
framework that enables the integration of multiple physics and
spatiotemporal scales in models of physiological systems. This
framework is the foundation of the IUPS (International Union
of Physiological Sciences) Physiome Project. One novel aspect
is the use of CellML, an annotated mathematical representation
language, to specify model- and simulation-specific equations.
Models of cardiac electromechanics at the cellular, tissue, and
organ spatial scales are outlined to illustrate the development and
implementation of the framework. We quantify the computational
demands of performing simulations using such models and compare
models of differing biophysical detail. Applications to other
physiological systems are also discussed.

Introduction
Mathematical modeling may be used to integrate data

from electrical and mechanical cardiac experiments in

order to test hypotheses that are concerned with multiple

spatiotemporal scales and functions. This kind of

integration across a variety of size and time scales is

among the most advanced examples of organ system

modeling [1–3]. A goal of the IUPS (International Union

of Physiological Sciences, www.iups.org) Physiome

Project (www.physiome.org.nz) is to develop the

technology and methods required to simulate the

behavior of biological organisms via numerical

simulations using computational and mathematical

models. Such simulations require the integration of

multiple types of physics over a wide variety of spatial

and temporal ranges, for example, spatial scales of 10�9

meters for subcellular structures up to approximately

one meter for the human body, and molecular events

occurring on the 10�6-second time scale up to the human

lifetime of the order of 109 seconds (Figure 1).

As the complexity of computational models increases,

formal vocabularies are needed to reduce the growing

heterogeneity of biological and mathematical expressions.

Standards are being developed to formalize the

description of experimental data and mathematical

models of physiological processes [4, 5]. Ontologies that

incorporate semantic descriptions of modeling concepts

eliminate ambiguities in the modeling environment. To

this end, ontologies and representation languages that

include these ontologies are being developed under the

IUPS Physiome Project, which facilitates communication

of biological models to researchers through tools for

building, sharing, interpreting, and visualizing models [6].

With the development of these languages comes the

ability to create and populate repositories of models that

are freely available for use by the scientific community.

Currently, the most advanced of the ‘‘physiome’’

representation languages is CellML, a markup

language based on open standards. Initially designed

for application to models of cellular electrophysiology

and reaction pathway models, CellML has since been

used in a wide range of mathematical models, including

constitutive laws for continuum mechanics. The term

physiome refers to the quantitative and integrated

description of the functional behavior of the physiological

state of an individual or species.

In this paper, we review the development of a

computational modeling framework that enables

scientists to perform numerical simulations using models

of integrative physiological function across the cellular,

tissue, and organ spatial scales. The framework was

initially developed with a focus on overcoming

the problem of modeling the tightly coupled

electromechanical function of the heart, but the
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Figure 1
Hierarchy of spatial scales used in the IUPS Physiome Project, which concerns elements in the dashed box. Below the dashed box are 
protein and molecular size scales. (a) The current Auckland virtual human torso model. (b) Textured virtual heart. (c) Volume rendering 
of a piece of tissue removed from the left ventricular free wall of a rat heart. (d) Diagram of an idealized cardiac muscle cell based on 
electron microscope images. (e) Structural representation of the cardiac sarcoplasmic-reticulum calcium ATPase protein with two bound 
calcium atoms. (f) Amino-acid sequence for the protein in (e). (g) Detailed view of the atomic structure of the protein in (e), with the two 
calcium atoms shown in white. 

Physiome

(a) Organism

(c) Tissue

(f) Genetic

(b) Organ

(d) Cell

(e) Protein (g) Atomic

D. NICKERSON ET AL. IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006

618



implementation is sufficiently general that applications to

other areas of modeling are underway.

The framework we have developed allows the use of

CellML for the specification of model- and simulation-

specific mathematical equations—for example, cellular

electrophysiology models and passive mechanical

functions. The simulation framework is built upon the

extensive base provided by the CMISS software package

developed at the Bioengineering Institute at The

University of Auckland, New Zealand. CMISS is an

interactive computer program for Continuum Mechanics,

Image analysis, Signal processing and System

identification. It is also a modeling environment that

allows the application of several mathematical techniques

to a variety of complex bioengineering problems.

CellML
CellML (www.cellml.org) is an XML-based language

developed by the Bioengineering Institute at The

University of Auckland [4] (originally in collaboration

with Physiome Sciences Inc., but now entirely supported

by New Zealand’s Public Good Science Funding).

CellML is a language designed to store and exchange

computer-based biological models; where appropriate,

the language builds upon existing XML standards such as

MathML (www.w3.org/Math) for the specification of

mathematical equations and the Resource Description

Framework (www.w3.org/RDF) for the encapsulation of

metadata.

CellML provides a relatively basic set of tags that can

be used to mark up complex interactions between a set of

mathematical equations represented in the MathML

language. See Figure 2 for an example of CellML code.

Although CellML clearly provides a means for making

models available to researchers for validation and study,

these models must also be published and peer-reviewed

before being accepted by the modeling community [7].

Through the use of CellML and the open-source tools

that are now becoming available (cellml.sourceforge.net),

an author of a model is able to describe a model in such a

way that others are able to incorporate it into their own

computational codes or simulation package of choice.

The model equations can be specified just once and used

in all implementations and publications of the model.

Similarly, all boundary and initial conditions required for

a particular computational experiment can be specified

just once and used by the community. With the

establishment of a publicly accessible repository of

models and simulation tools, authors are able to submit

validated models and simulation results to ensure that

other investigators are able to accurately reproduce their

simulations. In this paradigm, the onus of model validity

no longer rests with the model user, but with the model

author and the software engineers who implement the

CellML application libraries and tools. The repository of

models and simulation results consists of data that the

author asserts is an accurate representation of a model;

it provides a much larger basis for testing the code

and ensuring robustness and compatibility.

As model repositories are being developed, researchers

need to be confident that a given representation or

implementation of a model is ‘‘accurate’’—that is, the

degree to which the representation or implementation

reflects the reference description of the model, or the

accuracy with which the underlying phenomena

represented by the model are reproduced. Standards are

being developed that will address these concerns [8] and

will be incorporated into CellML models through the use

of curation metadata that will be crucial for the general

acceptance and use of a CellML model repository.

The CellML model repository contains models from

peer-reviewed journal publications. When researchers

make a CellML version of a published model available in

the repository, this does not guarantee that the model is

error-free, because the original publication may have

errors, and the corresponding CellML model versions, for

issues of provenance, must faithfully reproduce the

mathematics in the paper, errors included. However, it is

clearly desirable to create a second version of the CellML-

Figure 2

Sample piece of CellML code representing the background 
calcium current found in cardiac cells and defined by the equation 
IbCa � gbCa (Vm � ECa). In this component (the smallest functional 
unit in a CellML model), we define the current variable IbCa as an 
output, and the parameters of the equation (conductance g_bCa, 
membrane potential Vm, and reversal potential E_Ca) as inputs. The 
subscript “b” stands for background, and g is the variable for 
conductance.

<component name="IbCa">
 <variable name="IbCa" units="pA_per_pF"
public_interface="out"/>
 <variable name="g_bCa" units="nS_per_pF"
  public_interface="in"/>
 <variable name="Vm" units="mV"
  public_interface="in"/>
 <variable name="E_Ca" units="mV"
  public_interface="in"/>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
  <apply id="i_bCa_calculation"><eq/>
   <ci>IbCa</ci>
   <apply><times/>
    <ci>g_bCa</ci>
    <apply><minus/>
     <ci>V</ci>
     <ci>E_Ca</ci>
    </apply>
   </apply>
  </apply>
 </math>
</component>
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encoded model in which various checks have been carried

out, including 1) checking that the defined units of

measurement are consistent; 2) checking that all

parameters and initial conditions are defined; and

ultimately 3) checking that running the model reproduces

the results published in the paper. As the CellML

standard and the model repository gain acceptance by

journals, it should be possible to work with authors to

achieve this refined version of the model at the time of

publication. For example, such refinement has happened

during publication of a metabolic model [9]. A further

level of model curation is anticipated in which models are

checked for the extent to which they satisfy physical

constraints such as conservation of mass, momentum,

and charge in chemical and physical interactions.

Owing to the completely generic specification of the

language, CellML has a much broader range of

applicability than the name suggests. CellML is

considered to be a language suitable for the description

of annotated mathematics, i.e., the specification

of mathematical equations using MathML, the

interrelationships between equations, and the connections

between variables contained in the equations. Model

authors and users are further able to annotate models by

using metadata associated with any data contained in the

model.

Other XML-based languages have been developed to

aid the exchange of mathematical models within various

scientific communities. These languages have tended to be

tied to specific domains in terms of their use and the

actual definition of the language syntax. For example,

CellML is often compared to the Systems Biology

Markup Language (SBML), which is currently

specifically for use with biochemical network models,

although future development plans for the language begin

to introduce concepts similar to those in CellML. A

particularly powerful feature introduced in CellML 1.1

is the ability to reuse models, or parts of models, by

‘‘importing’’ the relevant mathematical equations and

variable definitions into a new model. As we have

suggested, the generic syntax used in the CellML

language implies no specific domain of application, which

allows its use in a wide variety of scenarios that allow

model authors to annotate models with domain-specific

metadata.

CMISS
As mentioned, CMISS (www.cmiss.org) is a

computational package for modeling the structure and

function of biological systems. In particular, it is designed

to model the anatomy and behavior of organ systems

(e.g., cardiovascular, respiratory, and special sense

organs) from the component organs (e.g., heart, lungs,

and eyes), while also considering the cellular and

subcellular scales and the coupling that occurs between

and within all of these levels. Equations derived from

physical laws of conservation, such as conservation of

mass, momentum, and charge, are solved in order to

predict the integrative behavior of an organ, given

descriptions of the anatomical structure and tissue

properties. The tissue properties used in these organ

simulations can incorporate tissue structure and cellular

processes, together with spatial variation of the

parameters, such as parameters associated with

mechanical compliance and electrical conductivity, that

characterize these processes. CMISS has facilities for

fitting models to geometric data derived from various

imaging modalities (e.g., MRI, CT, and ultrasound) and

has a rich set of tools that permit graphical interaction

with the models and display of simulation results. A

graphical user interface, an interactive console-based

interpreter, or batch-mode scripting may be used to

control CMISS.

CMISS originated in the doctoral work of Peter

Hunter [10] as a finite-element program for stress analysis

of large deformations in the heart. The package has since

evolved into a general-purpose biological-systems

modeling tool, used in the areas of continuum

mechanics, image analysis, signal processing, and system

identification. Recently, work has begun to modularize

CMISS in order to enable the development of specialized

and focused tools for various medical and other

applications. The main academic goal of CMISS is to

support the IUPS Physiome Project. See [6] for a detailed

review of the abilities of CMISS in relation to the heart.

As the Physiome Project evolves, it is essential to

provide both programmer and user access to the

technologies being developed. For example, application

developers must be able to access the model repositories

and the data contained within model-representation

documents, while users must be able to interact with

specific models and perform simulations. To achieve this

support, the user interface of CMISS is separated from

the main application and is released under an open-source

license. As part of this software evolution, standard

application program interfaces (APIs) are being

developed for various components of the software, which

is being divided into separate modules that can be linked

into external applications.

With the development of these modules, customized

user interfaces can be created for specific modeling or

simulation platforms along with interfaces capable of

browsing model repositories. To aid in the sharing of

information, most of these interfaces will be ‘‘Web-

deliverable’’ either through the use of standard web

technology or via a Mozilla extension that implements

the APIs of the open-source CMISS modules. Mozilla

extensions are applications that can be added into an
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existing Mozilla-based web browser (e.g., Firefox** or

Mozilla) to provide extended functionality. Using this

extension, graphical interfaces to Physiome technology

can be specified using the XML user interface language

(XUL) and delivered via the Internet to any XUL-

enabled client such as the Firefox web browser.

Incorporation of CellML into CMISS
Our goal was to implement a process for enabling the

specification of model-specific mathematical equations in

CMISS through CellML. For example, prior to this

work, a new cellular model in CMISS was implemented

by writing the equations in Fortran and adding this to

the CMISS code base. This method has two main

disadvantages: The author of the Fortran code is usually

translating a published piece of work, which can lead to

human errors in the translation, and the generated code is

very specific to CMISS and thus not easily transferred

to another modeling or simulation package. This also

assumes that the published model itself is free from

errors. Like problems associated with cellular models, the

hard-coding of other mathematical equations into the

CMISS code base has disadvantages.

To avoid these problems, CMISS is capable of

importing mathematical models from CellML (Figure 3).

This provides the ability to store and simulate models

in an open standard, even though the models may

conceivably originate from various sources.

The first step in implementing this ability in CMISS

required us to develop a standard API for use when

accessing a CellML model description. The most recent

API implementations are freely available from the

CellML website, cellml.sourceforge.net. With an API

defined, the ability to import CellML was added to

CMISS, allowing the definition of mathematical models

via CellML. This also required the capability of

translating the mathematical expressions from the

CellML model (stored as MathML) into a dynamically

loadable object that can be utilized by CMISS during

a given simulation. Given the structure defined by

MathML, the translation to such an object is reasonably

straightforward (Figure 4).

Using the described approach, a scientist can develop a

cellular model using software that is well suited to single-

cell modeling or that may be used in experimental work.

If the software is capable of exporting CellML, it is

possible to use a cellular model and perform tissue and

whole heart simulations that are based on the model.

In order to import CellML models into tissue

representations, we must be able to specify spatial

variations of these models and their parameters within the

larger-scale model. For example, when modeling the

spread of excitation from the pacemaker cells in the sino-

atrial node into the atria, a modeler would typically use

Figure 3

Illustration of the way CellML can be used to facilitate the 
development of mathematical models using domain-specific 
software, while allowing the models to be easily incorporated into 
tissue- and organ-level models. The cellular modeling and simula-
tion packages listed at left are examples of software that currently 
or soon will have the ability to read CellML models.

Tissue and organ
 models
Electrical
 activation

Active mechanics

Constitutive
 material laws

Electromechanics

ExportCOR
CESE

Virtual cell
iCell

CMISS
MATLAB**

Mathematica**
LabHEART

Cellular
modeling or
simulation
package CMISS

Publication

Journal article
Database

Model repository
Website

Import

Import

Figure 4

Illustration of the work flow involved in the generation of code 
suitable for use in CMISS from a CellML source. The upper 
dashed box encapsulates the processes that are internal to the 
CellML API implementation, and the lower encapsulates those 
internal to CMISS. The Math processor is independent and 
external to both of these. The Math processor may require 
simplification of the equations. The Math writer may also require 
the appropriate sorting of equations for the language being used. 
For the Process part, the model may come from an XML file, 
through a connection to a database or through another application.

Process
The CellML model is parsed into an
in-memory representation of the data
contained in the model.

Resolver
Resolve all variable references and,
potentially, all unit inconsistencies.

Math processor
Process the MathML document into
a list of mathematical equations.

Math writer
Write out the equations in a format
suitable for the language required.

Compiler
Compile and link the generated code
into an object ready to be used by the
application (CMISS).

Math processor

Math writer

Compiler

Process Resolver

Dynamic
shared
object

Code

List of
equations

MathML
document

Memory
model

CellML API implementation

CMISS
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different cellular electrophysiological models for each of

these two regions of tissue. The variation of channel

distributions through the ventricular wall of the heart

(Figure 5) is another example of the need for spatial

variation. Here, the modeler may want the same

equations represented at all points in the ventricles,

but needs to specify spatial distributions of channel

densities.

Multiscale modeling of cardiac electromechanics
The modeling framework that we have developed uses

cellular models of cardiac electromechanics to drive

the dynamic functional behavior of tissue and organ

continuum models. Electrical excitation and mechanical

deformation at the tissue and organ spatial scales, in turn,

modulate changes in cellular model material properties.

Cardiac cellular electrophysiological modeling is a well-

established field with numerous existing models that

cover a large range of species and cellular phenotypes (see

[7, 11, 12] for recent reviews). Similarly, the mechanical

behavior of cardiac cells has been extensively investigated

through the use of mathematical models. In recent years,

modeling of cellular metabolism and energetics [13, 14]

has been considered an established field, and this

modeling has gained prominence because of its relevance

to many dysfunctions of the heart. Each of these

functions is closely integrated within a cardiac cell, and

some models have been developed that reflect this tight

coupling at the cellular or subcellular level [13, 15].

Another approach requires the development of methods

that enable independent models to be coupled together,

and this approach has been shown to work particularly

well when coupling cellular electrophysiological and

mechanical models [16].

Cellular models have been developed with varying

levels of biophysical detail. For example, when modeling

various phenomena, different approximations can be

made to simplify the cellular model in order to

dramatically decrease the computational demands

required for simulations using these models. Thus,

cellular models are typically identified as either ‘‘low-

dimensional’’ or ‘‘biophysically based’’ models. Low-

dimensional models are used to represent gross

behavior of the system, sometimes based on the use of

mathematical analysis to reduce complex models, given

certain constraints. A classical low-dimensional model of

the cellular action potential is the FitzHugh–Nagumo

model [17, 18], based on a phase-plane analysis of the

Hodgkin–Huxley nerve axon model [19] and modified in

several cardiac-specific action potential models [20, 21].

In contrast to the relatively simple equations of low-

dimensional models, biophysical cellular models attempt

to accurately represent detailed physiological processes

and mechanisms that underlie the phenomena being

modeled. In the case of cardiac electrophysiology at the

whole-cell spatial scale, this includes the dynamics of

various ionic species and the gating kinetics of various

proteins to permit or block the transport of ions between

distinct compartments. Such models generally consist of

large systems of stiff ordinary differential equations.

Models based on the work of C. Luo and Y. Rudy

[22, 23] and D. Noble [24] have been widely used and

adapted to various specific situations. As the quantity

and quality of experimental data and techniques improve,

greater biophysical detail can be extracted. Furthermore,

models are now being developed to reproduce the effects

of genetic mutations that govern the dynamics of

specific transmembrane ion channels. These models

are beginning to incorporate more realistic stochastic

behavior of protein populations contained in single

cells or populations of entire cells, leading to significant

increases in the complexity of the models [15, 25, 26].

Modeling cardiac electromechanics on a spatial scale

larger than for the single-cell models described above

requires the coupling of two processes: the spread of

electrical excitation through the tissue and the mechanical

response of the tissue. In a normal mammalian heart,

the spreading wave of electrical excitation triggers

contraction of the cardiac muscle, which is responsible

for the pumping blood. While the aforementioned

two processes can be modeled independently, it is well

established that mechanisms of excitation–contraction

coupling and mechano-electrical feedback are tightly

linked [27].

A large body of research exists for modeling the spread

of electrical excitation throughout cardiac tissue as well as

Figure 5

Examples showing the variation of the gto and gKs /gKr parameters 
through the ventricular wall. In (a), gto is 0.0005 mS · mm�2 at the 
endocardial surface (blue), 0.005 mS · mm�2 in the midmyocar-
dium, and 0.011 mS · mm�2 at the epicardial surface (red). In (b), 
gKs /gKr is 19 at the endocardial surface (yellow), 7 in the midmyo-
cardium, and 23 at the epicardial surface (red). The geometry is a 
wedge taken from a left-ventricle wall of the porcine ventricular 
model, and the parameter variation is described in [26]. Variables 
used: g, membrane conductance; gKs, gKr, conductances for the 
slow and rapid potassium currents; to, transient outward current.

(a) (b)
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the whole heart [12, 28]. Continuum models are based on

the assumption that the length scales of the physically

observable phenomena are large in comparison to the

underlying discrete structure of the material. Our group

has developed numerical simulation techniques for

solving continuum models of electrical excitation, based

either on the bidomain model (i.e., a model involving

solving for intra- and extra-cellular potential fields,

assuming two interpenetrating domains) [29, 30] or an

eikonal-type model for activation times, which involves

instantaneous solving for electrical activation times

throughout the solution domain [31].

Although we have the tools to model the full bidomain

model, in this work we have reduced the complexity of

the simulations by using the simplified monodomain

model [32] and neglecting the effect of extracellular

potential on the electromechanical behavior of the tissue.

These assumptions are valid when simulating the normal

spread of electrical excitation, but the full bidomain

model would be required in other circumstances, such

as when defibrillation shocks are being applied [33].

Complexity reduction allows a significant saving in terms

of computational cost in both memory requirements and

solution times.

Similarly, a large body of research also exists for

modeling the mechanical behavior of cardiac tissue (see

[28] and [34] for reviews). In the past, many models of

cardiac mechanics considered only the passive properties

of the muscle for reasons of model complexity and the

lack of experimental data during the systolic phase of the

cardiac cycle (i.e., during the contraction of isolated tissue

preparations). This allowed quasi-static models of finite-

deformation elasticity to be applied to the heart with

great success. Finite-element continuum models of

cardiac mechanics are the most prevalent in this field, and

the use of high-order interpolation of fields, in which our

group specializes, is well suited to these types of models.

The development of models of electrophysiology and

mechanics has largely occurred independently, and only

recently have we begun to obtain the computational

power and experimental data required to develop models

of electromechanics in cardiac tissue. Various approaches

have been used in the development of cardiac

electromechanics models providing varying levels of

physiological detail and interactions between electrical

and mechanical processes. Such tissue models

consider tight interaction between mechanics and

electrophysiology using low-dimensional cellular models

[35–37], and also models with less interaction between the

mechanics and electrophysiology during a simulation

(e.g., either excitation–contraction coupling or mechano-

electrical feedback). These latter models are based on

more biophysically detailed cellular models (e.g., [38–40]).

In this case, models have typically solved for electrical

activation times and used these times to trigger local

active contraction of the cardiac tissue. The activation

times can be computed either from a simulation of

electrical activation or through the use of an eikonal

model to solve for activation times directly [31]. In these

loosely coupled frameworks, the spread of electrical

activation is calculated independently of both mechanical

deformation and mechano-electrical feedback

mechanisms such as stretch-activated channels and

calcium buffering by contractile proteins.

In the work described in the current paper, we have

used a large-scale, high-order-interpolation, finite-

element-based method for solving mechanics, coupled to

a small-scale, low-order interpolation method for solving

electrical activation in order to produce a technique for

the numerical solution of biophysically detailed cardiac

electromechanics models [41]. Our tightly coupled

framework uses cellular models of electromechanics to

drive the dynamic functional behavior of the model, while

the properties of the cellular models are modulated by

both the electrical excitation and the deforming

mechanical model.

Owing to the computational resources required for

modeling three-dimensional electromechanics, we have

been limited to simulations that use either complex

cellular models with simplified (small) geometrical

models or low-dimensional cellular models with more

anatomically based (large) geometries. Here we present

results obtained from a cube of tissue, and some

preliminary results from a simplified geometric model

of the cardiac left ventricle, as an illustration of the

application of the framework discussed above. Further

analysis and discussion of the left-ventricular results can

be found elsewhere [41].

Results

We first present simulation results from the cube shown in

Figure 6. We performed simulations to investigate the

response of this tissue block to the applied electrical

stimulus using two cellular electromechanics models:

a low-dimensional and a biophysical model. The low-

dimensional model was obtained through the coupling

of the Fenton–Karma (FK) cardiac action potential

model [42] to the Hunter–McCulloch–ter Keurs (HMT)

mechanics model [43], following the procedure described

in [16]. For the biophysical model, we coupled the HMT

mechanics model to the most recent of the Luo–Rudy-

based models developed to investigate various genetic

mutations [25, 26, 44], with the addition of a more

biophysically detailed model of calcium dynamics [45].

In the following, we denote the low-dimensional model

as the FK–HMT model and the biophysical model

as the N–LRd–HMT model.
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Figure 7 illustrates a summary of the results from the

biophysical simulation using the N–LRd–HMT cellular

model for the tissue cube shown in Figure 6. In

Figures 7(a) and 7(b), the wave of electrical activation can

be seen advancing through the cube from the stimulus

(isoelectric surfaces are shown in color, with blue and red

shading respectively representing the most negative and

the most positive potentials). Following activation, the

adjacent tissue contracts along the fiber direction [shown

in Figure 6(a)] due to the dynamic development of

tension within the cells triggered by the electrical

excitation (the axis of cardiac cells is aligned with the fiber

direction). Given the incompressible nature of cardiac

tissue, expansion occurs in the other two dimensions.

Following excitation, the tissue recovers and returns to

the initial resting state.

Figure 7(c) shows key transients from the cellular

models at the spatial locations within the tissue cube

shown in Figure 6(b). The transients shown include the

cellular action potentials, dynamic tension, and a measure

of cellular length. These transients show the smooth

propagation of electrical excitation through the tissue,

from the cyan point on the stimulated face to the red

point farthest from the stimulus. Following a time delay

(where electrical excitation triggers internal cellular

processes that give rise to tension generation), the

dynamic tensions of the cells begin to rise, causing the

cells to shorten and hence causing the tissue to contract.

Also illustrated is the initial stretch of tissue in regions

distal to the stimulus due to the passive cells being

stretched as the actively contracting tissue acts against the

applied displacement boundary conditions, as described

in Figure 6. As tissue is activated, it follows a similar

contraction transient.

The dip into negative tension shown in Figure 7(c) was

unexpected and was initially thought to result from poor

numerical convergence. Further investigation revealed

that this was not the case, and that the negative dip could

be attributed to mismatched material parameters and

deficiencies in the model. Material parameters for

the cellular, electrical activation, and finite elasticity

components of the model have been taken from previous

studies in which the parameter values of each component

have largely been established independently. Further

material parameter estimation studies are required to

determine a more appropriate set of parameters in order

to better match experimental observations. Such studies

are currently expensive to perform because of the

computational requirements of these simulations

(Figure 8). In addition to material parameter mismatches,

acknowledged deficiencies exist in the active contraction

model that contribute to non-physiological behavior in

both the initial phase of the tension transient and during

relaxation. These deficiencies have been addressed at

the cellular level in a recent study [46].

Both the FK–HMT and N–LRd–HMT cube models

consist of 64 high-order finite elements used for the

solution of the equations of finite deformation elasticity

and 46,656 low-order finite elements for the electrical

propagation solution representing 35,937 cells at a

spacing of 0.125 mm. The simulations were performed on

an IBM eServer* p690 computer (frequently referred to

as ‘‘Regatta’’) with 32 1.3-GHz POWER4* processors

and 32 GB of main memory.

The simulation using the FK–HMT cellular model

required approximately 550 MB of memory while the

N–LRd–HMT model required 1.5 GB, which will be of

concern for model extension to more realistic geometries

that require millions of cells. CPU and wall clock times

for these simulations are summarized in Figure 8, with

the simulations performed using eight processors and the

shared-memory parallel implementation of CMISS. In

Figure 8, the simulation time for each of the models is

split into the three main components: solution of the

electrical activation model, solution of the finite elasticity

mechanics model, and the update step transferring data

between the two models to integrate the feedback effects.

As shown in Figure 8, the main difference in solution

time between the FK–HMT and N–LRd–HMT models

is due to the electrical propagation model. In this step,

the full cellular model is integrated over a time step at

each of the 35,937 cells in the tissue cube, and the extra

complexity in the biophysical N–LRd–HMT cellular

model significantly increases the computational

Figure 6

(a) Geometry and boundary conditions used for the cardiac cube 
model. The overall cube measures 4 � 4 � 4 mm, consisting of 64 
unit cubes. The nodes represented by green spheres are fixed in 
the y–z plane and that represented by the gold diamond is 
restricted to slide along the x-axis. The solid cylinders within the 
cube indicate the fiber orientation. An electrical stimulus is 
applied on the x � 4 face, indicated by the red face of the cube. (b) 
Spatial locations for the cellular transients presented in Figure 7.
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Figure 7
Simulation results from the N–LRd–HMT electromechanics cube model. Parts (a) and (b) show deformation solutions in 10-ms time steps 
with transmembrane potential isosurfaces (red most positive and blue most negative).  Part (a) corresponds to the time range of 10 to 50 ms. 
Part (b) continues the sequence in (a) and corresponds to a 60 to 100 ms time range. Part (c) shows graphs of the three cellular parameters at 
the spatial locations indicated by the matching color spheres in Figure 6(b) as a function of time.
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time required for model solution. During the mechanics

solution step, no temporal integration is required in order

to update the steady-state active tension solution, so we

simply evaluate the algebraic expressions defined in the

HMT model. If we were to use a more numerically

complex mechanics model (see [15] for an example), we

would expect an increase in computational time for the

mechanics solution step similar to that shown in Figure 8

between the activation solution steps for the FK–HMT

model and those for the N–LRd–HMT model. The

time-dependent, dynamic component of active force

development is included in the starting solution of each

mechanics time step, but we neglect changes in the

dynamic component during the application of numerical

length perturbations in order to facilitate the numerical

techniques being used to solve the finite elasticity model.

In summary, the relatively simple FK–HMT-based

model of a 43 43 4-mm tissue cube required 550 MB

of memory and 43 hours of compute time (wall clock)

to perform a one-second contraction simulation.

The N–LRd–HMT-based model, which includes a

biophysically detailed model of cellular electrophysiology,

required 1.5 GB of memory and 61 hours of compute time.

These numbers obviously have a serious potential impact

when simulations on more complex geometries within a

reasonable time period are under consideration. We have,

however, recently extended this work to a simplified

model of the left ventricle (LV) of the heart [41].

Figures 9 and 10 present the results of a simulation of

the contractile portion of the cardiac cycle in a simple left-

ventricular geometry. At the cellular level, this model

consists of the FK–HMT electromechanics model

described above. The pole-zero constitutive law [47] is

used to describe the passive mechanical behavior of

the tissue microstructure. A constant-volume cavity

constraint provides the dynamic pressure load applied

to the endocardial surface of the LV model during the

isovolumic contraction and ejection phases of the cycle.

During ejection, the cavity model extends beyond the

basal plane of the LV endocardial surface, corresponding

to the quantity of blood exiting the ventricular cavity.

The model presented in Figures 9 and 10 consisted of

only 320,000 cells, much fewer than would be required for

a spatially converged solution of the electrical activation

model, but adequate for this initial study. This simulation

was performed on the same IBM p690 machine described

above, and memory requirements peaked at 4 GB. The

one-second simulation required 304 hours of compute

time (wall clock) running on 12 processors.

From the comparison of the FK–HMT and N–LRd–

HMT cube models above, we predict that models of

the LV using the N–LRd–HMT model would require

approximately 12 GB of memory and 430 hours of

compute time. However, the more complex biophysical

N–LRd–HMT model may be unsolvable on such a

coarse discretization for the electrical activation model.

As we move to more realistic geometrical models, the

computational requirements would increase even further.

Discussion
We have developed a novel computational modeling

framework for the simulation of cardiac

electromechanics. We have shown how our framework

can be used for simulations that use geometric models

that vary from tissue-block models to ventricular models.

This framework enables the development and testing

of new hypotheses associated with ventricular pacing,

myocardial ischemia, and defibrillation. The most

significant drawback in the framework highlighted by the

simulations presented above is the sheer amount of

computational time required to obtain these results.

This computational limitation currently precludes

the embedding of detailed cellular models in more

anatomically based geometries. By combining the

N–LRd–HMT model with existing anatomically based

models of the heart [48, 49], a model could be created that

accounts for mechano-electrical feedback and stretch

dependence in an anatomically based ventricular

geometry via the tight-coupling solution procedure

outlined above. This coupling between cellular

Figure 8

Comparison of the total computational times for the FK–HMT and 
N–LRd–HMT cube electromechanics models. CPU time is the 
total computational time required across all processors for the 
simulations. Wall clock time is the actual duration of the 
simulations. The ratio of the wall clock to CPU times provides an 
indication of the speedup obtained through the use of the 
multiprocessor machine.
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Figure 10
Simulation results of the active contraction and ejection of blood using the rotationally symmetric left-ventricular geometry shown in Figure 9(a). 
The green lines show the undeformed geometry and the colored surfaces indicate membrane electrical potential, using the color scale in (g).
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Figure 9
Active contraction and ejection of blood using a rotationally symmetric left-ventricular model. (a) Geometric model of the left ventricle with 
the underlying tissue microstructure represented by the colored arrows (red fiber axis, i.e., principal direction of cellular alignment; green 
sheet axis; and blue sheet-normal axis). (b) Spatial locations of the cellular transients shown below. The bottom four graphs show the cavity 
pressure and volume transients, cellular active tension, cellular membrane potential, and current cell length relative to resting length (i.e., 
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A
ct

iv
e 

te
ns

io
n 

 (
kP

a)
E

xt
en

si
on

 r
at

io

x

z

y

(a) (b)

0  50  100  150  200  250  300  350  400  450  5000  50  100  150  200  250  300  350  400  450  500
 0.85

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006 D. NICKERSON ET AL.

627



contraction and activation has been proposed as a

possible mechanism underpinning the heterogeneous

electromechanical delay that is required to simultaneously

produce physiological spatio-temporal sequences of both

activation and contraction [39].

Our framework is sufficiently general that, through the

use of CellML, new cell models can be accommodated

without changing the existing software tools. Thus, as the

rapid increase of computational resources continues, we

anticipate that we will soon be using this framework with

more detailed anatomy and biophysically based cell

models. As an illustration of this, we performed the above

cube simulations using a new IBM pSeries* 595 with

256 GB of memory and 64 1.9-GHz IBM POWER5*

processors. The N–LRd–HMT-based simulation, which

required 61 hours of compute time on the p690 machine

using eight processors, ran in eleven hours using 32

processors on the p595. This shows the increased

computational performance of the newer machine

and provides the platform to perform more complex

computations. In addition to simply obtaining larger and

faster computers, we are also investigating many areas

of algorithmic and software design that will provide

even greater improvements in computational cost. For

example, speed increases may be obtained by compilation

of CellML models into optimized descriptions using

lookup tables and partial evaluation, the use of multigrid

techniques and adaptive local mesh refinement, and

altering code design to make use of distributed massively

parallel processing environments.

Further application of the research described above

has also begun in other organ systems that involve

electromechanics. For example, the musculoskeletal

system is a large system in which modeling of

electromechanics is important to the understanding

of function. While the detail of the skeletal muscle

electromechanics differs from that of cardiac muscle, the

underlying methods we have developed for the cardiac

models are equally applicable to skeletal muscle [50].

With CellML, it is straightforward to replace the cardiac

cellular models with skeletal muscle models, and

simulations of knee flexion, for example, have been

performed [51].

Like skeletal muscle, smooth muscle undergoes active

contraction in response to electrical stimuli. While

skeletal and cardiac muscle involve somewhat similar

time scales, smooth muscle is significantly slower. Again,

the underlying modeling framework developed in this

work is capable of representing models of contracting

smooth muscle. Initial investigation of this class of

muscles is currently underway in the modeling of an

active bronchial airway [52]. The computational modeling

framework discussed in this paper provides a simulation

environment for the integration of various physics

approaches over multiple space and time scales. As

such, the framework provides an ideal platform for the

development of innovative models of human physiology

in order to aid medical sciences in clinical diagnosis and

drug discovery.
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