Graph data
management
for molecular
and cell biology

As high-throughput biology begins to generate large volumes of
systems biology data, the need grows for robust, efficient database
systems to support investigations of metabolic and signaling
pathways, chemical reaction networks, gene regulatory networks,
and protein interaction networks. Network data is frequently
represented as graphs, and researchers need to navigate, query
and manipulate this data in ways that are not well supported by
standard relational database management systems (RDBMSss).
Current approaches to managing graphs in an RDBMS rely on
either external procedural logic to execute the graph algorithms or
clumsy and inefficient algorithms implemented in Structured Query
Language (SQL). In this paper we describe the Systems Biology

B. A. Eckman
P. G. Brown

Graph Extender, a research prototype that extends the IBM
RDBMS—DB?2" Universal Database software—with graph
objects and operations to support declarative SQL queries over
biological networks and other graph structures. Supported
operations include neighborhood queries, shortest path queries,
spanning trees, graph transposition, and graph matching. In a
federated database environment, graph operations may be applied
to data stored in any format, whether remote or local, relational or
nonrelational. A single federated query may include both graph-
based predicates and predicates over related data sources, such
as microarray expression levels, clinical prognosis and outcome,
or the function of orthologous proteins (i.e., proteins that are
evolutionarily related to those in another species) in mouse disease

models.

Introduction

Graph structures in systems biology

Graph structures or networks are ubiquitous in post-
genomic molecular and cell biology. The quest to identify
gene function has increasingly focused on the ways in
which genes and gene products interact with other genes,
proteins, and small molecules in the cell. The term
systems biology has many definitions; here is one offered
by the Institute for Systems Biology: “Systems biology is
the study of an organism, viewed as an integrated and
interacting network of genes, proteins and biochemical
reactions which give rise to life” [1]. While other
definitions of systems biology might emphasize the
interactions of cells within tissues and tissues within

organs, and an ecologically minded researcher might
focus on predator—prey relationships within an
ecosystem, all of them share a common element: they
involve a complex set of relationships among interacting
components. These relationships are normally modeled
using graph structures and operations.

Publicly available databases of biomolecular
interactions and biological pathways are proliferating;
they comprise an increasing volume of both
computationally predicted and experimentally
determined data. Examples include IntAct [2], DIP [3],
BIND** [4], KEGG [5], and the Yeast, Fly, or Worm
General Repositories for Interaction Datasets (GRIDs)
[6]. Although they are not the focus of this paper,
networks of related biological terms, such as the Gene
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Figure 1

Biological connection graph. Nodes are genes or proteins. Edges
represent a heterogeneous set of relationships, e.g., orthology or
paralogy (turquoise, weighted with p values), protein—protein
interactions (black, labeled with literature references or the experi-
mental method used), domain fusion (orange), and chromosomal
proximity (brown).

Figure 2

Biochemical pathway that includes a disease-related protein.
Nodes represent proteins. Arc colors encode different biochemical
interactions between proteins, e.g., stimulates, activates, inhibits.
Edge weights, signifying confidence in the interactions, are
represented visually by the thickness of the arcs.

Ontology [7], MeSH [8], and UMLS [9], are also readily
modeled as graph structures. The following are examples
of relationships between biomolecular entities (A and B)
that constitute networks:

* A is similar to B [e.g., relationships of orthology
(evolutionary relationships across species) or paralogy
(evolutionary relationships within species)].

* A interacts with B.

'Our IBM Research colleagues Peter Schwarz and Julia Rice have used the Systems
Biology Graph Extender for just this purpose.
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* A regulates the expression of B.

* A inhibits the activity of B.

¢ A stimulates the activity of B.

* A binds to B [e.g., protein—-DNA binding, protein
dimers, ligand binding, G-protein (guanine
nucleotide-binding protein) coupling].

A fruitful method of representing the totality of
information known about the function of a gene or a
protein, i.e., its relationships with other biomolecular
components, is to construct a biological connection graph
(Figure 1). Like all graphs, a biological connection graph
consists of a set of nodes or vertices, which represent the
interacting components, and edges, which represent
relationships between the nodes. Edges represented as
arrows or arcs may be colored or labeled to signify the
relationship type (binding, orthology, and so forth).
Edges may be weighted to signify the likelihood of the
relationship (using, for example, the p value, or the
probability that a relationship could be due to chance
alone), the confidence with which the relationship is
posited, or the yield associated with an edge in a
biochemical reaction graph (e.g., A — B with a 60% yield,
A — C with a 40% yield). Edges can be directed (e.g.,
A regulates B) or undirected (e.g., A and B are orthologs).
In this way, a heterogeneous collection of relationship
types can be integrated into a single graph in which the
large, complex network of connections can be queried,
investigated, and reasoned about.

Motivating examples

The following are typical examples of real-world
biological questions that may be represented as queries
over graph structures:

1. Finding potentially druggable targets (i.e., proteins
that can bind with high affinity and specificity to
small, druglike compounds [10]). To disrupt the
activity of protein A (e.g., because it is disease-
related but not a member of a druggable protein
family), find all proteins B within a path length &
upstream of A in a biological pathway graph,
considering only interactions of a certain type (color)
whose confidence value (weight) exceeds a certain
threshold (Figure 2).

2. Graph topology reflecting function. Interacting
proteins tend to form highly connected clusters
within interaction networks. Salwinski and Eisenberg
[11], citing Ravasz et al. [12], suggest that we can
assess the quality of a prospective interaction by
examining the length of the shortest path between
potential interactors. In signaling networks, subgraph
matching may be used to find graph motifs that may
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correspond to repeated functional modules, possibly
conserved through evolution [13].

3. Inferring functional relationships. In predicting
interlogs (i.e., evolutionarily conserved protein—
protein interactions) [14], protein pairs are more
likely to interact if their orthologs interact in one
or more other species. More generally, following
Marcotte et al. [15] and the Predictome [16] and
STRING [17] projects, one may infer functional
relationships among proteins (new edges in the
connection graph) based on a variety of links
between proteins within and across species, e.g.,
orthology relationships, chromosomal proximity,

phylogenetic profiling, and domain fusion (Figure 3).

4. Exploring neighborhoods in function space. Construct
a graph consisting of protein nodes from multiple
species, connected by functionally relevant edges of
various types (e.g., orthology, paralogy, interaction,
domain fusion, and chromosomal proximity).

Find all neighbors within k& hops of a protein of
interest following only interaction edges based on
experimental evidence and orthology edges within
a threshold evolutionary distance. See the section
on simple graph queries below for an example
Structured Query Language (SQL) query.

Further examples of biologically relevant graph queries
can be found in [18, 19].

This paper describes the Systems Biology Graph
Extender (SBGE), a research prototype that extends
the IBM relational database management system
(RDBMS)—IBM DB2* Universal Database—with graph
objects and operations to support queries over biological
networks, connection graphs, and other graph structures.
The SBGE allows bioinformaticians (researchers who
specialize in bioinformatics, the application of computer
science and information technology to biological
investigations) and developers to exploit the power of
graph algorithms to answer important questions in
biological research. The paper is organized as follows.
To make our discussion accessible to both computer
scientists and biologists, in the next section we give a brief
overview of SQL, the relational model, and graph theory.
We then describe the SBGE data model and query
language extensions in detail, followed by examples of
ways in which the SBGE can be used to answer real-world
biological questions. In the last two sections, we briefly
discuss related work and directions for further research
and development and then highlight the key features
of the SBGE and present our conclusions.

Background

In this section we provide a brief overview of the
relational data model and the capabilities of SQL for
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Figure 3

Schematic method of illustrating the inferred functional
relationships in the Halobacterium proteome based on a variety of
inter- and intra-proteome relationships. The output of graph
analysis consists of the predicted green-dashed relationships.

those who may not be familiar with it. We present graph
theory more formally and point out how it pertains to
mainstream data processing.

SQL and the relational model

In an RDBMS, data is viewed as tables composed of rows
and columns, as in a spreadsheet. The data is queried
using SQL, a declarative query language. A declarative
language allows users to describe the results they wish
to retrieve rather than the steps used to retrieve those
results; users specify what they want, not how they want
to get it. SQL allows a variety of powerful set-based
operations, including filtering out extraneous data from a
dataset, performing UNIONs and INTERSECTIONs of sets of
data, and JOINing sets of data on a common field. For
more on RDBMSs and their advantages for managing
biological data, see [20].

Although it has many strengths, SQL does not support
such arbitrarily complex operations on data as regular
expression pattern matching on strings or BLAST [21]
alignments on protein sequences. To build in more
complex operations, DB2 and most commercial
RDBMSs expand SQL with special-purpose functions
called user-defined functions (UDFs). UDFs can be
used anywhere in an SQL query that an expression of
their return type can be used. For example, a function
returning a table can be used in the SQL FROM clause, and
a function returning a scalar can be used in the SELECT
and WHERE clauses.

The SBGE uses functions to extend DB2 with graph
operations. We can easily represent graphs in relational
tables as sets of nodes and sets of edges, but we cannot
easily express all relevant operations—e.g., path of length
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k, neighborhood queries, and graph matching—on
graphs in SQL. So why use SQL at all? Because the
mature technology in a commercial RDBMS allows us to
efficiently define and retrieve subgraphs based on node
and edge annotations, labels, and weights. RDBMSs scale
well for large graphs because they can perform searches
without requiring the entire graph database to be loaded
into main memory. In sum, our approach is to manage
graph data using SQL and to manage graph operations
using functional extensions to SQL.

From the computer science point of view, biological
graph-structured data is interesting because it is the
following:

* Large and getting larger. Leser [18] reports that the
STRING database of predicted protein links has
more than 200,000 associations. The Ingenuity**
Pathways Knowledge Base [22] contains millions of
pathway interactions extracted from the scientific
literature. Any single user query will deal with a
relatively small subset of the entire graph.

e Shared among a community of users, each of whom
cares about potentially overlapping subsets of the
large, integrated network of known and inferred
connections among genes and proteins. For example,
one group of scientists in a large organization might
be interested in the human apoptosis pathway, and
another group might be focused on the network of
evolutionary relationships among apoptosis-related
genes in a variety of eukaryotic species.

e Subject to constant change and revision. For example,
functional links among human proteins inferred from
yeast interactions must be updated as false positives,
and negatives are eliminated from the yeast datasets.
In many graph applications, edge properties
(likelihoods and measures of confidence) are central
to the problem definition; while the graph structure
may be fixed, its edge properties, and therefore the
optimal answers to graph questions, will vary.

* A valuable asset to the organization that paid for
generating or discovering it. Since data is arguably
the most important commodity in science, managing
it is worth doing right. RDBMSs were developed
to support business data management information
systems and therefore place a premium on quality-of-
service properties such as data integrity (consistency
with certain rules), availability (efficient concurrent
access for many users), recoverability (robustness
to system and software failure), and security.

Requirements such as scalability, multiuser access

control, and robustness make the management of graph
data a classic database management system (DBMS)
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problem. From the biology point of view, extending
an RDBMS with graph operations means that all of
the industrial-strength features that make RDBMSs
the technology of choice for data management are
automatically available for graph data management.
These features include query optimization, efficient
management of a hierarchy of storage devices via caching
and buffering to enhance performance, referential
integrity, recoverability, scalability, transaction
management to permit concurrent updates, and a
declarative query language [23].

Overview of graph theory

In this section we briefly outline the graph data model
employed by the SBGE. Graph theory is a very large,
verdant field of study, and we have deliberately chosen
to start with the basics. In formal terms, a Graph G

is a triple (N, E, W), where N = {n;} is a set of nodes,
E C No< Nis a set of edges, each edge consisting of a
pair of nodes (n;, n;), and W is a mapping E — R",
corresponding to the payload or set of properties of
each edge. The payload is defined as a vector of real
numbers because in practice, edge properties can be
quite complex.

A graph whose edges have direction—i.e., are oriented
from a source node to a destination node—is called a
directed graph, or digraph. A graph or digraph that
has multiple edges among nodes is a multigraph or
multidigraph, respectively. An edge that connects a node
to itself is called a loop. The SBGE currently supports
graphs and digraphs with loops, though it could, in
principle, support multigraphs as well. For simplicity, we
use the word graph throughout this paper when referring
to both graphs and digraphs.

Figure 4(a) shows a simple graph consisting of eight
nodes and 11 edges. Each node and each edge is identified
by a non-zero integer value. Each edge label is of the form
i:p, where i is the edge identifier and p is its payload,
in this example a single real number value. (In our
implementation, SBGE edge payloads actually support a
vector of seven 64-bit double-precision values for weights
and seven 8-bit characters for labels or colors.)

Systems Biology Graph Extender (SBGE)
In this section we introduce the data model and the query
language extensions that make up the SBGE.

Graph management in SQL

Representing graphs in an RDBMS is straightforward.
A simple table holding one edge per row is all that is
required. A more elaborate schema might normalize
information relating to the nodes or the edge payloads
into separate tables related by foreign keys to the edge
table. Figure 4(b) presents the SQL Data Definition
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Language (DDL) needed to define such a table, and
Figure 4(c) shows how the table would look if it were
populated with data from the graph in Figure 4(a). This
kind of graph representation is usually referred to as a
node association list. (For simplicity, the payload is
represented here as a scalar, while in the general case

it is a vector.)

Data model

The SBGE data model has three primary features. First,
it defines a graph as a first-class SQL data type (i.c., a data
type that can be manipulated in the same ways as other
types in the SQL language). This permits developers to
work with graph instances using SQL in the same way
that they work with textual strings or numbers. For
example, a graph type can be used in the definition of an
SQL table, functions can accept or return instances of the
graph type, and developers can manipulate instances of
the graph type in SQL queries using methods over the
type. In formal terms, we have introduced the notion of
graphs (and digraphs) as a domain within the framework
of the relational model. By encapsulating graphs and
graph operations within a data type and a set of
associated operators, we are able to employ algorithms
to compute graph operations that are not available to a
query executor limited to the set of relational operators.

Second, the SBGE defines an aggregate operator that
turns a list of rows (that is, the result of an SQL SELECT
query) into graph instances. In formal terms, we have
introduced a new relational operator, which takes as
input a relation with a certain set of attributes (an edge
list) and returns another relation consisting of a single
attribute of the graph domain.

Third, our extensions define a new class of relational
operators, which takes a single graph instance and
decomposes it back into simpler data structures,
including edge lists, as in Figure 4(c).

Thus we extend the relational algebra by implementing
functions that are closed over relational tables and graphs
encapsulated as user-defined types. Developers can start
with graph data stored in an SQL table—or computed
using an SQL SELECT query—convert it to an instance of
a graph object, perform some operation on the graph
object, and then store the result back in the database
as either a set of graph instances or an edge list.

Implementation

In this section we illustrate, in a slightly simplified syntax,
the SQL extensions making up the SBGE. For simplicity,
we omit the DDL statements involved in adding these
features to the RDBMS. Instead, we focus on how
application developers would use the extensions and, in
particular, how they might use the SBGE for reasoning
about the Gene Ontology database [7]. More specifically,
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CREATE TABLE Edge_List (
1D INTEGER NOT NULL PRIMARY KEY,
Node_A INTEGER NOT NULL,
Node_B INTEGER NOT NULL,

Payload FLOAT NOT NULL
)g
(b)

ID Node_A Node_B Payload
1 1 2 12.3
2 2 3 1.5
3 2 4 415.7
4 3 4 10.1
5 4 6 43
6 2 6 0.1
7 1 7 3.9
8 5 6 27.1
9 5 8 7.4

10 6 8 9.1

11 5 7 0.5

(©)

(a) Simple graph; (b) DDL for simple edge table; (c) edge-list
representation of simple graph (a).

we focus on two tables within that schema: TERMS and
TERM2TERM. A subset of the Gene Ontology Schema is
shown in Figure 5.

The purpose of Gene Ontology is to provide for
consistent use of terminology in life sciences and systems
biology research. These tables hold information about the
terms in the ontology (words and phrases employed by
scientists studying gene function) and relationships
among these terms, for example, when a term such as
apoptosis is a specialized form of another term, cell death.
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CREATE TABLE TERMS (

ID INTEGER NOT NULL PRIMARY KEY,
NAME VARCHAR(255) NOT NULL WITH DEFAULT "',
TERM_TYPE  VARCHAR(55) NOT NULL WITH DEFAULT "'
ACC VARCHAR(255) NOT NULL WITH DEFAULT "'
IS_OBSOLETE INTEGER NOT NULL WITH DEFAULT O,
IS_ROOT INTEGER NOT NULL WITH DEFAULT O

)g
CREATE TABLE TERM2TERM

ID INTEGER NOT NULL PRIMARY KEY,
REL_TYPE INTEGER NOT NULL WITH DEFAULT O,
TERM1 INTEGER NOT NULL

REFERENCES TERMS (ID),
TERM2 INTEGER NOT NULL

REFERENCES TERMS (1ID)

Subset of Gene Ontology schema.

Graph data type

The SBGE adds graphs and digraphs as new domains or
data types to SQL. The new types are primarily used in
table definitions. They specify the kind of data a table
column is to contain. The SQL statement

CREATE TABLE Graph_Data_Table (

Id INTEGER PRIMARY KEY,
Comment VARCHAR (255) NOT NULL,
Data Graph NOT NULL

illustrates how a developer may create a table to store
graph data objects alongside more conventional SQL
data types.

Simple graph construction

The simplest operation in the SBGE is a function that
takes as input the minimum amount of information
needed to construct a graph that consists of a single edge.
The following illustrates a query that constructs one
simple graph for each row in the TERM2TERM table:

WITH Small_Graphs (Graph_Data) AS (
SELECT Graph (  TT.Id,
TT.Terml,
TT.Term?2)
FROM Term2Term TT
)
SELECT Status (G. Graph_Data)
FROM Small_Graphs G;

It is in the following form: For each row in TT,

construct a simple one-edge graph and add it to the table
variable Smal1_Graphs. Then return a status for each row
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(each graph) in the table variable. Note that although
edges in Gene Ontology are directed—term A is a
specialization of term B, but not vice versa—for
simplicity, we continue focusing on the semantics

of graphs, not digraphs.

The query above introduces a necessary complication.
The SBGE manages graph data in a binary format,
making it necessary to apply some operation over
each graph data object to make it readable. In this
case, the function Status( ) reports some useful
details about the graph to which it is applied: node
count, edge count, and as many of the graph properties
as can be efficiently computed, such as whether or not
the graph is a tree.

Compiling graphs
A more complex extension involves combining multiple
graphs into a single large graph. We chose the term
compilation because the process calls for something more
than just creating a union of all of the edges in the input
graphs. As part of the compilation process, it is possible
to infer automatically certain properties about the graph
that will result. For example, a graph is a tree if a) the
number of nodes exceeds the number of edges by 1,
and b) the graph consists of a single component.

The compilation process requires the SBGE to deal
gracefully with constraints such as the following:

* When two input graphs possess identical edges in
terms of having the same source and destination
nodes (with the same orientation, if relevant), what is
to be done with the payloads? The graph compiler
may choose a) the minimum or b) the maximum
payload from among those on offer, or else
¢) combine the payloads.

¢ The graph must contain no ambiguity with respect to
edge identities. If the same edge identification is used
erroneously for two different source/destination
combinations, the SBGE will produce an error.

The SBGE compiles graphs with a User-Defined
Aggregate (UDA) operation [24, 25]—an extensibility
mechanism provided by most modern RDBMS products.
In SQL, aggregate functions take a list of data values and
compute some result over the input list, typically a
statistic such as a sum or an arithmetic mean. UDAs
generalize this concept. A UDA takes as input a list
of data values of some type (often user-defined) and
produces as output a result reflecting some operation over
the entire set.

The graph compilation query below is in the following
form: For each row in TT, construct a simple one-edge
graph and add it to the table variable Smal1_Graphs;
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compile all of the rows (graphs) in the table variable into
a single large graph and report its status:

WITH Small_Graphs (Graph_Data) AS (
SELECT Graph ( TT.Id,
TT.Terml,
TT.TERM2)
FROM Term2Term TT
)
SELECT Status (
GraphCompile (G. Graph_Data))
FROM Smal1_Graphs G;

In contrast to the previous query, which produces as
many small graphs as there are rows in the TERM2TERM
table, this query produces exactly one graph. All of the
logical edges in the TERM2TERM table are included in the
query result graph. Duplicate edge rows in the TERM2TERM
table are found in the resulting graph only once.

Having constructed a graph, we can save to a table.
This is achieved by using the query below in the following
form: Insert a row containing the single large graph, an
Id, and a comment into a relational table; compile all of
the simple graphs into a single large graph; for each row
in TT, construct a simple one-edge graph:

INSERT INTO Graph_Data_Table
( Id, Comment, Data)
SELECT 101,
‘Simple Example Graph’,
Graph_Compile (
Graph ( TT.Id,
TT.Terml,
TT.TERM2))
FROM Term2Term TT;

Implementing graph compilation as an aggregate
provides a number of advantages over implementing the
same operation as an SQL stored procedure. The most
important of these is flexibility. SBGE UDFs can be
combined in the style of a functional programming
language with the results of each function being passed as
an argument to another. A single query can compile a
number of graphs, compare them or filter them according
to some criteria, and then store the results in a table.
Another advantage of implementing graph compilation
as a UDA lies in the way that the SBGE can exploit the
RDBMS intraquery parallelism: Stored procedures and
external code cannot be parallelized so easily. One of our
plans for future work is to exploit this innate RDBMS
parallelization (see the section on further research and
development below).

One way to characterize our work is to point out that
our emphasis is on supporting operations that involve a
very large number of small to medium-sized graphs rather
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yeast_yeast yeast_human_orth
(GRID yeast interactions) [ > (yeast_human_orthology)

'\/’

‘ node_labels (protein definitions) ‘

DB2 local

NCBI remote

’ Entrez PubMed (literature abstracts) ‘

Database schema for example queries.

than complex operations on a single very large graph. Of
course, by embedding our SBGE within the RDBMS, we
can store and reason about graphs that have as many
edges as one may have rows in an SQL table. In practice,
any one operation over an extremely large graph tends to
filter out uninteresting edges and nodes, a function that
can be efficiently performed by the RDBMS engine.

Graph operations

The functions that comprise the SBGE are summarized in
Table 1, along with descriptions of what they do. These
functions represent four major categories: extracting
graph properties, comparing graphs, computing graphs
from graphs, and decomposing a graph into its
component parts.

Examples of biologically relevant graph queries
To illustrate the ease and elegance of performing graph
operations on biological data using the SBGE and to
demonstrate its effectiveness in answering real-world
biology questions, we have assembled a simple biological
connection graph consisting of three local database tables
(shown in the DB2 section of Figure 6) and one remote
annotation data source at the National Center for
Biotechnology Information (NCBI). The yeast_yeast
table, downloaded from the Yeast General Repository for
Interaction Datasets (GRID) [6], contains 19,789
interactions (edges) among 4,917 yeast proteins (nodes).
The interactions are labeled with the experimental
technique used to detect the interaction and a PubMed
identifier linking the interaction with the relevant
reference in the PubMed [8] database of annotated
abstracts from the biomedical literature. The
yeast_human_orth table contains orthology
relationships among 1,781 human proteins and 1,683
yeast proteins (1,781 edges and 3,464 nodes) contributed
by our collaborator, Dr. Dennis Wall of the Harvard
Medical School. Orthology edges are given weights 551
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Table 1

Graph operations supported by the SBGE.

Operation

Description

Extract graph
properties

Test subgraph
inclusion

Test graph equality

Compute shared nodes
and edges

Perform
elementary
transformations

Compute intersection,
union, or disjunction

Compute connected
components

Compute shortest path
and shortest path tree

Compute distance
between nodes

Compute minimum
spanning tree

Compute neighbor
regions

Shred graph into
list of its edges

Shred graph into
list of nodes

Perform topological
sort

Extract graph properties

Given a graph, return such properties as number of nodes, number of edges, whether or not a
directed graph has cycles, number of components contained in the graph, sum of graph edge
payloads, etc.

Compare graphs

Compare two graphs A and B to see whether graph A is a subgraph of graph B. The function
returns TRUE 1ff (if and only if) for every edge in A there exists an equivalent edge in B (i.e., an
edge with the same source and destination node IDs). Note that subgraph and equality comparisons
implemented in the SBGE are computationally simpler than general isomorphism, and they can be
accomplished in time O(|E]).

Compare two graphs A and B for equality. The function returns TRUE iff for every edge in A
there exists an equivalent edge in B (that is, an edge with the same source and destination node
IDs), and for every edge in B, there exists an equivalent edge in A. Graph A equals B iff graph A
is a subgraph of B and B is a subgraph of A.

Compare two graphs to see whether they intersect. There are two types of intersection: node
intersection (where graphs A and B share a node with the same ID) and edge intersection (where
graphs A and B share an edge with the same source and destination ID and, optionally, payload).
These functions are computed in O(|N|) and O(|E|) respectively.

Compute graphs from graphs

Transpose a directed input graph (create a new graph with all of the edge orientations reversed), or
compute the transitive closure of an input graph (a new graph with an edge between every pair of
nodes that are connected by some path in the input graph).

Compute the intersection, union, or disjunction of two graphs.

A single graph G may contain several connected component subgraphs; i.e., each of the nodes in
subgraph A is connected via some path to all of the other nodes in A, and the same for subgraph
B, but the nodes in A are not connected to the nodes in B, and vice versa. In the case of digraphs,
the components in which each of the nodes can be reached from all of the other nodes are called
strongly connected components.

Given a graph G, starting at some node n, compute a graph (path) that is the sequence of edges
from n to a destination node s for which the sum of the edge weights is minimal over the set of all
such paths. Similarly, compute the shortest path tree, i.e., the tree rooted at n that consists of the
set of shortest paths from » to each s in G.

Compute the distance between two nodes as a sum of the weights along the shortest path edges.

Given a graph G, compute a new graph consisting of the set of edges that constitute the minimum
spanning tree for G, i.e., an acyclic subgraph of G that connects all of the nodes and whose total
weight is minimized.

Given a graph G and a start node #n, return the region of G that can be reached from n by a path
of some maximum number k of edges. We speak of the k-in or k-out neighbor region of a graph
(digraph).

Decompose a graph into its component parts

Given an input graph, output a list of its edges. This list constitutes the same type of relational table
from which G was originally constructed. Intuitively, this is the inverse of graph compilation.

Given an input graph, return a list of all of its nodes together with details about the number of
incident edges each node has. One might use this function to find periphery nodes in a graph, i.e.,
nodes with exactly one incident edge.

Output the nodes in a sorted order based on their dependencies such that if the graph contains an
edge (u, v), then u appears before v in the ordering.
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WITH Inter_Ortho_Edges ( eid, pl, p2)
AS
(
SELECT i.eid, i.a_id, i.b_id
FROM yeast_yeast i
WHERE i.a_id <> i.b_id AND

UNION

SELECT o.eid, o.y_id, o.h_id

FROM yeast_human_orth o

WHERE o.y_id <> o.h_id AND
distance <=5

Do
Graph ( Graph ) AS
(
SELECT GraphMerge(
MAX (
Graph (

)))
FROM Inter_Ortho_Edges GE
)

SELECT
E.srcnode AS src_node_id,
11.7abel as srclabel,
11.node_type AS src_node_type,

E.dstnode AS dst_node_id,

12.1abel as dstlabel,

12.node_type AS dst_node_type
FROM

Graph G,

node_labels 11,
node_Tlabels 12
WHERE
11.node_id = E.srcnode
AND 12.node_id = E.dstnode

expt_system != 'Two Hybrid'

Graph ( GE.EID, GE.P1, GE.P2 )

TABLE(ListEdges(NeighborRegion(G.Graph,1004502869, 3))) E,

Compile the selected edges
into an instance of the graph
data type

Gather the relevant edges from
the edge tables, excluding yeast
2-hybrid interactions and
distant orthologs

Compute the neighbor region
in the compiled graph of the
input protein, and return
results as a list of edges

Exploring neighborhoods in function space.

between 0 and 10 that represent an estimate of their
evolutionary distance. The node_labels table contains
human-readable protein definitions downloaded from
GenBank [26] and the Saccharomyces Genome Database
(SGD) [27].

Simple graph queries

We now give a simple graph query of the type described
in motivating Example 4 in the Introduction. Using the
yeast—yeast interaction data and the yeast-human
orthology data noted in Figure 6 and described above,
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Figure 7 shows the SQL query to find all neighbors within
three hops of the human chloride channel 3 protein
(ID #1004502869) following all interaction edges except
those found by the yeast two hybrid method and following
only fairly close orthology edges (distance < 5).

The query is composed of three sections. In the first
section (in yellow), the relevant edges are gathered
from the yeast interaction graph and the yeast—
human orthology graph into a table variable called
Inter_Ortho_Edges, enforcing the constraints on edge
type and weight. In the second section (peach), these

B. A. ECKMAN AND P. G. BROWN
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Table 2 Partial results of Figure 7 query.

src_label src_node_type dst_label dst_node_type

YPT6 yeast RAB6B human
GEF1 yeast chloride channel 3 human
GEF1 yeast RIC1 yeast
YPT6 yeast YPR197C yeast
RIC1 yeast YPR197C yeast
YPT6 yeast YPRO84W yeast
RIC1 yeast YPRO84W yeast
YPT6 yeast MRLI1 yeast
RIC1 yeast MRLI yeast
YPT6 yeast MAK3 yeast
RIClI yeast MAK3 yeast
YPT6 yeast YPRO50C yeast
RIC1 yeast YPRO50C yeast
YPT6 yeast SRO7 yeast
RIClI yeast SRO7 yeast
YPT6 yeast DSS4 yeast
RIC1 yeast DSS4 yeast
YPT6 yeast TFP3 yeast
RIC1 yeast TFP3 yeast
YPT6 yeast OXRI1 yeast
RIC1 yeast OXR1 yeast
YPT6 yeast APLS yeast
RIC1 yeast APLS yeast
YPT6 yeast BEM4 yeast
RICI yeast BEM4 yeast
YPT6 yeast VPS30 yeast
RIC1 yeast VPS30 yeast
RIC1 yeast YPL105C yeast
YPT6 yeast LGEl yeast
RIClI yeast LGEl yeast

edges are compiled into an instance called Graph

of the graph data type. In the third section (green), the
NeighborRegion( ) function returns a graph consisting
of everything within three hops of the input protein, and
the ListEdges( ) function decomposes this temporary
graph into a relational table of edges. Finally, this
temporary edge table is joined with the human-readable
definitions in the node_Tlabels table to produce the
tabular output of the SQL query (Table 2), which can
then be simply listed for the user or formatted for graph
display applications.

B. A. ECKMAN AND P. G. BROWN

Most queries involving graph operations follow the
same pattern as our example, but simply substitute
different edge tables (yellow section) and different graph
functions (green section). For example, the following
functions would be used to implement the following
motivating examples:

1. Finding potentially druggable targets:
Upstream_Neighbors( ).

2. Graph topology reflecting function:
Shortest_Path( ) and Subgraph( ).

3. Inferring relationships: Shortest_Path( ).

Concerning Example 2, some graph-matching
problems in systems biology require full subgraph
isomorphism, the exact solution of which is known to be
NP-complete (i.e., its algorithmic complexity precludes
exhaustive computation). Computational biologists have
developed a variety of heuristic methods to approach this
problem. They are typically implemented in the Java**
programming language. Rather than choose to support
one of these methods over the others, we provide
Java code that converts from the C internal graph
representation used in the SBGE to a Java graph
class representation. This allows SBGE functions to be
seamlessly composed in a single SQL query with UDFs
written in Java. We have tested this approach with
colleagues from the Computational Biology Center at the
IBM Thomas J. Watson Research Center and found that
calling their Java functions within an SQL query and
composing them with SBGE functions greatly enhanced
the system maintainability and ease of use without
significantly affecting performance.

Federated queries

As high-throughput biology begins to generate large
volumes of systems biology data, there is a growing need
for robust, efficient systems to support investigations of
metabolic and signaling pathways, chemical reaction
networks, gene regulatory networks, and protein
interaction networks. In systems biology research in the
post-genomic era, the variety of data sources and number
of techniques available to discover, represent, and predict
functional relationships among biomolecular entities is
large and increasing. Investigators must deal not only
with a variety of network databases (e.g., KEGG [5],
EcoCyc [28], and the Molecule Pages of the Alliance for
Cellular Signaling [29]) and protein interaction databases
(e.g., GRID, DIP, BIND, and IntAct), but also with
related data such as nucleotide and protein sequences and
annotations (GenBank [30], UniProt [31], Entrez Gene
[8]), orthologous clusters (COGs [8]), protein structure
(PDB [32]), chemical compound structures and properties
(e.g., Daylight** Toolkit [33] and MDL** ISIS [34]),
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public and private repositories of microarray expression
data (GEO [8]), and special-purpose databases (e.g.,
GPCRDB [35], ENZYME [36], and TRANSFAC** [37]).
Biological connection graphs comprising multiple
organisms require integration with a variety of model
organism databases (e.g., MGD [38], Flybase [39], and
SGD** [40]). The results of analytic applications such as
BLAST, Daylight, and MDL, and a variety of network
modeling and simulation tools must also form part of an
integrated system that supports systems biology research.

Scientists need to be able to answer questions that
integrate all relevant data, whether it comes from an
RDBMS, flat files, Extensible Markup Language (XML),
Web sites, document management systems, applications,
or special-purpose systems. They need to search through
large volumes of data and correlate information in
complex ways. To derive the greatest advantage from this
data requires full query-based access to all of the most up-
to-date information available, irrespective of where it is
stored or its format, with the flexibility to customize
queries easily to meet the needs of a variety of individual
investigators. A key element in the IBM response to the
challenge of heterogeneous database integration is
federated database technology [41].

IBM federated technology

IBM WebSphere* Information Integrator software builds
on an earlier system, IBM DiscoveryLink* software

[42, 43], by using federated database technology to
provide integrated access to life sciences data sources.
Rather than simply duplicating and loading all data
sources of interest into a common local RDBMS, the
federated middleware “wraps” the actual data sources
in place, providing an extensible framework and
encapsulating the details of the sources and how they
are accessed. In this way, the WebSphere Information
Integrator middleware provides users with a virtual
database to which they can pose arbitrarily complex
queries in the high-level, non-procedural query language
SQL. The WebSphere Information Integrator middleware
efficiently answers these queries, even though the necessary
data may be scattered across several different sources
and those sources may not themselves possess all of the
functionality needed to answer such a query. In other
words, its query engine can optimize queries and
compensate for SQL function that may be lacking in

a data source. Additionally, queries can exploit the
specialized functions of a data source so that no
functionality is lost in accessing the source through

the federated middleware.

Examples of federated queries

The real power of SBGE is revealed in the context of
a data federation. With the WebSphere Information
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Integrator middleware, users can write single declarative
SQL queries that span multiple data sources. They can be
written in a variety of formats and distributed over the
Internet and within an organization as if they were
components of a single relational database. The SBGE
graph functions can operate on edge data taken from a
DB2 or Oracle** database, XML files, Web sites, or a
variety of other sources. Annotations on nodes (e.g.,
proteins and genes) can be drawn from a wide variety
of sources, both publicly available and local to an
organization. These annotations can be retrieved simply
as part of the query result, or they can be used in
specifying constraints to limit the nodes and edges that
are compiled into an instance of the graph data type.

The following example uses the database schema given
in Figure 6. We can find the shortest path in the yeast
interaction graph between yeast proteins ARLI, a soluble
GTPase (ID #368), and FUN26, a nucleoside transporter
(ID #20). In addition to the interaction edges that lie
on the shortest path and the names of the interacting
proteins, we can return the PubMed authors, journal,
title, and abstract where the interaction is reported. The
single SQL query to perform this work is shown in
Figure 8.

Additional examples of biological questions spanning
multiple heterogeneous distributed data sources that may
be answered using single SQL queries that include SBGE
graph functions are as follows:

e To predict candidate genes in juvenile diabetes: Find
all genes that 1) are located in chromosomal regions
identified through association studies (input); 2) are
expressed specifically in the pancreas; 3) are known to
contain single nucleotide polymorphisms (SNPs); and
4) lie within k hops in a biological interaction graph
from 5) a gene known to be involved in metabolism or
immune function. This query integrates the expression
data in UniGene [44] or a local enterprise microarray
database (part 2) with the polymorphism data in
dbSNP [45] (part 3), the SBGE Neighbor_Region( )
function (part 4), and the protein function
classifications in the Gene Ontology (part 5).

¢ Find a subgraph of a large reaction pathway graph
that 1) has the same structure and 2) involves an
enzyme from the same family as the enzyme in the
input subgraph, and retrieve annotations on the
3) proteins and 4) compounds in the subgraph.

This query might integrate the SBGE subgraph( )
function with ENZYME, UniProt, and a database
of compounds in an Oracle database.

e Return genes and their neighbors in known pathways
that are at least twofold up- or down-regulated after
lung transplant rejection compared to the immediate
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WITH Inter_Ortho_Edges ( eid, pl,p2 )
AS
(
SELECT i.eid, i.a_id, i.b_id, '2.0°'
FROM yeast_yeast i
WHERE i.a_id <> 1.b_id
),
Graph ( Graph ) AS
(
SELECT GraphMerge(
MAX (
Graph (
Graph ( GE.EID, GE.P1, GE.P2 )
)))
FROM Inter_Ortho_Edges GE
)
SELECT
11.1abel as srclabel,
12.1abel as dstlabel,
pm.journal,
pm.pubdate,
pm.authorlist,
pm.abstract
FROM Graph G,
TABLE(Components(G.Graph)) C,

node_Tlabels 11,

node_labels 12,

yeast_yeast vy,

PMArticles pm
WHERE

OR (y.b_id

AND y.pm_id = pm.pmid

AND 11.node_id = E.srcnode

AND 12.node_id = E.dstnode

AND ContainsNode(C.Component,368)

AND ContainsNode(C.Component,20) = 1
ORDER BY pm.pubdate desc

TABLE(ListEdges(ShortestPath(C.Component, 368, 20))) E,

((y.a_id = E.SrcNode AND y.b_id = E.DstNode)
= E.SrcNode AND y.a_id = E.DstNode))

Il
—

Specify information to retrieve
from PubMed

Identify PubMed as one of the
sources to query

Use PubMed IDs from the yeast
GRID to retrieve relevant entries

Return the results in reverse
order by publication date

Federated query with graph operations.

post-transplant state in the same patient. This query
uses the SBGE Neighbor_Region( ) function.

* To investigate disease processes, find all pathways
where a compound of known efficacy inhibits or slows
a reaction and retrieve Gene Ontology classifications
and UniProt functions for all genes and proteins in
the pathway. This query involves filtering on edge
labels (“inhibits” or “slows”).

Discussion
Directions for further research and development

While the SBGE has been shown to be useful for systems
biology research, there are many areas in which further
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research is needed. To aid in compiling very large graphs,
we are working on parallelizing graph compilation by
taking advantage of innate RDBMS parallelized

query processing for aggregate functions. Our initial
implementation of the SBGE requires that each graph
fit into main memory. To our knowledge, most public
domain graph libraries (e.g., the Boost C++ library and
the JDigraph Java library) make this same assumption.
For many applications, this is not a problem: An SBGE
graph of one million nodes and five million edges
occupies a little less than one gigabyte of memory.>

2Each graph instance can contain up to two gigabytes of data. The relationship
between memory size and the number of nodes and edges is complex: mem = graph
header (~1 K) + 48 bytes - [N| - 1.2+ 96 bytes - |E|.
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An RDBMS-based approach, however, should scale
gracefully and cope with increasing data volumes.
To handle graphs larger than main memory, we plan
to take advantage of RDBMS features and tricks,
such as temporary tables, to hold intermediate
results.

The current implementation of the SBGE is written in
C/C+H+, a language that gives us optimal performance but
one in which code quality requires a degree of software
engineering experience and time investment not available
to many systems biologists. Other languages (notably
Java and C#) represent more productive development
environments, though at some cost in performance.
When developing speculative algorithms, particularly
algorithms to approximate results whose complexity
precludes exhaustive computation, it makes sense to write
UDFs in these languages. In the simple graph queries
section above, we described such a scenario and our
C-to-Java format converter for serialized graphs.

To further support Java developers, we anticipate
releasing a set of Java classes that directly access the
graph structure.

Enhancements are also needed from the point of view
of representing biology. Currently the SBGE does not
provide any special help with data provenance issues
[23], but we realize that it is important to be able to
identify and excise pathway edge predictions based on
data that has since been superseded by more advanced
experimental techniques. Further, the temporal element
is often important in pathway analysis. We can
currently accommodate pathways that differ by, say,
developmental stage, just as we do pathways that differ
by tissue or cell type, cell line, or species, simply by
representing the stage of each pathway as a separate
graph. However, the SBGE cannot currently support
more complex temporal queries, such as those based on
J. F. Allen’s interval-based temporal logic [46]: e.g., find
subgraphs in a large pathway graph in which the reaction
involving reactants A and B temporally overlaps the
reaction involving reactants C and D; or find subgraphs
in which the reaction involving A and B ends just as the
reaction involving C and D emerges. In a more practical
vein, we plan to build loaders to enable users to import
graph data represented in the emerging XML standard
formats, e.g., Biological Pathways Exchange (BioPAX)
[47] and PSI-MI [48].

Related work

For some classes of DBMSs, graphs can be represented
directly within the data model. Network DBMS products
were built around the idea of storing data objects and the
associations among them and then using procedural code
to navigate the resulting graph. In more recent times, one
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of the reasons for developing object-oriented DBMS
technology was that SQL DBMS engines were perceived
to be very inefficient in the way they managed graph data
models.

Advocates for these systems underestimated the utility
of declarative queries in information management and the
value of integrating graph queries with more traditional
relational queries. Database developers have proven
unwilling to give up the productivity of SQL in exchange
for improved performance in a relatively minor function.
Specialized graph DBMSs, which usually employ a
declarative query language specific to graphs, suffer
from the same deficiency.

Because of the difficulties of supporting graphs in SQL,
some commercial RDBMSs adopt a hybrid approach,
relying on the RDBMS for storage but layering logic
outside to perform the graph algorithms, e.g., in Java
classes. From the point of view of the RDBMS, this
approach makes graph operations a dead end; i.e., the
results of a graph operation cannot be joined with other
data sources, counted, stored to disk with guaranteed
transaction atomicity, or manipulated in any other way
via the declarative SQL query language.

In terms of related work specific to biological networks,
KEGG [49] is a preeminent database of biomolecular
pathways. It enables the user to retrieve pathways by
various methods, such as by protein or compound, but
it does not support searches on the topology of the
networks or enable the retrieval of subgraphs of the
networks.

BioCyc [50] is a venerable project, one of the first to
represent and reason about pathways. It uses a frames-
based representation implemented in Lisp software. The
entire graph database is imported into main memory on
initialization rather than enabling the user to define
subgraphs of interest; thus, it is not readily scalable to
very large graphs.

The BioPathways Graph Data Manager Project
[19] aims to construct a general-purpose graph data
management system that will be adapted to support
biopathways and protein interaction network databases
for microbial organisms. Based on a functional
programming language model (leaning toward an
implementation in Standard ML), this project has
gathered and analyzed an impressively wide range of
graph-based scenarios in biology but has not yet been
fully implemented.

The Pathway Query Language (PQL) [18] is similar to
the SBGE in that it is built on top of an RDBMS and
addresses similar use cases. However, because it is based
on stored procedures rather than UDFs, its ability to
compose graph functions in a single query is limited.
Because it assumes that all paths in the graph have been 557
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precomputed before querying begins, it may be able to
handle complex path constraints more easily than the
SBGE, but at a significantly higher maintenance cost.

Conclusion

In this paper we have introduced the Systems Biology
Graph Extender (SBGE) and described its approach
and implementation. Through real-world examples of
exploring functional relationships among biomolecular
entities via graph queries, we hope to have demonstrated
that integrating graph operations into an RDBMS
can provide systems biologists with unparalleled
opportunities for exploring and predicting functional
relationships among biomolecular entities. The SBGE
allows graph operations such as neighborhood queries
and shortest paths to be seamlessly integrated with the
retrieval, sorting, grouping, and filtering of related
data—all within a single declarative SQL statement.
Extending an RDBMS with graph operations means
that all of the robust features that make RDBMSs

the data management technology of choice are
automatically available for graph data management:
for example, query optimization, efficient storage
management, integrity checks, recoverability, and
scalability.

From the computer science point of view, the heart of
the SBGE is a large group of graph-theoretic operations
that include compare, combine, find components,
compute shortest paths, and flows. These operations are
implemented as UDFs that operate on the graph data
structures used to hold graph data in memory and to
store it on disk. We demonstrated how these graph
operations could be combined with one another and
with other SQL query fragments to support a number
of higher-level operations.

The highlights of the SBGE are the following:

* The SBGE allows graph data to be organized either in
SQL tables or as encapsulated data objects. The
SBGE allows for a smooth transition between
representations.

* A wide variety of graph operations are supported,
with the extension being responsible for selecting
the optimal algorithms for an operation given the
properties of the input graphs.

e Simple graph operations can be combined to compose
more complex ones in a single declarative SQL
query.

* The extensions can be combined with most other
SQL query language features. Because they are well
encapsulated within SQL, the user can treat them like
any other SQL functions without needing to know the
graph algorithms used.
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The real power of the SBGE is revealed when it is used
in tandem with federated database technology. In this
context, the SBGE graph functions can operate on
virtually any network data, regardless of its format or
location. Annotations on nodes (such as proteins or
genes) can be drawn from a wide variety of sources, both
public and proprietary. Systems biologists are provided
with the richest possible set of data and functions to
support their quest to discover, represent, and predict
functional relationships, and thus to push the boundaries
of scientific understanding.

Acknowledgments

We thank the reviewers for their helpful comments

and express our warm appreciation to the following:
David Searls, Pankaj Agarwal, and Bill Reisdorf of
GlaxoSmithKline Pharmaceuticals for early ideas on
biological connection graphs; Paul Shannon and Marta
Janer of the Institute for Systems Biology for examples of
biologically important graph queries; Dennis Wall of the
Harvard Medical School for generously contributing his
human-—yeast orthology distance data; colleagues from
IBM Research and IBM Software Group who helped
us organize and participated in the IBM Academy of
Technology Study on Database Directions in Systems
Biology in March 2003, especially Steve Burbeck, Don
Chamberlin, Julia Rice, and June Andersen; Stella
Mitchell of the IBM Thomas J. Watson Research Center
for implementing the C-to-Java graph converter; and
Peter Schwarz, Yu Deng, and Julia Rice of the IBM
Almaden Research Center for road-testing an early
version of the SBGE in their investigations of similarity
metrics over ontologies.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Unleashed
Informatics Limited, Ingenuity Systems, Inc., Sun Microsystems,
Inc., Daylight Chemical Information Systems, Inc., MDL
Information Systems, Inc., BIOBASE Biological Databases, The
Board of Trustees, Leland Stanford Junior University, or Oracle
Corporation in the United States, other countries, or both.

References

1. The Institute for Systems Biology; see http://
www.systemsbiology.org.

2. H. Hermjakob, L. Montecchi-Palazzi, C. Lewington, S.
Mudali, S. Kerrien, S. Orchard, M. Vingron, B. Roechert,
P. Roepstorff, A. Valencia, H. Margalit, J. Armstrong, A.
Bairoch, G. Cesareni, D. Sherman, and R. Apweiler, “IntAct:
An Open Source Molecular Interaction Database,” Nucl.
Acids Res. 32, Database issue, D452-D455 (2004).

3. L. Salwinski, C. S. Miller, A. J. Smith, F. K. Pettit, J. U.
Bowie, and D. Eisenberg, “The Database of Interacting
Proteins: 2004 Update,” Nucl. Acids Res. 32, Database issue,
D449-D451 (2004).

4. G. D. Bader, D. Betel, and C. W. V. Hogue, “BIND: The
Biomolecular Interaction Network Database,” Nucl. Acids
Res. 31, No. 1, 248-250 (2003).

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006



10.

11.

12.

13.

15.

16.

17.

18.

20.

. M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M.

Hattori, “The KEGG Resource for Deciphering the Genome,”
Nucl. Acids Res. 32, Database issue, D277-D280 (2004).

. B.-J. Breitkreutz, C. Stark, and M. Tyers, “The GRID: The

General Repository for Interaction Datasets,” Genome Biol. 4,
No. 3, R23 (2003).

. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler,

J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T.
Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M.
Rubin, and G. Sherlock, “Gene Ontology: Tool for the
Unification of Biology. The Gene Ontology Consortium,”
Nature Genet. 25, No. 1, 25-29 (2000).

. D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K.

Canese, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen,
W. Helmberg, D. L. Kenton, O. Khovayko, D. J. Lipman,
T. L. Madden, D. R. Maglott, J. Ostell, J. U. Pontius, K. D.
Pruitt, G. D. Schuler, L. M. Schriml, E. Sequeira, S. T. Sherry,
K. Sirotkin, G. Starchenko, T. O. Suzek, R. Tatusov, T. A.
Tatusova, L. Wagner, and E. Yaschenko, “Database
Resources of the National Center for Biotechnology
Information,” Nucl. Acids Res. 33, Database issue, D39-D45
(2005).

. S.J. Nelson, T. Powell, and B. L. Humphreys, “The Unified
Medical Language System (UMLS) Project,” Encyclopedia of

Library and Information Science, M. J. Bates, M. N. Maack,
and M. Drake, Eds. Marcel Dekker, Inc., New York, 2002, pp.
369-378.

A. L. Hopkins and C. R. Groom, “The Druggable Genome,”
Nature Rev. Drug Discovery 1, No. 9, 727-730 (2002).

L. Salwinski and D. Eisenberg, “Computational Methods of
Analysis of Protein—Protein Interactions,” Curr. Opin. Struct.
Biol. 13, No. 3, 377-382 (2003).

E. Ravasz, A. L. Somera, D. A. Mongru, Z. N. Oltvai, and
A.-L. Barabasi, “Hierarchical Organization of Modularity in
Metabolic Networks,” Science 297, No. 5586, 1551-1555
(2002).

A. Ma’ayan, S. L. Jenkins, S. Neves, A. Hasseldine, E. Grace,
B. Dubin-Thaler, N. J. Eungdamrong, G. Weng, P. T. Ram,
J. J. Rice, A. Kershenbaum, G. A. Stolovitzky, R. D. Blitzer,
and R. Iyengar, “Formation of Regulatory Patterns During
Signal Propagation in a Mammalian Cellular Network,”
Science 309, No. 5737, 1078-1083 (2005).

. A.J. Walhout, R. Sordella, X. Lu, J. L. Hartley, G. F. Temple,

M. A. Brasch, N. Thierry-Mieg, and M. Vidal, “Protein
Interaction Mapping in C. elegans Using Proteins Involved in
Vulval Development,” Science 287, No. 5450, 116-122 (2000).
E. M. Marcotte, M. Pellegrini, M. J. Thompson, T. O. Yeates,
and D. Eisenberg, “A Combined Algorithm for Genome-Wide
Prediction of Protein Function,” Nature 402, No. 6757, 83-86
(1999).

J. C. Mellor, I. Yanai, K. H. Clodfelter, J. Mintseris, and C.
DelLisi, “Predictome: A Database of Putative Functional
Links Between Proteins,” Nucl. Acids Res. 30, No. 1, 306-309
(2002).

C. von Mering, L. J. Jensen, B. Snel, S. D. Hooper, M. Krupp,
M. Foglierini, N. Jouffre, M. A. Huynen, and P. Bork,
“STRING: Known and Predicted Protein—Protein
Associations, Integrated and Transferred Across Organisms,”
Nucl. Acids Res. 33, Database issue, D433-D437 (2005).

U. Leser, “A Query Language for Biological Networks,”
Proceedings of the 3rd European Conference on Computational
Biology, Madrid, Spain, 2005, pp. ii33-ii39.

. F.Olken and K. D. Keck, Biopathways Graph Data Manager

(BGDM) Project; see http://hpcrd.lbl.gov/staff]olken/graphdm/
graphdm.htm.

B. A. Eckman, “A Practitioner’s Guide to Data Management
and Data Integration in Bioinformatics,” Bioinformatics:
Managing Scientific Data, Z. Lacroix and T. Critchlow,

Eds., Morgan Kaufmann Publishers, San Francisco, 2003,
pp. 35-73.

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic Local Alignment Search Tool,” J. Molec. Biol.
215, No. 3, 403-410 (1990).

Ingenuity Systems, Ingenuity Pathways Knowledge Base; see
http:|lwww.ingenuity.com/products/pathways_knowledge.html.
H. V. Jagadish and F. Olken, “Database Management for Life
Science Research: Summary Report of the Workshop on Data
Management for Molecular and Cell Biology at the National
Library of Medicine, Bethesda, MD, February 2-3, 2003,”
OMICS: J. Integrat. Biol. 7, No. 1, 131-137 (2003).

M. Stonebraker and P. G. Brown, with D. Moore, Object-
Relational DBMSs: Tracking the Next Great Wave, Morgan
Kaufmann Publishers, New York, 1999.

H. Wang and C. Zaniolo, “User-Defined Aggregates in
Database Languages,” Proceedings of the 7th International
Workshop on Database Programming Languages: Research
Issues in Structured and Semistructured Database
Programming, Kinloch Rannoch, Scotland, 1999, pp. 43-60.
A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and
D. L. Wheeler, “GenBank,” Nucl. Acids Res. 34, Database
issue, D16-D20 (2006).

K. R. Christie, S. Weng, R. Balakrishnan, M. C. Costanzo, K.
Dolinski, S. S. Dwight, S. R. Engel, B. Feierbach, D. G. Fisk,
J. E. Hirschman, E. L. Hong, L. Issel-Tarver, R. Nash, A.
Sethuraman, B. Starr, C. L. Theesfeld, R. Andrada, G.
Binkley, Q. Dong, C. Lane, M. Schroeder, D. Botstein, and
J. M. Cherry, “Saccharomyces Genome Database (SGD)
Provides Tools to Identify and Analyze Sequences from
Saccharomyces cerevisiae and Related Sequences from Other
Organisms,” Nucl. Acids Res. 32, Database issue, D311-D314
(2004).

P. D. Karp, M. Riley, M. Saier, I. T. Paulsen, J. Collado-
Vides, S. M. Paley, A. Pellegrini-Toole, C. Bonavides, and S.
Gama-Castro, “The EcoCyc Database,” Nucl. Acids Res. 30,
No. 1, 56-58 (2002).

Molecule Pages: A Comprehensive Signaling Database; see
http:|www.signaling-gateway.org/molecule/.

D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and
D. L. Wheeler, “GenBank,” Nucl. Acids Res. 33, Database
issue, D34-D38 (2005).

A. Bairoch, R. Apweiler, C. H. Wu, W. C. Barker, B.
Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez,
M. Magrane, M. J. Martin, D. A. Natale, C. O’Donovan, N.
Redaschi, and L.-S. L. Yeh, “The Universal Protein Resource
(UniProt),” Nucl. Acids Res. 33, Database issue, D154-D159
(2005).

N. Deshpande, K. J. Addess, W. F. Bluhm, J. C. Merino-Ott,
W. Townsend-Merino, Q. Zhang, C. Knezevich, L. Xie, L.
Chen, Z. Feng, R. K. Green, J. L. Flippen-Anderson, J.
Westbrook, H. M. Berman, and P. E. Bourne, “The RCSB
Protein Data Bank: A Redesigned Query System and
Relational Database Based on the mmCIF Schema,” Nucl.
Acids Res. 33, Database issue, D233-D237 (2005).

Daylight Chemical Information Systems, Inc., Daylight
Toolkit; see http://www.daylight.com/products/toolkit.html.
MDL Information Systems, Inc., ISIS; see Attp://
www.mdli.com/products|framework/isis/.

F. Horn, J. Weare, M. W. Beukers, S. Horsch, A. Bairoch,
W. Chen, O. Edvardsen, F. Campagne, and G. Vriend,
“GPCRDB: An Information System for G Protein-Coupled
Receptors,” Nucl. Acids Res. 26, No. 1, 275-279 (1998).

A. Bairoch, “The ENZYME Database in 2000,” Nucl. Acids
Res. 28, No. 1, 304-305 (2000).

V. Matys, E. Fricke, R. Geffers, E. Gossling, M. Haubrock,
R. Hehl, K. Hornischer, D. Karas, A. E. Kel, O. V. Kel-
Margoulis, D. U. Kloos, S. Land, B. Lewicki-Potapov, H.
Michael, R. Munch, I. Reuter, S. Rotert, H. Saxel, M. Scheer,
S. Thiele, and E. Wingender, “TRANSFAC: Transcriptional
Regulation, from Patterns to Profiles,” Nucl. Acids Res. 31,
No. 1, 374-378 (2003).

J. T. Eppig, C. J. Bult, J. A. Kadin, J. E. Richardson, J. A.
Blake, A. Anagnostopoulos, R. M. Baldarelli, M. Baya, J. S.

B. A. ECKMAN AND P. G. BROWN

559



560

Beal, S. M. Bello, W. J. Boddy, D. W. Bradt, D. L. Burkart,
N. E. Butler, J. Campbell, M. A. Cassell, L. E. Corbani, S. L.
Cousins, D. J. Dahmen, H. Dene, A. D. Diehl, H. J. Drabkin,
K. S. Frazer, P. Frost, L. H. Glass, C. W. Goldsmith, P. L.
Grant, M. Lennon-Pierce, J. Lewis, I. Lu, L. J. Maltais, M.
McAndrews-Hill, L. McClellan, D. B. Miers, L. A. Miller, L.
Ni, J. E. Ormsby, D. Qi, T. B. Reddy, D. J. Reed, B. Richards-
Smith, D. R. Shaw, R. Sinclair, C. L. Smith, P. Szauter, M. B.
Walker, D. O. Walton, L. L. Washburn, I. T. Witham, and Y.
Zhu, “The Mouse Genome Database (MGD): From Genes to
Mice—A Community Resource for Mouse Biology,” Nucl.
Acids Res. 33, Database issue, D471-D475 (2005).

39. R. A. Drysdale and M. A. Crosby, “FlyBase: Genes and Gene
Models,” Nucl. Acids Res. 33, Database issue, D390-D395
(2005).

40. Saccharomyces Genome Database; see http://
www.yeastgenome.org|.

41. D. Heimbigner and D. McLeod, “A Federated Architecture
for Information Management,” ACM Trans. Info. Syst. 3, No.
3, 253-278 (1985).

42. L. M. Haas, P. M. Schwarz, P. Kodali, E. Kotlar, J. E. Rice,
and W. C. Swope, “DiscoveryLink: A System for Integrated
Access to Life Sciences Data Sources,” IBM Syst. J. 40, No. 2,
489-511 (2001).

43. L. Haas, B. A. Eckman, P. Kodali, E. Lin, J. E. Rice, and
P. M. Schwarz, “DiscoveryLink,” Bioinformatics: Managing
Scientific Data, Z. Lacroix and T. Critchlow, Eds., Morgan
Kaufmann Publishers, San Francisco, 2003, p. 428.

44. M. S. Boguski and G. D. Schuler, “ESTablishing a Human
Transcript Map,” Nature Genet. 10, No. 4, 369-371 (1995).

45. S. T. Sherry, M. H. Ward, M. Kholodov, J. Baker, L. Phan,
E. M. Smigielski, and K. Sirotkin, “dbSNP: The NCBI
Database of Genetic Variation,” Nucl. Acids Res. 29, No. 1,
308-311 (2001).

46. J. F. Allen and P. J. Hayes, “Moments and Points in an
Interval-Based Temporal Logic,” Comput. Intell. 5, No. 4,
225-238 (1990).

47. BioPAX: Biological Pathways Exchange; see http://
www.biopax.org].

48. H. Hermjakob, L. Montecchi-Palazzi, G. Bader, J. Wojcik,
L. Salwinski, A. Ceol, S. Moore, S. Orchard, U. Sarkans, C.
von Mering, B. Roechert, S. Poux, E. Jung, H. Mersch, P.
Kersey, M. Lappe, Y. Li, R. Zeng, D. Rana, M. Nikolski, H.
Husi, C. Brun, K. Shanker, S. G. N. Grant, C. Sander, P.
Bork, W. Zhu, A. Pandey, A. Brazma, B. Jacq, M. Vidal,

D. Sherman, P. Legrain, G. Cesareni, I. Xenarios, D.
Eisenberg, B. Steipe, C. Hogue, and R. Apweiler, “The
HUPO PSI's Molecular Interaction Format—A Community
Standard for the Representation of Protein Interaction
Data,” Nature Biotechnol. 22, No. 2, 177-183 (2004).

49. Kyoto Encyclopedia of Genes and Genomes (KEGG);
see http://www.genome jplkegg).

50. BioCyc Database Collection; see http.//www.biocyc.org/.

Received October 3, 2005, accepted for publication
March 6, 2006, Internet publication October 17, 2006

B. A. ECKMAN AND P. G. BROWN

Barbara A. Eckman IBM Software Group, 1475 Phoenixville
Pike, West Chester, Pennsylvania 19380 (baeckman@us.ibm.com).
Dr. Eckman, a Senior Technical Staff Member in Healthcare

and Life Sciences Solutions, joined IBM in 2001 with ten years’
experience in bioinformatics research at a Human Genome Project
Center and two major pharmaceutical companies. Her current
research interests include optimizing scientific workflows using
mediator technology, advanced technologies for healthcare
interoperability, and extending DBMS technology to address
questions in life sciences and clinical research. Dr. Eckman holds a
Ph.D. degree from the University of Pennsylvania.

Paul G. Brown IBM Research Division, Almaden

Research Center, 650 Harry Road, San Jose, California 95120
(pbrownl@us.ibm.com). Mr. Brown is a Senior Technical Staff
Member in the Advanced Databases Research Group. His research
interests include scalable systems for data analysis, improving
DBMS engine performance, and developing advanced RDBMS
extensions. Mr. Brown previously worked at the University of
California at Berkeley, Illustra, and INFORMIX.

IBM J. RES. & DEV. VOL. 50 NO. 6 NOVEMBER 2006



