Machine learning
methods for
transcription
data integration

Gene expression is modulated by transcription factors (TFs),
which are proteins that generally bind to DNA adjacent to coding
regions and initiate transcription. Each target gene can be
regulated by more than one TF, and each TF can regulate many
targets. For a complete molecular understanding of transcriptional
regulation, researchers must first associate each TF with the set of
genes that it regulates. Here we present a summary of completed
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work on the ability to associate 104 TFs with their binding sites
using support vector machines (SVMs), which are classification
algorithms based in statistical learning theory. We use several
types of genomic datasets to train classifiers in order to predict
TF binding in the yeast genome. We consider motif matches,
subsequence counts, motif conservation, functional annotation,
and expression profiles. A simple weighting scheme varies the
contribution of each type of genomic data when building a final
SVM classifier, which we evaluate using known binding sites
published in the literature and in online databases. The SVM
algorithm works best when all datasets are combined, producing
73% coverage of known interactions, with a prediction accuracy
of almost 0.9. We discuss new ideas and preliminary work for
improving SVM classification of biological data.

Introduction

A first step in understanding transcriptional regulation
requires the mapping of proteins called transcription
factors (TFs) to the genes they regulate and to the
particular nucleotide sequences to which they bind.
Typically, TFs bind to sites that are 10—15 nucleotides
(nt) in length. Even a cursory examination of the DNA
sequences that bind a particular TF indicates that the
sequences are not identical, but instead define a motif,
or similar pattern of nucleotide bases. The set of sites to
which a particular TF binds will provide the basic input
for computational methods that can be used to find
additional sites.

These computational methods fall into two broad
categories: supervised and unsupervised. The former
starts with two example sets of potential TF-target
sequences, each of which often consists of several
hundred bases that are upstream from the potential target
genes. The sequences are those known to bind a

particular TF (called “positives”) and those known not
to bind (“negatives”), both of which are used to derive
a classification rule using an SVM or other learning
algorithm. Unsupervised methods begin with sets that are
believed, on the basis of independent evidence, to contain
a characteristic but unknown nucleotide pattern, which
may represent a binding site. A search algorithm such as
Gibbs sampling can be used to identify such a pattern
within the promoter region of the gene (the part of the
gene that is upstream from the exon or coding region of
DNA). The promoter region binds RNA polymerase and
transcription factors in order to begin transcription.
Many unsupervised techniques for predicting binding
sites have been explored in the literature [1-8], and an
excellent review of current motif discovery and pattern
analysis methods is available [9].

Our approach is meant to easily combine a large
number of data types in a supervised learning scheme to
more accurately predict the association of a transcription
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factor and its targets. There are a number of ways to
proceed, including methods that involve support vector
machines (SVMs) and Bayesian variants, and approaches
that use weighted combinations of both of these methods.
In order to assign weights, we must know how well each
method performs. Here we study the use of support
vector machines, which we show can easily accommodate
high-dimensional genomic datasets containing many
hundreds or thousands of features. An example of such
a dataset is a gene expression profile, with each gene
described by hundreds of expression measurements taken
under different conditions. These measurements are the
dimensions (features) used to derive a classification rule.
We also study a simple SVM framework for combining
heterogeneous and diverse data.

The performance of supervised approaches is often
reported in terms of a few basic statistics. Known
positives and negatives are first divided into training
and test sets. This can be done once, as in a “hold-out”
method, or the division can be performed randomly many
times, as in a “cross-validation” procedure. In either case,
the algorithm learns, using the training set, and makes
predictions on the test set. Correct positive predictions
(TP, “true positives”), correct negative predictions (TN,
“true negatives”), incorrect positive predictions (FP,
“false positives”), and incorrect negative predictions (FN,
“false negatives”) are counted for each test set and used to
calculate more informative measures of performance.
Two simple measures are sensitivity (S), which is the
percentage of known targets correctly predicted to be
true, and positive predictive value [PPV = TP/(TP + FP)],
the percentage of positive predictions that are correct.
Other measures are also possible, as we discuss below.

A number of supervised approaches have been used to
associate transcription factors with their targets. Original
work in transcription-factor binding-site discovery
involved the use of position-specific scoring matrices
(PSSMs) [10-13], which record the frequency of
nucleotide bases at each position in a binding-site
representation, or motif. A new prediction is then a site
that matches the PSSM on the basis of a score threshold
[10]. Researchers subsequently discovered that clusters of
predicted binding sites can indicate whether a candidate
gene is a target of a regulator [14-17]. Another supervised
method, developed by the team of N. Simonis at the
Centre de Biologie Structurale et Bioinformatique in
Belgium, makes use of linear discriminant analysis (LDA)
to select from a set of potentially co-regulated genes that
are likely to share transcription factors. Using a set of
1,012 regulatory interactions involving 66 TFs [data
obtained from the Transcription Factor Database
(TRANSFAC**) [18], the aMAZE database [19], and
a list compiled by Young et al. [20] from the Yeast
Proteome Database], the researchers report an average
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positive predictive value of 0.91 and a sensitivity of 73%.
Their classification performance based on ChIP-chip
(Chromatin Immuno-Precipitation microarray) data is
worse, with only 52% of genes identified by ChIP-chip
being discovered. ChIP-chip is a large-scale procedure
designed to experimentally identify transcription-factor
targets genome-wide [21]. A microarray error model
determines the significance of the identified targets. The
Simonis team has argued in the past that ChIP-chip
results likely contain many false positives; however, their
results also show that target groups identified by ChIP
experiments contain large numbers of motifs that are
significantly overrepresented in comparison to random
gene sets. This suggests that many of the targets generated
by high-throughput experiments, such as chromatin
immunoprecipitation, contain real binding-site signals.

In an approach more closely related to ours, Qian et al.
apply support vector machines to gene expression profiles
in order to predict TF—target relations [22]. Gene
expression profiles are simply vectors, one for each gene,
whose components are measurements of the expression
level of the gene under different conditions. Positive
examples for the classifier are known TF-target pairs;
negatives are randomly chosen relations. In a method
that differs from ours, Qian et al. create one classification
rule covering all TFs and targets, while in our method
a classifier is constructed for each TF individually. In
their formulation, the data for each known TF-target
association is given as a concatenation of the TFs and
the target’s expression vectors over 79 experimental
conditions (giving a 158-element vector to describe
a positive example of regulation). Negatives are
constructed similarly for genes chosen randomly and for
those found to lack a TF binding site. Their best reported
accuracy is 0.93; however, this result is somewhat
misleading because their analysis contains a total of only
175 positives. Their classification of a large negative set
(1,750 negatives) can result in high accuracy because large
numbers of negatives are classified correctly. To put their
result in perspective, their sensitivity is 55% and their
positive predictive value is 63%. While their method
shows promise, it still relies only on the correlation of the
expression of the transcription factor to its target. Thus,
they are likely to miss interactions depending on
cooperating TFs, or factors whose activation is
dependent on post-translation modification or nuclear
exclusion.

The approach by Beer and Tavazoie uses Bayesian
networks to learn the combinatorial relationships of TFs
and targets that underlie gene expression data [23]. Their
method begins by clustering gene expression data by
similarity of expression and then using hierarchical
Bayesian networks to predict the cluster assignment of
a test gene on the basis of the sequences in its promoter.
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They impose constraints, which can be learned by the
algorithm, allowing them to derive complex logical
relationships from the data (e.g., motif A and motif B
must both be present and within 20 base-pairs). Although
this approach is innovative and can accurately describe
the sequence/expression relationships of many genes,

it may not be appropriate for our goals because it can
depend on the clustering of the expression data and the
method by which motif discovery is performed on the
genes being tested.

Our approach uses SVMs to associate TFs with targets
by combining high-dimensional heterogeneous datasets,
building on our previous work, which used fewer data
sources [24]. SVMs have been applied successfully to
many problems in computational biology. They have
been used for the prediction of protein remote homology
[25], secondary structure [26], protein subcellular
localization [27], signal peptide cleavage sites [28], normal
or cancerous tissue types [29], gene function [30], mRNA
splice sites, and translation start sites [31]. One notable
attempt combines information on protein sequence
similarity, protein—protein interactions, protein
hydrophobicity, and gene expression to predict the
function of a set of proteins [32].

Background and brief review

We now introduce our methodology for the non-specialist
and briefly review some basic elements of SVM
algorithms. We have trained an SVM on each of 104
transcription factors (i.e., “regulators”) independently,
using positive and negative training sets as explained in
the following paragraphs. Each gene in the positive set
shares certain attributes, or features, that other genes do
not share, and it is on the basis of these that a classifier
for a particular TF is obtained. We use 18 different
genomic datasets to generate attributes, as indicated in
the following—for example, the number of occurrences of
a particular nucleotide sequence of length k. For such a
dataset, the number of occurrences of each of the 256
possible nucleotide sequences of length 4 (“4-mers”)
might be represented by a 256-component vector (a
“feature vector”), each component of which is the number
of times the corresponding 4-mer occurs upstream from
one of the genes in the set. (In molecular biology, the term
“upstream” refers to a relative position along the DNA or
RNA sequence and denotes a region toward the 5’ end of
the sequence.) To construct a classifier, positive examples
(feature vectors of promoters known to be bound by a
TF) and negative examples (those of promoters known
not to be bound) must be identified. Given this set of
data, each example is represented by a feature vector of
attributes. In the case of k-mer counts, the components of
the feature vector are counts of different k-mers that
appear in the promoter region. Other datasets for the
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same TF will have the same example target genes,
represented by different feature vectors. For example, a
phylogenetic profile vector, which shows the occurrence
of an ortholog, or ancestry-related sequence, in a set of 65
genomes, would be a vector of length 65 consisting of
binary numbers, with 1 indicating the presence of an
ortholog and 0 indicating its absence. Thus, the data
for any particular TF consists of a number of different
feature vectors in spaces with possibly thousands of
dimensions (attributes), each such vector representing a
gene in the training set.

The SVM algorithm separates the positive and negative
sets in the feature space by finding a hyperplane whose
distance from the closest data points of each class is
maximal. Two parallel hyperplanes that pass through
these closest data points are found, and a separator
bisects the distance between them. Better generalization
(i.e., performance in prediction) can be obtained by
forgoing perfect separation of training data and allowing
some misclassification. This soft margin SVM finds the
hyperplanes under the constraint that the distance to the
closest cleanly separated data be maximal, with some
penalty for misclassifications, as explained below.

We denote the feature vector—output pair for the
ith gene in the training set by (x; y;), with y; equal to
+1 when x; is a feature vector from the positive
set, and —1 otherwise. The vector x; has the form
X; = (X;1, X2, Xi3, " *°, X;q), Where d is the number of
features, i.e., the dimensionality of the feature space.

The separating hyperplane H has the form

w-x+b=0 (1)

(see Figure 1), in which the components of
w = (wy, wy, ~ -, wy) are the weights of the
corresponding features, with b/|w| representing the
distance from the origin to the closest point on H.

For clarity, we first describe the case in which the
positive and negative examples in feature space are
completely separable by a hyperplane; we then discuss the
nonseparable case that allows for misclassification. The
challenge in the separable case is to find the values
of w and b that give the maximum margin separating
hyperplane (the one that separates the two classes most
widely). This requires the use of only the closest correctly
separated feature vectors, each representing the attributes
of a gene. In the simple two-dimensional example in
Figure 1, the feature vectors are X, X,, and x3; note that
the separator bisects the distance between parallel planes
through those points. This (separable) situation is
illustrated in Figure 1, but without the (misclassified)
vector Xy.

The margin is the distance between two planes parallel
to the separator, one passing through the closest correctly
classified positive data point, and the other passing 633
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Anatomy of an SVM in two dimensions; this is the classification
plot for the data given in Table 1. Red crosses (+) indicate positive
examples and blue circles (0) are negatives. Coordinates ¢, and d,
are the components of x. The labeled points X, X,, X;, X, are the
support vectors. The classifier is labeled as w - x + b = 0, and the
margin is labeled m. One point, x,, is misclassified. Because x, is
in the positive set, its slack variable &, is the distance from the +1
margin line.

through the closest correctly classified negative data
point. The vector w is scaled so that the hyperplanes
through the closest data (the support vectors) are given
[33,34)byw-x+b=+landw- -x+b=—1.
Equivalently, the data satisfy the single constraint

y(w-x,+b) > 1 2

because y;(w - x; + b) is the distance from the separator
to the ith data point. The margin (the perpendicular
distance between the hyperplanes H; and H, parallel to
H) is
2
m=_-——r-, (3)
[Iwl|

where [|w|| = Y, w? is the magnitude of the weight
vector. Equation (3) is readily obtained by noting that if
x"and x~ denote the position vectors of two points at the
intersection of an orthogonal to the separator with the
margin hyperplanes (x and X~ can both be chosen
parallel to w; see Figure 1) and taking without loss

[x'[] > [}x"| then

+ - + -
m = |x —x || =[x [[ =]

On the other hand, from Equation (2), because
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w and x™ have been chosen to be parallel, we have
vil[[wll - [|x* || + &) = 1 (using x™ with y, = =1,
respectively), from which Equation (3) follows from
the above, using

+ —b+1
Ix" || =
|[wl|
and
_ —-b—1
Ix || =
[[wl|

Thus the problem is to maximize m given by Equation (3),
subject to the constraints given by Equation (2). Note
that in Equation (2), equality holds exactly for the
support vectors, a subcollection that we label

X1, X, ", X,, SO that we can reduce the problem so
that it involves this set of vectors only. The constrained
maximization can be solved using Lagrange multipliers
[33, 34]. In particular, the challenge is to minimize

2
vl

L=" —ZociLvl.(w-xi—i—b)—l]. (4)

The weight vector is obtained by setting (dL/dw) =0 [i.e.,
the system of equations (0L/ow;) = 0] for the extremal x,,
i.e., those for which equality holds in Equation (2). These
are exactly the support vectors, giving

w= 2 oy X, (5)
i1

where, in this example, the weight vector is w = (wy, wy),
the ith attribute vector is x; = (x;;, X;3), and the number
of support vectors, s, is three (those lying on the margin
planes). The one misclassified point x4 is currently
ignored, but also becomes a support vector when included
in the data, as described shortly.

The parameter b is determined as a weighted average
of the distances to the two hyperplanes containing the
support vectors,

s

1
bfgig;yi—w-xi. (6)
In fact, in this fully separated case, for each support
vector x;, i=1, -+, s, we have b=y; — w - Xx;, by definition.
The procedure for finding the multipliers o; is somewhat
simplified by forming and then maximizing the so-called
dual Lagrangian [33, 34]

1
L,= Z % — EZ LAY XX (7)
i ij
This is obtained by substituting Equation (5) into

Equation (4) and noting that (dL/db) = 0 implies
Z,‘ o;y; = 0.
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examples | features |labels [Lagrange calculate w vector calcb
d1 |d2 |yi alpha w = E Q; Vi X, b= Y, — W X_|Distance to hyperplane| Slack variables &

1 6 7 -1| 3.3793 | Support vector -20.2757 | -23.655 -9.7425 -1

2| 77 5 1| 1.7731 | Support vector 13.6529 | 8.8655 -9.7425 1

3| 65| 1.5 -1] 3.3938 | Support vector -22.0598 | -5.0907 -9.7425 -1

4 6 4 1 5 | misclassified 30 20 -1.3593 -2.3593

5 9 3 1 0 0 0 2.4731

6| 95| 85 1 0 0 0 3.7904

7 10 7 1 0 0 0 4.2695

8 9 9 1 0 0 0 3.1916

9| 85 6 1 0 0 0 2.1737
10| 7.5 8 1 0 0 0 1.0958
11 95| 55 1 0 0 0 3.4311
12| 45 3 -1 0 0 0 -3.4551
13| 25| 45 -1 0 0 0 -5.9102
14 5 7 -1 0 0 0 -2.3174
15| 1.5/ 1.5 -1 0 0 0 -7.5868
16 2 3 -1 0 0 0 -6.7485
17| 3.5 2 -1 0 0 0 -4.8922
18 3| 6.5 -1 0 0 0 -5.012
19 5 5 -1 0 0 0 -2.5569
20 8 4 1 0 0 0 1.2755

N
w= E X
i=1 1.3174 | 0.1198 | mean(b)= -9.7425

Excel** spreadsheet showing data and parameters of the classifier.

We now describe the case of soft margins, which is the
formulation we use in practice where perfect separation is
not possible (consider Figure 1 with the misclassified x4
now included). In this case, a penalty &; is paid in the
Lagrangian for each misclassification of size &; (the
distance of the misclassified x; from its margin; see
Figure 1). The target function and constraints are now
modified so that the problem is to find

,
. 2

min |||+ €&,
’ i=1

subject to &; > 0 and y;(w-x;+b) > 1-¢&, fori=1,---,r.

As mentioned, ¢; is the distance of the ith misclassified
point x; from its margin, which is defined as before to be
the hyperplane (H; or H>) at a distance (1/||w||) in the
direction of the correct classification of x; from the
separating hyperplane w - x + b = 0. Parameter C
mediates the tradeoff between maximal margin and
misclassification, and r is the number of misclassified
points allowed. Essentially, the algorithm proceeds to find
the maximum margin by minimizing ||w|| while balancing
this against the amount Y__; & of misclassification with
this choice of margin. We again use Lagrange multipliers
o; as in the previous case to form a full Lagrangian,
and then minimize it.

To illustrate in our two-dimensional example, we make
use of the data presented in Figure 2. In this case, we then
have, after minimizing the Lagrangian,
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(1.7731)(1)(7.7) + (3.3938)(—1)(6.5)
+(3.3793)(—1)(6) = 1.3174;

Wy = § :O‘iyixil
7

(1.7731)(1)(5) + (3.3938)(—1)(1.5)
+(3.3793)(=1)(7) = 0.1198.

Wy = § :“iyixiz =
7

Thus w=[1.3174, 0.1198], and b =[1 — (1.3174)(6) —
(0.1198)(7) + - - ]/3 =—9.7425.

For linearly separable data (no misclassifications), we
have ¢, =0, and we are in the first case, in which the
values of w and b ensure that Equation (3) is minimized
subject to the constraint of Equation (2). However, for
data that is not linearly separable (e.g., including x,),

o; can become extremely large. In the Lagrangian
formalization, a constant C becomes an upper bound for
o; (i.e., the constraint 0 < o; < Cis used). By using C as a
bound for «;, we can limit the influence of single data
points that cannot be classified correctly. Thus, in our
example with C =5, the multiplier for x4 has a value of 5
(Figure 2).

It is evident from Equation (7) that the first step in
finding this maximal margin separator requires the
calculation of all pairwise correlations between example
vectors in the form of their inner (dot) products (also
called the linear kernel function). Thus, given two data
points x; and x;, the kernel function K(x;, X)) =X; - X;
yields a complete kernel matrix K;; = K(x;, X;) involving
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Table 1 Common kernel functions.

Kernel Parameters Description
Linear None Kx,y)=x"-y
Polynomial Poly degree d Kx,y)=(x-y+ 1)
Gaussian radial o k- ‘2

basis function K(x,y) = exp (%)
(RBF) g
Gaussian a X 1 22
(X7 y) 2762 -

Table 2 Dataset abbreviations and description.

Abbreviation Description

1 MOT Motif hits in S. cerevisiae

2 CONS Motif hits conservation 18 organisms

3 PHY Phylogenetic profile

4 EXP Expression correlation

5 GO GO term profile

6 KMER k-mers — 4, 5, 6-mers

7 S1 Split 6-mer 1 gap kkk_kkk

8 S2 Split 6-mer 2 gaps kkk__ kkk

9 S3 Split 6-mer 3 gaps kkk__ kkk
10 S4 Split 6-mer 4 gaps kkk__ kkk
11 S5 Split 6-mer 5 gaps kkk_ kkk
12 S6 Split 6-mer 6 gaps kkk_ kkk
13 S7 Split 6-mer 7 gaps kkk_ kkk
14 S8 Split 6-mer 8 gaps kkk kkk
15 MMO1 6-mer with one mismatch (count 0.1)
16 MMO5 6-mer with one mismatch (count 0.5)
17 ENT Condition-specific TF-target correlation
18 SPAR Nucleotide sparse binary encoding

every pair of data points. Because the data are
represented internally only as such inner products rather
than as explicit feature vectors, it becomes possible and
useful to substitute different definitions of the inner
product for the above linear dot product. Several
alternatives are given in Table 1. These functions are
inner products defined on feature spaces of different
dimensionalities. Defining such a new inner product
implicitly maps the data into a new feature space. This
swapping of kernel functions in order to map data into
different spaces is commonly referred to as the “kernel
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trick.” Biological features such as conservation or gene
expression values can be correlated and may have
complex, nonlinear relationships, highlighting the need
for classification schemes that can accurately classify data
that are not linearly separable.

Datasets

We have tested a variety of sequence- and non-sequence-
based classifiers for predicting the association of TFs
and genes. All together, 18 separate data sources (each
yielding a feature map and kernel) are combined to build
classifiers for each transcription factor. The 18 data
sources comprise a family of sequence-based methods
(e.g., k-mer counts and TF motif conservation in multiple
species), expression datasets, phylogenetic profiles, and
gene ontology (GO) functional profiles (see Table 2). For
a more detailed description of datasets, see [35]. In almost
all cases, our datasets have complete information,
primarily because datasets such as k-mer counts or
motif counts are derived from DNA sequences alone.
Microarray expression data is also available for every
gene in our analysis. In the cases in which expression
values are missing for a few conditions, zeros are
substituted, as is often done in computational analyses.
For the GO functional profiles and the phylogenetic
profiles based on the Cluster of Orthologous Groups
(COG) database, many genes are absent, primarily
because these genes have not yet been given a functional
assignment (in the case of GO) or have not been allocated
to an orthologous (ancestor-related) group (e.g., in the
case of COG). In these instances, substitute values for the
missing features are selected at random from the entire
genome. Thus, missing values are replaced according to
background frequencies, without bias toward the positive
or negative sets.

Our positive and negative training sets are taken from
ChIP-chip experiments [20, 36], TRANSFAC 6.0 Public
[18], and a list from [37] curated by Young et al. from
which we have excluded indirect evidence such as
sequence analysis and expression correlation [38]. Only
ChIP-chip interactions of p-value <1073 are considered,
as recommended by the authors [20]. The TRANSFAC
and curated list represent a manually annotated set,
which is later used separately during the comparison of
SVM and PSSM performance. For the purposes of SVM,
however, all manually curated and high-throughput sets
are grouped together, making a total of 9,104 positive
interactions. (The term high-throughput refers to the rapid
processing of thousands of genes via ChIP-chip
experiments.)

Negative sets pose a greater challenge because no
defined negatives exist in the literature; however, because
a particular TF regulates only a small fraction of the
genome, a random choice of negatives seems acceptable.
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In fact, our own unpublished work suggests that test cases
with a few TFs show good classification performance
with random negatives. Nevertheless, a more reliable

set of negatives would be those showing no binding by
experiment under some set of conditions. Along those
lines, for each TF, we have chosen 175 genes with the
highest p-values (generally >0.8) under all conditions
tested in genomic ChIP-chip analyses [36]. Clearly, all
experimental conditions have not been sampled, and this
does not guarantee that our choices are truly never bound
by the TF, but this choice of negatives maximizes our
chances of selecting genes not regulated by the TF of
interest.

All promoter sequences have been collected by using
RSA tools, Ensembl, or the Broad Institute Fungal
Genome Anatomy Project [39-41]. For yeast, promoters
are defined as the 800 base pairs (bps) upstream of the
coding sequence. The motif-conservation dataset required
promoter regions from 17 other genomes. Those
genomes, their sources, and the lengths of the promoter
regions are listed in Table 3. Sequences are masked (i.e.,
replaced with a sequence of null characters) using the dust
algorithm and the RepeatMasker software [42, 43] where
it is appropriate to exclude low-complexity sequences and
known repeat DNA from further analysis. PSSM scans
are performed with the MotifScanner algorithm [44].
MotifScanner assumes a sequence model in which
regulatory elements are distributed within a noisy
background sequence [44]. The algorithm requires input
of a background sequence model, which in this case is
a transition matrix of a third-order Markov model
generated from the masked upstream regions of each
genome. MotifScanner requires only that one parameter
be set by the user, namely the threshold score for
accepting a motif as a binding site. Several thresholds
have been tested, and the results we have used to create
SVM kernels were obtained with a setting of 0.15 for the
thresholds. This threshold has been found to provide
a reasonable tradeoff between sensitivity and false
prediction, making approximately 560 predictions per
TF. Settings beyond 0.2 produce too many false hits to
be useful. The PSSMs themselves are obtained from
TRANSFAC 6.0 Public and from [45], and these PSSMs
are a mix of experimentally derived motifs and those
generated by motif-discovery procedures.

In addition, datasets using k-mers rather than PSSMs
are generated using the fasta2matrix [52] program, which
delineates all possible k-mers and counts the occurrence
of each within a set of promoters. Gapped k-mers are
detected using custom scripts written as MATLAB**
m-files.

The expression data used include 1,011 microarray
experiments complied by Thmels and coworkers, and this
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Table 3 Promoter regions.

Genome Promoter Source
length

Human clipped* RSA tools [40]

Rat clipped RSA tools [40]

Fruit fly clipped RSA tools [40]

Anopheles 4,000 bp Ensembl [46]

mosquito

Worm clipped RSA tools [40]

S. pombe 800 bp RSA tools [40]

S. cerevisiae 800 bp RSA tools [40]

N. crassa 1,000 bp Broad Institute [47]

M. grisea 1,000 bp Broad Institute [48]

A. thaliana clipped RSA tools [40]

P. falciparum clipped RSA tools [40]

S. bayanus clipped Washington
University [49]

S. mikatae clipped Washington
University [49]

S. kluyveri clipped Washington
University [49]

S. paradoxus clipped Broad Institute [50]

S. kudriavzevii clipped Washington
University [49]

S. castellii clipped Washington
University [49]

Mouse clipped Promoser [51]

>kclipped: The promoter was truncated if it ran into an upstream coding sequence.

data can be obtained with permission from the authors
[53].

As mentioned above, 18 different data kernels are used
to construct a classifier for each transcription factor. The
datasets fall into several distinct groups. All classifier
construction and validation was performed in MATLAB
[54] using the SPIDER machine learning library [55].

Methods

First, each type of genomic data is evaluated
independently for each transcription factor. Several
kernel functions are tested, and parameters are optimized
by a grid-selection technique. Each dataset is normalized
so that all attributes describing the data have a mean

of zero and a standard deviation of one. The Gene
Ontology, phylogenetic profile, and TF-target correlation
data are exceptions, and they are not normalized because
their data is binary.
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* classifiers classifiers classifiers,
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each TF

Flow diagram indicating the selection of a single classifier for
each TF from several types of genomic data. A classifier is
constructed for each individual TF for each genomic dataset,
using each of four possible kernel functions (18 datasets X 104
TFs X 4 kernel functions = 7,488 total kernels from which SVM
classifiers are built). For each dataset and each TF, the best-
performing of the four kernel functions is selected, reducing the
number of classifiers to 1,872 (18 datasets X 104 TFs). Finally,
the datasets are combined on the basis of the F| score of their best-
performing kernel so that there is only one classifier per TF.

A schematic representation of our method is shown in
Figure 3. Briefly, for a particular TF, four classifiers are
produced for each type of genomic data, each from a
different kernel function (linear, RBF, Gaussian, and
polynomial). In order to make an appropriate choice of
the C parameter, a grid-selection technique is used to
evaluate a range of choices. In the case of two parameter
selections (e.g., when choosing the degree of the
polynomial kernel), all possible combinations of
parameter values within the pre-specified range are
tested. A fivefold cross-validation is used to choose the
best parameters on the basis of a Receiver Operating
Characteristic (ROC) score. (The ROC score relates to
the area under a Receiver Operating Characteristic curve
that shows the utility of a classifier at various thresholds.)

Once parameters are chosen for each kernel type, the
parameter-optimized classifiers are tested using a leave-
one-out cross-validation procedure. As suggested, for
each type of genomic data, there are four classifiers for a
particular TF (one for each of the kernel functions). Of
these four, we select the one with the best performance as
measured by the F) statistic. Several common statistics,
including accuracy, sensitivity, and specificity, can
overstate the performance of a classifier depending on the
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relative size of the positive and negative training sets. The
F statistic is a more robust measure that is the harmonic
mean between sensitivity (S) and positive predictive value
(PPV):
_2XSXPPV 2X TP
' S+PPV  2XTP+FP+FN’

Each TF now has only one classifier for each type of
genomic data (18 classifiers in all). Before weighting and
combining kernels, each kernel matrix is normalized
according to

% K(x7 y)

K(x, y) = ———=——.
)= R DKOL)

This normalization adjusts all points so that they lie on a
unit hypersphere in the feature space. This ensures that
no single kernel has matrix values that are comparatively
larger or smaller than those of other kernels, which would
bias the combination.

By using a scheme with weights equal to the F; of each
classifier, the underlying 18 kernels are scaled and added
into one unified kernel for the transcription factor. This
kernel represents the integration of all types of genomic
data. Three simple weighting schemes are compared. In
all cases, the primary weight for a method is determined
by computing its F; score ratio with that of the best-
performing method. Our first weighting scheme simply
multiplies all kernel matrices by their primary weights
(i.e., F ratios) and sums them. A second scheme squares
the primary weights before multiplying. Our third scheme
is the most nonlinear and requires us to compute the
squared tangent of the primary weight.

Performance statistics for each TF, based on all
combined datasets, were generated by a final leave-one-
out cross-validation procedure on the combined kernel.
In this way, accuracy measurements are made for each
TF—target classifier.

PSSM comparison

Using the same positive and negative sets as are used
for the SVM procedure, PSSMs can make predictions
at various score thresholds to serve as a comparison

to predictions made by SVMs. The data in Figure 4
represent a parameter setting of only 0.1 in MotifScanner.
Low parameter values retain the best matches, whereas
values near 1 allow very “loose hits”; that is, the use of
values near 1 leads to the retention of more false matches.
Other choices of threshold do not appear to improve
performance. Loosening the threshold begins to
dramatically increase false-positive predictions beyond

a parameter setting of 0.2. By making detection more
“strict” (i.e., less likely to yield false hits), false
predictions are reduced along with sensitivity. Because
the matrices for the 104 transcription factors are partly
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Table 4 Performance results of combined classifier and
random datasets.

Combined Random Random 10%  Random
methods  k-mers of all datasets normal data

Accuracy 0.88 0.67 0.58 0.58
Sensitivity  0.73 0.45 0.62 0.61
PPV 0.88 0.50 0.41 0.41
F1 0.80 0.48 0.50 0.50

experimentally determined and partly computationally
generated, the TRANSFAC PSSMs for 17 TFs are
evaluated next to determine whether the experimental
matrices by themselves outperform SVM for target
identification. Finally, because a large number of positive
targets have been taken from high-throughput ChIP-chip
experiments, the TRANSFAC PSSMs are tested again on
only the portion of the positives obtained from manually
annotated sources.

Results and discussion

Using the classification procedure described in the
previous sections, we have been able to accurately classify
the known targets of many transcription factors for the
yeast S. cerevisiae. Overall, the best single method
achieves a sensitivity of 71% and a positive predictive
value of 0.82. These performance measures provide a
summary for all 104 classifiers. For example, there are
9,104 known positives for all TFs. A sensitivity of 71%
indicates that, taking into account all 104 classifiers, we
recover 71% of the known data (i.e., known TF-target
interactions). This means that classifiers for some TFs
have much higher sensitivities or PPVs, while other
classifiers perform no better than randomly. Many
individual methods perform well, but the best
classification is made with k-mer counts allowing one
mismatch per k-mer (with mismatches given a count of
0.1). Our results show that by combining datasets we
increase sensitivity incrementally over the use of only the
best single dataset, and also produce a small improvement
in positive predictive value. This indicates that methods
that combine data sources are useful in this case because
they remove some false-positive classifications [35].

To prevent an overly optimistic evaluation of our
performance, we generated three random datasets and
trained TF classifiers on them as if they were actual data.
Comparison with random controls better frames the
practical performance of our method. The first random
set consists of randomly permuted k-mer count data. The
second is composed of a randomly selected 10% of each
real dataset (also permuted). The third is a dataset
composed of normally distributed random numbers in the
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Comparison of SVM and PSSM scans, indicating that SVM
classifiers outperform PSSMs. The same negative sets were used
for all scans. The y-axis represents values of sensitivity, specificity,
PPV, and F1 in the range of 0 to 1.

range 0 to 1. The comparison of these results is shown in
Table 4.

Clearly, the performance is much better than random,
but results do not clearly indicate whether applying our
classifiers to the entire genome would yield truly reliable
predictions without further processing. A simple
classification of all potential targets with our 104
classifiers returns, on average, approximately 800 new
targets for each TF. This suggests that in order to
find a set of truly reliable predictions genome-wide,
postprocessing of our results is needed. Indeed, in other
work we have applied Platt’s method [56] to assign
“posterior probabilities” to our predictions, allowing the
selection of only the most significant targets [35]. The
precise meaning of the term posterior probabilities is
clarified in [35]. Using these probabilistic SVMs, the
classifiers for each TF were applied to identify potential
targets genome-wide in order to expand the binding
repertoire of each factor. This results in predictions of
new regulatory roles for some TFs and the identification
of possible new regulatory structures such as feed-
forward loops in metabolic pathways [35].

Many reports in the literature indicate that as many as
50% [57] to 60% [58] of the targets produced by ChIP-chip
are not biologically functional. Our ability to correctly
classify large amounts of high-throughput data indicates
that there is relevant biological information that identifies
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ChIP-chip positives from other genes. One should also
note that ChIP-chip experiments may be highly accurate
in detecting binding of a TF even if that binding serves no
biological function. This may be interpreted as a false
positive from a functional perspective, but not so from
a binding perspective. Our experiments may accurately
classify binding targets as identified by ChIP-chip even if
those targets show no change in expression as a result of
binding.

In other work, we search for evidence that the
predictions based on various classifiers make biological
sense [35]. To do this, we examine individual datasets and
extract the attributes that contribute most to the classifier
of a transcription factor. The w vector described in
previous paragraphs can be used in this way to identify
the features, in any particular dataset, that are most
important for classification. Features having large w
components correspond to dimensions in the feature
space where positives and negatives are more definitively
separated. Thus, by examining a single dataset such as
one that includes k-mer counts, it is possible to determine
the k-mer(s) most responsible for the differences between
positives and negatives. Our results on the k-mer count
dataset have shown that the many k-mers having large
w values are in fact elements of the known transcription
factor binding site as taken from the Saccharomyces
Genome Database (SGD) [35].

To better judge the performance of new methods, it is
sometimes useful to compare them with standard PSSM
scans for their ability to identify targets. Carefully
constructed variants of PSSMs, which take into
account conservation of sites between multiple species
or dependencies between nucleotides, offer excellent
performance, but often there is insufficient data to
construct such detailed models. In TRANSFAC version
6, only 17 available binding site matrices exist for yeast.
Many of the remaining PSSMs used in this study have
been created using motif discovery methods on high-
throughput datasets [20]. The purpose of our comparison
with PSSMs is to illustrate that some of the commonly
used site matrices perform worse than a classification
scheme built on an integrated dataset.

Overall, the SVM performs better than a simple weight-
matrix scan. Figure 4 shows such a comparison as a
function of sensitivity, specificity, positive predictive
value, and the F; statistic. The far-left grouping of data
uses the TRANSFAC PSSMs for 17 TFs on just the
manually curated positives (with same negatives as all
other analyses) from TRANSFAC and literature sources.
The second grouping from the left uses the same
TRANSFAC PSSMs as the first grouping, but this time
with the same high-throughput positive sets used in the
SVM classification. The third grouping is a result from
scans using PSSMs for all 104 TFs on the positive and
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negative sets on which the SVMs were trained. Finally,
the far-right grouping restates the performance of the
SVMs with 18 combined datasets on the full set of
positives. The SVM classifiers outperform PSSMs,
even when the matrices are from a curated set such as
TRANSFAC. Although the PSSMs perform well, they
suffer from a large number of false-positive predictions.
Figure 4 shows data for only one threshold of PSSM
scan, but altering the threshold does not make PSSMs
more accurate than SVMs (see the Methods section).
It is worth noting, however, that the site matrices from
TRANSFAC offer much better performance than the
matrices generated by motif-discovery procedures.
Support vector machine classifiers offer a reasonable
balance between sensitivity and false prediction.
Alternatives to SVMs, such as Bayesian networks and
neural networks, may offer similar performance, but
SVMs have an advantage because they permit different
types of high-dimensional data to be easily combined.

Concluding remarks
In conclusion, support vector machines can accurately
classify and predict transcription factor binding sites
using a wide range of genomic data types. Combining
various information sources reduces false positives and
increases sensitivity. On the basis of k-mer data, SVMs
appear to be identifying appropriate features for
classification. Finally, the flexibility of this approach
allows easy inclusion of new types of genomic data. Our
future work involves the development of sophisticated
dimension-reduction techniques to discover biologically
significant features in different datasets on the basis of
classifier performance. As always with high-dimensional
datasets, the risk of over-fitting can restrict the wide
application of a classification tool. (The term over-fitting
is considered to be synonymous with overtraining, which
indicates that a classifier is very accurate for a training set
but less accurate for independent test sets.) Although the
maximal margin of SVMs is resistant to over-fitting, the
resistance can be enhanced by selecting the best features
for classifier construction. In future work, we plan to
test several feature-reduction methods such as Fisher’s
Linear Discriminant and SVM-RFE (Recursive Feature
Elimination). A reduction in the feature set would also
allow a comparison with other classification systems, such
as Bayesian networks or KNN classifiers, which are
difficult to train on very large sets of features.
Additionally, new datasets can be included that
leverage information about DNA structural features.
Information of this type could include promoter melting-
temperature profiles, bend and curve features of
promoters [59], or DNA accessibility predictions based
on patterns of hydroxyl radical cleavage [60, 61].
Furthermore, it may be possible to capture more
meaningful information from k-mer counts by
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additionally measuring the likelihood that a certain k-mer
occurs by chance in a gene’s promoter, thus attaching a
p-value to all k-mers in each promoter region. Support-
vector machines show promise as a means to analyze
regulatory relationships and will be increasingly useful for
the analysis of mammalian genomes as more genomic
data becomes available.

**Trademark, service mark, or registered trademark of BIOBASE
GmbH, The MathWorks, Inc., or Microsoft Corporation in the
United States, other countries, or both.
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