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Gene expression is modulated by transcription factors (TFs),
which are proteins that generally bind to DNA adjacent to coding
regions and initiate transcription. Each target gene can be
regulated by more than one TF, and each TF can regulate many
targets. For a complete molecular understanding of transcriptional
regulation, researchers must first associate each TF with the set of
genes that it regulates. Here we present a summary of completed
work on the ability to associate 104 TFs with their binding sites
using support vector machines (SVMs), which are classification
algorithms based in statistical learning theory. We use several
types of genomic datasets to train classifiers in order to predict
TF binding in the yeast genome. We consider motif matches,
subsequence counts, motif conservation, functional annotation,
and expression profiles. A simple weighting scheme varies the
contribution of each type of genomic data when building a final
SVM classifier, which we evaluate using known binding sites
published in the literature and in online databases. The SVM
algorithm works best when all datasets are combined, producing
73% coverage of known interactions, with a prediction accuracy
of almost 0.9. We discuss new ideas and preliminary work for
improving SVM classification of biological data.

Introduction

A first step in understanding transcriptional regulation

requires the mapping of proteins called transcription

factors (TFs) to the genes they regulate and to the

particular nucleotide sequences to which they bind.

Typically, TFs bind to sites that are 10 –15 nucleotides

(nt) in length. Even a cursory examination of the DNA

sequences that bind a particular TF indicates that the

sequences are not identical, but instead define a motif,

or similar pattern of nucleotide bases. The set of sites to

which a particular TF binds will provide the basic input

for computational methods that can be used to find

additional sites.

These computational methods fall into two broad

categories: supervised and unsupervised. The former

starts with two example sets of potential TF-target

sequences, each of which often consists of several

hundred bases that are upstream from the potential target

genes. The sequences are those known to bind a

particular TF (called ‘‘positives’’) and those known not

to bind (‘‘negatives’’), both of which are used to derive

a classification rule using an SVM or other learning

algorithm. Unsupervised methods begin with sets that are

believed, on the basis of independent evidence, to contain

a characteristic but unknown nucleotide pattern, which

may represent a binding site. A search algorithm such as

Gibbs sampling can be used to identify such a pattern

within the promoter region of the gene (the part of the

gene that is upstream from the exon or coding region of

DNA). The promoter region binds RNA polymerase and

transcription factors in order to begin transcription.

Many unsupervised techniques for predicting binding

sites have been explored in the literature [1–8], and an

excellent review of current motif discovery and pattern

analysis methods is available [9].

Our approach is meant to easily combine a large

number of data types in a supervised learning scheme to

more accurately predict the association of a transcription
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factor and its targets. There are a number of ways to

proceed, including methods that involve support vector

machines (SVMs) and Bayesian variants, and approaches

that use weighted combinations of both of these methods.

In order to assign weights, we must know how well each

method performs. Here we study the use of support

vector machines, which we show can easily accommodate

high-dimensional genomic datasets containing many

hundreds or thousands of features. An example of such

a dataset is a gene expression profile, with each gene

described by hundreds of expression measurements taken

under different conditions. These measurements are the

dimensions (features) used to derive a classification rule.

We also study a simple SVM framework for combining

heterogeneous and diverse data.

The performance of supervised approaches is often

reported in terms of a few basic statistics. Known

positives and negatives are first divided into training

and test sets. This can be done once, as in a ‘‘hold-out’’

method, or the division can be performed randomly many

times, as in a ‘‘cross-validation’’ procedure. In either case,

the algorithm learns, using the training set, and makes

predictions on the test set. Correct positive predictions

(TP, ‘‘true positives’’), correct negative predictions (TN,

‘‘true negatives’’), incorrect positive predictions (FP,

‘‘false positives’’), and incorrect negative predictions (FN,

‘‘false negatives’’) are counted for each test set and used to

calculate more informative measures of performance.

Two simple measures are sensitivity (S), which is the

percentage of known targets correctly predicted to be

true, and positive predictive value [PPV¼TP/(TPþFP)],

the percentage of positive predictions that are correct.

Other measures are also possible, as we discuss below.

A number of supervised approaches have been used to

associate transcription factors with their targets. Original

work in transcription-factor binding-site discovery

involved the use of position-specific scoring matrices

(PSSMs) [10–13], which record the frequency of

nucleotide bases at each position in a binding-site

representation, or motif. A new prediction is then a site

that matches the PSSM on the basis of a score threshold

[10]. Researchers subsequently discovered that clusters of

predicted binding sites can indicate whether a candidate

gene is a target of a regulator [14–17]. Another supervised

method, developed by the team of N. Simonis at the

Centre de Biologie Structurale et Bioinformatique in

Belgium, makes use of linear discriminant analysis (LDA)

to select from a set of potentially co-regulated genes that

are likely to share transcription factors. Using a set of

1,012 regulatory interactions involving 66 TFs [data

obtained from the Transcription Factor Database

(TRANSFAC**) [18], the aMAZE database [19], and

a list compiled by Young et al. [20] from the Yeast

Proteome Database], the researchers report an average

positive predictive value of 0.91 and a sensitivity of 73%.

Their classification performance based on ChIP-chip

(Chromatin Immuno-Precipitation microarray) data is

worse, with only 52% of genes identified by ChIP-chip

being discovered. ChIP-chip is a large-scale procedure

designed to experimentally identify transcription-factor

targets genome-wide [21]. A microarray error model

determines the significance of the identified targets. The

Simonis team has argued in the past that ChIP-chip

results likely contain many false positives; however, their

results also show that target groups identified by ChIP

experiments contain large numbers of motifs that are

significantly overrepresented in comparison to random

gene sets. This suggests that many of the targets generated

by high-throughput experiments, such as chromatin

immunoprecipitation, contain real binding-site signals.

In an approach more closely related to ours, Qian et al.

apply support vector machines to gene expression profiles

in order to predict TF–target relations [22]. Gene

expression profiles are simply vectors, one for each gene,

whose components are measurements of the expression

level of the gene under different conditions. Positive

examples for the classifier are known TF–target pairs;

negatives are randomly chosen relations. In a method

that differs from ours, Qian et al. create one classification

rule covering all TFs and targets, while in our method

a classifier is constructed for each TF individually. In

their formulation, the data for each known TF–target

association is given as a concatenation of the TFs and

the target’s expression vectors over 79 experimental

conditions (giving a 158-element vector to describe

a positive example of regulation). Negatives are

constructed similarly for genes chosen randomly and for

those found to lack a TF binding site. Their best reported

accuracy is 0.93; however, this result is somewhat

misleading because their analysis contains a total of only

175 positives. Their classification of a large negative set

(1,750 negatives) can result in high accuracy because large

numbers of negatives are classified correctly. To put their

result in perspective, their sensitivity is 55% and their

positive predictive value is 63%. While their method

shows promise, it still relies only on the correlation of the

expression of the transcription factor to its target. Thus,

they are likely to miss interactions depending on

cooperating TFs, or factors whose activation is

dependent on post-translation modification or nuclear

exclusion.

The approach by Beer and Tavazoie uses Bayesian

networks to learn the combinatorial relationships of TFs

and targets that underlie gene expression data [23]. Their

method begins by clustering gene expression data by

similarity of expression and then using hierarchical

Bayesian networks to predict the cluster assignment of

a test gene on the basis of the sequences in its promoter.
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They impose constraints, which can be learned by the

algorithm, allowing them to derive complex logical

relationships from the data (e.g., motif A and motif B

must both be present and within 20 base-pairs). Although

this approach is innovative and can accurately describe

the sequence/expression relationships of many genes,

it may not be appropriate for our goals because it can

depend on the clustering of the expression data and the

method by which motif discovery is performed on the

genes being tested.

Our approach uses SVMs to associate TFs with targets

by combining high-dimensional heterogeneous datasets,

building on our previous work, which used fewer data

sources [24]. SVMs have been applied successfully to

many problems in computational biology. They have

been used for the prediction of protein remote homology

[25], secondary structure [26], protein subcellular

localization [27], signal peptide cleavage sites [28], normal

or cancerous tissue types [29], gene function [30], mRNA

splice sites, and translation start sites [31]. One notable

attempt combines information on protein sequence

similarity, protein–protein interactions, protein

hydrophobicity, and gene expression to predict the

function of a set of proteins [32].

Background and brief review
We now introduce our methodology for the non-specialist

and briefly review some basic elements of SVM

algorithms. We have trained an SVM on each of 104

transcription factors (i.e., ‘‘regulators’’) independently,

using positive and negative training sets as explained in

the following paragraphs. Each gene in the positive set

shares certain attributes, or features, that other genes do

not share, and it is on the basis of these that a classifier

for a particular TF is obtained. We use 18 different

genomic datasets to generate attributes, as indicated in

the following—for example, the number of occurrences of

a particular nucleotide sequence of length k. For such a

dataset, the number of occurrences of each of the 256

possible nucleotide sequences of length 4 (‘‘4-mers’’)

might be represented by a 256-component vector (a

‘‘feature vector’’), each component of which is the number

of times the corresponding 4-mer occurs upstream from

one of the genes in the set. (In molecular biology, the term

‘‘upstream’’ refers to a relative position along the DNA or

RNA sequence and denotes a region toward the 50 end of

the sequence.) To construct a classifier, positive examples

(feature vectors of promoters known to be bound by a

TF) and negative examples (those of promoters known

not to be bound) must be identified. Given this set of

data, each example is represented by a feature vector of

attributes. In the case of k-mer counts, the components of

the feature vector are counts of different k-mers that

appear in the promoter region. Other datasets for the

same TF will have the same example target genes,

represented by different feature vectors. For example, a

phylogenetic profile vector, which shows the occurrence

of an ortholog, or ancestry-related sequence, in a set of 65

genomes, would be a vector of length 65 consisting of

binary numbers, with 1 indicating the presence of an

ortholog and 0 indicating its absence. Thus, the data

for any particular TF consists of a number of different

feature vectors in spaces with possibly thousands of

dimensions (attributes), each such vector representing a

gene in the training set.

The SVM algorithm separates the positive and negative

sets in the feature space by finding a hyperplane whose

distance from the closest data points of each class is

maximal. Two parallel hyperplanes that pass through

these closest data points are found, and a separator

bisects the distance between them. Better generalization

(i.e., performance in prediction) can be obtained by

forgoing perfect separation of training data and allowing

some misclassification. This soft margin SVM finds the

hyperplanes under the constraint that the distance to the

closest cleanly separated data be maximal, with some

penalty for misclassifications, as explained below.

We denote the feature vector–output pair for the

ith gene in the training set by (xi, yi), with yi equal to

þ1 when xi is a feature vector from the positive

set, and �1 otherwise. The vector xi has the form

xi ¼ (xi1, xi2, xi3,
. . ., xid), where d is the number of

features, i.e., the dimensionality of the feature space.

The separating hyperplane H has the form

w � xþ b ¼ 0 ð1Þ

(see Figure 1), in which the components of

w [ (w1, w2,
. . ., wd) are the weights of the

corresponding features, with b/jwj representing the

distance from the origin to the closest point on H.

For clarity, we first describe the case in which the

positive and negative examples in feature space are

completely separable by a hyperplane; we then discuss the

nonseparable case that allows for misclassification. The

challenge in the separable case is to find the values

of w and b that give the maximum margin separating

hyperplane (the one that separates the two classes most

widely). This requires the use of only the closest correctly

separated feature vectors, each representing the attributes

of a gene. In the simple two-dimensional example in

Figure 1, the feature vectors are x1, x2, and x3; note that

the separator bisects the distance between parallel planes

through those points. This (separable) situation is

illustrated in Figure 1, but without the (misclassified)

vector x4.

The margin is the distance between two planes parallel

to the separator, one passing through the closest correctly

classified positive data point, and the other passing

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006 D. T. HOLLOWAY ET AL.

633



through the closest correctly classified negative data

point. The vector w is scaled so that the hyperplanes

through the closest data (the support vectors) are given

[33, 34] by w � x þ b¼þ1 and w � x þ b ¼�1.
Equivalently, the data satisfy the single constraint

y
i
ðw � x

i
þ bÞ � 1 ð2Þ

because yi (w � xi þ b) is the distance from the separator

to the i th data point. The margin (the perpendicular

distance between the hyperplanes H1 and H2 parallel to

H) is

m ¼ 2

jjwjj ; ð3Þ

where jjwjj ¼
P

i w
2
i is the magnitude of the weight

vector. Equation (3) is readily obtained by noting that if

x
þ and x

� denote the position vectors of two points at the

intersection of an orthogonal to the separator with the

margin hyperplanes (xþ and x� can both be chosen

parallel to w; see Figure 1) and taking without loss

jjxþjj . jjx�jj, then

m ¼ jjxþ � x
�jj ¼ jjxþjj � jjx�jj:

On the other hand, from Equation (2), because

w and x
6 have been chosen to be parallel, we have

yiðjjwjj � jj x6 jj þ bÞ ¼ 1 (using x
6 with yi ¼61,

respectively), from which Equation (3) follows from

the above, using

jjxþjj ¼ �bþ 1

jjwjj

and

jjx�jj ¼ �b� 1

jjwjj :

Thus the problem is to maximize m given by Equation (3),

subject to the constraints given by Equation (2). Note

that in Equation (2), equality holds exactly for the

support vectors, a subcollection that we label

x1, x2,
. . ., xs, so that we can reduce the problem so

that it involves this set of vectors only. The constrained

maximization can be solved using Lagrange multipliers

[33, 34]. In particular, the challenge is to minimize

L ¼ jjwjj2

2
�
X
i

a
i
½y

i
ðw � xi þ bÞ � 1�: ð4Þ

The weight vector is obtained by setting (]L/]w)¼ 0 [i.e.,

the system of equations (]L/]wi)¼ 0] for the extremal xi,

i.e., those for which equality holds in Equation (2). These

are exactly the support vectors, giving

w ¼
Xs
i¼1

a
i
y
i
x
i
; ð5Þ

where, in this example, the weight vector is w [ (w1, w2),

the ith attribute vector is xi [ (xi1, xi2), and the number

of support vectors, s, is three (those lying on the margin

planes). The one misclassified point x4 is currently

ignored, but also becomes a support vector when included

in the data, as described shortly.

The parameter b is determined as a weighted average

of the distances to the two hyperplanes containing the

support vectors,

b ¼ 1

s

Xs
i¼1

y
i
� w � x

i
: ð6Þ

In fact, in this fully separated case, for each support

vector xi, i¼1, . . ., s, we have b¼yi � w � xi, by definition.
The procedure for finding the multipliers ai is somewhat

simplified by forming and then maximizing the so-called

dual Lagrangian [33, 34]

L
D
¼
X
i

a
i
� 1

2

X
i;j

a
i
a
j
y
i
y
j
x
i
� x

j
: ð7Þ

This is obtained by substituting Equation (5) into

Equation (4) and noting that (]L/]b) ¼ 0 impliesP
i aiyi ¼ 0:

Figure 1

Anatomy of an SVM in two dimensions; this is the classification 
plot for the data given in Table 1. Red crosses (+) indicate positive 
examples and blue circles (   ) are negatives. Coordinates d

1
 and d

2
 

are the components of x. The labeled points x
1
, x

2
, x

3
,
 
x

4
 are the 

support vectors. The classifier is labeled as w � x � b � 0, and the 
margin is labeled m. One point, x

4
, is misclassified. Because x

4
 is 

in the positive set, its slack variable �  
4
 is the distance from the �1 

margin line.
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1
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x2

x4
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x3

d1

d 2
H2: w � x � b � �1 H1: w � x � b � �1

w � x � b � 0

m � 2/||w||
�4 � �2.3593

m

� 
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We now describe the case of soft margins, which is the

formulation we use in practice where perfect separation is

not possible (consider Figure 1 with the misclassified x4

now included). In this case, a penalty ni is paid in the

Lagrangian for each misclassification of size ni (the
distance of the misclassified xi from its margin; see

Figure 1). The target function and constraints are now

modified so that the problem is to find

min
w;n

jjwjj2 þ C
Xr
i¼1

n
i
;

subject to ni � 0 and yi (w � xiþb) � 1� ni for i¼1, � � �, r.
As mentioned, ni is the distance of the ith misclassified

point xi from its margin, which is defined as before to be

the hyperplane (H1 or H2) at a distance (1/jjwjj) in the

direction of the correct classification of xi from the

separating hyperplane w � x þ b ¼ 0. Parameter C

mediates the tradeoff between maximal margin and

misclassification, and r is the number of misclassified

points allowed. Essentially, the algorithm proceeds to find

the maximum margin by minimizing jjwjj while balancing
this against the amount

Pr
i¼1 ni of misclassification with

this choice of margin. We again use Lagrange multipliers

ai as in the previous case to form a full Lagrangian,

and then minimize it.

To illustrate in our two-dimensional example, we make

use of the data presented in Figure 2. In this case, we then

have, after minimizing the Lagrangian,

w
1
¼
X
i

a
i
y
i
x
i1
¼ ð1:7731Þð1Þð7:7Þ þ ð3:3938Þð�1Þð6:5Þ

þ ð3:3793Þð�1Þð6Þ ¼ 1:3174;

w
2
¼
X
i

a
i
y
i
x
i2
¼ ð1:7731Þð1Þð5Þ þ ð3:3938Þð�1Þð1:5Þ

þ ð3:3793Þð�1Þð7Þ ¼ 0:1198:

Thus w ¼ [1.3174, 0.1198], and b ¼ [1 � (1.3174)(6) �
(0.1198)(7) þ . . .]/3 ¼�9.7425.

For linearly separable data (no misclassifications), we

have ni ¼ 0, and we are in the first case, in which the

values of w and b ensure that Equation (3) is minimized

subject to the constraint of Equation (2). However, for

data that is not linearly separable (e.g., including x4),

ai can become extremely large. In the Lagrangian

formalization, a constant C becomes an upper bound for

ai (i.e., the constraint 0 � ai � C is used). By using C as a

bound for ai, we can limit the influence of single data

points that cannot be classified correctly. Thus, in our

example with C¼ 5, the multiplier for x4 has a value of 5

(Figure 2).

It is evident from Equation (7) that the first step in

finding this maximal margin separator requires the

calculation of all pairwise correlations between example

vectors in the form of their inner (dot) products (also

called the linear kernel function). Thus, given two data

points xi and xj, the kernel function K(xi, xj) ¼ xi � xj
yields a complete kernel matrix Kij ¼ K(xi, xj) involving

Figure 2
Excel** spreadsheet showing data and parameters of the classifier.

examples features labels Lagrange calculate w vector calc b

d 1 d 2 yi alpha Distance to hyperplane Slack variables � 

1 6 7 -1 3.3793 Support vector -20.2757 -23.655 -9.7425 -1
2 7.7 5 1 1.7731 Support vector 13.6529 8.8655 -9.7425 1
3 6.5 1.5 -1 3.3938 Support vector -22.0598 -5.0907 -9.7425 -1
4 6 4 1 5 misclassified 30 20 -1.3593 -2.3593
5 9 3 1 0 0 0 2.4731
6 9.5 8.5 1 0 0 0 3.7904
7 10 7 1 0 0 0 4.2695
8 9 9 1 0 0 0 3.1916
9 8.5 6 1 0 0 0 2.1737

10 7.5 8 1 0 0 0 1.0958
11 9.5 5.5 1 0 0 0 3.4311
12 4.5 3 -1 0 0 0 -3.4551
13 2.5 4.5 -1 0 0 0 -5.9102
14 5 7 -1 0 0 0 -2.3174
15 1.5 1.5 -1 0 0 0 -7.5868
16 2 3 -1 0 0 0 -6.7485
17 3.5 2 -1 0 0 0 -4.8922
18 3 6.5 -1 0 0 0 -5.012
19 5 5 -1 0 0 0 -2.5569
20 8 4 1 0 0 0 1.2755

1.3174 0.1198 mean(b)= -9.7425
i

N

i
ii y xw

1
�
�

� �

b(r)
 � yr

 � w � xr�� iii y xw �
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every pair of data points. Because the data are

represented internally only as such inner products rather

than as explicit feature vectors, it becomes possible and

useful to substitute different definitions of the inner

product for the above linear dot product. Several

alternatives are given in Table 1. These functions are

inner products defined on feature spaces of different

dimensionalities. Defining such a new inner product

implicitly maps the data into a new feature space. This

swapping of kernel functions in order to map data into

different spaces is commonly referred to as the ‘‘kernel

trick.’’ Biological features such as conservation or gene

expression values can be correlated and may have

complex, nonlinear relationships, highlighting the need

for classification schemes that can accurately classify data

that are not linearly separable.

Datasets
We have tested a variety of sequence- and non-sequence-

based classifiers for predicting the association of TFs

and genes. All together, 18 separate data sources (each

yielding a feature map and kernel) are combined to build

classifiers for each transcription factor. The 18 data

sources comprise a family of sequence-based methods

(e.g., k-mer counts and TF motif conservation in multiple

species), expression datasets, phylogenetic profiles, and

gene ontology (GO) functional profiles (see Table 2). For

a more detailed description of datasets, see [35]. In almost

all cases, our datasets have complete information,

primarily because datasets such as k-mer counts or

motif counts are derived from DNA sequences alone.

Microarray expression data is also available for every

gene in our analysis. In the cases in which expression

values are missing for a few conditions, zeros are

substituted, as is often done in computational analyses.

For the GO functional profiles and the phylogenetic

profiles based on the Cluster of Orthologous Groups

(COG) database, many genes are absent, primarily

because these genes have not yet been given a functional

assignment (in the case of GO) or have not been allocated

to an orthologous (ancestor-related) group (e.g., in the

case of COG). In these instances, substitute values for the

missing features are selected at random from the entire

genome. Thus, missing values are replaced according to

background frequencies, without bias toward the positive

or negative sets.

Our positive and negative training sets are taken from

ChIP-chip experiments [20, 36], TRANSFAC 6.0 Public

[18], and a list from [37] curated by Young et al. from

which we have excluded indirect evidence such as

sequence analysis and expression correlation [38]. Only

ChIP-chip interactions of p-value �10�3 are considered,

as recommended by the authors [20]. The TRANSFAC

and curated list represent a manually annotated set,

which is later used separately during the comparison of

SVM and PSSM performance. For the purposes of SVM,

however, all manually curated and high-throughput sets

are grouped together, making a total of 9,104 positive

interactions. (The term high-throughput refers to the rapid

processing of thousands of genes via ChIP-chip

experiments.)

Negative sets pose a greater challenge because no

defined negatives exist in the literature; however, because

a particular TF regulates only a small fraction of the

genome, a random choice of negatives seems acceptable.

Table 1 Common kernel functions.

Kernel Parameters Description

Linear None K(x, y) ¼ x � y

Polynomial Poly degree d K(x, y) ¼ (x � y þ 1)d

Gaussian radial

basis function

(RBF)

r
Kðx; yÞ ¼ exp

�jx� yj2

2r2

 !

Gaussian r
Kðx; yÞ ¼ 1

2pr2
e�

x2þy2

2r2

Table 2 Dataset abbreviations and description.

Abbreviation Description

1 MOT Motif hits in S. cerevisiae

2 CONS Motif hits conservation 18 organisms

3 PHY Phylogenetic profile

4 EXP Expression correlation

5 GO GO term profile

6 KMER k-mers – 4, 5, 6-mers

7 S1 Split 6-mer 1 gap kkk_kkk

8 S2 Split 6-mer 2 gaps kkk__kkk

9 S3 Split 6-mer 3 gaps kkk___kkk

10 S4 Split 6-mer 4 gaps kkk____kkk

11 S5 Split 6-mer 5 gaps kkk_____kkk

12 S6 Split 6-mer 6 gaps kkk______kkk

13 S7 Split 6-mer 7 gaps kkk_______kkk

14 S8 Split 6-mer 8 gaps kkk________kkk

15 MM01 6-mer with one mismatch (count 0.1)

16 MM05 6-mer with one mismatch (count 0.5)

17 ENT Condition-specific TF–target correlation

18 SPAR Nucleotide sparse binary encoding
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In fact, our own unpublished work suggests that test cases

with a few TFs show good classification performance

with random negatives. Nevertheless, a more reliable

set of negatives would be those showing no binding by

experiment under some set of conditions. Along those

lines, for each TF, we have chosen 175 genes with the

highest p-values (generally .0.8) under all conditions

tested in genomic ChIP-chip analyses [36]. Clearly, all

experimental conditions have not been sampled, and this

does not guarantee that our choices are truly never bound

by the TF, but this choice of negatives maximizes our

chances of selecting genes not regulated by the TF of

interest.

All promoter sequences have been collected by using

RSA tools, Ensembl, or the Broad Institute Fungal

Genome Anatomy Project [39–41]. For yeast, promoters

are defined as the 800 base pairs (bps) upstream of the

coding sequence. The motif-conservation dataset required

promoter regions from 17 other genomes. Those

genomes, their sources, and the lengths of the promoter

regions are listed in Table 3. Sequences are masked (i.e.,

replaced with a sequence of null characters) using the dust

algorithm and the RepeatMasker software [42, 43] where

it is appropriate to exclude low-complexity sequences and

known repeat DNA from further analysis. PSSM scans

are performed with the MotifScanner algorithm [44].

MotifScanner assumes a sequence model in which

regulatory elements are distributed within a noisy

background sequence [44]. The algorithm requires input

of a background sequence model, which in this case is

a transition matrix of a third-order Markov model

generated from the masked upstream regions of each

genome. MotifScanner requires only that one parameter

be set by the user, namely the threshold score for

accepting a motif as a binding site. Several thresholds

have been tested, and the results we have used to create

SVM kernels were obtained with a setting of 0.15 for the

thresholds. This threshold has been found to provide

a reasonable tradeoff between sensitivity and false

prediction, making approximately 560 predictions per

TF. Settings beyond 0.2 produce too many false hits to

be useful. The PSSMs themselves are obtained from

TRANSFAC 6.0 Public and from [45], and these PSSMs

are a mix of experimentally derived motifs and those

generated by motif-discovery procedures.

In addition, datasets using k-mers rather than PSSMs

are generated using the fasta2matrix [52] program, which

delineates all possible k-mers and counts the occurrence

of each within a set of promoters. Gapped k-mers are

detected using custom scripts written as MATLAB**

m-files.

The expression data used include 1,011 microarray

experiments complied by Ihmels and coworkers, and this

data can be obtained with permission from the authors

[53].

As mentioned above, 18 different data kernels are used

to construct a classifier for each transcription factor. The

datasets fall into several distinct groups. All classifier

construction and validation was performed in MATLAB

[54] using the SPIDER machine learning library [55].

Methods

First, each type of genomic data is evaluated

independently for each transcription factor. Several

kernel functions are tested, and parameters are optimized

by a grid-selection technique. Each dataset is normalized

so that all attributes describing the data have a mean

of zero and a standard deviation of one. The Gene

Ontology, phylogenetic profile, and TF-target correlation

data are exceptions, and they are not normalized because

their data is binary.

Table 3 Promoter regions.

Genome Promoter

length

Source

Human clipped* RSA tools [40]

Rat clipped RSA tools [40]

Fruit fly clipped RSA tools [40]

Anopheles

mosquito

4,000 bp Ensembl [46]

Worm clipped RSA tools [40]

S. pombe 800 bp RSA tools [40]

S. cerevisiae 800 bp RSA tools [40]

N. crassa 1,000 bp Broad Institute [47]

M. grisea 1,000 bp Broad Institute [48]

A. thaliana clipped RSA tools [40]

P. falciparum clipped RSA tools [40]

S. bayanus clipped Washington

University [49]

S. mikatae clipped Washington

University [49]

S. kluyveri clipped Washington

University [49]

S. paradoxus clipped Broad Institute [50]

S. kudriavzevii clipped Washington

University [49]

S. castellii clipped Washington

University [49]

Mouse clipped Promoser [51]

*clipped: The promoter was truncated if it ran into an upstream coding sequence.
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A schematic representation of our method is shown in

Figure 3. Briefly, for a particular TF, four classifiers are

produced for each type of genomic data, each from a

different kernel function (linear, RBF, Gaussian, and

polynomial). In order to make an appropriate choice of

the C parameter, a grid-selection technique is used to

evaluate a range of choices. In the case of two parameter

selections (e.g., when choosing the degree of the

polynomial kernel), all possible combinations of

parameter values within the pre-specified range are

tested. A fivefold cross-validation is used to choose the

best parameters on the basis of a Receiver Operating

Characteristic (ROC) score. (The ROC score relates to

the area under a Receiver Operating Characteristic curve

that shows the utility of a classifier at various thresholds.)

Once parameters are chosen for each kernel type, the

parameter-optimized classifiers are tested using a leave-

one-out cross-validation procedure. As suggested, for

each type of genomic data, there are four classifiers for a

particular TF (one for each of the kernel functions). Of

these four, we select the one with the best performance as

measured by the F1 statistic. Several common statistics,

including accuracy, sensitivity, and specificity, can

overstate the performance of a classifier depending on the

relative size of the positive and negative training sets. The

F1 statistic is a more robust measure that is the harmonic

mean between sensitivity (S) and positive predictive value

(PPV):

F
1
¼ 23S3PPV

Sþ PPV
¼ 23TP

23TPþ FPþ FN
:

Each TF now has only one classifier for each type of

genomic data (18 classifiers in all). Before weighting and

combining kernels, each kernel matrix is normalized

according to

~Kðx; yÞ ¼ Kðx; yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx; xÞKðy; yÞ

p :

This normalization adjusts all points so that they lie on a

unit hypersphere in the feature space. This ensures that

no single kernel has matrix values that are comparatively

larger or smaller than those of other kernels, which would

bias the combination.

By using a scheme with weights equal to the F1 of each

classifier, the underlying 18 kernels are scaled and added

into one unified kernel for the transcription factor. This

kernel represents the integration of all types of genomic

data. Three simple weighting schemes are compared. In

all cases, the primary weight for a method is determined

by computing its F1 score ratio with that of the best-

performing method. Our first weighting scheme simply

multiplies all kernel matrices by their primary weights

(i.e., F1 ratios) and sums them. A second scheme squares

the primary weights before multiplying. Our third scheme

is the most nonlinear and requires us to compute the

squared tangent of the primary weight.

Performance statistics for each TF, based on all

combined datasets, were generated by a final leave-one-

out cross-validation procedure on the combined kernel.

In this way, accuracy measurements are made for each

TF–target classifier.

PSSM comparison
Using the same positive and negative sets as are used

for the SVM procedure, PSSMs can make predictions

at various score thresholds to serve as a comparison

to predictions made by SVMs. The data in Figure 4

represent a parameter setting of only 0.1 in MotifScanner.

Low parameter values retain the best matches, whereas

values near 1 allow very ‘‘loose hits’’; that is, the use of

values near 1 leads to the retention of more false matches.

Other choices of threshold do not appear to improve

performance. Loosening the threshold begins to

dramatically increase false-positive predictions beyond

a parameter setting of 0.2. By making detection more

‘‘strict’’ (i.e., less likely to yield false hits), false

predictions are reduced along with sensitivity. Because

the matrices for the 104 transcription factors are partly

Figure 3

Flow diagram indicating the selection of a single classifier for 
each TF from several types of genomic data. A classifier is 
constructed for each individual TF for each genomic dataset, 
using each of four possible kernel functions (18 datasets � 104 
TFs � 4 kernel functions � 7,488 total kernels from which SVM 
classifiers are built). For each dataset and each TF, the best- 
performing of the four kernel functions is selected, reducing the 
number of classifiers to 1,872 (18 datasets � 104 TFs). Finally, 
the datasets are combined on the basis of the F

1
 score of their best- 

performing kernel so that there is only one classifier per TF.
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experimentally determined and partly computationally

generated, the TRANSFAC PSSMs for 17 TFs are

evaluated next to determine whether the experimental

matrices by themselves outperform SVM for target

identification. Finally, because a large number of positive

targets have been taken from high-throughput ChIP-chip

experiments, the TRANSFAC PSSMs are tested again on

only the portion of the positives obtained from manually

annotated sources.

Results and discussion
Using the classification procedure described in the

previous sections, we have been able to accurately classify

the known targets of many transcription factors for the

yeast S. cerevisiae. Overall, the best single method

achieves a sensitivity of 71% and a positive predictive

value of 0.82. These performance measures provide a

summary for all 104 classifiers. For example, there are

9,104 known positives for all TFs. A sensitivity of 71%

indicates that, taking into account all 104 classifiers, we

recover 71% of the known data (i.e., known TF–target

interactions). This means that classifiers for some TFs

have much higher sensitivities or PPVs, while other

classifiers perform no better than randomly. Many

individual methods perform well, but the best

classification is made with k-mer counts allowing one

mismatch per k-mer (with mismatches given a count of

0.1). Our results show that by combining datasets we

increase sensitivity incrementally over the use of only the

best single dataset, and also produce a small improvement

in positive predictive value. This indicates that methods

that combine data sources are useful in this case because

they remove some false-positive classifications [35].

To prevent an overly optimistic evaluation of our

performance, we generated three random datasets and

trained TF classifiers on them as if they were actual data.

Comparison with random controls better frames the

practical performance of our method. The first random

set consists of randomly permuted k-mer count data. The

second is composed of a randomly selected 10% of each

real dataset (also permuted). The third is a dataset

composed of normally distributed random numbers in the

range 0 to 1. The comparison of these results is shown in

Table 4.

Clearly, the performance is much better than random,

but results do not clearly indicate whether applying our

classifiers to the entire genome would yield truly reliable

predictions without further processing. A simple

classification of all potential targets with our 104

classifiers returns, on average, approximately 800 new

targets for each TF. This suggests that in order to

find a set of truly reliable predictions genome-wide,

postprocessing of our results is needed. Indeed, in other

work we have applied Platt’s method [56] to assign

‘‘posterior probabilities’’ to our predictions, allowing the

selection of only the most significant targets [35]. The

precise meaning of the term posterior probabilities is

clarified in [35]. Using these probabilistic SVMs, the

classifiers for each TF were applied to identify potential

targets genome-wide in order to expand the binding

repertoire of each factor. This results in predictions of

new regulatory roles for some TFs and the identification

of possible new regulatory structures such as feed-

forward loops in metabolic pathways [35].

Many reports in the literature indicate that as many as

50% [57] to 60% [58] of the targets produced by ChIP-chip

are not biologically functional. Our ability to correctly

classify large amounts of high-throughput data indicates

that there is relevant biological information that identifies

Figure 4

Comparison of SVM and PSSM scans, indicating that SVM 
classifiers outperform PSSMs. The same negative sets were used 
for all scans. The y-axis represents values of sensitivity, specificity, 
PPV, and F1 in the range of 0 to 1.
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Table 4 Performance results of combined classifier and

random datasets.

Combined

methods

Random

k-mers

Random 10%

of all datasets

Random

normal data

Accuracy 0.88 0.67 0.58 0.58

Sensitivity 0.73 0.45 0.62 0.61

PPV 0.88 0.50 0.41 0.41

F1 0.80 0.48 0.50 0.50
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ChIP-chip positives from other genes. One should also

note that ChIP-chip experiments may be highly accurate

in detecting binding of a TF even if that binding serves no

biological function. This may be interpreted as a false

positive from a functional perspective, but not so from

a binding perspective. Our experiments may accurately

classify binding targets as identified by ChIP-chip even if

those targets show no change in expression as a result of

binding.

In other work, we search for evidence that the

predictions based on various classifiers make biological

sense [35]. To do this, we examine individual datasets and

extract the attributes that contribute most to the classifier

of a transcription factor. The w vector described in

previous paragraphs can be used in this way to identify

the features, in any particular dataset, that are most

important for classification. Features having large w

components correspond to dimensions in the feature

space where positives and negatives are more definitively

separated. Thus, by examining a single dataset such as

one that includes k-mer counts, it is possible to determine

the k-mer(s) most responsible for the differences between

positives and negatives. Our results on the k-mer count

dataset have shown that the many k-mers having large

w values are in fact elements of the known transcription

factor binding site as taken from the Saccharomyces

Genome Database (SGD) [35].

To better judge the performance of new methods, it is

sometimes useful to compare them with standard PSSM

scans for their ability to identify targets. Carefully

constructed variants of PSSMs, which take into

account conservation of sites between multiple species

or dependencies between nucleotides, offer excellent

performance, but often there is insufficient data to

construct such detailed models. In TRANSFAC version

6, only 17 available binding site matrices exist for yeast.

Many of the remaining PSSMs used in this study have

been created using motif discovery methods on high-

throughput datasets [20]. The purpose of our comparison

with PSSMs is to illustrate that some of the commonly

used site matrices perform worse than a classification

scheme built on an integrated dataset.

Overall, the SVM performs better than a simple weight-

matrix scan. Figure 4 shows such a comparison as a

function of sensitivity, specificity, positive predictive

value, and the F1 statistic. The far-left grouping of data

uses the TRANSFAC PSSMs for 17 TFs on just the

manually curated positives (with same negatives as all

other analyses) from TRANSFAC and literature sources.

The second grouping from the left uses the same

TRANSFAC PSSMs as the first grouping, but this time

with the same high-throughput positive sets used in the

SVM classification. The third grouping is a result from

scans using PSSMs for all 104 TFs on the positive and

negative sets on which the SVMs were trained. Finally,

the far-right grouping restates the performance of the

SVMs with 18 combined datasets on the full set of

positives. The SVM classifiers outperform PSSMs,

even when the matrices are from a curated set such as

TRANSFAC. Although the PSSMs perform well, they

suffer from a large number of false-positive predictions.

Figure 4 shows data for only one threshold of PSSM

scan, but altering the threshold does not make PSSMs

more accurate than SVMs (see the Methods section).

It is worth noting, however, that the site matrices from

TRANSFAC offer much better performance than the

matrices generated by motif-discovery procedures.

Support vector machine classifiers offer a reasonable

balance between sensitivity and false prediction.

Alternatives to SVMs, such as Bayesian networks and

neural networks, may offer similar performance, but

SVMs have an advantage because they permit different

types of high-dimensional data to be easily combined.

Concluding remarks
In conclusion, support vector machines can accurately

classify and predict transcription factor binding sites

using a wide range of genomic data types. Combining

various information sources reduces false positives and

increases sensitivity. On the basis of k-mer data, SVMs

appear to be identifying appropriate features for

classification. Finally, the flexibility of this approach

allows easy inclusion of new types of genomic data. Our

future work involves the development of sophisticated

dimension-reduction techniques to discover biologically

significant features in different datasets on the basis of

classifier performance. As always with high-dimensional

datasets, the risk of over-fitting can restrict the wide

application of a classification tool. (The term over-fitting

is considered to be synonymous with overtraining, which

indicates that a classifier is very accurate for a training set

but less accurate for independent test sets.) Although the

maximal margin of SVMs is resistant to over-fitting, the

resistance can be enhanced by selecting the best features

for classifier construction. In future work, we plan to

test several feature-reduction methods such as Fisher’s

Linear Discriminant and SVM–RFE (Recursive Feature

Elimination). A reduction in the feature set would also

allow a comparison with other classification systems, such

as Bayesian networks or KNN classifiers, which are

difficult to train on very large sets of features.

Additionally, new datasets can be included that

leverage information about DNA structural features.

Information of this type could include promoter melting-

temperature profiles, bend and curve features of

promoters [59], or DNA accessibility predictions based

on patterns of hydroxyl radical cleavage [60, 61].

Furthermore, it may be possible to capture more

meaningful information from k-mer counts by
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additionally measuring the likelihood that a certain k-mer

occurs by chance in a gene’s promoter, thus attaching a

p-value to all k-mers in each promoter region. Support-

vector machines show promise as a means to analyze

regulatory relationships and will be increasingly useful for

the analysis of mammalian genomes as more genomic

data becomes available.

**Trademark, service mark, or registered trademark of BIOBASE
GmbH, The MathWorks, Inc., or Microsoft Corporation in the
United States, other countries, or both.

References
1. E. M. Conlon, X. S. Liu, J. D. Lieb, and J. S. Liu, ‘‘Integrating

Regulatory Motif Discovery and Genome-Wide Expression
Analysis,’’ Proc. Natl. Acad. Sci. 100, No. 6, 3339–3344 (2003).

2. S. Keles, M. J. van der Laan, and C. Vulpe, ‘‘Regulatory Motif
Finding by Logic Regression,’’ Bioinformatics 20, No. 16,
2799–2811 (2004).

3. W. Wang, J. M. Cherry, D. Botstein, and H. Li, ‘‘A Systematic
Approach to Reconstructing Transcription Networks in
Saccharomyces scerevisiae,’’ Proc. Natl. Acad. Sci. 99, No. 26,
16893–16898 (2002).

4. H. Bussemaker, H. Li, and E. Siggia, ‘‘Regulatory Element
Detection Using Correlation with Expression,’’ Nature
Genetics 27, No. 2, 167–171 (2001).

5. K. Birnbaum, P. N. Benfey, and D. E. Shasha, ‘‘cis Element/
Transcription Factor Analysis (cis/TF): A Method for
Discovering Transcription Factor/cis Element Relationships,’’
Genome Res. 11, No. 9, 1567–1573 (2001).

6. Z. Zhu, Y. Pilpel, and G. Church, ‘‘Computational
Identification of Transcription Factor Binding Sites via a
Transcription-Factor-Centric-Clustering (TFCC) Algorithm,’’
J. Molec. Biol. 318, No. 2, 71–81 (2002).

7. M. Pritsker, Y.-C. Liu, M. A. Beer, and S. Tavazoie, ‘‘Whole-
Genome Discovery of Transcription Factor Binding Sites by
Network-Level Conservation,’’ Genome Res. 14, No. 1, 99–108
(2004).

8. S. Elemento and S. Tavazoie, ‘‘Fast and Systematic Genome-
Wide Discovery of Conserved Regulatory Elements Using a
Non-Alignment Based Approach,’’ Genome Biol. 6, No. 2, R18
(2005).

9. M. Tompa, N. Li, T. L. Bailey, G. M. Church, B. De Moor, E.
Eskin, A. V. Favorov, M. C. Frith, Y. Fu, W. J. Kent, V. J.
Makeev, A. A. Mironov, W. S. Noble, G. Pavesi, G. Pesole,
M. Regnier, N. Simonis, S. Sinha, G. Thijs, J. van Helden, M.
Vandenbogaert, Z. Weng, C. Workman, C. Ye, and Z. Zhu,
‘‘Assessing Computational Tools for the Discovery of
Transcription Factor Binding Sites,’’ Nature Biotechnol. 23,
No. 1, 137–144 (2005).

10. G. D. Stormo, ‘‘DNA Binding Sites: Representation and
Discovery,’’ Bioinformatics 16, No. 1, 16–23 (2000).

11. C. T. Workman and G. D. Stormo, ‘‘ANN-Spec: A Method
for Discovering Transcription Factor Binding Sites with
Improved Specificity,’’ Proceedings of the Pacific Symposium
on Biocomputing, 2000, pp. 467–478.

12. T. D. Schneider, G. D. Stormo, L. Gold, and A. Ehrenfeucht,
‘‘Information Content of Binding Sites on Nucleotide
Sequences,’’ J. Molec. Biol. 188, No. 3, 415–431 (1986).

13. T. Schneider and R. Stephens, ‘‘Sequence Logos: A New Way
to Display Consensus Sequences,’’ Nucl. Acids Res. 18, No. 20,
6097–6100 (1990).

14. M. C. Frith, M. C. Li, and Z. Weng, ‘‘Cluster-Buster: Finding
Dense Clusters of Motifs in DNA Sequences,’’ Nucl. Acids
Res. 31, No. 13, 3666–3668 (2003).

15. B. P. Berman, Y. Nibu, B. D. Pfeiffer, P. Tomancak,
S. E. Celniker, M. Levine, G. M. Rubin, and M. B. Eisen,
‘‘Exploiting Transcription Factor Binding Site Clustering to

Identify Cis-Regulatory Modules Involved in Pattern
Formation in the Drosophila Genome,’’ Proc. Natl. Acad. Sci.
99, No. 2, 757–762 (2002).

16. D. Dinakarpandian, V. Raheja, S. Mehta, E. Schuetz, and
P. Rogan, ‘‘Tandem Machine Learning for the Identification
of Genes Regulated by Transcription Factors,’’ BMC
Bioinformatics 6, No. 1, 204 (2005).

17. M. Rebeiz, N. L. Reeves, and J. W. Posakony, ‘‘SCORE: A
Computational Approach to the Identification of Cis-
Regulatory Modules and Target Genes in Whole-Genome
Sequence Data,’’ Proc. Natl. Acad. Sci. 99, No. 15, 9888–9893
(2002).

18. V. Matys, O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land,
A. Barre-Dirrie, I. Reuter, D. Chekmenev, M. Krull,
K. Hornischer, N. Voss, P. Stegmaier, B. Lewicki-Potapov,
H. Saxel, A. E. Kel, and E. Wingender, ‘‘TRANSFACt and
Its Module TRANSCompelt Transcriptional Gene
Regulation in Eukaryotes,’’ Nucl. Acids Res. 34, No. 1, D108–
D110 (2006).

19. C. Lemer, E. Antezana, F. Couche, F. Fays, X. Santolaria,
R. S. Janky, Y. Deville, J. Richelle, and S. J. Wodak, ‘‘The
aMAZE LightBench: A Web Interface to a Relational
Database of Cellular Processes,’’ Nucl. Acids Res. 32,
D443–D448 (2004).

20. C. T. Harbison, D. B. Gordon, T. I. Lee, N. J. Rinaldi, K. D.
Macisaac, T. W. Danford, N. M. Hannett, J.-B. Tagne, D. B.
Reynolds, J. Yoo, E. G. Jennings, J. Zeitlinger, D. K.
Pokholok, M. Kellis, P. A. Rolfe, K. T. Takusagawa, E. S.
Lander, D. K. Gifford, E. Fraenkel, and R. A. Young,
‘‘Transcriptional Regulatory Code of a Eukaryotic Genome,’’
Nature 431, No. 7004, 99–104 (2004).

21. B. Ren, F. Robert, J. J. Wyrick, O. Aparicio, E. G. Jennings,
I. Simon, J. Zeitlinger, J. Schreiber, N. Hannett, E. Kanin,
T. L. Volkert, C. J. Wilson, S. P. Bell, and R. A. Young,
‘‘Genome-Wide Location and Function of DNA Binding
Proteins,’’ Science 290, No. 5500, 2306–2309 (2000).

22. J. Qian, J. Lin, N. M. Luscombe, H. Yu, and M. Gerstein,
‘‘Prediction of Regulatory Networks: Genome-Wide
Identification of Transcription Factor Targets from Gene
Expression Data,’’ Bioinformatics 19, No. 15, 1917–1926
(2003).

23. M. A. Beer and S. Tavazoie, ‘‘Predicting Gene Expression
from Sequence,’’ Cell 117, No. 2, 185–198 (2004).

24. D. Holloway, M. Kon, and C. DeLisi, ‘‘Integrating Genomic
Data to Predict Transcription Factor Binding,’’ Proc.
Workshop Genome Informatics 16, No. 1, 83–94 (2005).

25. T. Jaakola, M. Diekhans, and D. Haussler, ‘‘Using the Fisher
Kernel Method to Detect Remote Protein Homologies,’’
Proceedings of the Seventh International Conference on
Intelligent Systems for Molecular Biology, August 6–10, 1999,
pp. 149–158.

26. S. Hua and Z. Sun, ‘‘A Novel Method of Protein Secondary
Structure Prediction with High Segment Overlap Measure:
Support Vector Machine Approach,’’ J. Molec. Biol. 308,
No. 2, 397–407 (2001).

27. S. Hua and Z. Sun, ‘‘Support Vector Machine Approach for
Protein Subcellular Localization Prediction,’’ Bioinformatics
18, No. 8, 721–728 (2001).

28. M. Wang, J. Yang, and K.-C. Chou, ‘‘Using String Kernel
to Predict Signal Peptide Cleavage Site Based on Subsite
Coupling Model,’’ Amino Acids 28, No. 4, 395–402 (2005).

29. T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski,
M. Schummer, and D. Haussler, ‘‘Support Vector Machine
Classification and Validation of Cancer Tissue Samples Using
Microarray Expression Data,’’ Bioinformatics 16, No. 10,
906–914 (2000).

30. P. Pavlidis and W. S. Noble, ‘‘Gene Functional Classification
from Heterogeneous Data,’’ RECOMB Conference
Proceedings, 2001, pp. 249–255.

31. A. Zien, G. Ratsch, S. Mika, B. Scholkopf, T. Lengauer, and
K.-R. Muller, ‘‘Engineering Support Vector Machine Kernels

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006 D. T. HOLLOWAY ET AL.

641



That Recognize Translation Initiation Sites,’’ Bioinformatics
16, No. 9, 799–807 (2000).

32. G. Lanckriet, N. Cristianini, M. Jordan, and W. S. Noble,
‘‘A Statistical Framework for Genomic Data Fusion,’’
Bioinformatics 20, No. 16, 2626–2635 (2004).

33. B. Scholkopf and A. J. Smola, Learning with Kernels,
MIT Press, Cambridge, MA, 2002.

34. P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to
Data Mining, Addison-Wesley Publishing Co., Boston, MA,
2005.

35. D. Holloway, M. Kon, and C. DeLisi, ‘‘Machine Learning and
Data Combination for Regulatory Pathway Prediction,’’
Synthetic & Syst. Biol. (2006), submitted.

36. T. I. Lee, N. J. Rinaldi, F. Robert, D. T. Odom, Z. Bar-
Joseph, G. K. Gerber, N. M. Hannett, C. T. Harbison, C. M.
Thompson, I. Simon, J. Zeitlinger, E. G. Jennings, H. L.
Murray, D. B. Gordon, B. Ren, J. J. Wyrick, J.-B. Tagne,
T. L. Volkert, E. Fraenkel, D. K. Gifford, and R. A. Young,
‘‘Transcriptional Regulatory Networks in Saccharomyces
cerevisiae,’’ Science 298, No. 5594, 799–804 (2002).

37. P. Hodges, A. McKee, B. Davis, W. Payne, and J. Garrels,
‘‘The Yeast Proteome Database (YPD): A Model for the
Organization and Presentation of Genome-Wide Functional
Data,’’ Nucl. Acids Res. 27, No. 1, 69–73 (1999).

38. R. Young, ‘‘Transcriptional Regulatory Network’’; see http://
staffa.wi.mit.edu/cgi-bin/young_ public/navframe.
cgi?s¼17&f¼evidence.

39. M. Kellis et al.,‘‘Yeast Comparative Genomics’’; see http://
www.broad.mit.edu/annotation/fungi/comp_ yeasts/ (2003).

40. J. van Helden, ‘‘Regulatory Sequence Analysis Tools,’’ Nucl.
Acids Res. 31, No. 13, 3593–3596 (2003).

41. E. Birney, T. D. Andrews, P. Bevan, M. Caccamo, Y. Chen,
L. Clarke, G. Coates, J. Cuff, V. Curwen, T. Cutts, T. Down,
E. Eyras, X. M. Fernandez-Suarez, P. Gane, B. Gibbins,
J. Gilbert, M. Hammond, H.-R. Hotz, V. Iyer, K. Jekosch,
A. Kahari, A. Kasprzyk, D. Keefe, S. Keenan,
H. Lehvaslaiho, G. McVicker, C. Melsopp, P. Meidl,
E. Mongin, R. Pettett, S. Potter, G. Proctor, M. Rae, S. Searle,
G. Slater, D. Smedley, J. Smith, W. Spooner, A. Stabenau,
J. Stalker, R. Storey, A. Ureta-Vidal, K. C. Woodwark,
G. Cameron, R. Durbin, A. Cox, T. Hubbard, and M. Clamp,
‘‘An Overview of Ensembl,’’ Genome Res. 14, No. 5, 925–928
(2004).

42. R. L. Tatusov and D. J. Lipman, ‘‘National Center for
Biotechnology Information, NCBI Toolkit’’; see http://
www.ncbi.nlm.nih.gov/.

43. A. Smit, R. Hubley, and P. Green, Institute for Systems
Biology, ‘‘Repeatmasker Open 3.0’’; see http://
repeatmasker.org.

44. S. Aerts, G. Thijs, B. Coessens, M. Staes, Y. Moreau, and
B. De Moor, ‘‘Toucan: Deciphering the Cis-Regulatory Logic
of Coregulated Genes,’’ Nucl. Acids Res. 31, No. 6, 1753–1764
(2003).

45. C. Harbison, E. Fraenkel, and R. Young, ‘‘Matrices for
Motifs’’; see http://jura.wi.mit.edu/fraenkel/download/
release_v24/final_set/Final_InTableS2_v24.motifs.

46. E. Birney, D. Andrews, M. Caccamo, Y. Chen, L. Clarke,
G. Coates, T. Cox, F. Cunningham, V. Curwen, T. Cutts,
T. Down, R. Durbin, X. M. Fernandez-Suarez, P. Flicek,
S. Graf, M. Hammond, J. Herrero, K. Howe, V. Iyer,
K. Jekosch, A. Kahari, A. Kasprzyk, D. Keefe, F. Kokocinski,
E. Kulesha, D. London, I. Longden, C. Melsopp, P. Meidl,
B. Overduin, A. Parker, G. Proctor, A. Prlic, M. Rae, D. Rios,
S. Redmond, M. Schuster, I. Sealy, S. Searle, J. Severin,
G. Slater, D. Smedley, J. Smith, A. Stabenau, J. Stalker,
S. Trevanion, A. Ureta-Vidal, J. Vogel, S. White, C.
Woodwark, and T. J. P. Hubbard, ‘‘Ensembl 2006,’’ Nucl.
Acids Res. 34, No. 1, D556–D561 (2006).

47. J. E. Galagan, S. E. Calvo, K. A. Borkovich, E. U. Selker,
N. D. Read, D. Jaffe, W. FitzHugh, L.-J. Ma, S. Smirnov,
S. Purcell, B. Rehman, T. Elkins, R. Engels, S. Wang, C. B.
Nielsen, J. Butler, M. Endrizzi, D. Qui, P. Ianakiev, D. Bell-

Pedersen, M. A. Nelson, M. Werner-Washburne, C. P.
Selitrennikoff, J. A. Kinsey, E. L. Braun, A. Zelter, U. Schulte,
G. O. Kothe, G. Jedd, W. Mewes, C. Staben, E. Marcotte,
D. Greenberg, A. Roy, K. Foley, J. Naylor, N. Stange-
Thomann, R. Barrett, S. Gnerre, M. Kamal, M. Kamvysselis,
E. Mauceli, C. Bielke, S. Rudd, D. Frishman, S. Krystofova,
C. Rasmussen, R. L. Metzenberg, D. D. Perkins, S. Kroken,
C. Cogoni, G. Macino, D. Catcheside, W. Li, R. J. Pratt, S. A.
Osmani, C. P. C. DeSouza, L. Glass, M. J. Orbach, J. A.
Berglund, R. Voelker, O. Yarden, M. Plamann, S. Seiler,
J. Dunlap, A. Radford, R. Aramayo, D. O. Natvig, L. A.
Alex, G. Mannhaupt, D. J. Ebbole, M. Freitag, I. Paulsen,
M. S. Sachs, E. S. Lander, C. Nusbaum, and B. Birren, ‘‘The
Genome Sequence of the Filamentous Fungus Neurospora
crassa,’’ Nature 422, No. 6934, 859–868 (2003).

48. R. Dean, ‘‘Fungal Genomics Laboratory at North Carolina
State University, Broad Institute of MIT and Harvard’’; see
http://www.fungalgenomics.ncsu.edu and http://www.broad.
mit.edu.

49. P. Cliften, P. Sudarsanam, A. Desikan, L. Fulton, B. Fulton,
J. Majors, R. Waterston, B. A. Cohen, and M. Johnston,
‘‘Finding Functional Features in Saccharomyces Genomes by
Phylogenetic Footprinting,’’ Science 301, No. 5629, 71–76
(2003).

50. M. Kellis, N. Patterson, M. Endrizzi, B. Birren, and E. S.
Lander, ‘‘Sequencing and Comparison of Yeast Species to
Identify Genes and Regulatory Elements,’’ Nature 423,
No. 6037, 241–254 (2003).

51. A. Halees, D. Leyfer, and Z. Weng, ‘‘Promoser: A Larger-
Scale Mammalian Promoter and Transcription Start Site
Identification Service,’’ Nucl. Acids Res. 31, No. 13, 3554–3559
(2003).

52. P. Pavlidis, I. Wapinski, and W. S. Noble, ‘‘Support Vector
Machine Classification on the Web,’’ Bioinformatics 20, No. 4,
586–587 (2004).

53. J. Ihmels, S. Bergman, and N. Barkai, ‘‘Naama Barkai
Group’’; see http://barkai-serv.weizmann.ac.il/GroupPage/.

54. The Mathworks, ‘‘MATLAB: MATrix LABoratory’’; see
http://www.mathworks.com/.

55. J. Weston, A. Elisseeff, G. Bakir, and F. Sinz, ‘‘SPIDER:
Object Oriented Machine Learning Library’’; see http://
www.kyb.tuebingen.mpg.de/bs/people/spider/.

56. J. C. Platt, ‘‘Probabilistic Outputs for Support Vector
Machines and Comparisons to Regularized Likelihood
Methods,’’ in Advances in Large Margin Classifiers,
P. Bartlett, B. Schölkopf, D. Schuurmans, and A. Smola, Eds.,
MIT Press, Cambridge, MA, 2000.

57. N. Simonis, S. J. Wodak, G. N. Cohen, and J. van Helden,
‘‘Combining Pattern Discovery and Discriminant Analysis
to Predict Gene Co-Regulation,’’ Bioinformatics 20, No. 15,
2370–2379 (2004).

58. F. Gao, B. Foat, and H. Bussemaker, ‘‘Defining
Transcriptional Networks Through Integrative Modeling of
mRNA Expression and Transcription Factor Binding Data,’’
BMC Bioinformatics 5, No.1, 31 (2004).

59. D. Goodsell and R. Dickerson, ‘‘Bending and Curvature
Calculations in B-DNA,’’ Nucl. Acids Res. 22, No. 24,
5497–5503 (1994).

60. S. Parker, J. Greenbaum, G. Benson, and T. D. Tullius,
‘‘Structure-Based DNA Sequence Alignment,’’ poster
presented at the 5th International Workshop in Bioinformatics
and Systems Biology, Berlin, Germany, August 2005.

61. B. Balasubramanian, W. K. Pogozelski, and T. D. Tullius,
‘‘DNA Strand Breaking by the Hydroxyl Radical Is Governed
by the Accessible Surface Areas of the Hydrogen Atoms of the
DNA Backbone,’’ Proc. Natl. Acad. Sci. 95, No. 17,
9738–9743 (1998).

Received October 3, 2005; accepted for publication

D. T. HOLLOWAY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006

642 December 21, 2005; Internet publication June 27, 2006



Dustin T. Holloway Department of Molecular Biology,
Cell Biology, and Biochemistry, Boston University, Boston,
Massachusetts 02215 (dth128@bu.edu). Mr. Holloway received his
bachelor’s degree in microbiology with a minor in biochemistry
from Pennsylvania State University in 2002. He is currently a
Dean’s Fellow in the Molecular Biology, Cell Biology, and
Biochemistry (MCBB) Department and a Ph.D. candidate in
Dr. Charles DeLisi’s laboratory.

Mark A. Kon Department of Mathematics and Statistics, Boston
University, Boston, Massachusetts 02215 (mkon@bu.edu). Dr. Kon
is a professor of mathematics and statistics at Boston University;
he is affiliated with the Department of Cognitive and Neural
Systems and the Bioinformatics Graduate Program. He has also
served as departmental director of graduate studies at Boston
University and is on the editorial board of Neural Networks.

Charles DeLisi Department of Bioinformatics and Systems
Biology, Boston University, Boston, Massachusetts 02215
(delisi@bu.edu). Dr. DeLisi is Arthur G. B. Metcalf Professor
of Science and Engineering at Boston University, where he served
as Dean of the College of Engineering from 1990 to 2000. He is
also a former director of the Department of Energy Health and
Environmental Research Programs and a current Fellow of the
AAAS and the American Institute of Medical and Biological
Engineers.

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006 D. T. HOLLOWAY ET AL.

643


