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The availability of increased computing power will make
possible new classes of biological models that include detailed
representations of proteins and protein complexes with spatial
interactions. We develop such a model of the interaction of actin
and myosin within one pair of thick and thin filaments in the
cardiac sarcomere. The model includes explicit representations of
actin, myosin, and regulatory proteins. Although this is not an
atomic-scale model, as would be the case for molecular dynamics
simulations, the model seeks to represent spatial interactions
between protein complexes that are thought to produce
characteristic cardiac muscle responses at larger scales. While the
model simulates the microscopic scale, when model results are
extrapolated to larger structures, the model recapitulates complex,
nonlinear behavior such as the steep calcium sensitivity of
developed force in muscle structures. By bridging spatial scales, the
model provides a plausible and quantitative explanation for several
unexplained phenomena observed at the tissue level in cardiac
muscles. Model execution entails Monte-Carlo-based simulations
of Markov representations of calcium regulation and actin–myosin
interactions. While most of the results presented here are
preliminary, we suggest that this model will be suitable to serve
as a basis for larger-scale simulations of multiple fibers
assembled into larger sarcomere structures.

Introduction

Computational methods and models enable the modern

biologist to investigate complex molecular mechanisms

that are not easily accessible for analysis with

experimental tools. The increased availability of low-

cost computing power has enabled researchers to

computationally model complex, emergent behaviors in

biological systems. Such detailed models help researchers

to bridge the gap between experimentally derived data

and the underlying complex phenomena, which are

not yet fully quantifiable. For example, the gross

physiological response of striated muscle depends on

the interactions of actin and myosin, which have yet to

be fully characterized at the molecular level. Models

continue to serve as quantitative tools to bridge the

observable physiology with the underlying biophysical

basis of complex muscle responses.

In this paper, we discuss our effort to model the actin–

myosin interaction in cardiac muscle. In this system,

complex behaviors, such as high sensitivity to activator

Ca, are thought to arise from several cooperative

interactions at the molecular level. (Ca stands for both

calcium and the Ca2þ ion, a common convention in the

field.) Here, cooperative interactions refer to coupling

between proteins or protein complexes that modify

behaviors that increase sensitivity to activator Ca.

For computational efficiency, most current models are

simplified and attempt to use lumped-parameter or mean-

field approaches, two methods that are well known to

researchers involved with mathematical modeling. For

example, a single number that indicates concentration is

used to represent large populations of proteins, and the

model does not track individual proteins. Hence, these

models lack spatially explicit representations of the
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cooperative interactions of component proteins. We

choose the term ‘‘spatially explicit’’ to suggest that the

spatial interactions between proteins are represented in

the model; however, the full set of physical interactions

between proteins and atoms are not computed, as is done

in classical molecular dynamics simulations. In our

modeling approach, which is classified as mesoscale or

multiscale, higher levels of abstractions are used for

molecular structures in order to speed calculations.

For example, the model presented here can be executed

with a time step of the order of microseconds instead of

femtoseconds, which is a typical timescale for molecular

dynamics simulations.

While simplified models are computationally efficient,

such representations fail to account for basic responses

such as the steep dependence of force on activator [Ca]

and the proper temporal responses in muscle twitches

[1]. (Hereafter, we use the symbol [Ca] to refer to the

concentration of calcium.) In an effort to address these

limitations of simplified models, we have developed a

computational model that includes spatially explicit

representations of cooperative interaction at the

molecular level. Because biological modeling is currently

an ‘‘art’’ as much as a routine procedure, we have

attempted to choose a level of abstraction that balances

biophysical detail with parsimonious representations that

are computationally tractable. We demonstrate how

simple spatially explicit models can produce complex Ca-

activated responses that are similar to those measured in

real muscle. Preliminary results of this modeling work

have been discussed in [2].

Model description and methods

Representing sarcomere geometry

Figure 1(a) is a diagram of a sarcomere, the basic

repeating molecular-level structure of striated muscle

(specifically skeletal and cardiac muscle). In fact, the

striation in muscle arises from the high regularity of the

sarcomere arrangement along the z-line direction. The

end-to-end arrangement of sarcomeres produces regular

and repeating striations along the length of the muscle.

While the sarcomere is generally assumed to be the basic,

repeating unit of striated muscle, we chose to model at the

level of a half sarcomere. While our construction appears

to exploit the geometric left–right symmetry, recent

experimental characterizations have actually suggested

some left–right asymmetries that can occur during

contraction [3]. Hence, the half sarcomere may be a more

logical functional unit than the full sarcomere. In the

initial effort presented here, we model only a single pair

of interacting thick and thin filaments. In reality, the

sarcomere has a 3D structure [not visualized in the two-

dimensional slice shown in Figure 1(a)], so that each thick

filament is surrounded by six thin filaments that form a

hexagonal lattice. Extension to larger, three-dimensional

models will be a natural outgrowth of this modeling

effort. Interested readers are referred to [4] for further

details on how to incorporate multiple filaments to better

capture the 3D properties of the half sarcomere.

Figure 1

Sarcomere structure in striated muscle. (a) Schematic representa- 
tion of the repeating sarcomere structure in striated muscle. The 
sarcomere is defined from z-line to z-line with interdigitated thick 
and thin filaments that can interact to produce force. (b) 
Sarcomere component proteins. Details of thin filament proteins 
show the double helix of actin monomers with regulatory units 
(troponin and tropomyosin). Tropomyosin is indicated by the thin 
light-green line. Troponin is composed of three subunits: TnC, 
TnI, and TnT. The thick filament is composed of the intertwined 
tails of myosin, from which the head and neck region extend to 
interact with the thin filament (see text for details).
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In Figure 1(a), activated muscle generates force in a

direction so as to pull the thin filaments to the center of

the sarcomere. The magnified inset shows half of a thick

filament (orange), composed of myosin that interacts with

a single thin filament (green), composed primary of actin

and regulatory units. Regulatory units (dark blue) can

bind Ca, which in turn biases them to take a permissive

conformation (shown schematically as raised locations)

to allow myosin to bind. Myosin heads can bind to

specific sites on actin (see gray head) and then rotate to

stretch the extensible neck region (shown as a stretched

string, or zigzag line, attached to the solid head in the

diagram). Rotated heads generate a net force between

thick and thin filaments.

Figure 1(b) shows details of the components of the thin

and thick filaments. The thin filament is composed of a

double helix of actin monomers. The regulatory proteins,

troponin and tropomyosin, reside in the groove of the

helix and serve to allosterically block interactions

between actin and myosin. (The term allosteric refers to a

change in shape and activity of a protein that can result

from molecular binding with a regulatory substance.) The

important feature of troponin is that it can bind one Ca

ion at a single binding site that controls the allosteric

switching behavior. As shown, troponin is actually

composed of three subunits: TnC, which binds Ca;

TnT, which serves as a linker to tropomyosin; and TnI,

which has a modulatory role in Ca-based regulation.

Tropomyosin spans seven actin monomers and blocks the

myosin binding sites on actin. Through the interactions

with troponin, mainly via TnT, the tropomyosin also

makes an allosteric shift in response to changes in the Ca

level. As shown, tropomyosin molecules overlap in an

end-to-end fashion and are thought to communicate with

their neighbors via this physical communication (for a

review, see [5]).

Myosin has three major structural subunits—the head,

neck, and tail. The head attaches to a binding site and

rotates using the energy from the conversion of adenosine

triphosphate (ATP) to adenosine diphosphate (ADP), a

common energy-liberating reaction in cells. The bound

linkages between actin and myosin are commonly termed

crossbridges to reflect bridging linkages between thick and

thin filaments as first revealed in pioneering electron

microscopy studies [6]. Rotating the head can stretch

the extensible neck region as shown schematically in

Figure 1(a). The tail regions of myosin assemble together

to form the thick filament as shown in Figure 1(b).

Mechanics of filament compliances

Thomas Daniel and colleagues [7] have developed a

model of two filaments in a half sarcomere that includes

the spatial interactions of myosin and actin binding sites.

The main goal of their work was to study the effects of

compliance (i.e., extension or displacement of a loaded

structure per unit load) on crossbridge formation and

force development. We have used this approach to form

the spatial layout of myosin and actin binding sites with

the appropriate compliances between the elements. We

assume that the thick filament has myosin heads with

appropriate orientations at an intrinsic spacing of 43 nm,

as shown in Figure 2(a). On real myosin, the heads

extend in a helical fashion such that only a subset

will appropriately align to interact with the single thin

filament assumed in this model. Note, however, that the

43-nm intrinsic spacing of myosin is slightly larger than

the 37-nm spacing of appropriate binding sites on the thin

filament, as given in [7]. Similarly to the case with myosin,

the helical nature of the actin will restrict binding to a

subset of actin monomers that appropriately face the

thick filament in the two-filament model presented here.

Figure 2

Spatial arrangement of actin–myosin interactions. (a) Myosin heads 
on the thick filament (green) have an intrinsic spacing of 43 nm, 
slightly larger than the 37-nm effective spacing of appropriately 
aligned actin binding sites on the thin filament (purple spheres in the 
blue double helix). (b) Compliances in the thick and thin filaments 
represented as a system of springs between adjacent binding sites. 
Attached crossbridges are shown as springs linking the two filaments. 
Values for actin binding sites (yi ) and myosins (xi ) are computed and 
modeled as a system of linear springs. Rotation of myosin head 
changes stretch of crossbridge spring by 7 nm (see text for details).
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In our model, the thick filament, thin filament, and

crossbridges are treated as a system of springs that

operate linearly around the rest lengths of the springs.

The spring constant for the thick filament (km) is 2,020

pN/nm (piconewtons per nanometer), that of the thin

filament (ka) is 1,743 pN/nm, and that of the crossbridges

(kxb) is 1 pN/nm [7]. (Hereafter, ‘‘xb’’ is used as an

abbreviation for crossbridge.) The rest lengths are set by

the intrinsic spacing of myosin sites (ms ¼ 43 nm) and

actin binding sites (as ¼ 37 nm). The forces generated

by the crossbridges are not computed using rest length,

despite the fact that the rotational state of the head can

modify the effective length by 7 nm. (This effect is further

explained shortly.) We also assume that no external forces

act on this system, and that other effects, such as

viscosity, are negligible. Figure 2(b) shows a segment

of this system of linear springs.

The new positions of the thick filament, thin filament,

and crossbridges can be determined using a pair of force-

balance equations for each crossbridge. Equation (1) is

a coupled set of linear equations for the interaction of

myosin head i and binding site j:

k
m
ðx

iþ1
� x

i
�m

s
Þ þ k

xb;i
ðy

j
� x

i
Þ � k

m
ðx

i
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i�1
�m

s
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k
a
ðy

jþ1
� y

j
� a

s
Þ þ k

xb;i
ðy

j
� x

i
Þ � k

a
ðy

j
� y

j�1
� a

s
Þ ¼ 0:

ð1Þ

The set of equations (1) for all n myosin heads and p

binding sites can be transformed into a position vector

X¼ [x1, x2, . . ., xn, y1, y2, . . ., yp], a (pþ n) 3 (pþ n) matrix

K of spring constants, and a vector A, described shortly.

For the model implemented here, we assume that the thin

filament is 1.1 lm long and half of the thick filament is

0.825 lm long. These values are similar to experimental

characterizations, although some controversy exists as to

exact lengths in cardiac muscle [1]. The lengths given

correspond to 32 actin binding sites (p ¼ 32) and a total

of 19 myosin heads (n ¼ 19).

The matrices and vectors X, K, and A are related as

shown in Equation (2):

KX ¼ A: ð2Þ

The products of the spring constants and the rest lengths

of the crossbridges define the A vector. Changing the

value of a component of the A vector is equivalent to an

external force acting on the corresponding myosin head,

actin binding site, and possibly a crossbridge, depending

on the configuration of the K matrix. In our realization of

the model, for each attached crossbridge in the PreF1

state, a force of kxb 3 7 nm ¼ 7 pN is added to or

subtracted from the component of the respective

myosin or actin binding site in the A vector. This change

of forces represents the force correction for an extended

crossbridge head before rotation to the F state, which

reduces apparent strain by 7 nm. However, since this

correction force is not added to the components when

the crossbridge is in the F state, the transition of the

crossbridge to the post-rotation state affects the

developed force of the system.

Equation (3) is used to determine the new positions of

the crossbridges, myosin heads, and binding sites during

each step as the K matrix and rest lengths vary on the

basis of the state and interactions of the myosin heads

and binding sites:

X ¼ K
�1
A: ð3Þ

Changes in the interactions among crossbridges, myosin

heads, andbinding sites result in changes to the appropriate

elements of the K matrix. Specifically, an attached

crossbridge is incorporated as extra spring-constant (kxb)

terms in the K matrix. If the myosin head i is bound with

binding site j,�kxb is added at K [i ][ j ] andþkxb at K [ j ][i ].

If the crossbridge detaches, these terms are removed.

For all simulations presented here, we assume a fixed

sarcomere length. This assumption is implemented by

fixing the positions of the first myosin (x1) and last

actin (yp) sites, and one can envision the thick and thin

filaments as pulling between two immovable points. The

developed tension of the ensemble can be most easily

calculated from the developed tension at either of the

non-overlapping ends of the filaments (the first myosin

site or the last actin site). In our implementation of the

model, we determined the value of the strain experienced

by the segment between the locations of the first and

second myosin heads. Hence, force for the whole

ensemble is calculated as Ftotal ¼ km (x2� x1 � ms).

Strain-based transition rates for crossbridge kinetics

The state transition rates for crossbridges are derived as

a function of the strain, a, which is a measure of the

distance between the actin binding site and a reference

point on the thick filament for a given myosin. As in the

classic modeling efforts (such as those in [8]), the reference

point is also known as the equilibrium point of an

attached crossbridge, so that kxbDx ¼ 0 at this point.

Thus, an attached crossbridge can generate positive or

negative force depending on its direction from the

equilibrium position. In particular, positive strains

produce positive forces in the direction of muscle

shortening, whereas negative strains produce negative

forces that inhibit muscle shortening.

Our approach to develop strain-dependent crossbridge

cycling rates is inspired by the work of Pate and Cooke

[9], who define the energy profiles for each crossbridge

state as a function of its relative position. Pate and Cooke

assumed a five-state crossbridge model that included

1The term PreF refers to a strongly bound but pre-rotation state (essentially the pre-
force generating state), while F indicates a strongly bound post-rotation state that
induces a strain in the extensible neck region (essentially the force generating state).
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the role of metabolite concentrations (ATP, ADP, and

inorganic phosphate). We consider a reduced three-

state model without metabolite dependencies to be

a reasonable compromise between parsimony and

biophysical detail. Daniel et al. propose a similar three-

state crossbridge scheme [7], but differences exist in the

state definition and transition rates. More detailed

crossbridge cycling schemes with more states can be

incorporated by using analogous methodology in future

versions of the model.

The model defines the energy profile of each

crossbridge state as a function of its relative position, and

equations are defined to govern the transitions between

the crossbridge states. Equation (4) provides the ratio of

reversible transition between two states, and the Gibbs

free energy for the states:

R
i j
ðaÞ

R
j i
ðaÞ ¼ exp

G
i
ðaÞ � G

j
ðaÞ

RT

" #
; ð4Þ

where Ri_ j (a) is the transition rate from state i to state j at

strain a, Gi (a) is the Gibbs free energy of state i at strain

a, R (with no subscript) is the gas constant, and T is the

temperature.

Figure 3 shows the energy profiles and transition rates

as functions of distortion. Note that Gibbs free-energy

profiles define only the ratio of rates, not the absolute

values. Therefore, the absolute values of rates are

adjusted so that transitions between states will produce

realistic net ATP consumption rates. Given that the three-

state scheme is simplistic, the strain-dependent transition

rates are reasonable but approximate guesses. Full

validation of rates under all conditions would entail a

research paper in itself, and hence is beyond the scope

of this preliminary report.

Note that upper and lower limits on transition rates

are included to prevent extremely large variation in

magnitudes. Such a large variation in the rates produces

problems in Monte Carlo (MC) simulations because

required time increments become extremely small (a

situation analogous to the use of stiff equations in other

numerical methods). Also, large variations in rates

require state transitions in MC computations that

are based on evaluation of low-order bits from

pseudorandom number generators. In typical

pseudorandom number generators, such low-order bits

are less random than high-order bits, and hence the

simulation results become unreliable. The complete

mathematical formulation of free-energy levels and the

state transition equations are given in the Appendix.

Modeling Ca-based activation

A critical feature of Ca-based activation is a steep force–

Ca (F–Ca) relationship. As shown in Figure 4(a), real

muscle shows high sensitivity to Ca, as quantified by a

Hill coefficient in the range of 7–10. Figure 4(b) illustrates

the physiological effects of the steep Ca sensitivity.

During each heartbeat, the intracellular [Ca] changes by

about an order of magnitude. In contrast, the resulting

force can change by three or more orders of magnitude.

The presumed rationale for such a biological design is

that large changes in developed force are required for

effective pumping of blood. Incomplete relaxation leaves

a residual force that inhibits proper filling during diastole,

which in turn leads to the ejection of only a small volume

of blood during systole. In contrast, cardiac cells generate

relatively small changes in [Ca] because substantial energy

in the form of ATP is required to actively raise and lower

[Ca] on each heartbeat. As a result, the steep nonlinearity

of the F–Ca relationship bridges the disparity between the

small change in [Ca] and the large changes in force.

To understand the model of Ca-based activation,

we consider a functional unit of seven actin monomers

spanned by one troponin/tropomyosin (T/T) unit and

with one associated myosin that can form a crossbridge.

As seen in Figure 1(b), the actual arrangement of linked

tropomyosin proteins follows the two opposite grooves of

the actin double helix. Hence, researchers should model

two T/T units per seven actin monomers with two

separate one-dimensional (1D) lattices of regulatory units

per thin filament. We have not included this level of

spatial detail, but instead we assume a single 1D lattice

of regulatory units that controls all actin binding sites.

A more precise spatial arrangement of regulatory units

and actin binding site is planned for future versions

of the model with multiple thick and thin filaments.

Figure 5 shows a diagram of the states in Ca-based

activation. With respect to Ca activation only, a

functional unit can be in one of four states (0N, 1N, 0P,

1P). As noted in the figure legend, the states with a 0

prefix indicate the state in which a Ca ion is not attached

to the binding site, and the states with a 1 prefix indicate

the attachment of a Ca ion to the binding site. The N

states indicate that the binding site is in a nonpermissive

conformation, so that no crossbridges can attach to that

site. The P states indicate that the binding site is in a

permissive state and myosin heads can attach. For

the moment, the explicit crossbridge states are not

considered; instead, only Ca activation steps are included.

The forward Ca-binding rate is assumed to be diffusion-

limited and independent of the permissive state of the

T/T unit. Hence, the forward rate constant for a

nonpermissive T/T unit (kon) is equal to the forward rate

constant for a permissive T/T unit (k
0

on). The reverse rate

is assumed to depend on the permissive state of the T/T

unit. The model assumes koff . k
0

off ; which is in agreement

with experimental evidence that the affinity of troponin

for Ca increases when activated in the presence of cycling
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Figure 3
Three-state model of the crossbridge cycle with associated energy profiles and transition rates. (a) State diagram for crossbridge cycling. (b) 
Energy profiles for states P, PreF, and F of the crossbridge shown as a function of distortion (distance from equilibrium position of myosin 
and binding site on actin). GP is independent of distortion because the myosin is detached. Similarly, GP�ATP is constant but corresponds to 
free energy after hydrolysis of ATP, so the profile is 23RT lower. States PreF and F have parabolic profiles (GPreF and GPF) because attached 
crossbridges act like linear springs. The 7-nm offset in distortion for the PreF state results from extension of the myosin head in the 
pre-rotation state. (c) Comparison of P       PreF rates as functions of distortion. (d) Comparison of PreF       F rates as functions of distortion. 
(e) Comparison of F       P rates as functions of distortion.
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crossbridges [10]. The relationship between koff and k
0

off is

set by a parameter l . 1 such that Equations (5) and (6)

hold:

K
d
¼

k
off

k
on

; ð5Þ

K
0

d
¼

k
0

off

k
0

on

¼
k

off
=l

k
on

¼
K

d

l
: ð6Þ

(The parameter l is related to binding affinities for T/T

units.) For all runs in this paper, we set l¼ 15, which is a

plausible value based on several experimental estimates

[11].

An important cooperative mechanism thought to exist

in cardiac muscle involves nearest-neighbor cooperativity

between adjacent T/T units. Several lines of experimental

evidence suggest that cooperative behavior results

from the overlap of several amino acids allowing

communication from tropomyosin to tropomyosin

[5, 12]. The model implements such a cooperative

mechanism by making the rates between nonpermissive

and permissive states depend on the states of the two

nearest-neighbor T/T units. The nearest-neighbor

interactions are set by a parameter c � 1, whose physical

interpretation is an energetic penalty for neighbors being

in different permissive conformations. The neighbor

dependencies appear as exponents on c and are computed

according to the number of neighboring units in the

permissive conformation, as shown in Figure 5(b). The

exponent n can take on the values of 0 for no permissive

neighbors, 1 for a single permissive neighbor, and 2 for

both neighbors permissive. The net effect of the cn terms

is to increase the nonpermissive-to-permissive transition

rates when the neighbors are also permissive. Similarly,

the c�n terms decrease the reverse rates from permissive to

nonpermissive states. Therefore, an individual T/T unit is

more likely to make the transition to permissive when

its neighbors are permissive. Similarly, an individual

T/T unit is more likely to make the transition to

nonpermissive when its neighbors are nonpermissive.

Hence, the cn and c�n terms promote uniformity along the

Figure 4

Force–Ca relationship in cardiac muscle: (a) Data from the study 
of Dobesh et al. [21], showing developed force as a function of 
log (base 10) of activator [Ca]. The symbols show the mean of the 
data, and the error bars show the standard error. The curve is fit 
using a Hill function defined as F � {1�([Ca50]/[Ca])NH}�1 
where [Ca50] � 3.8  M and N

H
 � 8. (b) A steep nonlinearity 

allows for much larger relative change in force (e.g., 1,000�) for 
a much smaller relative change in [Ca] (e.g., 10�) for each 
heartbeat.
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Figure 5

Four-state transition model for Ca-based activation kinetics. For 
this figure, � is greater than 1, and n is the number of activated 
neighbors (0, 1, or 2) in the 0P or 1P state. (a) A functional unit 
can be in any one of four states (0N, 1N, 0P, 1P), shown in large 
circles. The small cartoon figures show a schematic representation 
of the states, which are named to indicate no Ca-bound (0x) and 
Ca-bound (1x) states, and nonpermissive (xN) and permissive (xP) 
states. The rates between the states are shown. Note that 
transitions between xN and xP states have � terms with an 
exponent n that is determined by the states of the neighboring 
functional units. (b) The exponent n on � (for a particular 
functional unit; see arrows) is determined by the permissive state 
of two nearest-neighbor functional units. With neither neighbor 
permissive, n � 0.  With one neighbor permissive, n � 1; with 
both permissive, n � 2.
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thin filament, so that T/T units tend to assume the

permissive states of their neighbors. Interested readers are

referred to [1] for a detailed discussion.

Combining Ca-based activation and crossbridge

kinetic models

As shown in Figure 1, the half-sarcomere contains

regions in which thick filaments overlap thin filaments;

also, there are regions in which thin filaments do not

overlap the thick filaments. While one can envision a case

in which thick filaments do not overlap the thin filaments,

such a case does not typically occur in cardiac muscle

because the extension of the sarcomere is physically

limited. To represent the overlap of thick and thin

filaments, the model represents two cases:

� Case 1: If the thin filament does not overlap the thick

filament, no crossbridges can form. In this case, each

binding site on the thin filament is governedby the four-

state model shown in Figure 5. Specifically, while T/T

units can bind Ca and switch between nonpermissive

and permissive states, no myosin can bind.
� Case 2: If the thin filament does overlap the thick

filament, crossbridges can form according to the

crossbridge kinetic scheme in Figure 3(a). However, a

slight complication exists because myosin cannot bind

until the T/T unit is in a permissive state. Once it is in

a permissive state, a nearby myosin can transition

from the P state to the PreF state (see Figure 6). The

P state corresponds to a detached or weakly bound

crossbridge and a permissive T/T unit as intermediate

states. Once in states PreF or F, the myosin is strongly

bound and prevents the T/T unit from returning to a

nonpermissive conformation. This construct derives

from the allosteric interactions thought to occur in

such a way that an attached myosin head physically

prevents T/T from shifting back into the groove on

actin. Moreover, experimental evidence shows that

the presence of one or two crossbridges can prevent

the thin filament from switching back from a

permissive conformation to a nonpermissive

conformation [13, 14].

To account for the interactions between T/T units on

binding sites and crossbridge formation, a larger coupled

kinetic system must be employed, as shown in Figure 6.

In this model, a binding site can be in any of the eight

states, the associated crossbridge can be in any of the four

states (0Pref, 1Pref, 0F, 1F), and the myosin head can be

in any of the six states (0P, 1P, 0Pref, 1Pref, 0F, 1F). The

states with a 0 prefix indicate the state in which a Ca ion is

not attached to the binding site, and the states with a 1

prefix indicate the attachment of a Ca ion to the binding

site. Once in a permissive state, a nearby myosin can

attach. Initially, the myosin is assumed to be in a

detached P state, which is mapped to 0P or 1P in the

combined eight-state model. Note that Ca is assumed to

be able to bind or detach independently of the permissive

conformation or myosin attachment events, so these

states have mirror Ca-unbound (0x) and Ca-bound (1x)

versions. For example, the 0PreF state corresponds to a

strongly bound myosin with a pre-rotation head region

with Ca unbound, and the 1F state is a strongly bound

myosin with a post-rotation head region with Ca bound.

Modeling kinetics using the Monte Carlo method

We used a typical Monte Carlo (MC) method to simulate

the state transitions of binding sites, myosin heads, and

crossbridges. In such an MC method, time is divided into

time steps of Dti, where i denotes the ith time step (the

length of time steps may vary, as described below). The

simulation starts with all crossbridges in the detached state

and all binding sites in the 0N state. The state transition

simulation is carried out as two steps. During the first step,

the state transitions of the T/T units of binding sites are

determined as follows. For each binding-site state, there

are two possible transitions to new states, denoted B1

and B2, with respective rates Br1 and Br2. For example, in

Figure 5(a), if the initial state is 1P, the possible transitions

are to 0P and 1Nwith respective rates k
0

off and c�nkpn_1. For

Figure 6

Transition models. The eight-state transition model on the right 
describes the combined activity of T/T units and the crossbridge 
cycle shown separately on the left. The Ca regulation model 
corresponds to Figure 5(a), and the crossbridge cycle corresponds to 
Figure 4(a). The F-to-P transition is shown as unidirectional 
because the reverse rate from P to F is extremely small [see Figure 
3(e) and the Appendix], as is typically assumed for crossbridge 
cycles. The combined eight-state model corresponds to the interac-
tion of a T/T unit on the thin filament with a nearby myosin from the 
thick filament. Specifically, myosin cannot bind strongly until the 
nearest T/T unit is permissive.
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small values ofDti, the probability of transition to states B1
and B2 is approximated by DtiBr1 and DtiBr2, respectively.
A pseudorandom number (xrandom1) in the [0, 1] range is

generated and is comparedwith the transition probabilities

DtiBr1 and DtiBr2 for that state. If xrandom1 is less than

DtiBr1, the binding site transits to state B1. If the first case is
not satisfied, and if xrandom1 is less than (DtiBr1þDtiBr2),
the binding site transits to state B2. If xrandom1 is greater

than (DtiBr1þDtiBr2), the binding site continues in the

current state for the time step.

Once the state transitions for the binding sites are

completed, the crossbridge states are similarly updated. A

crossbridge may be in one of the three states—detached,

pre-rotation, and post-rotation [see Figure 3(a)]. For each

crossbridge state, there are two possible transitions to

new states, denoted C1 and C2, with respective rates Cr1
and Cr2. A second pseudorandom number (xrandom2) in

the [0, 1] range is generated and is compared with the

transition probabilities DtiCr1 and DtiCr2 for that state. If
xrandom2 is less than DtiCr1, the crossbridge transits to

state C1. If xrandom2 is less than (DtiCr1 þ DtiCr2), the
crossbridge transits to state C2. If the first case is not

satisfied, and if xrandom2 is greater than (DtiCr1þDtiCr2), the
crossbridge continues in the current state for the time step.

Note that the coupled system in Figure 6 could be

solved using a single call to a random number generator.

We instead chose to update the actin binding-site states

and the crossbridge states independently in order to

simplify implementation. However, systems are coupled

by appropriately changing transition rates to reflect the

interaction of T/T units and crossbridges in Case 2

discussed above. Specifically, as we mentioned, myosin

cannot bind until the T/T unit is in a permissive state (see

Figure 6). Hence, for a crossbridge near a nonpermissive

T/T unit, the rate RP!PreF(a) equals 0 [see Figure 3(a)].

Once a crossbridge is in state PreF or F, the myosin is

strongly bound and prevents the T/T unit from returning

to a nonpermissive conformation. This feature is

incorporated by effectively setting the transition

rates from permissive to nonpermissive states to zero

[kpn_0 ¼ kpn_1 ¼ 0, Figure 5(a)] for a T/T unit with a

strongly bound crossbridge. As one final note, the

longest possible time step is used to decrease the

computation time. The largest appropriate time step

can be computed as Dti ¼ (3 3 rmax)
�1, where rmax

is the global maximum rate found after computing the

transition rates for each T/T unit and crossbridge in the

model at time step i.

Results

The role of nearest-neighbor cooperativity in

Ca sensitivity

In our model, the high sensitivity of cardiac muscle to

activator Ca can be attributed to the properties of the

regulatory proteins. The T/T units transition from

nonpermissive to permissive states in response to Ca.

After becoming permissive, myosin can attach to form

crossbridges and produce force; thus, in a simple scheme,

the regulatory proteins act as switches to modulate the

amount of force. While this is not quite so simple in the

complete system, we can investigate the Ca sensitivity

by first considering only the switching behavior of the

regulatory proteins. To demonstrate Ca sensitivity, the

number of permissive T/T units is plotted as a function

of the activator [Ca] in Figure 7. Here, crossbridges are

prevented from attaching [RP!PreF(a)¼ 0] in Figure 3(a)

to isolate the Ca-activation effects of the regulatory units.

Figure 7 shows a parameter variation with c, the energetic
penalty assigned to neighboring T/T units with different

permissive conformations. Hence, greater c values

correspond to greater strength of the nearest-neighbor

cooperativity. Using minimization of squared error, true

Hill functions (not shown in the figure) are fit to the

simulation data. The best fits are found with the following

values: c ¼ 1, Ca50 ¼ 2.1 lM, NH ¼ 1.1; c ¼ 5,

Ca50¼ 2.5 lM, NH ¼ 2.5; c ¼ 20, Ca50 ¼ 4.4 lM,

NH ¼ 6.0; and c ¼ 45, Ca50¼ 4.7 lM, NH ¼ 8.1.

As shown in Figure 7, increased nearest-neighbor

cooperativity leads to steeper transitions, beginning with

most T/T unit transitions being nonpermissive and

transitioning to most units being permissive as [Ca]

increases. Specifically, when Hill functions (defined in the

Figure 7

Number of binding sites (T/T units) in permissive states as 
functions of the activator [Ca] with no crossbridge attachment. 
Note that because there are 32 binding sites in the array, a value of 
32 is the maximum that can be attained. Different traces 
correspond to different values of � as labeled. The traces become 
steeper as � increases, corresponding to a greater strength of the 
nearest-neighbor cooperativity.
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legend for Figure 4) are fit to the number of permissive

T/T units, the steepness, as quantified by Hill coefficients,

increases as a function of the c value. For example,

the c ¼ 1 case corresponds to no nearest-neighbor

cooperativity. This case produces a Hill coefficient very

close to 1, as could be predicted by the single regulatory

Ca binding site on each troponin unit. However, as c
increases to 5, 20, and 45, the apparent cooperativity

increases, as respectively quantified by the Hill coefficients

of 2.5, 6.0, and 8.1.

Similar results were shown in a previous study [11]

using an Ising approach that produces an analytic result

for equilibrium conditions such as those shown in

Figure 7. Note that analytical results show minor but

systematic deviations from true Hill functions and that

the deviations are similar to those found in real muscle

(see [11] for details). Such deviations are much harder to

discern in MC methods, in which stochastic fluctuations

can easily obscure subtle features of muscle responses.

This becomes more apparent in the next section, in which

cycling crossbridges are added. While the MC approach

in the current study is considerably more noisy and

computationally costly than the Ising approach, the

subsequent data show nonequilibrium conditions that

cannot be calculated using the Ising approach.

Simulating force–Ca relations

After becoming T/T-permissive, myosin can attach to

form crossbridges and generate force. Hence, to a large

extent, the amount of developed force should reflect the

upstream switching events of the regulatory proteins;

however, important differences can also exist. Unlike the

data in Figure 7, the data in Figure 8 are generated with a

normal attachment rate for myosin, so that crossbridges

can form and generate force. Developed force can be

computed from the attachment of crossbridges and

the corresponding strains and can be compared to

experimental data such as that shown in Figure 4(a);

however, the addition of attaching crossbridges produces

more fluctuation than the corresponding plot in Figure 7

with c¼ 45. The simulation in Figure 8 is run with c¼ 45

and l ¼ 15. The Hill fit shown has Ca50 ¼ 4.2 lM,

NH ¼ 10.2.

Figure 8(a) shows the number of binding sites in

permissive states as a function of activator [Ca], similar to

the plots in Figure 7. Note, however, that the addition of

attaching crossbridges produces more fluctuation than is

seen in the corresponding trace in Figure 7 with c ¼ 45.

The Hill fit shown corresponds to Ca50 ¼ 4.2 lM,

NH¼ 10.2. The Hill equation is often used by biochemists

to describe the fraction of the enzyme saturated by a

ligand as a function of the ligand concentration. Here,

the Hill equation has two parameters: NH, which is

known as the Hill coefficient, and Ca50, which refers

to the [Ca] that produces 50% of maximum activation

(see caption for Figure 4). A larger value of NH indicates

a larger degree of cooperativity and produces a steeper

sigmoidal curve. A smaller value of Ca50 indicates

that a smaller [Ca] produces half activation and

therefore indicates a greater overall sensitivity to

activator Ca.

As shown in Figure 8(b), developed force exhibits

much more variation than the corresponding trace for the

number of permissive T/T units. The increased variation

is an obvious byproduct of the smaller number of

attached crossbridges compared with a total of 32 T/T

units on the thin filament. Moreover, the attached

crossbridges generate force primarily in the F state, a

feature that further reduces the effective number of force-

generating events and increases the level of fluctuation.

A Hill function fit has [Ca50] ¼ 4.0 lM and NH ¼ 11.

Interestingly, the plots in Figure 8 show somewhat higher

apparent cooperativity than is seen in the corresponding

Figure 8

(a) Number of binding sites in permissive states and (b) developed 
force plotted as functions of activator [Ca] with normal cross- 
bridge attachment. In part (b), the developed force data show large 
variations because a relatively small number of attached 
crossbridges are stochastically attaching and generating force. 
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trace in Figure 7 with c ¼ 45. This larger NH value is

an artifact of the noisy data, the coarse increment in

[Ca], and the fitting procedure. Rerunning with a

finer increment in [Ca] over a concentration range

around [Ca50] (data not shown) produces estimates

of [Ca50] ¼ 3.7 lM and NH ¼ 8.7, which correspond

more closely to the results in Figure 7.

Simulating twitch response

The F–Ca relationship is convenient for demonstrating

Ca sensitivity. However, fixing [Ca] at a constant level is

an experimental manipulation that does not correspond

to physiological conditions in the actual heart, in which

[Ca] is constantly changing throughout each heartbeat.

To better match these dynamic conditions, we simulated a

twitch response for a transient increase in [Ca] similar to

that which occurs during a typical heartbeat. Figure 9(a)

shows a simulated twitch activated by simulated Ca

transients that are generated to resemble those from real

muscle. The use of simulated Ca transients is typical in

modeling papers (e.g., [15]) because experimentally

measured transients contain artifacts from a nonlinear

response of the Ca-sensing dyes. Also, developed force

should not depend too closely on the exact Ca transient

shape. In Figure 9(b), similar data are shown from the

study of Backx et al. [16]. Note that in Figure 9, the [Ca]

has peaked and is falling when the peak of the developed

force occurs. The simulated twitches in part (a) have

activator [Ca] that is higher by about a factor of 10 than

in the corresponding experimental data in part (b). This

discrepancy occurs because the model results shown in

this figure correspond to skinned fiber data in Figure 4(a)

that produce a lower Ca sensitivity than observed in

intact cell data. (The term skinning refers to removing the

cell membrane; see [17] for more details on this effect.)

The twitch responses illustrate some important features

of the system. Specifically, the Ca transient is relatively

fast compared to the force transient, which shows slower

response times. One common interpretation is that

relatively slow crossbridge dynamics predominate to

produce the slow force response (e.g., [18, 19]). These

preliminary results also show some other complex

behaviors. For example, the final relaxation of force is

slower for larger peak force than for smaller peak force,

as has been seen experimentally [18, 20]. Such an effect is

greatly diminished for lower levels of nearest-neighbor

cooperativity (e.g., c near 1, data not shown). However,

the comparison is not completely straightforward.

Specifically, decreased c strongly affects Ca sensitivity, so

that developed twitch force is not as strongly modulated

by the different levels of activator [Ca] shown in Figure 9.

While one could change the levels of activator [Ca] to

more closely match the developed force shown in

Figure 9, the results can still be difficult to interpret,

because the relaxation phase of twitches involves a

complex interplay of Ca-activation and crossbridge

kinetics (e.g., see [17]).

One interpretation of the prolonged twitches is that

higher levels of force entail the binding of a greater

number of crossbridges, which in turn can hold the thin

filament in permissive conformation so that neighboring

crossbridges are less likely to detach. While the force is

generated by a relatively few crossbridges that may be

separated by long distances, the nearest-neighbor

interactions along the thin filament will extend the

influence. Recall that in the model construction, a

strongly bound crossbridge can hold the adjacent T/T

unit in a permissive conformation even after Ca has

dissociated. From previous modeling work using

Figure 9

Twitch responses (a) from the model and (b) from experimental 
data. Twitch responses from model in part (a) are shown for three 
Ca transients of different amplitude. The simulated Ca transients 
are generated in order to resemble those from real muscle. The 
activator Ca transients are seen in the smoother traces that peak 
earlier than the noisier force transients. In part (b), the response is 
measured in a whole-muscle preparation, in which the force is 
normalized by the cross-sectional area of the muscle to permit 
comparison of twitch responses for muscles of different sizes. 
[Figure 9(b) is from [16] and used with permission.]

0

1

2

3

4

5

6

7

8

9

10

0 0.5 1.0 1.5 2.0
Time  (s)

(a)

Time  (s)
(b)

[C
a]

  (
   

M
)

0

2

4

6

8

10

12

14

16

18

Fo
rc

e 
 (

pN
)

[C
a]

  (
M

)

Fo
rc

e 
 (

m
N

/m
m

2
)

10�6

0 0

35

0 s 0.6 s

�

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006 J. HUSSAN ET AL.

593



similar nearest-neighbor cooperativity (c ¼ 45, l ¼ 15),

correlations between T/T units are seen to spread up to 13

units along the thin filament [11]. Eventually, stochastic

variation causes enough crossbridges to detach so that the

thin filament can become nonpermissive, and complete

relaxation ensues. In other words, generated force is

somewhat self-sustaining, so that larger force transients

are prolonged and relax more slowly compared with

lower force transients that relax quickly.

The slow response of force is demonstrated in phase

loops in which the relationship of force and activator [Ca]

is plotted during the twitch. As shown in Figure 10,

the resulting plots are loops that are traversed in a

counterclockwise direction during the time course of the

twitch. Also shown are the steady-state F–Ca relations

that can be plotted on the same axes. The dashed trace

is the Hill function fit to the steady-state F–Ca data

with [Ca50] ¼ 3.7 lM and NH ¼ 8.7. Early in the twitch,

[Ca] has peaked while force lags, placing the phase loop

below the steady-state F–Ca relation. In contrast, later

in the twitch, force is still large while [Ca] is decreasing,

placing the phase loop above the steady-state F–Ca

relation. These results demonstrate that the complete

model has dynamic properties that cannot be predicted

from the steady-state behavior. Hence, the F–Ca relation

is a reasonable characterization of Ca sensitivity but

is an incomplete description for dynamic responses in

which slower crossbridge kinetics also play a role in

shaping temporal responses.

Sample runtimes and noise analysis

Typical runs to compute steady-state force require 160 s

of simulation time (approximately 1.6 3 109 time steps)

per [Ca] level in Figure 8. The programs are written

using Cþþ and are executed on an IBM POWER5*

platform. Each 160 seconds of simulation time requires

about 2.4 3 104 seconds in real time to complete. As

shown in Figure 11(a), the standard deviation is generally

larger as the mean force increases. Such a result is

perhaps not too surprising, given the many sources of

stochastic variation in crossbridge binding and myosin

head rotation from the PreF to the F state. Hence, under

the default-model parameter considered in this paper,

generated force results from a relatively small number

of stochastically controlled crossbridges, and hence

variability is quite large. A small number of force events

result partly from the different spacing of actin and

myosin sites that produce only a small number of

crossbridge bindings. This effect is an artifact that is

explored in the next section.

Spatial effects in actin–myosin interactions

As shown in Figure 2, the intrinsic spacing of actin and

myosin positions is different. The difference in spacing

results in certain pairs of myosin and actin binding sites

having higher probabilities of binding than other pairs.

This phenomenon is explored in Figure 11(b), in which

the probability of an attached crossbridge is shown for

every actin binding site on the thin filament (numbered 0

to 31 on the abscissa). The probabilities for having a

strongly bound crossbridge are computed over time for

each actin site [strongly bound crossbridges correspond

to states PreF and F in Figure 3(a)]. Note that some

binding sites have large probabilities for strongly bound

crossbridges, while other binding sites have near-zero

probabilities. For example, at the default length of

2.2 lm, peaks exist at actin sites 5, 11, and 18–19.

Figure 10

Twitch response plotted as phase loops, using (a) data from the 
model and (b) actual muscle data. (a) A phase loop is produced by 
plotting force as a function of activator [Ca]. The looped data 
traces correspond to the simulation shown in Figure 9(a). The 
dashed trace is the Hill function fit. (b) Similar data are shown 
from the study of Backx et al. [16], with steady-state F–Ca data 
indicated by the dashed trace. Note that in both (a) and (b), the 
phase loops are traversed in a counterclockwise direction during 
the time course of the twitch. [Figure 10(b) is from [16] and used 
with permission.]
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Figure 11(b) shows a total of five runs in which

the sarcomere length is increased by 8 nm for each

subsequent run. Note that the peaks in probability

change for small variations in length. This effect suggests

that reporting results at a given length may produce

artifacts in that the system has preferred myosin and

binding-site pairs. These pairs reflect the near-perfect

spacing and alignment in the simulation, which is not

likely to occur in a real muscle. Specifically, real muscle

is more likely to show some variation in binding-

site spacing and sarcomere lengths, so that peaks

in probability are likely to be smeared along the

abscissa. Moreover, in real muscle, each thin filament is

surrounded by three thick filaments, each of which has

a different phase in the actin and myosin site spacing.

Therefore, one can reasonably predict that the precise

peaks in the probability are artifacts of the artificial

simulation geometry and do not reflect the situation

observed in a real system. This limitation is addressed

further in the discussion.

Discussion
The model described here represents an attempt to

formulate a mathematical representation of a thick and

thin filament in the sarcomere. The model builds on a

number of previous modeling efforts, but seeks a level

of spatially explicit detail that was generally considered

intractable for most earlier studies. We propose that

two classes of advancements have made such detailed

modeling efforts feasible. The most obvious advancement

is the decreased cost of computation, even on the

terascale level, in which teraflops of computation power

can be obtained in a single rack of hardware. Previously,

terascale computation was obtainable only at the largest

supercomputer facilities. The second advancement

involves the theoretical underpinning of the models.

Myofilament modeling continues to be an active area of

research, with new or refined models still being proposed.

While the models exist at very different levels of

abstraction and spatial detail, taken as a whole, the

level of understanding of the biophysical mechanisms

has increased. We suggest that the construction and

validation of spatially explicit and biophysically detailed

myofilament models, when coupled with newly available

experimental characterizations, has become feasible.

Successes and limitations of the model

A primary goal of the modeling described above is to

serve as a basis for higher-level models of full sarcomeres

or groups of sarcomeres. The preliminary results

presented here are promising. The model produces

F–Ca relations and twitches that resemble those from

experimental characterizations. Moreover, many previous

models fail to recapitulate even these basic responses,

and the failure has been attributed to a lack of explicit

consideration of cooperative mechanisms [11].

Despite some success, we must also consider important

limitations; we can broadly define several such limitations.

First, much work remains to be done in refining and

validating the current formulation. For example, the

three-state crossbridge kinetic scheme is simplistic, with

rough guesses for the strain-dependent transition rates.

Further studies will refine the rates and could possibly

incorporate additional states as well as metabolite

concentrations that also strongly affect rates [9]. Also, the

Figure 11

Analysis of noise in a model of steady-state force–Ca relations. (a) 
The lower trace shows mean force and is replotted using data from 
Figure 8, while the upper trace shows the mean plus the standard 
deviation. The results show a considerable degree of variation 
even after averaging over 160 seconds in simulation time. The 
simulated sarcomere length is 2,200 nm. (b) For every actin 
binding site on the thin filament, we compute the probability over 
time for having a strongly bound crossbridge. As indicated in the 
legend, this probability is shown for slightly different sarcomere 
lengths. For any given sarcomere length, the peaks in probability 
show that the particular binding sites are more likely to have 
strongly bound crossbridges  as a result of the different intrinsic 
spacing of actin and myosin sites. 
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data shown in the current work have all been collected

under isometric conditions, with a single fixed sarcomere

length (that is, all data shown were collected at sarcomere

lengths equal or very close to 2.2 lm). Further studies

must address variations to different fixed sarcomere

lengths, which are known to have a strong effect on

Ca sensitivity and maximal force in cardiac muscle [21].

Moreover, allowing active shortening to produce a net

velocity between the thick and thin filaments will involve

another level of complexity. For example, increased

shortening velocity will produce constantly changing

strains that will affect myosin transition rates as well as

the force generated by attached crossbridges. We do not

currently know of any models that adequately recapitulate

the range of physiological responses to the varying Ca

activation, velocity, and load conditions seen in muscle. In

general, the existing models have a smaller scope and can

be applied to limited sets of conditions. Given that the

model in this paper is built by combining several models of

more limited scope, one should realistically expect some

difficulties when attempting to model very diverse

phenomena.

The second broad set of limitations concerns spatial

issues. The model presented here makes use of a single

pair of thick and thin filaments. We have not attempted

to modify the filament compliances (Figure 2) in our

model presented here. However, previous results with

a similar two-filament model by another group have

suggested that changing filament compliance can

strongly affect force [7]. In this previous study, attached

crossbridges produce compliant realignment of myosin

and actin binding sites, which can cause additional

attachment events and force. In general, a more

compliant thin filament can increase such realignment

and developed force. However, a compliant thin filament

will also transmit less force from the myosin head

rotation events.

The use of a single pair of thick and thin filaments has

additional limitations. In mammalian muscle, the cross

section reveals a hexagonal lattice of thin filaments

surrounding each thick filament. In particular, each thick

filament is surrounded by six thin filaments, while each

thin filament is surrounded by three thick filaments. This

spatial arrangement typically increases the number of

interactions between all pairs of adjacent filaments. In

addition, the effects of preferred pairs of binding sites and

crossbridges, as seen in Figure 11(b), should be decreased

in models that go beyond the use of single pairs of thick

and thin filaments. The helical nature of thick and thin

filaments ensures that each thick filament will have

slightly different alignment and register with each of its

six adjacent thin filaments.

The larger number of interacting filaments in more

complex models also increases the spatial averaging

of force. As shown in Figure 11(a), the single pair

of filaments generates a noisy response, even if time-

averaged over 120 s. In contrast, a steady-state response

in real muscle is obtained very quickly, because a high

level of spatial averaging exists for crossbridge

interactions spread over the whole lattice of thick and

thin filaments. We can reasonably hope that subsequent

models with a multitude of thick and thin filaments in the

appropriate lattice arrangement will show both decreased

effects of preferred binding sites [Figure 11(b)] and lower

levels of noise [Figure 11(a)]. This leads us to the next

section, which discusses how such models might be

constructed to run on terascale supercomputer platforms.

Toward cell-based large-scale simulations

A primary goal of the modeling we describe is to serve

as a basis for higher-level models of full sarcomeres or

multiple sarcomere structures. While the availability of

relatively inexpensive computational power would seem

to make such models possible, the construction of full

working models is more difficult than simply replicating a

single pair of thick and thin filaments. Specifically, while

the current model could be replicated and simplistically

distributed to a large cluster of independent workstations,

the net result would only be to speed the collection of

sufficient data to do averaging of the stochastic MC

results. A more valuable simulation requires us to

build communications between adjacent thick and thin

filaments to generate a full sarcomere model. Moreover, if

multiple sarcomeres can be assembled, one can build a

myofibril, which is a small unit of muscle that is currently

used for fundamental experimental characterization [21].

A myofibril can be constructed from the half-sarcomere

model as follows. A 3D lattice of sarcomeres is created so

that the lattice models the real muscle geometry. An

activated Ca signal is provided at each lattice space at

each time step. The activating signal may range from a

simple, homogeneous waveform to a more complex signal

such as a propagating 3D Ca wave that could more

closely resemble a physiological condition in the cell.

Each lattice point is then individually simulated for

the Ca level at its position, and the generated force is

determined. The shortening velocity for each sarcomere

is next determined on the basis of the force generated

in its neighborhood. This velocity is communicated to

individual sarcomere units, which reconfigure accordingly

and proceed to the next time step. Such a system may

permit the investigation of inhomogeneous relaxation

responses, as has been recently characterized at the

level of myofibrils in real muscle [3, 22].

As an example of how such a system could be

implemented on a terascale-level computer, Figure 12

shows a possible mapping of a myofibril model of 32

sarcomeres onto one rack of a Blue Gene*/L (BG/L)
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supercomputer. (The Blue Gene/L supercomputer was

developed through a partnership between IBM and

Lawrence Livermore National Laboratory.) The

simulation of two thick and eight thin filaments is

executed on a dual-core processor. The ratio of thick and

thin filaments models the ratio in a half sarcomere. Each

thick filament is surrounded by six thin filaments, while

each thin filament is surrounded by three thick filaments.

This gives a filament ratio of two to one, which must be

increased to a ratio of four thin filaments to one thick

filament in order to account for the left and right sides of a

sarcomere. Note that the thick filaments are double-ended

and require roughly twice the computation of the half-

thick filament in the preliminary model. We anticipate

a 64-thick and 256-thin filament to represent a full

sarcomere at the level of a computer node card. A

myofibril model can then comprise 32 full sarcomeres

modeled at the level of a full rack of Blue Gene/L. The

mapping is approximate because the final implementation

may require some redistribution of the model among

computation units at the level of processors or node cards.

This fuller simulation has an additional computational

load due to the communication load that arises from

the interaction among sarcomeres. Such models are

characterized by a large number of local communications

and scale well on toroidal interconnects. (In computing

systems, a toroidal network is one in which nodes are

connected circularly in more than one dimension. The

resulting network topology is a torus, and the network is

called toroidal.) On the Blue Gene/L supercomputer, a

three-dimensional interconnect torus connects each node

to its six nearest neighbors with 1) a link bandwidth of

175 MB/s (bidirectional, 2 bits per cycle); 2) a physically

separate global combining/broadcast tree with a

bandwidth of 350 MB/s (4 bits per cycle) and a 1.5-ms

one-way latency on a 64K-node partition; and 3) a global

Figure 12
Possible mapping of a 32-sarcomere myofibril model onto one rack of a Blue Gene/L supercomputer. Simulation of two thick and eight thin 
filaments is executed on a dual-core processor; then, 64 thick and 256 thin filaments can represent a full sarcomere at the level of a node card. 
The mapping is approximate because a final implementation may require some redistribution of the model among computation units at the 
level of processors or node cards, in order to balance computational loads, given communication constraints. (DDR: double-data-rate 
synchronous dynamic random access memory; GB: gigabytes; GF: gigaflops; TF: teraflops.) The full-sarcomere illustration is adapted from [23] 
with permission.

Two thick filaments
Eight thin filaments

One full sarcomere

32 full sarcomeres = one myofibrilScaling up to a terascale
model of a myofibril

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5 GB DDR

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR
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barrier/interrupt network to allow hardware-based

synchronization of large numbers of parallel processors.

Such a communication backbone reduces the idle time of

the compute nodes due to communication latencies which

would be characteristic of such models, and it should

drastically reduce the throughput time of the simulations.

Conclusions

The model described here represents an attempt to

formulate a mathematical representation of a pair of

thick and thin filaments in the sarcomere. The model

combines a number of previous modeling efforts to

seek a more complete representation than any of the

previous models. While the preliminary results compare

reasonably well with experimental characterizations of

real muscle, much work remains to be done in refining

parameter values and verifying the current formulation.

Moreover, the current results are generally noisy, with

substantial stochastic variation, at least for one pair of

filaments. Future extensions of the model to multiple sets

of filaments should alleviate much of the stochastic

variability because numerous fibers will be working in

parallel. While extension of the model to multiple sets of

filaments in one sarcomere, and to a multiple-sarcomere

structure, will be very computationally demanding, such

large-scale calculations have been made possible on

recently developed massively parallel platforms such

as the Blue Gene supercomputer.

Appendix

Table 1 presents equations for free-energy functions and

transition rates as functions of the distortion a (the

distance from the equilibrium position of myosin and

binding site on actin). Since the P state is assumed

to be the reference, GP(a) ¼ 0.0. Hence, free energy is

independent of distortion as the myosin is detached. The

free energy of P after hydrolysis of ATP is computed

assuming DGATP ¼�23.0RT. Thus, in Figure 3(b),

GPDATP is a constant 23RT lower than state P.

The states PreF and F have parabolic profiles because

attached crossbridges act like linear springs. The minima

of the free-energy profiles of these states are given by

lPreF and lF, respectively. The spring constants for

the strongly bound states are given by bPreF and

bF, respectively. Thus, for this model, the attached

crossbridge stiffness is independent of whether it is in

state PreF or F. However, there is a 7-nm offset in

distortion for the PreF state that results from extension

of the myosin head in the pre-rotation state.

The energy profiles defined above are used to set the

ratio of transition rates between adjacent states but not

the absolute values. The terms hP!PreF and hPreF!F are

scale factors that set the absolute transition rates for the

crossbridge cycle. The qmin and qmax terms are constraints

on minimum and maximum values of the transition rates.

The constraints prevent extremely large variations in rates

that can lead to inaccuracies or poor performance in the

numerical methods in the model execution. The arrows in

the formulas indicate transitions between states.
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Table 1 Equations for free-energy functions and transition

rates.

Gp (a) ¼ 0.0

DGATP ¼ �23.0RT

lPreF ¼ �8.0RT

lF ¼ �16.0RT

qmin ¼ 0.00005

qmax ¼ 10,000

bPreF ¼ 0.54RT/nm2

bF ¼ 0.54RT/nm2

hP!PreF ¼ 10.0

hPreF!F ¼ 10.0

GPreF(a) ¼ lPreF þ bPreF(a � 7.0 nm)2

GF(a) ¼ lF þbFa
2

RP!PreF(a)/RPreF!P(a) ¼ exp [GP(a) � GPreF(a)]

RPreF!F(a)/RF!PreF(a) ¼ exp [GPreF(a) � GF(a)]

RF!P(a)/RP!F(a) ¼ exp [GF(a)�DGATP]

RP!PreF(a) ¼ max fqmin, hP!PreF � [RP!PreF(a)/RPreF!P(a)]
½g s�1

RPreF!P(a) ¼ min fqmax, hP!PreF � [RP!PreF(a)/RPreF!P(a)]
½g s�1

RPreF!F(a) ¼ min (qmax, max fqmin, hPreF!F

� [RPreF!F(a)/RF!PreF(a)]
½g) s�1

RF!PreF(a) ¼ min (qmax, max fqmin, hPreF!F

� [RPreF!F(a)/RF!PreF(a)]
�1/2g) s�1

RF!P(a) ¼ min (qmax, max fqmin, [RF!P(a)/RP!F(a)]

� RP!F(a)g) s
�1

RP!F(a) ¼ 0.000051 s�1
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