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As high-throughput biology begins to generate large volumes of
systems biology data, the need grows for robust, efficient database
systems to support investigations of metabolic and signaling
pathways, chemical reaction networks, gene regulatory networks,
and protein interaction networks. Network data is frequently
represented as graphs, and researchers need to navigate, query
and manipulate this data in ways that are not well supported by
standard relational database management systems (RDBMSs).
Current approaches to managing graphs in an RDBMS rely on
either external procedural logic to execute the graph algorithms or
clumsy and inefficient algorithms implemented in Structured Query
Language (SQL). In this paper we describe the Systems Biology
Graph Extender, a research prototype that extends the IBM
RDBMS—DB2t Universal Database software—with graph
objects and operations to support declarative SQL queries over
biological networks and other graph structures. Supported
operations include neighborhood queries, shortest path queries,
spanning trees, graph transposition, and graph matching. In a
federated database environment, graph operations may be applied
to data stored in any format, whether remote or local, relational or
nonrelational. A single federated query may include both graph-
based predicates and predicates over related data sources, such
as microarray expression levels, clinical prognosis and outcome,
or the function of orthologous proteins (i.e., proteins that are
evolutionarily related to those in another species) in mouse disease
models.

Introduction

Graph structures in systems biology

Graph structures or networks are ubiquitous in post-

genomic molecular and cell biology. The quest to identify

gene function has increasingly focused on the ways in

which genes and gene products interact with other genes,

proteins, and small molecules in the cell. The term

systems biology has many definitions; here is one offered

by the Institute for Systems Biology: ‘‘Systems biology is

the study of an organism, viewed as an integrated and

interacting network of genes, proteins and biochemical

reactions which give rise to life’’ [1]. While other

definitions of systems biology might emphasize the

interactions of cells within tissues and tissues within

organs, and an ecologically minded researcher might

focus on predator–prey relationships within an

ecosystem, all of them share a common element: they

involve a complex set of relationships among interacting

components. These relationships are normally modeled

using graph structures and operations.

Publicly available databases of biomolecular

interactions and biological pathways are proliferating;

they comprise an increasing volume of both

computationally predicted and experimentally

determined data. Examples include IntAct [2], DIP [3],

BIND** [4], KEGG [5], and the Yeast, Fly, or Worm

General Repositories for Interaction Datasets (GRIDs)

[6]. Although they are not the focus of this paper,

networks of related biological terms, such as the Gene
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Ontology [7], MeSH [8], and UMLS [9], are also readily

modeled as graph structures.1 The following are examples

of relationships between biomolecular entities (A and B)

that constitute networks:

� A is similar to B [e.g., relationships of orthology

(evolutionary relationships across species) or paralogy

(evolutionary relationships within species)].

� A interacts with B.

� A regulates the expression of B.
� A inhibits the activity of B.
� A stimulates the activity of B.
� A binds to B [e.g., protein–DNA binding, protein

dimers, ligand binding, G-protein (guanine

nucleotide-binding protein) coupling].

A fruitful method of representing the totality of

information known about the function of a gene or a

protein, i.e., its relationships with other biomolecular

components, is to construct a biological connection graph

(Figure 1). Like all graphs, a biological connection graph

consists of a set of nodes or vertices, which represent the

interacting components, and edges, which represent

relationships between the nodes. Edges represented as

arrows or arcs may be colored or labeled to signify the

relationship type (binding, orthology, and so forth).

Edges may be weighted to signify the likelihood of the

relationship (using, for example, the p value, or the

probability that a relationship could be due to chance

alone), the confidence with which the relationship is

posited, or the yield associated with an edge in a

biochemical reaction graph (e.g., A! B with a 60% yield,

A ! C with a 40% yield). Edges can be directed (e.g.,

A regulates B) or undirected (e.g., A and B are orthologs).

In this way, a heterogeneous collection of relationship

types can be integrated into a single graph in which the

large, complex network of connections can be queried,

investigated, and reasoned about.

Motivating examples

The following are typical examples of real-world

biological questions that may be represented as queries

over graph structures:

1. Finding potentially druggable targets (i.e., proteins

that can bind with high affinity and specificity to

small, druglike compounds [10]). To disrupt the

activity of protein A (e.g., because it is disease-

related but not a member of a druggable protein

family), find all proteins B within a path length k

upstream of A in a biological pathway graph,

considering only interactions of a certain type (color)

whose confidence value (weight) exceeds a certain

threshold (Figure 2).

2. Graph topology reflecting function. Interacting

proteins tend to form highly connected clusters

within interaction networks. Salwinski and Eisenberg

[11], citing Ravasz et al. [12], suggest that we can

assess the quality of a prospective interaction by

examining the length of the shortest path between

potential interactors. In signaling networks, subgraph

matching may be used to find graph motifs that may

Figure 1

Biological connection graph. Nodes are genes or proteins. Edges 
represent a heterogeneous set of relationships, e.g., orthology or 
paralogy (turquoise, weighted with p values), protein–protein 
interactions (black, labeled with literature references or the experi-
mental method used), domain fusion (orange), and chromosomal 
proximity (brown).
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Biochemical pathway that includes a disease-related protein. 
Nodes represent proteins. Arc colors encode different biochemical 
interactions between proteins, e.g., stimulates, activates, inhibits. 
Edge weights, signifying confidence in the interactions, are 
represented visually by the thickness of the arcs.
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1Our IBM Research colleagues Peter Schwarz and Julia Rice have used the Systems
Biology Graph Extender for just this purpose.
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correspond to repeated functional modules, possibly

conserved through evolution [13].

3. Inferring functional relationships. In predicting

interlogs (i.e., evolutionarily conserved protein–

protein interactions) [14], protein pairs are more

likely to interact if their orthologs interact in one

or more other species. More generally, following

Marcotte et al. [15] and the Predictome [16] and

STRING [17] projects, one may infer functional

relationships among proteins (new edges in the

connection graph) based on a variety of links

between proteins within and across species, e.g.,

orthology relationships, chromosomal proximity,

phylogenetic profiling, and domain fusion (Figure 3).

4. Exploring neighborhoods in function space. Construct

a graph consisting of protein nodes from multiple

species, connected by functionally relevant edges of

various types (e.g., orthology, paralogy, interaction,

domain fusion, and chromosomal proximity).

Find all neighbors within k hops of a protein of

interest following only interaction edges based on

experimental evidence and orthology edges within

a threshold evolutionary distance. See the section

on simple graph queries below for an example

Structured Query Language (SQL) query.

Further examples of biologically relevant graph queries

can be found in [18, 19].

This paper describes the Systems Biology Graph

Extender (SBGE), a research prototype that extends

the IBM relational database management system

(RDBMS)—IBM DB2* Universal Database—with graph

objects and operations to support queries over biological

networks, connection graphs, and other graph structures.

The SBGE allows bioinformaticians (researchers who

specialize in bioinformatics, the application of computer

science and information technology to biological

investigations) and developers to exploit the power of

graph algorithms to answer important questions in

biological research. The paper is organized as follows.

To make our discussion accessible to both computer

scientists and biologists, in the next section we give a brief

overview of SQL, the relational model, and graph theory.

We then describe the SBGE data model and query

language extensions in detail, followed by examples of

ways in which the SBGE can be used to answer real-world

biological questions. In the last two sections, we briefly

discuss related work and directions for further research

and development and then highlight the key features

of the SBGE and present our conclusions.

Background
In this section we provide a brief overview of the

relational data model and the capabilities of SQL for

those who may not be familiar with it. We present graph

theory more formally and point out how it pertains to

mainstream data processing.

SQL and the relational model

In an RDBMS, data is viewed as tables composed of rows

and columns, as in a spreadsheet. The data is queried

using SQL, a declarative query language. A declarative

language allows users to describe the results they wish

to retrieve rather than the steps used to retrieve those

results; users specify what they want, not how they want

to get it. SQL allows a variety of powerful set-based

operations, including filtering out extraneous data from a

dataset, performing UNIONs and INTERSECTIONs of sets of

data, and JOINing sets of data on a common field. For

more on RDBMSs and their advantages for managing

biological data, see [20].

Although it has many strengths, SQL does not support

such arbitrarily complex operations on data as regular

expression pattern matching on strings or BLAST [21]

alignments on protein sequences. To build in more

complex operations, DB2 and most commercial

RDBMSs expand SQL with special-purpose functions

called user-defined functions (UDFs). UDFs can be

used anywhere in an SQL query that an expression of

their return type can be used. For example, a function

returning a table can be used in the SQL FROM clause, and

a function returning a scalar can be used in the SELECT

and WHERE clauses.

The SBGE uses functions to extend DB2 with graph

operations. We can easily represent graphs in relational

tables as sets of nodes and sets of edges, but we cannot

easily express all relevant operations—e.g., path of length

Figure 3

Schematic method of illustrating the inferred functional 
relationships in the Halobacterium proteome based on a variety of 
inter- and intra-proteome relationships. The output of graph 
analysis consists of the predicted green-dashed relationships.
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k, neighborhood queries, and graph matching—on

graphs in SQL. So why use SQL at all? Because the

mature technology in a commercial RDBMS allows us to

efficiently define and retrieve subgraphs based on node

and edge annotations, labels, and weights. RDBMSs scale

well for large graphs because they can perform searches

without requiring the entire graph database to be loaded

into main memory. In sum, our approach is to manage

graph data using SQL and to manage graph operations

using functional extensions to SQL.

From the computer science point of view, biological

graph-structured data is interesting because it is the

following:

� Large and getting larger. Leser [18] reports that the

STRING database of predicted protein links has

more than 200,000 associations. The Ingenuity**

Pathways Knowledge Base [22] contains millions of

pathway interactions extracted from the scientific

literature. Any single user query will deal with a

relatively small subset of the entire graph.
� Shared among a community of users, each of whom

cares about potentially overlapping subsets of the

large, integrated network of known and inferred

connections among genes and proteins. For example,

one group of scientists in a large organization might

be interested in the human apoptosis pathway, and

another group might be focused on the network of

evolutionary relationships among apoptosis-related

genes in a variety of eukaryotic species.
� Subject to constant change and revision. For example,

functional links among human proteins inferred from

yeast interactions must be updated as false positives,

and negatives are eliminated from the yeast datasets.

In many graph applications, edge properties

(likelihoods and measures of confidence) are central

to the problem definition; while the graph structure

may be fixed, its edge properties, and therefore the

optimal answers to graph questions, will vary.
� A valuable asset to the organization that paid for

generating or discovering it. Since data is arguably

the most important commodity in science, managing

it is worth doing right. RDBMSs were developed

to support business data management information

systems and therefore place a premium on quality-of-

service properties such as data integrity (consistency

with certain rules), availability (efficient concurrent

access for many users), recoverability (robustness

to system and software failure), and security.

Requirements such as scalability, multiuser access

control, and robustness make the management of graph

data a classic database management system (DBMS)

problem. From the biology point of view, extending

an RDBMS with graph operations means that all of

the industrial-strength features that make RDBMSs

the technology of choice for data management are

automatically available for graph data management.

These features include query optimization, efficient

management of a hierarchy of storage devices via caching

and buffering to enhance performance, referential

integrity, recoverability, scalability, transaction

management to permit concurrent updates, and a

declarative query language [23].

Overview of graph theory

In this section we briefly outline the graph data model

employed by the SBGE. Graph theory is a very large,

verdant field of study, and we have deliberately chosen

to start with the basics. In formal terms, a Graph G

is a triple hN, E, Wi, where N ¼ fnig is a set of nodes,

E � N ffl N is a set of edges, each edge consisting of a

pair of nodes hni, nji, and W is a mapping E 7! Rn,

corresponding to the payload or set of properties of

each edge. The payload is defined as a vector of real

numbers because in practice, edge properties can be

quite complex.

A graph whose edges have direction—i.e., are oriented

from a source node to a destination node—is called a

directed graph, or digraph. A graph or digraph that

has multiple edges among nodes is a multigraph or

multidigraph, respectively. An edge that connects a node

to itself is called a loop. The SBGE currently supports

graphs and digraphs with loops, though it could, in

principle, support multigraphs as well. For simplicity, we

use the word graph throughout this paper when referring

to both graphs and digraphs.

Figure 4(a) shows a simple graph consisting of eight

nodes and 11 edges. Each node and each edge is identified

by a non-zero integer value. Each edge label is of the form

i:p, where i is the edge identifier and p is its payload,

in this example a single real number value. (In our

implementation, SBGE edge payloads actually support a

vector of seven 64-bit double-precision values for weights

and seven 8-bit characters for labels or colors.)

Systems Biology Graph Extender (SBGE)
In this section we introduce the data model and the query

language extensions that make up the SBGE.

Graph management in SQL

Representing graphs in an RDBMS is straightforward.

A simple table holding one edge per row is all that is

required. A more elaborate schema might normalize

information relating to the nodes or the edge payloads

into separate tables related by foreign keys to the edge

table. Figure 4(b) presents the SQL Data Definition
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Language (DDL) needed to define such a table, and

Figure 4(c) shows how the table would look if it were

populated with data from the graph in Figure 4(a). This

kind of graph representation is usually referred to as a

node association list. (For simplicity, the payload is

represented here as a scalar, while in the general case

it is a vector.)

Data model

The SBGE data model has three primary features. First,

it defines a graph as a first-class SQL data type (i.e., a data

type that can be manipulated in the same ways as other

types in the SQL language). This permits developers to

work with graph instances using SQL in the same way

that they work with textual strings or numbers. For

example, a graph type can be used in the definition of an

SQL table, functions can accept or return instances of the

graph type, and developers can manipulate instances of

the graph type in SQL queries using methods over the

type. In formal terms, we have introduced the notion of

graphs (and digraphs) as a domain within the framework

of the relational model. By encapsulating graphs and

graph operations within a data type and a set of

associated operators, we are able to employ algorithms

to compute graph operations that are not available to a

query executor limited to the set of relational operators.

Second, the SBGE defines an aggregate operator that

turns a list of rows (that is, the result of an SQL SELECT

query) into graph instances. In formal terms, we have

introduced a new relational operator, which takes as

input a relation with a certain set of attributes (an edge

list) and returns another relation consisting of a single

attribute of the graph domain.

Third, our extensions define a new class of relational

operators, which takes a single graph instance and

decomposes it back into simpler data structures,

including edge lists, as in Figure 4(c).

Thus we extend the relational algebra by implementing

functions that are closed over relational tables and graphs

encapsulated as user-defined types. Developers can start

with graph data stored in an SQL table—or computed

using an SQL SELECT query—convert it to an instance of

a graph object, perform some operation on the graph

object, and then store the result back in the database

as either a set of graph instances or an edge list.

Implementation

In this section we illustrate, in a slightly simplified syntax,

the SQL extensions making up the SBGE. For simplicity,

we omit the DDL statements involved in adding these

features to the RDBMS. Instead, we focus on how

application developers would use the extensions and, in

particular, how they might use the SBGE for reasoning

about the Gene Ontology database [7]. More specifically,

we focus on two tables within that schema: TERMS and

TERM2TERM. A subset of the Gene Ontology Schema is

shown in Figure 5.

The purpose of Gene Ontology is to provide for

consistent use of terminology in life sciences and systems

biology research. These tables hold information about the

terms in the ontology (words and phrases employed by

scientists studying gene function) and relationships

among these terms, for example, when a term such as

apoptosis is a specialized form of another term, cell death.

Figure 4

(a) Simple graph; (b) DDL for simple edge table; (c) edge-list 
representation of simple graph (a).
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Graph data type

The SBGE adds graphs and digraphs as new domains or

data types to SQL. The new types are primarily used in

table definitions. They specify the kind of data a table

column is to contain. The SQL statement

CREATE TABLE Graph_Data_Table (

Id INTEGER PRIMARY KEY,

Comment VARCHAR (255) NOT NULL,

Data Graph NOT NULL

);

illustrates how a developer may create a table to store

graph data objects alongside more conventional SQL

data types.

Simple graph construction

The simplest operation in the SBGE is a function that

takes as input the minimum amount of information

needed to construct a graph that consists of a single edge.

The following illustrates a query that constructs one

simple graph for each row in the TERM2TERM table:

WITH Small_Graphs (Graph_Data) AS (

SELECT Graph( TT.Id,

TT.Term1,

TT.Term2)

FROM Term2Term TT

)

SELECT Status (G. Graph_Data)

FROM Small_Graphs G;

It is in the following form: For each row in TT,

construct a simple one-edge graph and add it to the table

variable Small_Graphs. Then return a status for each row

(each graph) in the table variable. Note that although

edges in Gene Ontology are directed—term A is a

specialization of term B, but not vice versa—for

simplicity, we continue focusing on the semantics

of graphs, not digraphs.

The query above introduces a necessary complication.

The SBGE manages graph data in a binary format,

making it necessary to apply some operation over

each graph data object to make it readable. In this

case, the function Status( ) reports some useful

details about the graph to which it is applied: node

count, edge count, and as many of the graph properties

as can be efficiently computed, such as whether or not

the graph is a tree.

Compiling graphs

A more complex extension involves combining multiple

graphs into a single large graph. We chose the term

compilation because the process calls for something more

than just creating a union of all of the edges in the input

graphs. As part of the compilation process, it is possible

to infer automatically certain properties about the graph

that will result. For example, a graph is a tree if a) the

number of nodes exceeds the number of edges by 1,

and b) the graph consists of a single component.

The compilation process requires the SBGE to deal

gracefully with constraints such as the following:

� When two input graphs possess identical edges in

terms of having the same source and destination

nodes (with the same orientation, if relevant), what is

to be done with the payloads? The graph compiler

may choose a) the minimum or b) the maximum

payload from among those on offer, or else

c) combine the payloads.
� The graph must contain no ambiguity with respect to

edge identities. If the same edge identification is used

erroneously for two different source/destination

combinations, the SBGE will produce an error.

The SBGE compiles graphs with a User-Defined

Aggregate (UDA) operation [24, 25]—an extensibility

mechanism provided by most modern RDBMS products.

In SQL, aggregate functions take a list of data values and

compute some result over the input list, typically a

statistic such as a sum or an arithmetic mean. UDAs

generalize this concept. A UDA takes as input a list

of data values of some type (often user-defined) and

produces as output a result reflecting some operation over

the entire set.

The graph compilation query below is in the following

form: For each row in TT, construct a simple one-edge

graph and add it to the table variable Small_Graphs;

Figure 5

Subset of Gene Ontology schema.

CREATE TABLE TERMS (
 ID          INTEGER      NOT NULL PRIMARY KEY,
 NAME        VARCHAR(255) NOT NULL WITH DEFAULT '',
 TERM_TYPE   VARCHAR(55)  NOT NULL WITH DEFAULT '',
 ACC         VARCHAR(255) NOT NULL WITH DEFAULT '',
 IS_OBSOLETE INTEGER      NOT NULL WITH DEFAULT 0,
 IS_ROOT     INTEGER      NOT NULL WITH DEFAULT 0
);
CREATE TABLE TERM2TERM ( 
 ID          INTEGER     NOT NULL PRIMARY KEY,
 REL_TYPE    INTEGER     NOT NULL WITH DEFAULT 0,
 TERM1       INTEGER     NOT NULL
                    REFERENCES TERMS (ID), 
 TERM2       INTEGER     NOT NULL
                    REFERENCES TERMS (ID)
);
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compile all of the rows (graphs) in the table variable into

a single large graph and report its status:

WITH Small_Graphs (Graph_Data) AS (

SELECT Graph ( TT.Id,

TT.Term1,

TT.TERM2)

FROM Term2Term TT

)

SELECT Status (

GraphCompile (G. Graph_Data))

FROM Small_Graphs G;

In contrast to the previous query, which produces as

many small graphs as there are rows in the TERM2TERM

table, this query produces exactly one graph. All of the

logical edges in the TERM2TERM table are included in the

query result graph. Duplicate edge rows in the TERM2TERM

table are found in the resulting graph only once.

Having constructed a graph, we can save to a table.

This is achieved by using the query below in the following

form: Insert a row containing the single large graph, an

Id, and a comment into a relational table; compile all of

the simple graphs into a single large graph; for each row

in TT, construct a simple one-edge graph:

INSERT INTO Graph_Data_Table

( Id, Comment, Data)

SELECT 101,

‘Simple Example Graph’,

Graph_Compile (

Graph ( TT.Id,

TT.Term1,

TT.TERM2))

FROM Term2Term TT;

Implementing graph compilation as an aggregate

provides a number of advantages over implementing the

same operation as an SQL stored procedure. The most

important of these is flexibility. SBGE UDFs can be

combined in the style of a functional programming

language with the results of each function being passed as

an argument to another. A single query can compile a

number of graphs, compare them or filter them according

to some criteria, and then store the results in a table.

Another advantage of implementing graph compilation

as a UDA lies in the way that the SBGE can exploit the

RDBMS intraquery parallelism: Stored procedures and

external code cannot be parallelized so easily. One of our

plans for future work is to exploit this innate RDBMS

parallelization (see the section on further research and

development below).

One way to characterize our work is to point out that

our emphasis is on supporting operations that involve a

very large number of small to medium-sized graphs rather

than complex operations on a single very large graph. Of

course, by embedding our SBGE within the RDBMS, we

can store and reason about graphs that have as many

edges as one may have rows in an SQL table. In practice,

any one operation over an extremely large graph tends to

filter out uninteresting edges and nodes, a function that

can be efficiently performed by the RDBMS engine.

Graph operations

The functions that comprise the SBGE are summarized in

Table 1, along with descriptions of what they do. These

functions represent four major categories: extracting

graph properties, comparing graphs, computing graphs

from graphs, and decomposing a graph into its

component parts.

Examples of biologically relevant graph queries
To illustrate the ease and elegance of performing graph

operations on biological data using the SBGE and to

demonstrate its effectiveness in answering real-world

biology questions, we have assembled a simple biological

connection graph consisting of three local database tables

(shown in the DB2 section of Figure 6) and one remote

annotation data source at the National Center for

Biotechnology Information (NCBI). The yeast_yeast

table, downloaded from the Yeast General Repository for

Interaction Datasets (GRID) [6], contains 19,789

interactions (edges) among 4,917 yeast proteins (nodes).

The interactions are labeled with the experimental

technique used to detect the interaction and a PubMed

identifier linking the interaction with the relevant

reference in the PubMed [8] database of annotated

abstracts from the biomedical literature. The

yeast_human_orth table contains orthology

relationships among 1,781 human proteins and 1,683

yeast proteins (1,781 edges and 3,464 nodes) contributed

by our collaborator, Dr. Dennis Wall of the Harvard

Medical School. Orthology edges are given weights

Figure 6

Database schema for example queries.

yeast_yeast
(GRID yeast interactions)

yeast_human_orth
(yeast_human_orthology)

DB2 local

NCBI remote

node_labels (protein definitions)

Entrez PubMed (literature abstracts)
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Table 1 Graph operations supported by the SBGE.

Operation Description

Extract graph properties

Extract graph

properties

Given a graph, return such properties as number of nodes, number of edges, whether or not a

directed graph has cycles, number of components contained in the graph, sum of graph edge

payloads, etc.

Compare graphs

Test subgraph

inclusion

Compare two graphs A and B to see whether graph A is a subgraph of graph B. The function

returns TRUE iff (if and only if) for every edge in A there exists an equivalent edge in B (i.e., an

edge with the same source and destination node IDs). Note that subgraph and equality comparisons

implemented in the SBGE are computationally simpler than general isomorphism, and they can be

accomplished in time O(jEj).

Test graph equality Compare two graphs A and B for equality. The function returns TRUE iff for every edge in A

there exists an equivalent edge in B (that is, an edge with the same source and destination node

IDs), and for every edge in B, there exists an equivalent edge in A. Graph A equals B iff graph A

is a subgraph of B and B is a subgraph of A.

Compute shared nodes

and edges

Compare two graphs to see whether they intersect. There are two types of intersection: node

intersection (where graphs A and B share a node with the same ID) and edge intersection (where

graphs A and B share an edge with the same source and destination ID and, optionally, payload).

These functions are computed in O(jNj) and O(jEj) respectively.

Compute graphs from graphs

Perform

elementary

transformations

Transpose a directed input graph (create a new graph with all of the edge orientations reversed), or

compute the transitive closure of an input graph (a new graph with an edge between every pair of

nodes that are connected by some path in the input graph).

Compute intersection,

union, or disjunction

Compute the intersection, union, or disjunction of two graphs.

Compute connected

components

A single graph G may contain several connected component subgraphs; i.e., each of the nodes in

subgraph A is connected via some path to all of the other nodes in A, and the same for subgraph

B, but the nodes in A are not connected to the nodes in B, and vice versa. In the case of digraphs,

the components in which each of the nodes can be reached from all of the other nodes are called

strongly connected components.

Compute shortest path

and shortest path tree

Given a graph G, starting at some node n, compute a graph (path) that is the sequence of edges

from n to a destination node s for which the sum of the edge weights is minimal over the set of all

such paths. Similarly, compute the shortest path tree, i.e., the tree rooted at n that consists of the

set of shortest paths from n to each s in G.

Compute distance

between nodes

Compute the distance between two nodes as a sum of the weights along the shortest path edges.

Compute minimum

spanning tree

Given a graph G, compute a new graph consisting of the set of edges that constitute the minimum

spanning tree for G, i.e., an acyclic subgraph of G that connects all of the nodes and whose total

weight is minimized.

Compute neighbor

regions

Given a graph G and a start node n, return the region of G that can be reached from n by a path

of some maximum number k of edges. We speak of the k-in or k-out neighbor region of a graph

(digraph).

Decompose a graph into its component parts

Shred graph into

list of its edges

Given an input graph, output a list of its edges. This list constitutes the same type of relational table

from which G was originally constructed. Intuitively, this is the inverse of graph compilation.

Shred graph into

list of nodes

Given an input graph, return a list of all of its nodes together with details about the number of

incident edges each node has. One might use this function to find periphery nodes in a graph, i.e.,

nodes with exactly one incident edge.

Perform topological

sort

Output the nodes in a sorted order based on their dependencies such that if the graph contains an

edge (u, v), then u appears before v in the ordering.
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between 0 and 10 that represent an estimate of their

evolutionary distance. The node_labels table contains

human-readable protein definitions downloaded from

GenBank [26] and the Saccharomyces Genome Database

(SGD) [27].

Simple graph queries

We now give a simple graph query of the type described

in motivating Example 4 in the Introduction. Using the

yeast–yeast interaction data and the yeast–human

orthology data noted in Figure 6 and described above,

Figure 7 shows the SQL query to find all neighbors within

three hops of the human chloride channel 3 protein

(ID #1004502869) following all interaction edges except

those found by the yeast two hybrid method and following

only fairly close orthology edges (distance � 5).

The query is composed of three sections. In the first

section (in yellow), the relevant edges are gathered

from the yeast interaction graph and the yeast–

human orthology graph into a table variable called

Inter_Ortho_Edges, enforcing the constraints on edge

type and weight. In the second section (peach), these

Figure 7
Exploring neighborhoods in function space.

WITH Inter_Ortho_Edges ( eid, p1, p2)
AS
(
    SELECT i.eid, i.a_id, i.b_id
     FROM yeast_yeast i
     WHERE i.a_id <> i.b_id AND
           expt_system != 'Two Hybrid'

    UNION

     SELECT o.eid, o.y_id, o.h_id
     FROM yeast_human_orth o
     WHERE o.y_id <> o.h_id AND
           distance <= 5

),
Graph ( Graph ) AS
(
    SELECT GraphMerge(
       MAX (
         Graph (
           Graph ( GE.EID, GE.P1, GE.P2 )
                   )))
    FROM Inter_Ortho_Edges GE
)

SELECT  
    E.srcnode AS src_node_id,
    l1.label as srclabel,
    l1.node_type AS src_node_type,

    E.dstnode AS dst_node_id,
    l2.label as dstlabel,
    l2.node_type AS dst_node_type
FROM
    Graph G,
    TABLE(ListEdges(NeighborRegion(G.Graph,1004502869, 3))) E,
    node_labels l1,
    node_labels l2
WHERE
    l1.node_id = E.srcnode
    AND l2.node_id = E.dstnode
;

Compile the selected edges 
into an instance of the graph 

data type

Compute the neighbor region 
in the compiled graph of the 

input protein, and return 
results as a list of edges

Gather the relevant edges from 
the edge tables, excluding yeast 

2-hybrid interactions and 
distant orthologs
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edges are compiled into an instance called Graph

of the graph data type. In the third section (green), the

NeighborRegion( ) function returns a graph consisting

of everything within three hops of the input protein, and

the ListEdges( ) function decomposes this temporary

graph into a relational table of edges. Finally, this

temporary edge table is joined with the human-readable

definitions in the node_labels table to produce the

tabular output of the SQL query (Table 2), which can

then be simply listed for the user or formatted for graph

display applications.

Most queries involving graph operations follow the

same pattern as our example, but simply substitute

different edge tables (yellow section) and different graph

functions (green section). For example, the following

functions would be used to implement the following

motivating examples:

1. Finding potentially druggable targets:

Upstream_Neighbors( ).

2. Graph topology reflecting function:

Shortest_Path( ) and Subgraph( ).

3. Inferring relationships: Shortest_Path( ).

Concerning Example 2, some graph-matching

problems in systems biology require full subgraph

isomorphism, the exact solution of which is known to be

NP-complete (i.e., its algorithmic complexity precludes

exhaustive computation). Computational biologists have

developed a variety of heuristic methods to approach this

problem. They are typically implemented in the Java**

programming language. Rather than choose to support

one of these methods over the others, we provide

Java code that converts from the C internal graph

representation used in the SBGE to a Java graph

class representation. This allows SBGE functions to be

seamlessly composed in a single SQL query with UDFs

written in Java. We have tested this approach with

colleagues from the Computational Biology Center at the

IBM Thomas J. Watson Research Center and found that

calling their Java functions within an SQL query and

composing them with SBGE functions greatly enhanced

the system maintainability and ease of use without

significantly affecting performance.

Federated queries

As high-throughput biology begins to generate large

volumes of systems biology data, there is a growing need

for robust, efficient systems to support investigations of

metabolic and signaling pathways, chemical reaction

networks, gene regulatory networks, and protein

interaction networks. In systems biology research in the

post-genomic era, the variety of data sources and number

of techniques available to discover, represent, and predict

functional relationships among biomolecular entities is

large and increasing. Investigators must deal not only

with a variety of network databases (e.g., KEGG [5],

EcoCyc [28], and the Molecule Pages of the Alliance for

Cellular Signaling [29]) and protein interaction databases

(e.g., GRID, DIP, BIND, and IntAct), but also with

related data such as nucleotide and protein sequences and

annotations (GenBank [30], UniProt [31], Entrez Gene

[8]), orthologous clusters (COGs [8]), protein structure

(PDB [32]), chemical compound structures and properties

(e.g., Daylight** Toolkit [33] and MDL** ISIS [34]),

Table 2 Partial results of Figure 7 query.

src_label src_node_type dst_label dst_node_type

YPT6 yeast RAB6B human

GEF1 yeast chloride channel 3 human

GEF1 yeast RIC1 yeast

YPT6 yeast YPR197C yeast

RIC1 yeast YPR197C yeast

YPT6 yeast YPR084W yeast

RIC1 yeast YPR084W yeast

YPT6 yeast MRL1 yeast

RIC1 yeast MRL1 yeast

YPT6 yeast MAK3 yeast

RIC1 yeast MAK3 yeast

YPT6 yeast YPR050C yeast

RIC1 yeast YPR050C yeast

YPT6 yeast SRO7 yeast

RIC1 yeast SRO7 yeast

YPT6 yeast DSS4 yeast

RIC1 yeast DSS4 yeast

YPT6 yeast TFP3 yeast

RIC1 yeast TFP3 yeast

YPT6 yeast OXR1 yeast

RIC1 yeast OXR1 yeast

YPT6 yeast APL5 yeast

RIC1 yeast APL5 yeast

YPT6 yeast BEM4 yeast

RIC1 yeast BEM4 yeast

YPT6 yeast VPS30 yeast

RIC1 yeast VPS30 yeast

RIC1 yeast YPL105C yeast

YPT6 yeast LGE1 yeast

RIC1 yeast LGE1 yeast
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public and private repositories of microarray expression

data (GEO [8]), and special-purpose databases (e.g.,

GPCRDB [35], ENZYME [36], and TRANSFAC** [37]).

Biological connection graphs comprising multiple

organisms require integration with a variety of model

organism databases (e.g., MGD [38], Flybase [39], and

SGD** [40]). The results of analytic applications such as

BLAST, Daylight, and MDL, and a variety of network

modeling and simulation tools must also form part of an

integrated system that supports systems biology research.

Scientists need to be able to answer questions that

integrate all relevant data, whether it comes from an

RDBMS, flat files, Extensible Markup Language (XML),

Web sites, document management systems, applications,

or special-purpose systems. They need to search through

large volumes of data and correlate information in

complex ways. To derive the greatest advantage from this

data requires full query-based access to all of the most up-

to-date information available, irrespective of where it is

stored or its format, with the flexibility to customize

queries easily to meet the needs of a variety of individual

investigators. A key element in the IBM response to the

challenge of heterogeneous database integration is

federated database technology [41].

IBM federated technology

IBM WebSphere* Information Integrator software builds

on an earlier system, IBM DiscoveryLink* software

[42, 43], by using federated database technology to

provide integrated access to life sciences data sources.

Rather than simply duplicating and loading all data

sources of interest into a common local RDBMS, the

federated middleware ‘‘wraps’’ the actual data sources

in place, providing an extensible framework and

encapsulating the details of the sources and how they

are accessed. In this way, the WebSphere Information

Integrator middleware provides users with a virtual

database to which they can pose arbitrarily complex

queries in the high-level, non-procedural query language

SQL. The WebSphere Information Integrator middleware

efficiently answers these queries, even though the necessary

data may be scattered across several different sources

and those sources may not themselves possess all of the

functionality needed to answer such a query. In other

words, its query engine can optimize queries and

compensate for SQL function that may be lacking in

a data source. Additionally, queries can exploit the

specialized functions of a data source so that no

functionality is lost in accessing the source through

the federated middleware.

Examples of federated queries

The real power of SBGE is revealed in the context of

a data federation. With the WebSphere Information

Integrator middleware, users can write single declarative

SQL queries that span multiple data sources. They can be

written in a variety of formats and distributed over the

Internet and within an organization as if they were

components of a single relational database. The SBGE

graph functions can operate on edge data taken from a

DB2 or Oracle** database, XML files, Web sites, or a

variety of other sources. Annotations on nodes (e.g.,

proteins and genes) can be drawn from a wide variety

of sources, both publicly available and local to an

organization. These annotations can be retrieved simply

as part of the query result, or they can be used in

specifying constraints to limit the nodes and edges that

are compiled into an instance of the graph data type.

The following example uses the database schema given

in Figure 6. We can find the shortest path in the yeast

interaction graph between yeast proteins ARL1, a soluble

GTPase (ID #368), and FUN26, a nucleoside transporter

(ID #20). In addition to the interaction edges that lie

on the shortest path and the names of the interacting

proteins, we can return the PubMed authors, journal,

title, and abstract where the interaction is reported. The

single SQL query to perform this work is shown in

Figure 8.

Additional examples of biological questions spanning

multiple heterogeneous distributed data sources that may

be answered using single SQL queries that include SBGE

graph functions are as follows:

� To predict candidate genes in juvenile diabetes: Find

all genes that 1) are located in chromosomal regions

identified through association studies (input); 2) are

expressed specifically in the pancreas; 3) are known to

contain single nucleotide polymorphisms (SNPs); and

4) lie within k hops in a biological interaction graph

from 5) a gene known to be involved in metabolism or

immune function. This query integrates the expression

data in UniGene [44] or a local enterprise microarray

database (part 2) with the polymorphism data in

dbSNP [45] (part 3), the SBGE Neighbor_Region( )

function (part 4), and the protein function

classifications in the Gene Ontology (part 5).
� Find a subgraph of a large reaction pathway graph

that 1) has the same structure and 2) involves an

enzyme from the same family as the enzyme in the

input subgraph, and retrieve annotations on the

3) proteins and 4) compounds in the subgraph.

This query might integrate the SBGE subgraph( )

function with ENZYME, UniProt, and a database

of compounds in an Oracle database.
� Return genes and their neighbors in known pathways

that are at least twofold up- or down-regulated after

lung transplant rejection compared to the immediate
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post-transplant state in the same patient. This query

uses the SBGE Neighbor_Region( ) function.
� To investigate disease processes, find all pathways

where a compound of known efficacy inhibits or slows

a reaction and retrieve Gene Ontology classifications

and UniProt functions for all genes and proteins in

the pathway. This query involves filtering on edge

labels (‘‘inhibits’’ or ‘‘slows’’).

Discussion

Directions for further research and development

While the SBGE has been shown to be useful for systems

biology research, there are many areas in which further

research is needed. To aid in compiling very large graphs,

we are working on parallelizing graph compilation by

taking advantage of innate RDBMS parallelized

query processing for aggregate functions. Our initial

implementation of the SBGE requires that each graph

fit into main memory. To our knowledge, most public

domain graph libraries (e.g., the Boost Cþþ library and

the JDigraph Java library) make this same assumption.

For many applications, this is not a problem: An SBGE

graph of one million nodes and five million edges

occupies a little less than one gigabyte of memory.2

Figure 8
Federated query with graph operations.

WITH Inter_Ortho_Edges ( eid, p1,p2 )
AS
(
    SELECT i.eid, i.a_id, i.b_id, '2.0'
      FROM yeast_yeast i
      WHERE i.a_id <> i.b_id
),
Graph ( Graph ) AS
(
SELECT GraphMerge(
         MAX (
           Graph (
             Graph ( GE.EID, GE.P1, GE.P2 )
               )))
  FROM Inter_Ortho_Edges GE
)
SELECT 
      l1.label as srclabel, 
      l2.label as dstlabel, 
      pm.journal, 
      pm.pubdate,
      pm.authorlist,
      pm.abstract
  FROM  Graph G,
    TABLE(Components(G.Graph)) C,
      TABLE(ListEdges(ShortestPath(C.Component, 368, 20))) E,
      node_labels l1,
      node_labels l2,
      yeast_yeast y, 
      PMArticles pm
WHERE  
      ((y.a_id = E.SrcNode AND y.b_id = E.DstNode) 
      OR (y.b_id = E.SrcNode AND y.a_id = E.DstNode))
      AND y.pm_id = pm.pmid
      AND l1.node_id = E.srcnode
      AND l2.node_id = E.dstnode
      AND ContainsNode(C.Component,368) = 1
      AND ContainsNode(C.Component,20) = 1
ORDER BY pm.pubdate desc
  ;

Specify information to retrieve 
from PubMed

Identify PubMed as one of the 
sources to query

Use PubMed IDs from the yeast 
GRID to retrieve relevant entries

Return the results in reverse 
order by publication date 

2Each graph instance can contain up to two gigabytes of data. The relationship
between memory size and the number of nodes and edges is complex: mem ¼ graph
header (;1 K) þ 48 bytes � jNj � 1.2 þ 96 bytes � jEj.
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An RDBMS-based approach, however, should scale

gracefully and cope with increasing data volumes.

To handle graphs larger than main memory, we plan

to take advantage of RDBMS features and tricks,

such as temporary tables, to hold intermediate

results.

The current implementation of the SBGE is written in

C/Cþþ, a language that gives us optimal performance but

one in which code quality requires a degree of software

engineering experience and time investment not available

to many systems biologists. Other languages (notably

Java and C#) represent more productive development

environments, though at some cost in performance.

When developing speculative algorithms, particularly

algorithms to approximate results whose complexity

precludes exhaustive computation, it makes sense to write

UDFs in these languages. In the simple graph queries

section above, we described such a scenario and our

C-to-Java format converter for serialized graphs.

To further support Java developers, we anticipate

releasing a set of Java classes that directly access the

graph structure.

Enhancements are also needed from the point of view

of representing biology. Currently the SBGE does not

provide any special help with data provenance issues

[23], but we realize that it is important to be able to

identify and excise pathway edge predictions based on

data that has since been superseded by more advanced

experimental techniques. Further, the temporal element

is often important in pathway analysis. We can

currently accommodate pathways that differ by, say,

developmental stage, just as we do pathways that differ

by tissue or cell type, cell line, or species, simply by

representing the stage of each pathway as a separate

graph. However, the SBGE cannot currently support

more complex temporal queries, such as those based on

J. F. Allen’s interval-based temporal logic [46]: e.g., find

subgraphs in a large pathway graph in which the reaction

involving reactants A and B temporally overlaps the

reaction involving reactants C and D; or find subgraphs

in which the reaction involving A and B ends just as the

reaction involving C and D emerges. In a more practical

vein, we plan to build loaders to enable users to import

graph data represented in the emerging XML standard

formats, e.g., Biological Pathways Exchange (BioPAX)

[47] and PSI-MI [48].

Related work

For some classes of DBMSs, graphs can be represented

directly within the data model. Network DBMS products

were built around the idea of storing data objects and the

associations among them and then using procedural code

to navigate the resulting graph. In more recent times, one

of the reasons for developing object-oriented DBMS

technology was that SQL DBMS engines were perceived

to be very inefficient in the way they managed graph data

models.

Advocates for these systems underestimated the utility

of declarative queries in information management and the

value of integrating graph queries with more traditional

relational queries. Database developers have proven

unwilling to give up the productivity of SQL in exchange

for improved performance in a relatively minor function.

Specialized graph DBMSs, which usually employ a

declarative query language specific to graphs, suffer

from the same deficiency.

Because of the difficulties of supporting graphs in SQL,

some commercial RDBMSs adopt a hybrid approach,

relying on the RDBMS for storage but layering logic

outside to perform the graph algorithms, e.g., in Java

classes. From the point of view of the RDBMS, this

approach makes graph operations a dead end; i.e., the

results of a graph operation cannot be joined with other

data sources, counted, stored to disk with guaranteed

transaction atomicity, or manipulated in any other way

via the declarative SQL query language.

In terms of related work specific to biological networks,

KEGG [49] is a preeminent database of biomolecular

pathways. It enables the user to retrieve pathways by

various methods, such as by protein or compound, but

it does not support searches on the topology of the

networks or enable the retrieval of subgraphs of the

networks.

BioCyc [50] is a venerable project, one of the first to

represent and reason about pathways. It uses a frames-

based representation implemented in Lisp software. The

entire graph database is imported into main memory on

initialization rather than enabling the user to define

subgraphs of interest; thus, it is not readily scalable to

very large graphs.

The BioPathways Graph Data Manager Project

[19] aims to construct a general-purpose graph data

management system that will be adapted to support

biopathways and protein interaction network databases

for microbial organisms. Based on a functional

programming language model (leaning toward an

implementation in Standard ML), this project has

gathered and analyzed an impressively wide range of

graph-based scenarios in biology but has not yet been

fully implemented.

The Pathway Query Language (PQL) [18] is similar to

the SBGE in that it is built on top of an RDBMS and

addresses similar use cases. However, because it is based

on stored procedures rather than UDFs, its ability to

compose graph functions in a single query is limited.

Because it assumes that all paths in the graph have been
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precomputed before querying begins, it may be able to

handle complex path constraints more easily than the

SBGE, but at a significantly higher maintenance cost.

Conclusion
In this paper we have introduced the Systems Biology

Graph Extender (SBGE) and described its approach

and implementation. Through real-world examples of

exploring functional relationships among biomolecular

entities via graph queries, we hope to have demonstrated

that integrating graph operations into an RDBMS

can provide systems biologists with unparalleled

opportunities for exploring and predicting functional

relationships among biomolecular entities. The SBGE

allows graph operations such as neighborhood queries

and shortest paths to be seamlessly integrated with the

retrieval, sorting, grouping, and filtering of related

data—all within a single declarative SQL statement.

Extending an RDBMS with graph operations means

that all of the robust features that make RDBMSs

the data management technology of choice are

automatically available for graph data management:

for example, query optimization, efficient storage

management, integrity checks, recoverability, and

scalability.

From the computer science point of view, the heart of

the SBGE is a large group of graph-theoretic operations

that include compare, combine, find components,

compute shortest paths, and flows. These operations are

implemented as UDFs that operate on the graph data

structures used to hold graph data in memory and to

store it on disk. We demonstrated how these graph

operations could be combined with one another and

with other SQL query fragments to support a number

of higher-level operations.

The highlights of the SBGE are the following:

� The SBGE allows graph data to be organized either in

SQL tables or as encapsulated data objects. The

SBGE allows for a smooth transition between

representations.
� A wide variety of graph operations are supported,

with the extension being responsible for selecting

the optimal algorithms for an operation given the

properties of the input graphs.
� Simple graph operations can be combined to compose

more complex ones in a single declarative SQL

query.
� The extensions can be combined with most other

SQL query language features. Because they are well

encapsulated within SQL, the user can treat them like

any other SQL functions without needing to know the

graph algorithms used.

The real power of the SBGE is revealed when it is used

in tandem with federated database technology. In this

context, the SBGE graph functions can operate on

virtually any network data, regardless of its format or

location. Annotations on nodes (such as proteins or

genes) can be drawn from a wide variety of sources, both

public and proprietary. Systems biologists are provided

with the richest possible set of data and functions to

support their quest to discover, represent, and predict

functional relationships, and thus to push the boundaries

of scientific understanding.
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