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This paper reviews progress and current critical issues with respect
to the integration of germanium (Ge) surface-channel MOSFET
devices as well as strained-Ge buried-channel MOSFET structures.
The device design and scalability of strained-Ge buried-channel
MOSFETs are discussed on the basis of our recent results. CMOS-
compatible integration approaches of Ge channel devices are
presented.

Introduction

MOSFETs with a high-mobility channel are attractive

candidates for advanced CMOS device structures, since it

is becoming increasingly difficult to enhance Si CMOS

performance through traditional device scaling. The

lower effective mass and higher mobility of carriers in

germanium (Ge) compared with silicon (Si) (2x higher

mobility for electrons and 4x for holes) has prompted

renewed interest in Ge-based devices for high-

performance logic. Ge channel MOSFETs have been

identified as one of the possible directions for channel

engineering [1].

Recently, surface-channel Ge MOSFETs have been

demonstrated using thin Ge oxynitride [2] or high-k

dielectric [3–5] as the gate insulator. However, most of the

devices reported have used relatively simple structures

such as a ring-type gate structure for simplified

integration, and devices usually have relatively large

dimensions. In addition, the low bandgap of germanium

(0.67 eV compared with 1.12 eV for Si) presents a

device design challenge, while the much lower melting

point (9348C compared with 1,4008C for Si) presents

additional processing challenges for integrating Ge

channel MOSFETs. To demonstrate state-of-the-art Ge

channel devices, several key issues have to be addressed.

This paper reviews the major integration challenges

and mobility enhancement associated with Ge surface-

channel devices as well as strained Ge/SiGe channel

devices.

Ge surface-channel MOSFETs

Gate stack

Gate dielectric

One major problem for Ge CMOS device fabrication is

that it is very difficult to obtain a stable oxide gate

dielectric. The water-soluble native Ge oxide that is

typically present on the upper surface of a Ge-containing

material causes this gate dielectric instability.

The best known dielectric candidate for use on Ge is

Ge oxynitride (GeOxNy). High-quality thin GeOxNy can

be formed on germanium by nitridation of a thermally

grown germanium oxide. Rapid thermal oxidation (RTO)

at 500–6008C followed by rapid thermal nitridation

(RTN) at 600–6508C in ammonia (NH3) ambient has

generally been practiced. NH3 is chosen as the nitriding

agent because of its ability to incorporate more nitrogen

into the oxynitride film than other nitriding species, such

as nitrous oxide (N2O) and nitric oxide (NO). By using

this method, the resulting film thickness can be scaled

down to an effective oxide thickness (EOT) as thin as

1.9 nm with acceptable leakage; the refractive index is

found to be about 1.3–1.5 [6]. GeOxNy has better thermal

and chemical stability than native Ge oxides (GeO and

GeO2) [7, 8]. In addition, the incorporation of nitrogen

into Ge oxides could reduce the potential interdiffusion

between the gate dielectric and substrate and/or the gate

electrode. High-performance Ge MOSFETs with greater

mobility than Si MOSFETs with SiO2 were demonstrated
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using a relatively thick GeON (EOT ;5 nm) [2, 9].

However, the most important application for high-quality

thin GeOxNy is perhaps that it could serve as a stable

interlayer for the integration of novel high-k dielectrics

into Ge MOS devices.

The recent development of high-quality techniques

[e.g., atomic layer deposition (ALD) and metal–organic

chemical vapor deposition (MOCVD)] for deposition

of dielectric films with high dielectric constants

(*4.0; typically *7.0) to replace SiO2 in Si MOSFETs

has prompted activities to develop Ge MOSFETs

implementing such dielectrics. Binary metal oxides (e.g.,

ZrO2, HfO2) have been the primary choices as high-k gate

dielectrics. In addition, germanates (MeGexOy, where Me

stands for a metal with high ion polarizability, such as Hf,

Zr, La, Y, Ta, and Ti) have also been proposed to

potentially improve carrier mobility and interface

stability.

Surface preparation and interface control

One of most challenging tasks for Ge/high-k MOS

systems is the Ge surface preparation and interface

control before high-k film deposition.

For Ge specifically, it appears essential to have a

surface free (i.e., devoid) of germanium oxide before high-k

film deposition. A conventional solution for Si has been

to use concentrated or dilute hydrofluoric acid (i.e., HF

or DHF) to remove any native Si oxide while leaving an

H-passivated surface. Despite being successful for the

fabrication of Si CMOS devices, this surface-passivation

technique was found to be less effective on Ge [10].

One demonstrated method of fabricating functional

gate stacks is to desorb the Ge oxide in an ultrahigh-

vacuum (UHV) system at high temperatures (e.g., 400–

6508C) followed by in situ high-k deposition [11, 12]. The

main drawback of this approach is that UHV systems are

costly and are generally incompatible with the standard

ALD or MOCVD high-k deposition tools used in

manufacturing. A practical solution is based on

nitridation of a wet-etched (e.g., using DHF) Ge surface

prior to dielectric deposition using either atomic N

exposure [12] or a high-temperature NH3 gas treatment

[5, 13–16].

We found both the microstructure of the high-k film

deposited on Ge and the electrical properties of Ge/high-k

MOS capacitors to be very sensitive to the Ge surface

preparation prior to high-k film deposition [14]. In our

study, the Ge surface is first wet-cleaned, and then HfO2

is deposited on the Ge substrate by ALCVD. It is

interesting that HfO2 grows epitaxially [Figure 1(a)] on

the wet-cleaned Ge surface with deionized (DI) H2O as

the last process step, while amorphous HfO2 [Figure 1(b)]

is observed on the Ge surface treated with nitrogen

passivation by RT NH3 processing (at 6508C for one

minute), as shown in Figure 1. Figure 2 shows the C–V

characteristics of MOS capacitors for both cases. In

contrast to the large frequency dispersion observed in

the DI-water-processed sample, very little frequency

dispersion was observed for the sample with nitrogen

passivation. The large dispersion is probably caused

by Ge–Hf bonding or interdiffusion at the Ge–HfO2

interface, which may have been effectively reduced in the

case of nitrogen passivation by RT NH3 before HfO2

deposition. However, hysteresis still remains, and

additional traps are introduced during the RT NH3

process. The nitridation step also induces fixed positive

charge at the interface, which causes a large negative flat-

band shift and could degrade the device mobility.

Figure 1

High-resolution TEM images of HfO2 deposited on (a) wet-cleaned 
Ge surface with DI H2O as the last process step; (b) RT NH3-treated 
Ge surface after wet clean. Crystalline HfO2 is observed for case 
(a), while amorphous HfO2 is observed for case (b). From [14] and 
[15], reproduced with permission.

Al

Al

52 Å

28 Å

48 Å

Ge/chem.oxide/5nm ALD HfOx/Al

Ge/RTNH3/5nm ALD HfOx/Al

2.88 Å 
HfO2
High-k

HfO2
High-k

Ge

Ge

2 nm

2 nm

3.29 Å
(111)

Reaction
layer

(a)

(b)

H. SHANG ET AL. IBM J. RES. & DEV. VOL. 50 NO. 4/5 JULY/SEPTEMBER 2006

378



Several research groups have recently reported that

effective passivation can be achieved by using SiH4 [17].

An EOT as thin as 0.75 nm was reported with a plasma

PH3 treatment and thin AlN layer [18] combined with

a HfO2/TaN gate stack. In addition to the above-

mentioned physical passivation methods, novel wet

chemistries are also being studied to passivate the Ge

surface during pre-clean. Clorine-passivated [19] and

sulfur-passivated [20] Ge surfaces are two examples.

Although much technological progress has been

made on this subject, greater understanding and a

well-controlled Ge surface are needed for successful

application of high-k dielectrics on Ge MOS devices.

Gate electrodes

Because of the low melting point of Ge, it is desirable to

use metal gate electrodes rather than conventional polySi

gate electrodes where high-temperature (.9008C) dopant

activation is required. Metal materials such as Al, W,

Pt, TiN, and TaN are among the most popular metal

electrodes reported for Ge MOSFETs [2, 5, 16]. Although

the criteria for metal gate electrodes are similar to those

for Si MOSFETs, the interaction of metal electrodes

with the Ge gate dielectric must be considered. One of

the examples is the Ge/GeON MOS capacitors with

aluminum (Al) and tungsten (W) gate electrodes. A much

thinner EOT can be obtained by using tungsten rather

than aluminum as the gate electrode because of the

elimination of the interfacial layer formed between GeON

and Al [15].

Dopant diffusion and junction leakage

The diffusion of p-type dopants such as boron is

suppressed while the diffusion of n-type dopants such as

P, As, and Sb is enhanced in SiGe and Ge compared with

bulk Si [21]. This favors the formation of ultrashallow

junctions in p-channel Ge MOSFETs, while presenting a

challenge for shallow-junction formation in n-channel Ge

MOSFETs. Methods such as co-implantation have been

demonstrated to show that As diffusion in 20–75% SiGe

can be reduced 2.5 to 3.7 times [21]. An alternative

method based on solid-phase diffusion was reported for

attempts to form a shallow n-type junction in Ge [22].

Despite a few reported n-channel Ge MOSFETs [23], the

dopant solubility limit and rapid dopant diffusion are

believed to be the major reasons for the relatively poor

performance observed in recently reported n-channel Ge

MOSFETs [24].

The smaller bandgap in Ge has been a concern because

of its influence on junction leakage and band-to-band

tunneling. The junction leakage of both nþ/p and pþ/n Ge

diodes formed by boron and phosphorus implantation

can be reduced to ;10�4 A/cm2 with annealing. This

is considered acceptable for device operation.

On extremely scaled MOSFETs, band-to-band

tunneling is a great concern [25]. The band-to-band

tunneling current increases exponentially in smaller-

bandgap semiconductors and could thus be a more

serious issue for Ge MOSFETs. It has been shown that

the band-to-band tunneling can be reduced dramatically

through careful device structure design. A detailed study

of its impact on Ge MOSFET scaling can be found

in [26].

Integration of Ge surface-channel MOSFET

For conventional self-aligned Ge MOSFET fabrication

(i.e., a standard fabrication sequence, not a replacement-

gate approach), the gate stack must maintain its integrity

throughout the source/drain (S/D) junction anneal.

The p-channel Ge MOSFETs have been consistently

demonstrated with up to 2x hole mobility enhancement

Figure 2

C–V characteristics of Ge/HfO2/Al MOS capacitors: (a) Ge 
wet-cleaned only; (b) Ge wet-cleaned, then treated with RT NH3. 
The frequency dispersion is significantly reduced in (b), possibly 
because of the reduced Ge–Hf bonding or interdiffusion at the 
interface. From [15], reproduced with permission.
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over Si devices. A discussion of state-of-the-art hole-

mobility enhancement in recent reported Ge channel

p-MOSFETs can be found in [27]. On the other hand,

n-channel Ge MOSFETs pose a particular fabrication

challenge: There is a relatively small process window to

jointly achieve a stable gate stack, a well-activated nþ

S/D, and a low-resistance ohmic contact because of the

low dopant solubility in Ge [28] and dopant outdiffusion

during activation.1

Strained-Ge/SiGe-channel MOSFETs
By adding a high-quality thin layer of Si on top of Ge,

a good-quality Si/SiO2 interface can be achieved. In

addition, Si-based gate dielectric and high-k films can be

applied on the devices. Combined with a strained-Ge

(s-Ge) channel grown on top of relaxed SiGe, the s-Ge

buried-channel devices are expected to have improved

mobility due to the very small effective hole mass

(,0.1m0) in the s-Ge layer [29] and the reduced surface

roughness scattering. Indeed, dramatic hole-mobility

enhancement of 4–25x has been demonstrated in s-Ge-

channel MOSFETs [30–34]—the highest mobility

enhancement for hole carriers among all available

options. On the other hand, one of the major concerns for

buried-channel devices has been the device scalability.

Device design and scaling prospect for s-Ge buried-

channel devices

It is known that the effective gate dielectric thickness in

buried-channel devices is increased when compared with

surface-channel operation, resulting in worse short-

channel effects, such as a larger subthreshold swing and

Vt roll-off. Thus, the s-Ge buried-channel device must

be carefully designed and evaluated to ensure greater

performance without short-channel degradation [34].

To achieve maximum performance in the s-Ge buried-

channel MOSFETs, most carriers must be confined

within the high-mobility s-Ge layer. For heavily doped

channel structures, it is found that the carrier confinement

is strongly dependent on the Si cap thickness. By using a

retrograde doping profile, short-channel characteristics

similar to those found in bulk Si surface-channel devices

can be achieved on strained-Ge buried-channel

MOSFETs. The details can be found in [34].

Material growth and thermal stability

There are two main techniques to obtain a strained-Ge or

high-Ge-content SiGe layer: chemical vapor deposition

(CVD) or Ge condensation (also called thermal mixing

[30]). Both ultrahigh-vacuum (UHV) CVD and plasma-

enhanced CVD (PECVD) methods have been reported

for strained-Ge growth [30, 31, 34].

The low-temperature UHV–CVD technique allows fine

control of the thickness of both the strained-Ge layer and

the Si cap layer. In our experiment, the growth of the

strained-Ge buried-channel structure begins with a

relaxed ;75% SiGe buffer followed by an s-Ge channel

(13 nm) and an ultrathin Si cap (1.5 nm). Cross-sectional

transmission electron microscopy (XTEM) shows the

high quality and atomic abruptness of both the Si cap/Ge

and Ge/SiGe interfaces. Atomic force microscopy (AFM)

results (RMS ¼ 6.7 nm) show a relatively smooth

surface, which can be further improved by applying an

intermediate chemical–mechanical polishing (CMP) to

smooth the SiGe buffer layer [30, 31]. Triple-axis X-ray

diffraction measurements were used to quantify the strain

in the Ge channel and the Ge content and strain

relaxation of the SiGe buffer layer. Strain relaxation

during the device fabrication is a major concern. We

measured the strain of the s-Ge channel after furnace

anneals at temperatures from 5508C to 7008C for 30 min.

As shown in Figure 3, virtually no strain relaxation is

observed after annealing up to 6008C, but there is

significant relaxation at 6508C and above. This sets

the upper limit of the s-Ge-channel device processing

temperatures. For a rapid thermal anneal (RTA) of this

structure, the strain-relaxation trend is similar to the

furnace anneal results.

Gate stack for s-Ge-channel MOSFETs

Achieving a high-quality thin-gate dielectric for s-Ge-

channel MOSFETs has proven challenging as well. As

shown above, to maintain the strain in the s-Ge channel,

all processing temperatures should be kept below 6008C

[34]. Because of this constraint, low-temperature-

deposited high-k dielectrics and silicon dioxide low-

Figure 3

Strain relaxation after furnace anneals at 550–700�C for 30 minutes. 
No significant strain relaxation is found when T � 600�C. From 
[34], reproduced with permission; ©2004 IEEE.
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temperature oxide (LTO) were used as the gate dielectrics

of s-Ge-channel MOSFETs [30–34].

We have developed a new low-temperature (4008C)

remote plasma oxide as the gate dielectric for UHVCVD-

grown s-Ge channel MOSFETs. This technique enables

us to achieve the thinnest high-quality Si oxide ever

reported on Ge. Figure 4(a) shows the typical C–V

characteristics of MOS capacitors with EOT ’ 3 nm

remote plasma oxide on Si. Figure 4(b) shows

the interface trap density, Dit, measured using

the conductance (G) method, where Dit is

;2.5 3 1010/cm2-eV, which is very close to the

value measured on MOS capacitors with ;3 nm

thermal SiO2. Similar leakage current is found on the

remote plasma oxide MOS capacitors on both Si and

UHV strained-Ge samples. The high-quality, low-

temperature remote plasma oxide is essential for

achieving high-performance s-Ge-channel p-MOSFETs

with thin SiO2 as the gate dielectric.

Integration of s-Ge-channel MOSFETs

Although much work has been performed to demonstrate

great hole-mobility enhancement in s-Ge-channel

p-MOSFETs using simple structures to avoid

complicated processing issues, a compatible process

to incorporate s-Ge structures into standard CMOS

technology is needed. One of the proposed ideal CMOS

structures is shown in Figure 5, where p-MOSFETs

employ a buried s-Ge channel, while n-MOSFETs

employ a Si or strained-Si surface channel. This structure

requires that a thin s-Ge channel be formed selectively on

only p-MOSFET regions [35].

In our work, we use silicon germanium oxide insulator

(SGOI) substrates with ;30% Ge as the starting material.

A standard shallow-trench isolation (STI) process is

performed to form SGOI active regions. An optional

patterning step can be used to mask the n-MOSFET

regions with oxide or nitride. Two techniques can be used

to form a strained-Ge channel selectively on the patterned

SGOI regions using 1) local thermal mixing (LTM): high-

temperature oxidation to enrich the Ge content in the

SGOI layer—TMGe; or 2) a selective UHVCVD process:

growth of a strained Ge layer with a thin Si cap using

UHVCVD—UHV Ge. In the TM Ge sample, the Ge

fraction is found to be ;67%, with 1.47% compressive

strain as measured by X-ray diffraction (XRD) analysis.

In addition, medium-energy ion scattering (MEIS)

analysis shows that the Ge content in the SGOI layer

after local thermal mixing is ;60%. For the UHV Ge

sample, cross-section SEM confirmed the selectivity

of the s-Ge-layer growth, such that s-Ge is formed

Figure 4

(a) Typical C–V characteristics of a Si MOS capacitor with the 
remote plasma oxide formed at 400�C. With this technique, a layer 
of SiO2 as thin as 2.5 nm can be achieved on an s-Ge buried 
channel for a demonstration of high-performance p-MOSFETs. 
(b) The interface trap density is measured using the high- 
frequency conductance technique. The Dit of the Si MOS capaci-
tor with remote plasma oxide is found comparable to that with 
thermal SiO2. From [36], reproduced with permission; ©2003 IEEE.
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only on top of the SiGe and not on the STI regions

(oxide).

After the s-Ge layer is formed, a conventional CMOS

process is used for device fabrication, including gate stack

formation, source/drain (S/D) implants, and metal

contacts. For both UHV Ge and TM Ge device

fabrication, we use in situ boron-doped polySi as the

gate electrode.

TM Ge with HfO2 gate oxide

For TM Ge MOSFETs, the surface is first treated using

RT NH3; then ;6.5 nm HfO2 is deposited by MOCVD at

5008C as the gate dielectric. Figure 6 is a TEM image

of the TM Ge device showing the HfO2 gate dielectric

under the polysilicon gate.

Figures 7(a) and 7(b) show the linear current and

subthreshold characteristics of the TM Ge p-MOSFETs

with HfO2 gate oxide, along with the Si control. The

channel length of each device is 10 lm. Performance

enhancement of ;2.5x is observed in both linear

and saturation regimes. The subthreshold slope is

;125 mV/dec in TM Ge and ;98 mV/dec in the Si

control. The threshold voltage in the linear region

(Vtlin) is extracted using the constant current at 70 nA/lm.

We found that the value of Vtlin in the Si/HfO2/polySi

control is ;�0.67 V. In contrast, the Vtlin value from

the TM Ge device is found to be approximately�0.36 V,

which is ;300 mV lower than that in the Si/HfO2/polySi

control.

One of the most important issues with respect to

Si/HfO2/polySi p-MOSFETs today is the high Vth value

due to the Fermi-level pinning [36]. Because of the

valence-band offset, the Ge channel allows the Vth

of HfO2/polySi p-MOSFETs to be lowered to the

appropriate Vth for high-performance CMOS technology.

UHV Ge with SiO2 gate oxide

For UHV Ge MOSFETs, high-quality SiO2 as thin as

2.5 nm is achieved on s-Ge with a thin Si cap by using

Figure 6

TEM image of a fabricated p-FET device with an s-SiGe channel 
using the thermal mixing (TM) method. The gate oxide is ~6.5 nm 
HfO2 deposited by the MOCVD method. From [36], reproduced 
with permission; ©2003 IEEE.
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low-temperature remote plasma oxidation. Figure 8 is

a TEM image of the UHV Ge device showing 2.5 nm

SiO2 under a polysilicon gate. Figures 9(a) and 9(b)

respectively show the linear current and subthreshold

characteristics of the UHV Ge p-MOSFETs with SiO2

gate oxide formed by remote plasma, along with the Si

control. The channel length of each device is 10 lm; ;3x

drive current is observed in both linear and saturation

regimes. The larger enhancement in UHV Ge devices

could be due to the higher Ge content (100% vs. 60%) in

the channel and a SiO2-based gate dielectric. On the other

hand, higher subthreshold leakage current is found on the

UHV Ge p-MOSFETs. This is probably due to the

growth defects in the s-Ge layer and may be improved by

process optimization.

It is worth pointing out that device performance

enhancement over Si controls is demonstrated because of

the significantly enhanced hole mobility.

Summary

Surface passivation and gate dielectric, dopant diffusion,

and junction leakage are the three most serious challenges

associated with Ge CMOS devices. By using the s-Ge

with an ultrathin Si cap, standard Si surface passivation

and gate dielectric can be applied without significant

modification. Table 1 compares s-Ge buried-channel

MOSFETs with Ge surface-channel devices. An s-Ge

buried-channel device can be integrated with fewer

Figure 8

TEM image of a fabricated p-FET device with an s-Ge channel 
grown by UHVCVD. The gate oxide is 2.5 nm SiO2 formed by 
low-temperature remote plasma oxide, the thinnest SiO2 ever 
achieved on s-Ge MOSFETs. From [36], reproduced with permis-
sion; ©2003 IEEE.
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�3.0 �2.5 �2.0 �1.5 �1.0 �0.5 0.0 0.5

Table 1 Comparison of Ge surface-channel and s-Ge buried-

channel devices with respect to critical processing issues and

mobility enhancements (þ, positive; �, negative; ¼, equivalent).

Ge

surface

channel

s-Ge

buried

channel

Gate stack � þ

Dopant diffusion � þ

Junction leakage ¼ ¼

Integration with Si � þ

Electron mobility � þ

Hole mobility þ þþ
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processing challenges, significantly higher hole mobility,

and improved electron mobility. These results indicate

that the s-Ge buried-channel MOSFET with an ultrathin

Si cap is a promising option for future scaled CMOS

devices. We show a CMOS-compatible integration

scheme for strained-Ge-channel p-MOSFETs, including

the conventional STI isolation and scaled thin gate

dielectrics for high-performance CMOS technology.

Although it is a major step toward integrating strained-

Ge channels into CMOS technology for continued

performance enhancements, much work remains to be

done in the demonstration of state-of-the-art short-

channel Ge p-MOSFETs with sufficient performance

enhancement.
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