A spatially detailed
myofilament model

as a basis for large-scale
biological simulations

The availability of increased computing power will make

possible new classes of biological models that include detailed
representations of proteins and protein complexes with spatial
interactions. We develop such a model of the interaction of actin
and myosin within one pair of thick and thin filaments in the
cardiac sarcomere. The model includes explicit representations of
actin, myosin, and regulatory proteins. Although this is not an
atomic-scale model, as would be the case for molecular dynamics
simulations, the model seeks to represent spatial interactions
between protein complexes that are thought to produce
characteristic cardiac muscle responses at larger scales. While the
model simulates the microscopic scale, when model results are
extrapolated to larger structures, the model recapitulates complex,
nonlinear behavior such as the steep calcium sensitivity of
developed force in muscle structures. By bridging spatial scales, the
model provides a plausible and quantitative explanation for several
unexplained phenomena observed at the tissue level in cardiac
muscles. Model execution entails Monte-Carlo-based simulations
of Markov representations of calcium regulation and actin—-myosin
interactions. While most of the results presented here are
preliminary, we suggest that this model will be suitable to serve
as a basis for larger-scale simulations of multiple fibers
assembled into larger sarcomere structures.

P. P. de Tombe

Introduction

Computational methods and models enable the modern
biologist to investigate complex molecular mechanisms
that are not easily accessible for analysis with
experimental tools. The increased availability of low-
cost computing power has enabled researchers to
computationally model complex, emergent behaviors in
biological systems. Such detailed models help researchers
to bridge the gap between experimentally derived data
and the underlying complex phenomena, which are

not yet fully quantifiable. For example, the gross
physiological response of striated muscle depends on
the interactions of actin and myosin, which have yet to
be fully characterized at the molecular level. Models
continue to serve as quantitative tools to bridge the
observable physiology with the underlying biophysical
basis of complex muscle responses.

In this paper, we discuss our effort to model the actin—
myosin interaction in cardiac muscle. In this system,
complex behaviors, such as high sensitivity to activator
Ca, are thought to arise from several cooperative
interactions at the molecular level. (Ca stands for both
calcium and the Ca®" ion, a common convention in the
field.) Here, cooperative interactions refer to coupling
between proteins or protein complexes that modify
behaviors that increase sensitivity to activator Ca.

For computational efficiency, most current models are
simplified and attempt to use lumped-parameter or mean-
field approaches, two methods that are well known to
researchers involved with mathematical modeling. For
example, a single number that indicates concentration is
used to represent large populations of proteins, and the
model does not track individual proteins. Hence, these
models lack spatially explicit representations of the
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Sarcomere structure in striated muscle. (a) Schematic representa-
tion of the repeating sarcomere structure in striated muscle. The
sarcomere is defined from z-line to z-line with interdigitated thick
and thin filaments that can interact to produce force. (b)
Sarcomere component proteins. Details of thin filament proteins
show the double helix of actin monomers with regulatory units
(troponin and tropomyosin). Tropomyosin is indicated by the thin
light-green line. Troponin is composed of three subunits: TnC,
Tnl, and TnT. The thick filament is composed of the intertwined
tails of myosin, from which the head and neck region extend to
interact with the thin filament (see text for details).

cooperative interactions of component proteins. We
choose the term “spatially explicit” to suggest that the
spatial interactions between proteins are represented in
the model; however, the full set of physical interactions
between proteins and atoms are not computed, as is done
in classical molecular dynamics simulations. In our
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modeling approach, which is classified as mesoscale or
multiscale, higher levels of abstractions are used for
molecular structures in order to speed calculations.

For example, the model presented here can be executed
with a time step of the order of microseconds instead of
femtoseconds, which is a typical timescale for molecular
dynamics simulations.

While simplified models are computationally efficient,
such representations fail to account for basic responses
such as the steep dependence of force on activator [Ca]
and the proper temporal responses in muscle twitches
[1]. (Hereafter, we use the symbol [Ca] to refer to the
concentration of calcium.) In an effort to address these
limitations of simplified models, we have developed a
computational model that includes spatially explicit
representations of cooperative interaction at the
molecular level. Because biological modeling is currently
an “art” as much as a routine procedure, we have
attempted to choose a level of abstraction that balances
biophysical detail with parsimonious representations that
are computationally tractable. We demonstrate how
simple spatially explicit models can produce complex Ca-
activated responses that are similar to those measured in
real muscle. Preliminary results of this modeling work
have been discussed in [2].

Model description and methods

Representing sarcomere geometry

Figure 1(a) is a diagram of a sarcomere, the basic
repeating molecular-level structure of striated muscle
(specifically skeletal and cardiac muscle). In fact, the
striation in muscle arises from the high regularity of the
sarcomere arrangement along the z-line direction. The
end-to-end arrangement of sarcomeres produces regular
and repeating striations along the length of the muscle.
While the sarcomere is generally assumed to be the basic,
repeating unit of striated muscle, we chose to model at the
level of a half sarcomere. While our construction appears
to exploit the geometric left-right symmetry, recent
experimental characterizations have actually suggested
some left-right asymmetries that can occur during
contraction [3]. Hence, the half sarcomere may be a more
logical functional unit than the full sarcomere. In the
initial effort presented here, we model only a single pair
of interacting thick and thin filaments. In reality, the
sarcomere has a 3D structure [not visualized in the two-
dimensional slice shown in Figure 1(a)], so that each thick
filament is surrounded by six thin filaments that form a
hexagonal lattice. Extension to larger, three-dimensional
models will be a natural outgrowth of this modeling
effort. Interested readers are referred to [4] for further
details on how to incorporate multiple filaments to better
capture the 3D properties of the half sarcomere.
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In Figure 1(a), activated muscle generates force in a
direction so as to pull the thin filaments to the center of
the sarcomere. The magnified inset shows half of a thick
filament (orange), composed of myosin that interacts with
a single thin filament (green), composed primary of actin
and regulatory units. Regulatory units (dark blue) can
bind Ca, which in turn biases them to take a permissive
conformation (shown schematically as raised locations)
to allow myosin to bind. Myosin heads can bind to
specific sites on actin (see gray head) and then rotate to
stretch the extensible neck region (shown as a stretched
string, or zigzag line, attached to the solid head in the
diagram). Rotated heads generate a net force between
thick and thin filaments.

Figure 1(b) shows details of the components of the thin
and thick filaments. The thin filament is composed of a
double helix of actin monomers. The regulatory proteins,
troponin and tropomyosin, reside in the groove of the
helix and serve to allosterically block interactions
between actin and myosin. (The term allosteric refers to a
change in shape and activity of a protein that can result
from molecular binding with a regulatory substance.) The
important feature of troponin is that it can bind one Ca
ion at a single binding site that controls the allosteric
switching behavior. As shown, troponin is actually
composed of three subunits: TnC, which binds Ca;

TnT, which serves as a linker to tropomyosin; and Tnl,
which has a modulatory role in Ca-based regulation.
Tropomyosin spans seven actin monomers and blocks the
myosin binding sites on actin. Through the interactions
with troponin, mainly via TnT, the tropomyosin also
makes an allosteric shift in response to changes in the Ca
level. As shown, tropomyosin molecules overlap in an
end-to-end fashion and are thought to communicate with
their neighbors via this physical communication (for a
review, see [5]).

Myosin has three major structural subunits—the head,
neck, and tail. The head attaches to a binding site and
rotates using the energy from the conversion of adenosine
triphosphate (ATP) to adenosine diphosphate (ADP), a
common energy-liberating reaction in cells. The bound
linkages between actin and myosin are commonly termed
crossbridges to reflect bridging linkages between thick and
thin filaments as first revealed in pioneering electron
microscopy studies [6]. Rotating the head can stretch
the extensible neck region as shown schematically in
Figure 1(a). The tail regions of myosin assemble together
to form the thick filament as shown in Figure 1(b).

Mechanics of filament compliances

Thomas Daniel and colleagues [7] have developed a
model of two filaments in a half sarcomere that includes
the spatial interactions of myosin and actin binding sites.
The main goal of their work was to study the effects of
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Spatial arrangement of actin—myosin interactions. (a) Myosin heads
on the thick filament (green) have an intrinsic spacing of 43 nm,
slightly larger than the 37-nm effective spacing of appropriately
aligned actin binding sites on the thin filament (purple spheres in the
blue double helix). (b) Compliances in the thick and thin filaments
represented as a system of springs between adjacent binding sites.
Attached crossbridges are shown as springs linking the two filaments.
Values for actin binding sites (y;) and myosins (x,) are computed and
modeled as a system of linear springs. Rotation of myosin head
changes stretch of crossbridge spring by 7 nm (see text for details).

compliance (i.e., extension or displacement of a loaded
structure per unit load) on crossbridge formation and
force development. We have used this approach to form
the spatial layout of myosin and actin binding sites with
the appropriate compliances between the elements. We
assume that the thick filament has myosin heads with
appropriate orientations at an intrinsic spacing of 43 nm,
as shown in Figure 2(a). On real myosin, the heads
extend in a helical fashion such that only a subset

will appropriately align to interact with the single thin
filament assumed in this model. Note, however, that the
43-nm intrinsic spacing of myosin is slightly larger than
the 37-nm spacing of appropriate binding sites on the thin
filament, as given in [7]. Similarly to the case with myosin,
the helical nature of the actin will restrict binding to a
subset of actin monomers that appropriately face the
thick filament in the two-filament model presented here.
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In our model, the thick filament, thin filament, and
crossbridges are treated as a system of springs that
operate linearly around the rest lengths of the springs.
The spring constant for the thick filament (ky,) is 2,020
pN/nm (piconewtons per nanometer), that of the thin
filament (k,) is 1,743 pN/nm, and that of the crossbridges
(kyp) is 1 pN/nm [7]. (Hereafter, “xb” is used as an
abbreviation for crossbridge.) The rest lengths are set by
the intrinsic spacing of myosin sites (m, =43 nm) and
actin binding sites (a; = 37 nm). The forces generated
by the crossbridges are not computed using rest length,
despite the fact that the rotational state of the head can
modify the effective length by 7 nm. (This effect is further
explained shortly.) We also assume that no external forces
act on this system, and that other effects, such as
viscosity, are negligible. Figure 2(b) shows a segment
of this system of linear springs.

The new positions of the thick filament, thin filament,
and crossbridges can be determined using a pair of force-
balance equations for each crossbridge. Equation (1) is
a coupled set of linear equations for the interaction of
myosin head i and binding site j:

b (Xiy = = m) 4 kg, (0 = x;) = ke (o =

i—1 s

ka(yj+1 V- a,) + kxb.i(Y/ - X)) - ka(li/ — Vi~ a;) = 0.

The set of equations (1) for all » myosin heads and p
binding sites can be transformed into a position vector
X =[x1, X2, -+, Xy Y1, Y2, -+ 5 Vpls @ (p + 1) X (p + n) matrix
K of spring constants, and a vector A, described shortly.
For the model implemented here, we assume that the thin
filament is 1.1 ym long and half of the thick filament is
0.825 um long. These values are similar to experimental
characterizations, although some controversy exists as to
exact lengths in cardiac muscle [1]. The lengths given
correspond to 32 actin binding sites (p = 32) and a total
of 19 myosin heads (n = 19).

The matrices and vectors X, K, and A are related as
shown in Equation (2):

KX = A. )

The products of the spring constants and the rest lengths
of the crossbridges define the 4 vector. Changing the
value of a component of the 4 vector is equivalent to an
external force acting on the corresponding myosin head,
actin binding site, and possibly a crossbridge, depending
on the configuration of the K matrix. In our realization of
the model, for each attached crossbridge in the PreF'
state, a force of kyp, X 7 nm =7 pN is added to or
subtracted from the component of the respective

myosin or actin binding site in the 4 vector. This change

"The term PreF refers to a strongly bound but pre-rotation state (essentially the pre-

force generating state), while F indicates a strongly bound post-rotation state that

induces a strain in the extensible neck region (essentially the force generating state).
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of forces represents the force correction for an extended
crossbridge head before rotation to the F state, which
reduces apparent strain by 7 nm. However, since this
correction force is not added to the components when
the crossbridge is in the F state, the transition of the
crossbridge to the post-rotation state affects the
developed force of the system.

Equation (3) is used to determine the new positions of
the crossbridges, myosin heads, and binding sites during
each step as the K matrix and rest lengths vary on the
basis of the state and interactions of the myosin heads
and binding sites:

X=K'A. (3)

Changes in the interactions among crossbridges, myosin
heads, and binding sites result in changes to the appropriate
elements of the K matrix. Specifically, an attached
crossbridge is incorporated as extra spring-constant (kyp)
terms in the K matrix. If the myosin head i is bound with
binding site j, —kyyp is added at K[i][ j] and +ky;, at K[ f][7].
If the crossbridge detaches, these terms are removed.

For all simulations presented here, we assume a fixed
sarcomere length. This assumption is implemented by
fixing the positions of the first myosin (x;) and last
actin (y,) sites, and one can envision the thick and thin
filaments as pulling between two immovable points. The
developed tension of the ensemble can be most easily
calculated from the developed tension at either of the
non-overlapping ends of the filaments (the first myosin
site or the last actin site). In our implementation of the
model, we determined the value of the strain experienced
by the segment between the locations of the first and
second myosin heads. Hence, force for the whole
ensemble is calculated as Fio = km (X2 — X1 — m1g).

Strain-based transition rates for crossbridge kinetics
The state transition rates for crossbridges are derived as
a function of the strain, «, which is a measure of the
distance between the actin binding site and a reference
point on the thick filament for a given myosin. As in the
classic modeling efforts (such as those in [8]), the reference
point is also known as the equilibrium point of an
attached crossbridge, so that k,,Ax = 0 at this point.
Thus, an attached crossbridge can generate positive or
negative force depending on its direction from the
equilibrium position. In particular, positive strains
produce positive forces in the direction of muscle
shortening, whereas negative strains produce negative
forces that inhibit muscle shortening.

Our approach to develop strain-dependent crossbridge
cycling rates is inspired by the work of Pate and Cooke
[9], who define the energy profiles for each crossbridge
state as a function of its relative position. Pate and Cooke
assumed a five-state crossbridge model that included
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the role of metabolite concentrations (ATP, ADP, and
inorganic phosphate). We consider a reduced three-
state model without metabolite dependencies to be

a reasonable compromise between parsimony and
biophysical detail. Daniel et al. propose a similar three-
state crossbridge scheme [7], but differences exist in the
state definition and transition rates. More detailed
crossbridge cycling schemes with more states can be
incorporated by using analogous methodology in future
versions of the model.

The model defines the energy profile of each
crossbridge state as a function of its relative position, and
equations are defined to govern the transitions between
the crossbridge states. Equation (4) provides the ratio of
reversible transition between two states, and the Gibbs
free energy for the states:

Rl._j(oc)
R]._l.(oc)

G[(O() - G/(O()
RT

, (4)

= exp

where R; ;(a) is the transition rate from state i to state j at
strain o, G;() is the Gibbs free energy of state i at strain
o, R (with no subscript) is the gas constant, and 7 is the
temperature.

Figure 3 shows the energy profiles and transition rates
as functions of distortion. Note that Gibbs free-energy
profiles define only the ratio of rates, not the absolute
values. Therefore, the absolute values of rates are
adjusted so that transitions between states will produce
realistic net ATP consumption rates. Given that the three-
state scheme is simplistic, the strain-dependent transition
rates are reasonable but approximate guesses. Full
validation of rates under all conditions would entail a
research paper in itself, and hence is beyond the scope
of this preliminary report.

Note that upper and lower limits on transition rates
are included to prevent extremely large variation in
magnitudes. Such a large variation in the rates produces
problems in Monte Carlo (MC) simulations because
required time increments become extremely small (a
situation analogous to the use of stiff equations in other
numerical methods). Also, large variations in rates
require state transitions in MC computations that
are based on evaluation of low-order bits from
pseudorandom number generators. In typical
pseudorandom number generators, such low-order bits
are less random than high-order bits, and hence the
simulation results become unreliable. The complete
mathematical formulation of free-energy levels and the
state transition equations are given in the Appendix.

Modeling Ca-based activation

A critical feature of Ca-based activation is a steep force—
Ca (F—Ca) relationship. As shown in Figure 4(a), real
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muscle shows high sensitivity to Ca, as quantified by a
Hill coefficient in the range of 7-10. Figure 4(b) illustrates
the physiological effects of the steep Ca sensitivity.
During each heartbeat, the intracellular [Ca] changes by
about an order of magnitude. In contrast, the resulting
force can change by three or more orders of magnitude.
The presumed rationale for such a biological design is
that large changes in developed force are required for
effective pumping of blood. Incomplete relaxation leaves
a residual force that inhibits proper filling during diastole,
which in turn leads to the ejection of only a small volume
of blood during systole. In contrast, cardiac cells generate
relatively small changes in [Ca] because substantial energy
in the form of ATP is required to actively raise and lower
[Ca] on each heartbeat. As a result, the steep nonlinearity
of the F—Ca relationship bridges the disparity between the
small change in [Ca] and the large changes in force.

To understand the model of Ca-based activation,
we consider a functional unit of seven actin monomers
spanned by one troponin/tropomyosin (T/T) unit and
with one associated myosin that can form a crossbridge.
As seen in Figure 1(b), the actual arrangement of linked
tropomyosin proteins follows the two opposite grooves of
the actin double helix. Hence, researchers should model
two T/T units per seven actin monomers with two
separate one-dimensional (1D) lattices of regulatory units
per thin filament. We have not included this level of
spatial detail, but instead we assume a single 1D lattice
of regulatory units that controls all actin binding sites.
A more precise spatial arrangement of regulatory units
and actin binding site is planned for future versions
of the model with multiple thick and thin filaments.

Figure 5 shows a diagram of the states in Ca-based
activation. With respect to Ca activation only, a
functional unit can be in one of four states (ON, 1N, OP,
1P). As noted in the figure legend, the states with a 0
prefix indicate the state in which a Ca ion is not attached
to the binding site, and the states with a 1 prefix indicate
the attachment of a Ca ion to the binding site. The N
states indicate that the binding site is in a nonpermissive
conformation, so that no crossbridges can attach to that
site. The P states indicate that the binding site is in a
permissive state and myosin heads can attach. For
the moment, the explicit crossbridge states are not
considered; instead, only Ca activation steps are included.
The forward Ca-binding rate is assumed to be diffusion-
limited and independent of the permissive state of the
T/T unit. Hence, the forward rate constant for a
nonpermissive T/T unit (k,,) is equal to the forward rate
constant for a permissive T/T unit (k,). The reverse rate
is assumed to depend on the permissive state of the T/T
unit. The model assumes kqs > k;ff, which is in agreement
with experimental evidence that the affinity of troponin
for Ca increases when activated in the presence of cycling
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Three-state model of the crossbridge cycle with associated energy profiles and transition rates. (a) State diagram for crossbridge cycling. (b)
Energy profiles for states P, PreF, and F of the crossbridge shown as a function of distortion (distance from equilibrium position of myosin
and binding site on actin). G, is independent of distortion because the myosin is detached. Similarly, Gy, ,1p is constant but corresponds to
free energy after hydrolysis of ATP, so the profile is 23RT lower. States PreF and F have parabolic profiles (G, and Gy;) because attached
crossbridges act like linear springs. The 7-nm offset in distortion for the PreF state results from extension of the myosin head in the
pre-rotation state. (¢) Comparison of P =— PreF rates as functions of distortion. (d) Comparison of PreF =— F rates as functions of distortion.
(e) Comparison of F <— P rates as functions of distortion.
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crossbridges [10]. The relationship between kg and k;ff is
set by a parameter u > 1 such that Equations (5) and (6)
hold:

k
K, = —k;f ; (%)
K.k /u K
K’ _ Toff _ Toff —d 6
‘ k(/)n kon H ( )

(The parameter p is related to binding affinities for T/T
units.) For all runs in this paper, we set u= 15, which is a
plausible value based on several experimental estimates
[11].

An important cooperative mechanism thought to exist
in cardiac muscle involves nearest-neighbor cooperativity
between adjacent T/T units. Several lines of experimental

0.6 [

Force (normalized)

02

O 1 1 1
0 los 1.0 15 2.0

log Ca (log uM)
(a)

[Ca]

—>‘10>< ‘<—

(®)

Force—Ca relationship in cardiac muscle: (a) Data from the study
of Dobesh et al. [21], showing developed force as a function of
log (base 10) of activator [Ca]. The symbols show the mean of the
data, and the error bars show the standard error. The curve is fit
using a Hill function defined as F = {1+([Cas,]/[Ca])V'}~!
where [Cay] = 3.8uM and N, = 8. (b) A steep nonlinearity
allows for much larger relative change in force (e.g., 1,000X) for
a much smaller relative change in [Ca] (e.g., 10X) for each
heartbeat.
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Four-state transition model for Ca-based activation kinetics. For
this figure, y is greater than 1, and n is the number of activated
neighbors (0, 1, or 2) in the OP or 1P state. (a) A functional unit
can be in any one of four states (ON, IN, OP, 1P), shown in large
circles. The small cartoon figures show a schematic representation
of the states, which are named to indicate no Ca-bound (0x) and
Ca-bound (lx) states, and nonpermissive (xN) and permissive (xP)
states. The rates between the states are shown. Note that
transitions between xN and xP states have vy terms with an
exponent n that is determined by the states of the neighboring
functional units. (b) The exponent n on <y (for a particular
functional unit; see arrows) is determined by the permissive state
of two nearest-neighbor functional units. With neither neighbor
permissive, n = 0. With one neighbor permissive, n = 1; with
both permissive, n = 2.

evidence suggest that cooperative behavior results

from the overlap of several amino acids allowing
communication from tropomyosin to tropomyosin

[5, 12]. The model implements such a cooperative
mechanism by making the rates between nonpermissive
and permissive states depend on the states of the two
nearest-neighbor T/T units. The nearest-neighbor
interactions are set by a parameter y > 1, whose physical
interpretation is an energetic penalty for neighbors being
in different permissive conformations. The neighbor
dependencies appear as exponents on y and are computed
according to the number of neighboring units in the
permissive conformation, as shown in Figure 5(b). The
exponent # can take on the values of 0 for no permissive
neighbors, 1 for a single permissive neighbor, and 2 for
both neighbors permissive. The net effect of the y” terms
is to increase the nonpermissive-to-permissive transition
rates when the neighbors are also permissive. Similarly,
the v~ terms decrease the reverse rates from permissive to
nonpermissive states. Therefore, an individual T/T unit is
more likely to make the transition to permissive when
its neighbors are permissive. Similarly, an individual
T/T unit is more likely to make the transition to
nonpermissive when its neighbors are nonpermissive.
Hence, the y" and vy terms promote uniformity along the
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Transition models. The eight-state transition model on the right
describes the combined activity of T/T units and the crossbridge
cycle shown separately on the left. The Ca regulation model
corresponds to Figure 5(a), and the crossbridge cycle corresponds to
Figure 4(a). The F-to-P transition is shown as unidirectional
because the reverse rate from P to F is extremely small [see Figure
3(e) and the Appendix], as is typically assumed for crossbridge
cycles. The combined eight-state model corresponds to the interac-
tion of a T/T unit on the thin filament with a nearby myosin from the
thick filament. Specifically, myosin cannot bind strongly until the
nearest T/T unit is permissive.

thin filament, so that T/T units tend to assume the
permissive states of their neighbors. Interested readers are
referred to [1] for a detailed discussion.

Combining Ca-based activation and crossbridge
kinetic models

As shown in Figure 1, the half-sarcomere contains
regions in which thick filaments overlap thin filaments;
also, there are regions in which thin filaments do not
overlap the thick filaments. While one can envision a case
in which thick filaments do not overlap the thin filaments,
such a case does not typically occur in cardiac muscle
because the extension of the sarcomere is physically
limited. To represent the overlap of thick and thin
filaments, the model represents two cases:

® Case I: If the thin filament does not overlap the thick
filament, no crossbridges can form. In this case, each
binding site on the thin filament is governed by the four-
state model shown in Figure 5. Specifically, while T/T
units can bind Ca and switch between nonpermissive
and permissive states, no myosin can bind.

* Case 2: If the thin filament does overlap the thick
filament, crossbridges can form according to the
crossbridge kinetic scheme in Figure 3(a). However, a
slight complication exists because myosin cannot bind

J. HUSSAN ET AL.

until the T/T unit is in a permissive state. Once it is in
a permissive state, a nearby myosin can transition
from the P state to the PreF state (see Figure 6). The
P state corresponds to a detached or weakly bound
crossbridge and a permissive T/T unit as intermediate
states. Once in states PreF or F, the myosin is strongly
bound and prevents the T/T unit from returning to a
nonpermissive conformation. This construct derives
from the allosteric interactions thought to occur in
such a way that an attached myosin head physically
prevents T/T from shifting back into the groove on
actin. Moreover, experimental evidence shows that
the presence of one or two crossbridges can prevent
the thin filament from switching back from a
permissive conformation to a nonpermissive
conformation [13, 14].

To account for the interactions between T/T units on
binding sites and crossbridge formation, a larger coupled
kinetic system must be employed, as shown in Figure 6.
In this model, a binding site can be in any of the eight
states, the associated crossbridge can be in any of the four
states (OPref, 1Pref, OF, 1F), and the myosin head can be
in any of the six states (OP, 1P, OPref, 1Pref, OF, 1F). The
states with a 0 prefix indicate the state in which a Ca ion is
not attached to the binding site, and the states with a 1
prefix indicate the attachment of a Ca ion to the binding
site. Once in a permissive state, a nearby myosin can
attach. Initially, the myosin is assumed to be in a
detached P state, which is mapped to OP or 1P in the
combined eight-state model. Note that Ca is assumed to
be able to bind or detach independently of the permissive
conformation or myosin attachment events, so these
states have mirror Ca-unbound (0x) and Ca-bound (1x)
versions. For example, the OPreF state corresponds to a
strongly bound myosin with a pre-rotation head region
with Ca unbound, and the 1F state is a strongly bound
myosin with a post-rotation head region with Ca bound.

Modeling kinetics using the Monte Carlo method
We used a typical Monte Carlo (MC) method to simulate
the state transitions of binding sites, myosin heads, and
crossbridges. In such an MC method, time is divided into
time steps of Az;, where i denotes the ith time step (the
length of time steps may vary, as described below). The
simulation starts with all crossbridges in the detached state
and all binding sites in the ON state. The state transition
simulation is carried out as two steps. During the first step,
the state transitions of the T/T units of binding sites are
determined as follows. For each binding-site state, there
are two possible transitions to new states, denoted B1

and B2, with respective rates Bry and Br,. For example, in
Figure 5(a), if the initial state is 1P, the possible transitions
are to OP and 1N with respective rates k. ; and Y "kpn_1. For
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small values of At,, the probability of transition to states B1
and B2 is approximated by A¢;Br; and At;Br,, respectively.
A pseudorandom number (X angom1) in the [0, 1] range is
generated and is compared with the transition probabilities
At;Bry and At;Br, for that state. If X 4nq0m1 1S less than
At;Bry, the binding site transits to state B1. If the first case is
not satisfied, and if X;anqom1 18 less than (Az;Bry + At;Br,),
the binding site transits to state B2. If x,.,qom1 1S greater
than (At;Br; + At;Br,), the binding site continues in the
current state for the time step.

Once the state transitions for the binding sites are
completed, the crossbridge states are similarly updated. A
crossbridge may be in one of the three states—detached,
pre-rotation, and post-rotation [see Figure 3(a)]. For each
crossbridge state, there are two possible transitions to
new states, denoted C1 and C2, with respective rates Cry
and Cr,. A second pseudorandom number (X angom2) in
the [0, 1] range is generated and is compared with the
transition probabilities A7;Cr; and At;Cr, for that state. If
Xrandom2 18 less than At,Cry, the crossbridge transits to
state Cl. If Xandoma 18 less than (At;,Cry + At;Cr»), the
crossbridge transits to state C2. If the first case is not
satisfied, and if X ang0om2 1S greater than (At;Cr; + At,Cr,), the
crossbridge continues in the current state for the time step.

Note that the coupled system in Figure 6 could be
solved using a single call to a random number generator.
We instead chose to update the actin binding-site states
and the crossbridge states independently in order to
simplify implementation. However, systems are coupled
by appropriately changing transition rates to reflect the
interaction of T/T units and crossbridges in Case 2
discussed above. Specifically, as we mentioned, myosin
cannot bind until the T/T unit is in a permissive state (see
Figure 6). Hence, for a crossbridge near a nonpermissive
T/T unit, the rate Rp_,prr(®) equals 0 [see Figure 3(a)].
Once a crossbridge is in state PreF or F, the myosin is
strongly bound and prevents the T/T unit from returning
to a nonpermissive conformation. This feature is
incorporated by effectively setting the transition
rates from permissive to nonpermissive states to zero
[kpn_o = kpn_1 = 0, Figure 5(a)] for a T/T unit with a
strongly bound crossbridge. As one final note, the
longest possible time step is used to decrease the
computation time. The largest appropriate time step
can be computed as Af; = (3 X Fmax) s Where rpax
is the global maximum rate found after computing the
transition rates for each T/T unit and crossbridge in the
model at time step i.

Results

The role of nearest-neighbor cooperativity in

Ca sensitivity

In our model, the high sensitivity of cardiac muscle to
activator Ca can be attributed to the properties of the
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Number of binding sites (T/T units) in permissive states as
functions of the activator [Ca] with no crossbridge attachment.
Note that because there are 32 binding sites in the array, a value of
32 is the maximum that can be attained. Different traces
correspond to different values of vy as labeled. The traces become
steeper as <y increases, corresponding to a greater strength of the
nearest-neighbor cooperativity.

regulatory proteins. The T/T units transition from
nonpermissive to permissive states in response to Ca.
After becoming permissive, myosin can attach to form
crossbridges and produce force; thus, in a simple scheme,
the regulatory proteins act as switches to modulate the
amount of force. While this is not quite so simple in the
complete system, we can investigate the Ca sensitivity
by first considering only the switching behavior of the
regulatory proteins. To demonstrate Ca sensitivity, the
number of permissive T/T units is plotted as a function
of the activator [Ca] in Figure 7. Here, crossbridges are
prevented from attaching [Rp_.pp(®) = 0] in Figure 3(a)
to isolate the Ca-activation effects of the regulatory units.
Figure 7 shows a parameter variation with v, the energetic
penalty assigned to neighboring T/T units with different
permissive conformations. Hence, greater y values
correspond to greater strength of the nearest-neighbor
cooperativity. Using minimization of squared error, true
Hill functions (not shown in the figure) are fit to the
simulation data. The best fits are found with the following
values: y =1, Casp=2.1 uM, Ny=1.1; y =5,
Caso=2.5 uM, Ny =2.5; vy =20, Casp = 4.4 uM,

NH = 60, and Y= 45, C(150 =47 ,UM, NH =8.1.

As shown in Figure 7, increased nearest-neighbor
cooperativity leads to steeper transitions, beginning with
most T/T unit transitions being nonpermissive and
transitioning to most units being permissive as [Ca]
increases. Specifically, when Hill functions (defined in the
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(a) Number of binding sites in permissive states and (b) developed
force plotted as functions of activator [Ca] with normal cross-
bridge attachment. In part (b), the developed force data show large
variations because a relatively small number of attached
crossbridges are stochastically attaching and generating force.

legend for Figure 4) are fit to the number of permissive
T/T units, the steepness, as quantified by Hill coefficients,
increases as a function of the y value. For example,

the y =1 case corresponds to no nearest-neighbor
cooperativity. This case produces a Hill coefficient very
close to 1, as could be predicted by the single regulatory
Ca binding site on each troponin unit. However, as y
increases to 5, 20, and 45, the apparent cooperativity
increases, as respectively quantified by the Hill coefficients
of 2.5, 6.0, and 8.1.

Similar results were shown in a previous study [11]
using an Ising approach that produces an analytic result
for equilibrium conditions such as those shown in
Figure 7. Note that analytical results show minor but
systematic deviations from true Hill functions and that
the deviations are similar to those found in real muscle
(see [11] for details). Such deviations are much harder to
discern in MC methods, in which stochastic fluctuations
can easily obscure subtle features of muscle responses.
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This becomes more apparent in the next section, in which
cycling crossbridges are added. While the MC approach
in the current study is considerably more noisy and
computationally costly than the Ising approach, the
subsequent data show nonequilibrium conditions that
cannot be calculated using the Ising approach.

Simulating force—Ca relations

After becoming T/T-permissive, myosin can attach to
form crossbridges and generate force. Hence, to a large
extent, the amount of developed force should reflect the
upstream switching events of the regulatory proteins;
however, important differences can also exist. Unlike the
data in Figure 7, the data in Figure 8 are generated with a
normal attachment rate for myosin, so that crossbridges
can form and generate force. Developed force can be
computed from the attachment of crossbridges and

the corresponding strains and can be compared to
experimental data such as that shown in Figure 4(a);
however, the addition of attaching crossbridges produces
more fluctuation than the corresponding plot in Figure 7
with y=45. The simulation in Figure 8 is run with y =45
and pu = 15. The Hill fit shown has Casqg=4.2 uM,

Ny =10.2.

Figure 8(a) shows the number of binding sites in
permissive states as a function of activator [Ca], similar to
the plots in Figure 7. Note, however, that the addition of
attaching crossbridges produces more fluctuation than is
seen in the corresponding trace in Figure 7 with y = 45.
The Hill fit shown corresponds to Casqg=4.2 uM,

Ny =10.2. The Hill equation is often used by biochemists
to describe the fraction of the enzyme saturated by a
ligand as a function of the ligand concentration. Here,
the Hill equation has two parameters: Ny, which is
known as the Hill coefficient, and Casy, which refers

to the [Ca] that produces 50% of maximum activation
(see caption for Figure 4). A larger value of Ny indicates
a larger degree of cooperativity and produces a steeper
sigmoidal curve. A smaller value of Casq indicates

that a smaller [Ca] produces half activation and
therefore indicates a greater overall sensitivity to
activator Ca.

As shown in Figure 8(b), developed force exhibits
much more variation than the corresponding trace for the
number of permissive T/T units. The increased variation
is an obvious byproduct of the smaller number of
attached crossbridges compared with a total of 32 T/T
units on the thin filament. Moreover, the attached
crossbridges generate force primarily in the F state, a
feature that further reduces the effective number of force-
generating events and increases the level of fluctuation.
A Hill function fit has [Casg] = 4.0 uM and Ny = 11.
Interestingly, the plots in Figure 8 show somewhat higher
apparent cooperativity than is seen in the corresponding
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trace in Figure 7 with y =45. This larger Ny value is
an artifact of the noisy data, the coarse increment in
[Ca], and the fitting procedure. Rerunning with a
finer increment in [Ca] over a concentration range
around [Caso] (data not shown) produces estimates
of [Casg]l = 3.7 uM and Ny = 8.7, which correspond
more closely to the results in Figure 7.

Simulating twitch response
The F—Ca relationship is convenient for demonstrating
Ca sensitivity. However, fixing [Ca] at a constant level is
an experimental manipulation that does not correspond
to physiological conditions in the actual heart, in which
[Ca] is constantly changing throughout each heartbeat.
To better match these dynamic conditions, we simulated a
twitch response for a transient increase in [Ca] similar to
that which occurs during a typical heartbeat. Figure 9(a)
shows a simulated twitch activated by simulated Ca
transients that are generated to resemble those from real
muscle. The use of simulated Ca transients is typical in
modeling papers (e.g., [15]) because experimentally
measured transients contain artifacts from a nonlinear
response of the Ca-sensing dyes. Also, developed force
should not depend too closely on the exact Ca transient
shape. In Figure 9(b), similar data are shown from the
study of Backx et al. [16]. Note that in Figure 9, the [Ca]
has peaked and is falling when the peak of the developed
force occurs. The simulated twitches in part (a) have
activator [Ca] that is higher by about a factor of 10 than
in the corresponding experimental data in part (b). This
discrepancy occurs because the model results shown in
this figure correspond to skinned fiber data in Figure 4(a)
that produce a lower Ca sensitivity than observed in
intact cell data. (The term skinning refers to removing the
cell membrane; see [17] for more details on this effect.)
The twitch responses illustrate some important features
of the system. Specifically, the Ca transient is relatively
fast compared to the force transient, which shows slower
response times. One common interpretation is that
relatively slow crossbridge dynamics predominate to
produce the slow force response (e.g., [18, 19]). These
preliminary results also show some other complex
behaviors. For example, the final relaxation of force is
slower for larger peak force than for smaller peak force,
as has been seen experimentally [18, 20]. Such an effect is
greatly diminished for lower levels of nearest-neighbor
cooperativity (e.g., vy near 1, data not shown). However,
the comparison is not completely straightforward.
Specifically, decreased v strongly affects Ca sensitivity, so
that developed twitch force is not as strongly modulated
by the different levels of activator [Ca] shown in Figure 9.
While one could change the levels of activator [Ca] to
more closely match the developed force shown in
Figure 9, the results can still be difficult to interpret,
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Twitch responses (a) from the model and (b) from experimental
data. Twitch responses from model in part (a) are shown for three
Ca transients of different amplitude. The simulated Ca transients
are generated in order to resemble those from real muscle. The
activator Ca transients are seen in the smoother traces that peak
earlier than the noisier force transients. In part (b), the response is
measured in a whole-muscle preparation, in which the force is
normalized by the cross-sectional area of the muscle to permit
comparison of twitch responses for muscles of different sizes.
[Figure 9(b) is from [16] and used with permission.]

because the relaxation phase of twitches involves a
complex interplay of Ca-activation and crossbridge
kinetics (e.g., see [17]).

One interpretation of the prolonged twitches is that
higher levels of force entail the binding of a greater
number of crossbridges, which in turn can hold the thin
filament in permissive conformation so that neighboring
crossbridges are less likely to detach. While the force is
generated by a relatively few crossbridges that may be
separated by long distances, the nearest-neighbor
interactions along the thin filament will extend the
influence. Recall that in the model construction, a
strongly bound crossbridge can hold the adjacent T/T
unit in a permissive conformation even after Ca has
dissociated. From previous modeling work using
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Figure 10

Twitch response plotted as phase loops, using (a) data from the
model and (b) actual muscle data. (a) A phase loop is produced by
plotting force as a function of activator [Ca]. The looped data
traces correspond to the simulation shown in Figure 9(a). The
dashed trace is the Hill function fit. (b) Similar data are shown
from the study of Backx et al. [16], with steady-state F—Ca data
indicated by the dashed trace. Note that in both (a) and (b), the
phase loops are traversed in a counterclockwise direction during
the time course of the twitch. [Figure 10(b) is from [16] and used
with permission.]

similar nearest-neighbor cooperativity (y =45, u=15),
correlations between T/T units are seen to spread up to 13
units along the thin filament [11]. Eventually, stochastic
variation causes enough crossbridges to detach so that the
thin filament can become nonpermissive, and complete
relaxation ensues. In other words, generated force is
somewhat self-sustaining, so that larger force transients
are prolonged and relax more slowly compared with
lower force transients that relax quickly.

The slow response of force is demonstrated in phase
loops in which the relationship of force and activator [Ca]
is plotted during the twitch. As shown in Figure 10,
the resulting plots are loops that are traversed in a
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counterclockwise direction during the time course of the
twitch. Also shown are the steady-state F—Ca relations
that can be plotted on the same axes. The dashed trace
is the Hill function fit to the steady-state F—Ca data
with [Casg] = 3.7 uM and Ny = 8.7. Early in the twitch,
[Ca] has peaked while force lags, placing the phase loop
below the steady-state F—Ca relation. In contrast, later
in the twitch, force is still large while [Ca] is decreasing,
placing the phase loop above the steady-state F—Ca
relation. These results demonstrate that the complete
model has dynamic properties that cannot be predicted
from the steady-state behavior. Hence, the F—Ca relation
is a reasonable characterization of Ca sensitivity but

is an incomplete description for dynamic responses in
which slower crossbridge kinetics also play a role in
shaping temporal responses.

Sample runtimes and noise analysis

Typical runs to compute steady-state force require 160 s
of simulation time (approximately 1.6 X 10° time steps)
per [Ca] level in Figure 8. The programs are written
using C++ and are executed on an IBM POWER5*
platform. Each 160 seconds of simulation time requires
about 2.4 X 10* seconds in real time to complete. As
shown in Figure 11(a), the standard deviation is generally
larger as the mean force increases. Such a result is
perhaps not too surprising, given the many sources of
stochastic variation in crossbridge binding and myosin
head rotation from the PreF to the F state. Hence, under
the default-model parameter considered in this paper,
generated force results from a relatively small number
of stochastically controlled crossbridges, and hence
variability is quite large. A small number of force events
result partly from the different spacing of actin and
myosin sites that produce only a small number of
crossbridge bindings. This effect is an artifact that is
explored in the next section.

Spatial effects in actin-myosin interactions

As shown in Figure 2, the intrinsic spacing of actin and
myosin positions is different. The difference in spacing
results in certain pairs of myosin and actin binding sites
having higher probabilities of binding than other pairs.
This phenomenon is explored in Figure 11(b), in which
the probability of an attached crossbridge is shown for
every actin binding site on the thin filament (numbered 0
to 31 on the abscissa). The probabilities for having a
strongly bound crossbridge are computed over time for
each actin site [strongly bound crossbridges correspond
to states PreF and F in Figure 3(a)]. Note that some
binding sites have large probabilities for strongly bound
crossbridges, while other binding sites have near-zero
probabilities. For example, at the default length of

2.2 um, peaks exist at actin sites 5, 11, and 18-19.
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Figure 11(b) shows a total of five runs in which
the sarcomere length is increased by 8§ nm for each
subsequent run. Note that the peaks in probability
change for small variations in length. This effect suggests
that reporting results at a given length may produce
artifacts in that the system has preferred myosin and
binding-site pairs. These pairs reflect the near-perfect
spacing and alignment in the simulation, which is not
likely to occur in a real muscle. Specifically, real muscle
is more likely to show some variation in binding-
site spacing and sarcomere lengths, so that peaks
in probability are likely to be smeared along the
abscissa. Moreover, in real muscle, each thin filament is
surrounded by three thick filaments, each of which has
a different phase in the actin and myosin site spacing.
Therefore, one can reasonably predict that the precise
peaks in the probability are artifacts of the artificial
simulation geometry and do not reflect the situation
observed in a real system. This limitation is addressed
further in the discussion.

Discussion

The model described here represents an attempt to
formulate a mathematical representation of a thick and
thin filament in the sarcomere. The model builds on a
number of previous modeling efforts, but seeks a level
of spatially explicit detail that was generally considered
intractable for most earlier studies. We propose that
two classes of advancements have made such detailed
modeling efforts feasible. The most obvious advancement
is the decreased cost of computation, even on the
terascale level, in which teraflops of computation power
can be obtained in a single rack of hardware. Previously,
terascale computation was obtainable only at the largest
supercomputer facilities. The second advancement
involves the theoretical underpinning of the models.
Myofilament modeling continues to be an active area of
research, with new or refined models still being proposed.
While the models exist at very different levels of
abstraction and spatial detail, taken as a whole, the
level of understanding of the biophysical mechanisms
has increased. We suggest that the construction and
validation of spatially explicit and biophysically detailed
myofilament models, when coupled with newly available
experimental characterizations, has become feasible.

Successes and limitations of the model

A primary goal of the modeling described above is to
serve as a basis for higher-level models of full sarcomeres
or groups of sarcomeres. The preliminary results
presented here are promising. The model produces
F—Ca relations and twitches that resemble those from
experimental characterizations. Moreover, many previous
models fail to recapitulate even these basic responses,
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Analysis of noise in a model of steady-state force—Ca relations. (a)
The lower trace shows mean force and is replotted using data from
Figure 8, while the upper trace shows the mean plus the standard
deviation. The results show a considerable degree of variation
even after averaging over 160 seconds in simulation time. The
simulated sarcomere length is 2,200 nm. (b) For every actin
binding site on the thin filament, we compute the probability over
time for having a strongly bound crossbridge. As indicated in the
legend, this probability is shown for slightly different sarcomere
lengths. For any given sarcomere length, the peaks in probability
show that the particular binding sites are more likely to have
strongly bound crossbridges as a result of the different intrinsic
spacing of actin and myosin sites.

and the failure has been attributed to a lack of explicit
consideration of cooperative mechanisms [11].

Despite some success, we must also consider important
limitations; we can broadly define several such limitations.
First, much work remains to be done in refining and
validating the current formulation. For example, the
three-state crossbridge kinetic scheme is simplistic, with
rough guesses for the strain-dependent transition rates.
Further studies will refine the rates and could possibly
incorporate additional states as well as metabolite
concentrations that also strongly affect rates [9]. Also, the
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data shown in the current work have all been collected
under isometric conditions, with a single fixed sarcomere
length (that is, all data shown were collected at sarcomere
lengths equal or very close to 2.2 um). Further studies
must address variations to different fixed sarcomere
lengths, which are known to have a strong effect on

Ca sensitivity and maximal force in cardiac muscle [21].
Moreover, allowing active shortening to produce a net
velocity between the thick and thin filaments will involve
another level of complexity. For example, increased
shortening velocity will produce constantly changing
strains that will affect myosin transition rates as well as
the force generated by attached crossbridges. We do not
currently know of any models that adequately recapitulate
the range of physiological responses to the varying Ca
activation, velocity, and load conditions seen in muscle. In
general, the existing models have a smaller scope and can
be applied to limited sets of conditions. Given that the
model in this paper is built by combining several models of
more limited scope, one should realistically expect some
difficulties when attempting to model very diverse
phenomena.

The second broad set of limitations concerns spatial
issues. The model presented here makes use of a single
pair of thick and thin filaments. We have not attempted
to modify the filament compliances (Figure 2) in our
model presented here. However, previous results with
a similar two-filament model by another group have
suggested that changing filament compliance can
strongly affect force [7]. In this previous study, attached
crossbridges produce compliant realignment of myosin
and actin binding sites, which can cause additional
attachment events and force. In general, a more
compliant thin filament can increase such realignment
and developed force. However, a compliant thin filament
will also transmit less force from the myosin head
rotation events.

The use of a single pair of thick and thin filaments has
additional limitations. In mammalian muscle, the cross
section reveals a hexagonal lattice of thin filaments
surrounding each thick filament. In particular, each thick
filament is surrounded by six thin filaments, while each
thin filament is surrounded by three thick filaments. This
spatial arrangement typically increases the number of
interactions between all pairs of adjacent filaments. In
addition, the effects of preferred pairs of binding sites and
crossbridges, as seen in Figure 11(b), should be decreased
in models that go beyond the use of single pairs of thick
and thin filaments. The helical nature of thick and thin
filaments ensures that each thick filament will have
slightly different alignment and register with each of its
six adjacent thin filaments.

The larger number of interacting filaments in more
complex models also increases the spatial averaging
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of force. As shown in Figure 11(a), the single pair

of filaments generates a noisy response, even if time-
averaged over 120 s. In contrast, a steady-state response
in real muscle is obtained very quickly, because a high
level of spatial averaging exists for crossbridge
interactions spread over the whole lattice of thick and
thin filaments. We can reasonably hope that subsequent
models with a multitude of thick and thin filaments in the
appropriate lattice arrangement will show both decreased
effects of preferred binding sites [Figure 11(b)] and lower
levels of noise [Figure 11(a)]. This leads us to the next
section, which discusses how such models might be
constructed to run on terascale supercomputer platforms.

Toward cell-based large-scale simulations

A primary goal of the modeling we describe is to serve
as a basis for higher-level models of full sarcomeres or
multiple sarcomere structures. While the availability of
relatively inexpensive computational power would seem
to make such models possible, the construction of full
working models is more difficult than simply replicating a
single pair of thick and thin filaments. Specifically, while
the current model could be replicated and simplistically
distributed to a large cluster of independent workstations,
the net result would only be to speed the collection of
sufficient data to do averaging of the stochastic MC
results. A more valuable simulation requires us to

build communications between adjacent thick and thin
filaments to generate a full sarcomere model. Moreover, if
multiple sarcomeres can be assembled, one can build a
myofibril, which is a small unit of muscle that is currently
used for fundamental experimental characterization [21].

A myofibril can be constructed from the half-sarcomere
model as follows. A 3D lattice of sarcomeres is created so
that the lattice models the real muscle geometry. An
activated Ca signal is provided at each lattice space at
each time step. The activating signal may range from a
simple, homogeneous waveform to a more complex signal
such as a propagating 3D Ca wave that could more
closely resemble a physiological condition in the cell.
Each lattice point is then individually simulated for
the Ca level at its position, and the generated force is
determined. The shortening velocity for each sarcomere
is next determined on the basis of the force generated
in its neighborhood. This velocity is communicated to
individual sarcomere units, which reconfigure accordingly
and proceed to the next time step. Such a system may
permit the investigation of inhomogeneous relaxation
responses, as has been recently characterized at the
level of myofibrils in real muscle [3, 22].

As an example of how such a system could be
implemented on a terascale-level computer, Figure 12
shows a possible mapping of a myofibril model of 32
sarcomeres onto one rack of a Blue Gene*/L (BG/L)

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006



Scaling up to a terascale
model of a myofibril
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Figure 12

Possible mapping of a 32-sarcomere myofibril model onto one rack of a Blue Gene/L supercomputer. Simulation of two thick and eight thin
filaments is executed on a dual-core processor; then, 64 thick and 256 thin filaments can represent a full sarcomere at the level of a node card.
The mapping is approximate because a final implementation may require some redistribution of the model among computation units at the
level of processors or node cards, in order to balance computational loads, given communication constraints. (DDR: double-data-rate
synchronous dynamic random access memory; GB: gigabytes; GF: gigaflops; TF: teraflops.) The full-sarcomere illustration is adapted from [23]

with permission.

supercomputer. (The Blue Gene/L supercomputer was
developed through a partnership between IBM and
Lawrence Livermore National Laboratory.) The
simulation of two thick and eight thin filaments is
executed on a dual-core processor. The ratio of thick and
thin filaments models the ratio in a half sarcomere. Each
thick filament is surrounded by six thin filaments, while
each thin filament is surrounded by three thick filaments.
This gives a filament ratio of two to one, which must be
increased to a ratio of four thin filaments to one thick
filament in order to account for the left and right sides of a
sarcomere. Note that the thick filaments are double-ended
and require roughly twice the computation of the half-
thick filament in the preliminary model. We anticipate

a 64-thick and 256-thin filament to represent a full
sarcomere at the level of a computer node card. A
myofibril model can then comprise 32 full sarcomeres
modeled at the level of a full rack of Blue Gene/L. The
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mapping is approximate because the final implementation
may require some redistribution of the model among
computation units at the level of processors or node cards.
This fuller simulation has an additional computational
load due to the communication load that arises from
the interaction among sarcomeres. Such models are
characterized by a large number of local communications
and scale well on toroidal interconnects. (In computing
systems, a toroidal network is one in which nodes are
connected circularly in more than one dimension. The
resulting network topology is a torus, and the network is
called toroidal.) On the Blue Gene/L supercomputer, a
three-dimensional interconnect torus connects each node
to its six nearest neighbors with 1) a link bandwidth of
175 MB/s (bidirectional, 2 bits per cycle); 2) a physically
separate global combining/broadcast tree with a
bandwidth of 350 MB/s (4 bits per cycle) and a 1.5-ms
one-way latency on a 64K-node partition; and 3) a global
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Table 1 Equations for free-energy functions and transition
rates.

Gp () = 0.0
AGAT]) = 7230RT
HpreF = —8.0RT

ug = —16.0RT
Pmin = 0.00005
Pmax = 109000

Bprer = 0.54RT/nm>

Br = 0.54RT/nm>

Op_prer = 10.0

Oprer .k = 10.0

Gprer(%) = prer + Prrer(e — 7.0 nm)?

Gr(2) = pp +Pro’

Rp_.prer(0)/ Rprer—p(2) = exp [Gp(2) — Gprer(a)]

Rprer—F(0)/ Re—prer(0) = €xp [Gprer() — GR(a)]
Rp_.p(0)/Rp_p(2) = exp [Gr(1)—AGaTp]

Rp_prer(#) = Max {pmins Opprer * [Rp—.prer(2)/ Rorerp(0)] "} 57"
Rprep—p(#) = Min {pmax, Op—prer = [Rp—prer()/Rprer—p(0)]*} 87"

Rprer—p(2) = min (pmax, Max {Pmin, Oprer—F
* [Rprer— 1{(0)/ Rp_prer(2)] -/2}) s
Rp_prer(2) = Min (Pmax, MaX {Pmins Oprer—F
 [Rererr(0)/Re_prer(@)] "} 57"
Rp_p(2) = min (Pmax, MaX {Pmin, [RE—p(e)/Rp_ ()]
“Rp_p(@}) s
Rp_.p() = 0.000051 s~!

barrier/interrupt network to allow hardware-based
synchronization of large numbers of parallel processors.
Such a communication backbone reduces the idle time of
the compute nodes due to communication latencies which
would be characteristic of such models, and it should
drastically reduce the throughput time of the simulations.

Conclusions

The model described here represents an attempt to
formulate a mathematical representation of a pair of
thick and thin filaments in the sarcomere. The model
combines a number of previous modeling efforts to
seek a more complete representation than any of the
previous models. While the preliminary results compare
reasonably well with experimental characterizations of
real muscle, much work remains to be done in refining
parameter values and verifying the current formulation.
Moreover, the current results are generally noisy, with
substantial stochastic variation, at least for one pair of
filaments. Future extensions of the model to multiple sets

J. HUSSAN ET AL.

of filaments should alleviate much of the stochastic
variability because numerous fibers will be working in
parallel. While extension of the model to multiple sets of
filaments in one sarcomere, and to a multiple-sarcomere
structure, will be very computationally demanding, such
large-scale calculations have been made possible on
recently developed massively parallel platforms such

as the Blue Gene supercomputer.

Appendix

Table 1 presents equations for free-energy functions and
transition rates as functions of the distortion o (the
distance from the equilibrium position of myosin and
binding site on actin). Since the P state is assumed

to be the reference, Gp(xx) = 0.0. Hence, free energy is
independent of distortion as the myosin is detached. The
free energy of P after hydrolysis of ATP is computed
assuming AGatp =—23.0RT. Thus, in Figure 3(b),
Gpaatp 18 a constant 23RT lower than state P.

The states PreF and F have parabolic profiles because
attached crossbridges act like linear springs. The minima
of the free-energy profiles of these states are given by
Lprer and pg, respectively. The spring constants for
the strongly bound states are given by fp..r and
P, respectively. Thus, for this model, the attached
crossbridge stiffness is independent of whether it is in
state PreF or F. However, there is a 7-nm offset in
distortion for the PreF state that results from extension
of the myosin head in the pre-rotation state.

The energy profiles defined above are used to set the
ratio of transition rates between adjacent states but not
the absolute values. The terms 0p_,p.er and Op..p_ are
scale factors that set the absolute transition rates for the
crossbridge cycle. The ppin and p.x terms are constraints
on minimum and maximum values of the transition rates.
The constraints prevent extremely large variations in rates
that can lead to inaccuracies or poor performance in the
numerical methods in the model execution. The arrows in
the formulas indicate transitions between states.
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