HeapMon: A helper-thread P Snetty
approach to programmable, M'Yp.s?nhin

automatic, and low-
overhead memory bug
detection

The ability to detect and pinpoint memory-related bugs in
production runs is important because in-house testing may miss
bugs. This paper presents HeapMon, a heap memory bug-detection
scheme that has a very low performance overhead, is automatic,
and is easy to deploy. HeapMon relies on two new techniques.
First, it decouples application execution from bug monitoring,
which executes as a helper thread on a separate core in a chip
multiprocessor system. Second, it associates a filter bit with each
cached word to safely and significantly reduce bug checking
frequency—by 95% on average. We test the effectiveness of these
techniques using existing and injected memory bugs in SPEC®2000
applications and show that HeapMon effectively detects and
identifies most forms of heap memory bugs. Our results also
indicate that the HeapMon performance overhead is only 5%, on
average—orders of magnitude less than existing tools. Its overhead
is also modest: 3.1% of the cache size and a 32-KB victim cache for
on-chip filter bits and 6.2% of the allocated heap memory size for
state bits, which are maintained by the helper thread as a software

data structure.

Introduction

Many software tools have been developed to find errors
through the static analysis of code or to monitor an
aspect of program behavior at runtime and detect
problems. Static methods can be used without affecting
performance, but imperfect memory disambiguation and
input-dependent program behavior severely limit their
scope. Runtime tools can significantly improve
programmer productivity and reduce development costs
[1], but they suffer from large performance overheads that
preclude their use in production runs of deployed
applications. As a result, problems that remain in
deployed code can create errors, crashes, and security
vulnerabilities.

This is especially true for memory bugs such as reads
from uninitialized memory, reads or writes using dangling
pointers, and memory leaks, which are common problems
in C and C++ programs. Memory bugs are difficult to
detect by code inspection because they may involve

different code fragments and exist in different modules or
source code files. The compiler is of little help because it
typically fails to accurately disambiguate pointers [2].
Thus, in practice, memory bug detection relies on runtime
checkers [3—13] that insert monitoring into the application
using a compiler or binary instrumentation, but the
resulting performance overhead is tolerable only in
debugging runs. In deployed software, instrumentation is
removed and bugs that occur in production runs are not
detected.

Detection of memory-related bugs in production runs
can help pinpoint surviving bugs. Left undetected, such
bugs may cause behavior that is difficult to discern, such
as occasional wrong computation outputs, late, obscure,
or intermittent system crashes, security attacks, and
subtle performance loss. For example, reading from an
uninitialized variable may result in crash-free execution
with wrong computation outputs, while undetected
memory leaks can induce excessive page faults or much-

©Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/06/$5.00 © 2006 IBM

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

R. SHETTY ET AL.

261

262

delayed crashes when the available memory is eventually
exhausted. Security vulnerabilities due to memory bugs
may become apparent only when an attack is successful.
Popular programs such as Microsoft Internet Explorer®*,
Microsoft Internet Information Services, and
Macromedia Flash** and ColdFusion**, among others,
are known to be vulnerable to heap-related attacks
[14-16]. The Code Red worm [17] is a recent example.

In this paper, we focus on architecture support for
efficient detection of memory bugs in production runs.
We carefully designed the hardware support so that it is
not specific to the type of bugs to be detected or the type
of checkers used for detection. We have avoided bug- or
checker-specific hardware extensions because different
users, applications, programming languages, and
environments may require different checks.

The bug checks in our design are performed in software
by a helper thread. Our memory bug checker, HeapMon,
monitors application heap space to detect heap memory
bugs. This approach takes advantage of chip
multiprocessing (CMP) and multithreading and allows
checks to overlap with regular program execution in the
application thread. In HeapMon, the status of each word
on the heap is monitored by associating with it a state
that indicates whether the word is unallocated (U),
allocated but uninitialized (AU), or allocated and
initialized (Al). Each state defines the accesses to that
word that are legal and those that are illegal (bugs). When
a bug is detected, its type, program counter, and data
address are logged so that developers can determine the
nature of the bug and its precise location.

To facilitate this approach, we use three hardware
mechanisms that focus on efficient and effective
communication between threads. The first is a
communication queue for forwarding events from an
application thread to its helper thread, together with
instruction set architecture (ISA) extensions to insert and
extract events from this queue. This avoids long-latency
communication of events through shared memory. The
second mechanism automatically forwards memory
access events to the helper thread. This avoids the need
to instrument load/store instructions, which must be
checked in most monitoring and bug-detection schemes.
The third mechanism filters out redundant or unnecessary
memory access events using a set of bits in the application
processor cache. Because the definition of redundant or
unnecessary depends on the kind of checking being done
by the helper thread, the helper-thread code has full
control over these filter bits.

With this design, HeapMon offers the following
benefits:

e Low-overhead: The helper-thread approach
completely decouples bug monitoring from

R. SHETTY ET AL.

application execution, and the filtering mechanism
reduces bug-check frequency. Consequently,
HeapMon achieves a very low performance overhead
(see the section on evaluation results).

* Automatic: HeapMon automatically monitors the
entire heap region of the application; there is no need
to insert watchpoints or specify memory regions for
monitoring in the application code.

* Deployable: HeapMon monitors existing program
object files. It is deployed by relinking the application
with a new static memory allocation library, or simply
running it with a new dynamically linked memory
allocation library.'

Architectural support for HeapMon is quite
inexpensive. The communication queues between the
application and the HeapMon helper thread are small,
and the filter bits require modest storage overhead: 3.1%
of the cache size and a 32-KB victim cache for the on-chip
filter bits. Software storage overhead of HeapMon
includes 6.2% of the allocated heap memory size for
storing the per-word state information, which is incurred
only for applications that are monitored by HeapMon.
Although HeapMon uses an extra CMP processor to run
the helper thread, there is still a significant savings of total
processor utilization (i.e., processor count X time). The
HeapMon thread is running only 15% of the overall
application execution time, indicating the possibility of
time-sharing the processor with other tasks. Its low
overhead allows more prerelease software testing and
the use of more realistic test inputs, improving the
productivity of testing and debugging. It may also affect
whether monitoring and checking will be always used,
even in production runs of deployed software.

Related work

Our work focuses on low-overhead architectural support
for runtime bug detection using a helper-thread approach.
Detection of memory bugs can also be performed statically
by explicit model checking [18, 19] and program analysis
[20-22]. Static methods do not affect performance, but their
scope is severely limited by input-dependent program
behavior and difficulties in disambiguating memory
references. Detection of memory bugs can also be
performed at runtime by instrumenting the code with
checks, as in IBM Purify* [11], Valgrind [13], Intel Thread
Checker [6], DIDUCE [5], Eraser [12], CCured [§], and
others [3, 4, 7,9, 10]. Such instrumentation typically
introduces large performance overheads because
instrumented memory references (loads and stores) execute
often, and execution of the instrumentation code is

'Some applications manage their own heap through custom allocation and
deallocation routines. However, we found that custom routines are typically localized
in very few functions. They can be modified to work with HeapMon without a
significant programming effort.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

interleaved with normal program execution. Extending
data structure definition (such as pointers) can greatly
improve the ability of runtime checkers to detect bugs
[3]. Such extensions are orthogonal and largely
complementary to our HeapMon approach.

Recently, hardware support concepts for detecting
memory bugs or to support debugging—such as iWatcher
[2], AccMon [23], SafeMem [24], DISE [25], and that by
Oplinger and Lam [26]—have been proposed. iWatcher,
AccMon, and DISE essentially extend hardware
watchpoints and breakpoints to an arbitrary number of
locations. In iWatcher and AccMon, a load or a store
address is checked against watched addresses maintained
in hardware tables. A match triggers an exception and
transfers control to bug-checking code, which returns
control to the application when the check is complete.
These exceptions disrupt application execution and occur
even if the check is redundant or unnecessary. To avoid
these overheads, AccMon introduces a bloom filter that
avoids the exception for certain loads or stores. However,
the filter is specific to the particular checking technique
proposed. In DISE, store instructions are instrumented
by dynamically replacing each with a set of instructions at
fetch time. These instructions check the store address
against watched addresses and call a debugging function
when there is a match. This address matching is
performed in software and is interleaved with the
application execution; it is unsuitable for watching a large
number of addresses. All three schemes (iWatcher,
AccMon, and DISE) interleave application execution
with bug-checking, address-matching, or debugging
functions. In contrast, our helper-thread mechanisms are
unique in that they execute checks in parallel with
application execution and eliminate most unnecessary
checks on loads and stores without using a bug- or
checker-specific hardware extension. Note that our
helper-thread approach is not specific to HeapMon, and
may help hide bug-checking latencies in other schemes.

In past studies, helper threads have been used mainly
for prefetching [27-32] and branch prediction [31];
HeapMon uses them for bug detection. Our checkers are
also related to hardware tags that store and manage the
state of main memory locations [33-37] and, more
recently, Mondrian memory protection [38]. In contrast
to hardware tags, our helper thread maintains tags in
software data structures without any special hardware
support for storing, managing, checking, and updating
them. This allows HeapMon to be adapted to different
kinds of checks with different tags, or even without tags,
by implementing different code in the helper thread.

Bug detection: Coverage and limitations

This section discusses the types of bugs that can be
detected by HeapMon and the limitations of our current
implementation.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Unallocated
V)

Deallocate

Allocate Deallocate

Allocated and Allocated and

uninitialized Tnitialize initialized
(AU) (AD)
Current state Legal 1llegal (bugs)
U Allocate Read/Write/Deallocate
AU Write/Deallocate Read/Allocate
Al Read/Write/Deallocate Allocate

State transition for each word. The table shows the legal requests
and the illegal requests (detectable bugs) for each state.

Bug-detection coverage

To detect bugs, HeapMon helper thread allocates and
maintains two bits of state for each word in the heap area
(Figure 1). All free words in the heap region have a U
state. When an object is allocated (via malloc or an
equivalent function), the state of all words of the object
changes to AU. When a word in the object is written or
initialized, the state of the word changes to Al. Finally,
when an object is deallocated (via free or equivalent
functions), the state of its words changes back to U. The
states and the state transition diagram are adopted from
Purify [11]. Consequently, HeapMon inherits some of
the Purify bug-detection capability and some of its
limitations. The main advantage of HeapMon over Purify
lies in the decoupling of the application code and the bug
monitoring, and the use of architecture support to
efficiently reduce bug-monitoring frequency, which results
in orders of magnitude lower execution time overhead.

As in Purify, bug-checking conditions shown in
Figure 1 can detect six types of memory-related bugs at
runtime. Memory leaks are detected when, at the end of
program execution, some words in the heap region are
still in one of the allocated state.” Note, however, that
HeapMon does not distinguish between true memory
leaks with heap objects that are intentionally left
allocated by the programmer.

Like Purify, HeapMon can detect heap buffer
overflows. To accomplish this, the memory allocation
and deallocation routine is modified to leave a small
unallocated block between each pair of consecutive
allocated regions. This would detect buffer overflow

>Note that Purify employs a more accurate and timely memory-leak detection that
relies on mark and sweep-conservative garbage collection. 263

R. SHETTY ET AL.

264

Checker
Application helper thread
4—% Communication queues P@
[
Filter Filter
L1$ bits L1§ bits
I Y I
2 F11.ter |l«»| Victim filter
bits cache (VFC)

HeapMon hardware support.

attacks, such as the Code Red worm [17], because the
attack attempts to write to such unallocated blocks. It
would also detect some array-out-of-bounds errors.

Bug-detection limitations

Because HeapMon monitors the heap memory, where
most pointer-related bugs occur, it cannot detect bugs in
the global data and stack segments. Since we track states
at the granularity of 32-bit words, bugs on accesses to
byte-sized locations may not always be detected.

Bug-detection mechanisms

Basic implementation
Like Purify, HeapMon can be implemented in software
by intercepting memory allocation and deallocation
library calls and load/store instructions, and adding
code for checks and state updates. Unfortunately, each
check and state update may result in executing many
instructions, some of which are memory references and
difficult-to-predict branches. Because most applications
frequently execute load and store instructions, the checks
and state updates they trigger may introduce significant
performance overheads. Although static analyses in some
cases can determine when checks or state updates are
unnecessary, they are limited by imperfect memory
disambiguation and unavailability of the source code.
HeapMon operates on application binaries and does
not use any compile-time information. As a result, all
static load and store instructions must trigger appropriate
checks and state updates. However, instead of
interleaving checks and state updates with regular
application execution, HeapMon performs them in a
separate thread that runs in parallel with the application
thread. This approach is possible without any hardware
support but is impractical because of its performance
impact.

R. SHETTY ET AL.

Optimizing helper-thread communication

To allow fast communication and synchronization
between the two threads, HeapMon hardware support
includes a set of hardware communication queues
(Figure 2) and new instructions that insert event
notifications into and extract them from the queues.
There are two types of first-in first-out (FIFO) queues: a
request queue stores the bug-check requests generated by
the application processor; a reply queue stores the bug-
check results computed by the helper thread. Queue-
insertion instructions stall when the queue is full, which
provides synchronization when the helper thread cannot
keep up but allows the application thread to work at full
speed when the helper thread is able to keep up.

We note that any helper-thread checker that monitors
frequent events in the application thread would have
similar communication and synchronization problems.
Our communication and synchronization support is not
specific to HeapMon and can be used by any other
checker implemented as a helper thread.

Reducing instrumentation overhead

Even with special instructions for inserting events into the
request queue, instrumentation of all load and store
instructions in the application would have a heavy impact
on both performance and code size. To eliminate this
instrumentation, HeapMon includes support for
automatically placing load and store events in the request
queue. Such support is needed only for frequent events,
while infrequent events are still inserted into the queue in
software. This approach simplifies our hardware support
because it forwards only a few classes of frequent events,
such as loads and stores. In HeapMon, memory
allocation and deallocation events are still forwarded
using software instrumentation and our ISA extensions,
but such instrumentation is now required only in the
heap memory-management library. As a result, to use
HeapMon with an application, we need to use only a
modified dynamic library or relink it with a modified
static library.

We note that this support for automatic forwarding of
load and store events is, again, not specific to HeapMon.
Other checkers that must observe memory accesses can
enable the forwarding of loads, stores, or both to avoid
heavy instrumentation of the application code and the
resulting performance overheads.

Reducing helper-thread workload

One important factor in maintaining good application
performance is to keep the helper thread less busy than
the main thread. Otherwise, the helper thread cannot
keep up, the request queue becomes full, and the
application thread stalls. Helper-thread workload can
be reduced by optimizing its code, but even then, the

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

processing time per load or store event is longer than the
typical time the application thread spends between
consecutive load or store instructions. Fortunately, many
events forwarded to the helper thread are redundant or
unnecessary. For example, HeapMon detects heap bugs,
so only heap-related events have to be forwarded to its
helper thread. There are other checker-specific requests
that can be omitted: An example is a store to an already
allocated and initialized heap memory location that
always results in a successful HeapMon check and

does not change the HeapMon state for that location.
However, forwarding of such events to the helper thread
still results in a state lookup to determine that no action is
needed.

We have introduced two filtering mechanisms to
prevent some forwarding of unnecessary events to the
helper thread. Because we wanted to avoid checker-
specific hardware support, both filtering mechanisms are
not checker-specific and can be programmed by the
checker helper thread. First, we use an address filter that
specifies the start and end of the virtual address range in
the application for which events should be forwarded to
the helper thread. For example, the helper thread may
program the address filter to forward only events related
to the heap, the stack, another range, or the entire address
space.

The second mechanism provides fine-grain filtering that
consists of a filter bit for every word in the application
processor cache. If a filter bit is set to 1, load or store
events for that memory location are not forwarded to the
helper thread. If the filter bit is set to 0 (cleared), events
for that memory location are forwarded to the helper
thread. Filter bits are examined by the forwarding
hardware when a decision is being made about whether
to place an event in the request queue.

The decision about when to set or clear a particular
filter bit depends on the kind of checking performed by
the helper thread. Different checkers have different
definitions of redundant and unnecessary events.
Consequently, our filter bits are under the control of the
helper-thread software. For this purpose, the helper
thread puts filter bit set and clear operations into the
reply queue. These operations are extracted from the
queue by the application processor hardware, which sets
and clears the filter bits accordingly.

If every word were associated with a filter bit, these bits
would be too numerous for all of them to be kept on chip.
To simplify our HeapMon hardware, filter bits are kept
only for cached data and are discarded when data is
displaced from the cache. Fetching a block from memory
into the cache triggers a request to the helper thread for
generating the filter bits for the entire cache block. The
performance impact of keeping filter bits only on chip can
be further reduced by introducing another level of on-

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

chip caches for filter bits only, which we call the victim
filter cache (VFC) (Figure 2). Because filter bits are much
smaller than the corresponding data, the VFC can be
small and fast, yet still provide filter bits for most data
accesses that miss in on-chip caches and consequently,
eliminate most of the extra event forwarding.

Finally, our event-filtering mechanism is not specific to
HeapMon—another checker can control these filter bits
to safely filter out memory read/write events that are
redundant or unnecessary for that particular checker.

Reporting modes

We envision two major scenarios for using HeapMon-
based checkers. Our primary focus is the always-on
scenario, in which checking is done in production runs of
software that is already deployed. In this scenario, the
application is not debugged interactively; problems are
logged and sent to the software vendor for analysis. The
second scenario is in prerelease testing and debugging,
where it is best if each detected problem triggers an
exception at the instruction for which the problem is
detected in order to facilitate interactive debugging. In the
debugging mode, after completing the check for an event,
the helper thread uses the ISA extensions to insert a
response into the reply queue. The application processor
hardware consumes these responses automatically.
Responses indicating that no error is detected are used
to allow retirement of the event-causing instruction.
Responses that indicate the detection of errors trigger an
exception in the event-causing instruction. To maintain
precise exceptions, the application processor delays
retirement of instructions for which responses from the
helper thread are still pending.

There are two requirements for the correctness of bug
detection in HeapMon.? First, the order in which requests
are inserted into the request queue must correspond to
the program order of the instructions that generate the
requests. Without following the program order, false bugs
may be detected whereas true bugs may not be detected.
The second requirement is that speculative instructions
that will eventually be squashed should not update any
state maintained in the helper thread.

Always-on mode

In the always-on mode, both requirements are met by
forwarding events to the helper thread as each instruction
retires, which occurs in program order and only for
nonspeculative instructions. For a load or store
instruction, we check whether the filter bit for the
accessed word is available (i.e., has been looked up
from the caches). If it is available and its value is 1, the

3There are also requirements for the order in which a filter bit is looked up or cleared.
For clarity and space, we omit a discussion on how this is handled, but it is taken into
account in our experiments. 265

R. SHETTY ET AL.

266

instruction is immediately retired. If it is available and its
value is 0, an event corresponding to the instruction is
inserted into the request queue and the instruction is
retired. If the request queue is full, the retirement of the
instruction stalls until an entry in the request queue
becomes available. If the filter bit is not available because
it is not found in the cache, an event is also inserted
into the request queue, conservatively assuming that
checking is needed for this instruction. Because a load
instruction must access its data before it can be executed,
by the time it is ready to retire, the filter bit will have been
looked up from the cache. However, a store instruction is
typically retired before it accesses the caches. To avoid
generating an event because the filter bit has not been
looked up, we issue a filter bit access for a store
instruction as soon as its address becomes available.

In most cases, by the time the store is ready to retire,

its filter bit has been looked up. If it has not, the store
conservatively assumes that the filter bit is 0 and places
an event in the request queue. Thus, in the always-on
mode, instruction retirement stalls only if the request
queue is full.

Debugging mode

In the debugging mode, the retirement of a check-causing
instruction is delayed until the checker response is
received. If, as in our always-on mode, a check is
requested just before an instruction commits, retirement
in the application thread stalls until the check is complete.
With this in mind, checks in the debugging mode are
forwarded to the helper thread when the request-
triggering instruction is executed. Because instruction
execution can be speculative and out of order, the actual
exception processing is delayed until retirement. To
achieve this, each load, store, or queue-insertion
instruction in the processor is tagged with a no-bug-found
bit, which, if set to 1, indicates that the instruction check
has been completed without any bug being detected, and
therefore the instruction can retire without raising an
exception.

We note that the program-order requirement in the
request queue is too strong and can be relaxed to
dependence-based ordering, in which the order in which
requests are inserted into the request queue must
correspond to the program order of the corresponding
instructions only if they access the same or overlapping
addresses. However, instructions that access non-
overlapping addresses can be inserted into the request
queue out of order. To enforce this ordering, a load,
store, or queue-insertion instruction waits until all
preceding load, store, or queue-insertion instructions
have their addresses disambiguated. After that, the
request is inserted into the request queue if there is no
address overlap or if the only address overlap is with

R. SHETTY ET AL.

instructions whose requests are filtered out or already
inserted in the request queue.

The second requirement is to prevent speculative
instructions from causing permanent state updates in the
helper thread. To satisfy this requirement, each request in
the request queue is tagged with a speculative bit that is
set for an instruction that generates a request while it is
still speculative. The bit is 0 if a request is generated by an
instruction that is about to retire. Upon receiving a
request, the helper thread checks the bit and may perform
a state update only when the request is not speculative.
For speculative requests, the checker determines whether
an update request will be needed when the instruction
retires. Details of this mechanism are omitted because of
space limitations.

Overall recommendation

Delayed instruction retirement and separate check and
update requests in the debugging mode make it more
complex and can adversely affect its performance. The
always-on mode is likely to be used in most systems, while
the debugging mode will be used primarily in software
development. Consequently, the principle of optimizing
the common case first leads us to believe that the always-
on mode with simple error logging should be
implemented first. The debugging mode with precise
exceptions can be added if cost and complexity
considerations permit.

HeaplMon operation

To illustrate how HeapMon interacts with our hardware
support, we present a timeline of a check-triggering
instruction from execution to retirement in the
application thread.

HeapMon helper-thread implementation

Figure 3(a) shows a simplified view of the helper-thread
main loop. The thread operates in a tight loop that
retrieves and processes bug-check requests, using
lightweight sleep to wait when the request queue is empty.
Allocation requests in the figure correspond tomalloc (),
calloc (), and similar library calls.

Figure 3(b) shows HeapMon helper-thread code for
processing a check request for a read event. The code in
lines 02-04 locates the byte that contains state bits in the
HeapMon thread data structure, and the code on line 06
extracts these bits. Lines 07 and 08 show the code for
detecting and reporting reads to unallocated or
uninitialized words. A bug report contains the type of
event (a load, store, allocation, or deallocation), the
current state and virtual address of the heap word in
question, and the program counter that corresponds to
the event. Some statements for statistics collection and
filter-bit manipulation are implemented but are not
shown in Figure 3(b).

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

01 while(!exitApp){
02 getNextEvent (&event);
03 switch (event.eventType) {

04 case HM_MALLOC, HM_CALLOC_, HM_REALLOC : alloc_handler(addr_info, event); break;
05 case HM_FREE : free_handler(addr_info, event); break;

06 case HM_READ : read_handler(addr_info, event); break;

07 case HM_WRITE : write_handler(addr_info, event); break;

08 case HM_GET_FILTER_BITS: get_filter_bit_handler(addr_info, event); break;
09 case HM_PAUSE_CHECKING: pause_handler(); break;

10 case HM_RESUME_CHECKING: resume_handler(); break;

11 case HM_NOEVENT: lightsleep(); break; // Request Queue empty

12 case HM_EXIT : check_for_leaks(); exitApp=true; break;

13 }

14}

(2)

07 if (heapState != INIT_ALLOC)

01 void read_handler(AddrSpace_t addr_info, Event_t event) {

02 int byteOffset = (event.dAddr - addr_info.heapStart) >> LOGZ2_NUMBYTES_PER_TAGBYTE;
03 int bitOffset = ((((event.dAddr - addr_info.heapStart) % NUMBYTES_PER_TAGBYTE)

04 >> L0G2_BLOCK_SIZE)) << LOG2_NUM_TAG_BITS;

06 unsigned char heapState = (heapStateBits[byteOffset] >> bitOffset) & 0x03;

08 reportBug(event.eventType, heapState, event.dAddr, event.iAddr);

(b)

(a) HeapMon helper-thread main loop code. (b) HeapMon helper-thread code for processing a bug-check request from a read.

In implementing the helper thread, we started with a
clean, high-level implementation. However, we found the
response time of the helper thread to be unsatisfactory.
We applied more aggressive compiler and manual
optimizations on the code, including using immediates
(defines) for some values, constant propagation, strength
reduction, function inlining, loop unrolling, etc. To
efficiently handle allocation and deallocation requests to a
large region (128 bytes or more), the helper thread
updates the state bits using 8-byte writes. Overall, the
optimizations reduce the helper-thread response time by
80-95% compared with the unoptimized version.

Request timeline in HeapMon

Figure 4 shows the sequence of events for a bug check
in HeapMon running in the always-on mode. Each
allocation or deallocation function is augmented with an
instruction that inserts an event into the request queue.
When the application calls such a function, a request
event is placed in the request queue (circle la in Figure 4).
The event also requests that the helper-thread bug
checking pause while it is executing the function, so that
loads and stores needed for heap management are not
detected as bugs. While paused, the helper thread ignores
bug-check requests until it is resumed. For a read or write

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

instruction, the filter bit for the accessed word in on-chip
caches is checked. If the filter bit is found to be set to 1 for
an access, the access is safe (i.e., it will not result in bug
detection), and no bug-check request is generated. If the
filter bit is found (or assumed) to be 0, a bug check is
generated for that access (circle 1b or lc) by placing a
request in the request queue (circle 2), if the access is to an
address in the address range specified in the address filter.
When the filter bit is not found in the caches, the request
also requests that the filter bits of the entire cache block
be generated by the helper thread. A request in the
request queue contains the application process
identification, program counter of the requesting
instruction, request type, starting virtual address, request
size, and speculative bit. Virtual addresses are preferred in
a request because regions of memory (heap, stack, code,
etc.) are contiguous in the virtual address space, which
allows easier tracking of state for each location in the
helper-thread code and avoids issues that would arise
because of paging and disk swapping.

After processing a request, the helper thread checks
the queue and retrieves the next request (circle 3).
Alternatively, it may have been in a lightweight sleep
because there were no more requests to process, in which
case it receives a wake up signal when a new request is

R. SHETTY ET AL.

267

268

HeapMon

Application helper thread

la Allocation/ 3 Retrieve/

7
° deallocation wake up Bugllog
write
Addr =

2| filter| Request
queue

&
1b Filter bit = OFF Reply @
lc Filter bit miss in queue —
L1+L2+VEC 'y Ej
’ “ Heap "~
To cache \ state bitS’ P

HeapMon bug-check protocol in the always-on mode. For brevity,
we show only one pair of request and reply queues and do not show
the memory hierarchy. Heap state bits are a software data structure
maintained by the helper thread.

placed in the queue. In both cases, the thread obtains the
request and reads the heap state bits (circle 4) to
determine whether the request corresponds to a valid
heap access or a bug. On the basis of the request type
and the current heap state for the accessed word, the
thread may reply with a filter-bit-set or a filter-bit-clear
signal (circle 5) to turn the filter bit on or off. With the
checker, the signal is sent in two cases. In the first case,
the request is from a read or a write that finds the word in
the Al state or from a write that puts the word in that
state. In this case, the thread sends a filter-bit-set signal to
turn the filter bit on so that future reads/writes to the
word will not generate bug-check requests. In the second
case, the request is a deallocation; here, a filter-bit-clear
signal is sent to enable bug-check requests on future
accesses to those words.

If a request results in a state transition, the thread
performs a state update on the heap state bits (circle 6).
Because the state bits were recently read by the thread,
they probably still reside in the cache, and the update is a
cache hit. Finally, if a bug is found, it is logged, together
with all relevant information that can be reported to the
programmer or user (circle 7). In the always-on mode,
bug detection, if desired, can also raise an (imprecise)
exception in the application, for example to terminate the
application and prevent corruption of sensitive data.

Other implementation issues

e Communication queue implementation: In both
always-on and debugging modes, a request-generating
instruction stalls if the request queue is full. Reducing
this stall time is an important issue. In practice, we

R. SHETTY ET AL.

found that with a sufficiently large request queue (64
entries), the application processor rarely stalls because
of transient increases in the request rate. The
processor can still stall when the helper thread is busy
for a long time, such as when it is processing a large
allocation in HeapMon, while the application thread
keeps generating and queuing up requests that
eventually fill the request queue. In contrast, the reply
queue can be very small (we use eight entries in our
experiments) because replies are quickly consumed by
the application processor hardware.

® Helper-thread scheduling: To be effective, the helper
thread should be gang-scheduled with the application
so that event-check requests will be serviced in a
reasonable amount of time. In our evaluation, we
assume that the helper-thread processor is not
multitasked.

Evaluation setup

Applications

We use two sets of applications in our evaluation of
HeapMon. Set A is used to evaluate the performance
overheads and characteristics. We use 14 applications,
mostly from SPEC**2000 [39]. The applications, their
sources, input sets, L1 and L2 cache miss rates, number of
allocations, average allocation size, and percentage of
memory accesses that go to the heap region are shown in
Table 1. We omitted Fortran benchmarks because they
use no heap memory and can neither produce HeapMon
checks nor benefit from them. Among C/C4++
benchmarks, vortex, gap, and parser are not included
because they currently do not run on our simulator. To
correctly detect bugs, the program must be monitored
from the beginning to track, for example, exactly which
heap locations have been initialized. Consequently, all
benchmarks are simulated from the beginning to the end
using primarily test input sets to keep the simulation
times reasonable.

Set B is used to evaluate HeapMon bug-detection
capability. We use applications and input sets supplied
by the authors of AccMon [23]. We were able to compile
and run three of these applications (ncompress-4.2.4,
polymorph-0.4.0, and bc-1.06). Two other applications
(gzip-1.2.41 and man-1.5h1) could not be compiled
because of limitations in our cross-compiler
infrastructure. Of the three compiled applications, only
bc-1.06 was reported to have heap-related bugs; thus, we
expected to detect bugs only in be-1.06. We did not use set
B applications to evaluate performance because their
input sets were designed to make bugs manifest, but are
very small and unrealistic for performance evaluation.

In set A applications, HeapMon identifies only
memory leaks. This is not surprising: They have gone
through rigorous debugging and testing for the standard

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Table 1 The applications used in our performance evaluation (set A).

Benchmark Source Input set LI cache L2 cache Number of Average allocation Heap
miss rate (%) miss rate (%) allocations size (bytes) accesses (%)

ammp SPECfp**2000 test 19.44 33.7 34,766 399 32.8

art SPECfp2000 test 9.65 48.03 30,490 75 27.45
bzip2 SPECint**2000 test 0.84 1.66 13 1,051,360 3.86
crafty SPECint2000 test 2.15 0.06 44 20,140 0.38
eon SPECint2000 test 0.14 0.13 2,595 85 5.03
equake SPECfp2000 test 1.24 57.59 316,854 36 32.37
gcc SPECint2000 test 1.29 0.89 4,305 3,529 17.37
gzip SPECint2000 test 2.82 3.64 246 27,866 4.11
mcf SPECint2000 test 7.16 13.35 10 9,660,180 22.42
mesa SPECfp2000 test 0.13 61.71 69 302,464 14.03
mst Olden 1,024 1.7 37.21 422 32,420 40.12

nodes

perlbmk SPECint2000 test 0.36 14.46 423 19,948 34.34
twolf SPECint2000 test 1.09 0.08 9,413 73 26.28
vpr SPECint2000 test 2.17 0.01 1,594 127 25.21

input sets over the years. To further evaluate our bug-
detection capability, we injected bugs into these
applications.

Simulation environment

The evaluation is performed on an extension of SESC
[40], a detailed cycle-accurate execution-driven CMP
simulator. Table 2 shows the parameters used for each
component of the architecture. Each CMP core is an
aggressive out-of-order superscalar processor with private
L1 instruction and data caches. In CMPs, the L2 cache
can be configured to be per-processor private or shared
among processors. The memory hierarchy below the L2
cache is always shared by all CMP cores. We assume that
the helper thread can obtain a request from its request
queue with a single-cycle latency. We note, however, that
this has little effect on the overall request-processing
latency, which is of the order of hundreds of cycles.

Evaluation results

In this section we present execution time overheads of
HeapMon running in two modes. We discuss in detail its
performance characteristics and the sensitivity of the
overhead to different cache parameters, and we evaluate
its bug-detection effectiveness.

Performance overhead and characteristics

Figure 5 shows execution time overhead of HeapMon
running in the always-on mode and in the debug mode
with precise exceptions for bug detection. We use a 64-

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

entry request queue, an eight-entry reply queue, a filter bit
for each cached word, and a 32-KB VFC that caches filter
bits for displaced L2 blocks. Each bar represents the
additional execution time with HeapMon, relative to
baseline execution time without HeapMon.

The execution time overheads are quite low, with
averages of 4.9% for the always-on mode and 10.8% for
the debug mode. In the always-on mode, HeapMon
overhead is above 10% only for equake (28.6%). In the
debug mode, the overhead is less than 10% in nine of 14
benchmarks. The largest overhead is that of per1bmk
(49%). The low overhead in the always-on mode supports
the argument that, unlike existing bug-detection tools,
HeapMon can be used in production runs.

To better understand HeapMon overhead, we
characterize its always-on performance. Figure 6(a)
shows the helper-thread’s execution time, broken down
into the time it is busy servicing allocation requests,
deallocation requests, read requests, write requests, and
computing filter bits. Each bar is normalized to the
application execution time. Therefore, the height of the
entire bar for each application shows the fraction of the
execution time during which the helper thread is busy.*

The figure shows that, on average, HeapMon processor
services requests only 15% of the time and is busy more
than 30% of the time in only two applications (ammp and
equake). This shows that although the HeapMon helper
thread runs on a separate CMP processor, it does not

“This “busy” time still includes various pipeline stalls in the HeapMon thread
processor.

R. SHETTY ET AL.

269

270

60

O HeapMon (always-on)
B HeapMon (debug)

50

40

20

Execution time overhead (%)

eon
gcc
gzip
mcf
mesa
mst

perlbmk
vpr

a
£ <«
£ ©
©

bzip2
crafty
equake
twolf
Average

Execution time overhead of HeapMon in two configurations.

fully occupy the processor and could be interleaved with
other activity to maximize system throughput.

In most benchmarks, the HeapMon helper thread
spends most of its time computing filter bits. There are
two reasons for this. First, HeapMon computes filter bits
for an entire cache line (16 words) at a time, which
requires more time than to service reads or writes to
individual memory locations. Second, such filter-bit
computation helps eliminate later read and write check
requests, which reduces the time spent servicing such
requests. In mcf, however, most of the time is spent on
servicing allocation and deallocation requests, owing to
very large allocations and deallocations (averaging
9.7 MB).

Figure 6(b) shows the percentage of memory accesses
that find the filter bits in the L1 cache, L2 cache, or the
VFC. We also show whether the filter bit is set or clear.
Several observations can be made from this figure. First,
the HeapMon filtering mechanism is very effective in
reducing the frequency of bug checks. On average, 95% of
all accesses find their filter bit set in the cache (Hit + on).
Consequently, only 5% of the accesses generate bug-check
requests, which is key to the low performance overheads.
Lower filter-bit hit rates are observed in only ammp and
art, which are also the only applications with very high
L2 miss rates (34% and 48%, respectively), L1 miss rates
(19% and 10%, respectively), and heap accesses (33% and
27%, respectively), indicating a large and active working
set in the heap. However, even for these applications, the
execution time overhead is low (0.4% and 9.8%,
respectively). Finally, we observe that, on average, only
1.5% of all accesses find the filter bits in one of the caches,
but the bits are clear (Hit + off). This confirms that a heap
object is accessed many times after it is allocated and

R. SHETTY ET AL.

Table 2 Parameters of the simulated architecture. Latencies
correspond to contention-free conditions. RT = round trip from
the processor.

Processor core 4-GHz, six-way out-of-order issue

Integer, floating-point, and load/store
functional units: 4, 4, 3

Branch penalty: 17 cycles
Reorder buffer size: 248

Memory L1 instruction (per processor):
write-back, 16-KB, two-way, 64-B line,
RT: three cycles, least recently used
(LRU) replacement, Miss Status

Handling Register (MSHR) size: 24.

hierarchy

L1 data (per processor): WB, 16 KB,
two-way, 64-B line, RT: three cycles,
LRU repl., MSHR size: 24.

L2 unified (shared): 1-MB, eight-way,
64-B line, RT: 13 cycles, LRU repl.,
MSHR size: 48.

Memory bus: split-transaction,
8 B wide, 1 GHz, 8-GB/s peak

RT memory latency: 400 cycles

Additional
hardware

Request/reply queues: 64/8 entries,
FIFO, one-cycle access time

Filter-bit storage in L1 and L2: 3.1% of
cache sizes (512 B at the L1 + 32 KB
at the L2)

Victim filter cache: 32 KB, eight-way,
2-B line, four-cycle access time

initialized, and that filter-bit caching almost always
results in avoiding bug-check requests.

Table 3 shows the helper-thread’s average service time
(in cycles) for different types of activity. The table shows
that a single read or write request is usually processed in
less than 100 cycles, and even cache-block filter bits are
typically computed in less than 400 cycles. However,
allocations and deallocations may involve a large memory
region, and their service time varies greatly. Ten large
allocations in mcf average 9.7 MB each (Table 1) and
have the longest average service time of 1.85 million
cycles per allocation and 2.6 million cycles per
deallocation. Note that allocation and deallocation
requests result in changing the state of each word in the
affected region, so HeapMon processing time for these
requests grows in proportion with request size.

Figure 6(c) shows the time during which the request
queue is full as a percentage of the application execution
time. The figure shows that on average the queue is full
only 1.3% of the time. The worst case is mcf, for which

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

the request queue is full 4.6% of the time. For most of
this time, the helper thread is busy processing a large
allocation or deallocation request, and the application
thread fills the queue with subsequent load and store
requests. We find that even substantially larger queues
(thousands of entries) are insufficient to prevent
application stall in such situations. Overall, however,
these results indicate that the queue size of 64 entries is
sufficient for most programs, and that most of the
HeapMon execution time overhead can be attributed
to other factors.

Sensitivity study
We tested the sensitivity of HeapMon performance to
changes in the L2 cache and VFC parameters. Figure 7(a)
shows the performance overhead when no VFC is used, a
1-MB private L2 cache for the helper thread in lieu of a
VFC, and configurations with a 16-KB, a 32-KB, and
a 64-KB VFC. Without a VFC, the HeapMon thread
introduces an average overhead of 15.2%. We suspected
that this performance overhead might be caused by cache
contention between the application and the helper thread,
so we tried adding a 1-MB private L2 cache for
HeapMon. This is not a realistic configuration, but it
helps us determine whether cache contention introduces
a bottleneck. Although the average overhead with a
separate L2 cache decreases to 11.8%, it is not much
lower than with no VFC, suggesting that cache
contention is not the main bottleneck. Because most of
the helper-thread’s time is spent computing filter bits,
adding a VFC to prevent repeating such work is the more
effective solution. The figure also shows that a small VFC
helps reduce overhead considerably, but additional VFC
space yields little additional benefit. This is because even a
small VFC stores filter bits for a large amount of data.
Figure 7(b) shows the performance overhead given
different L2 cache sizes (512-KB, 1-MB, and 2-MB) while
keeping the cache associativity constant and a fixed 32-
KB VFC. The overhead is always relative to the
configuration with the same cache size, but without
any bug checking. The average overheads are 6.9% for
512 KB, 5.0% for 1 MB, and 5.6% for 2 MB. In general,
larger caches result in fewer cache misses, fewer filter bits
“lost” due to cache replacements, fewer bug-check
requests, and less HeapMon activity. However, since
baseline execution speeds up significantly with larger
caches, the relative HeapMon overhead can increase (e.g.,
to 5.6% for 2-MB caches). Overall, the results suggests
that HeapMon performance overhead remains low as
long as the application has good caching behavior.

Bug-detection capability

HeapMon tags heap words with states adopted from
Purify; therefore, their bug-detection capability is similar,
and we expect HeapMon to detect all bugs that we inject.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

60

50 | 1 Allocate
[Deallocate
40 [Read

CJ Write

Bl Filter

30 F

20 b

HeapMon thread activity time (%)

vpr

eon
Average

ammp
art
bzip2
crafty
equake
gcc
gzip
mcf
mesa
mst
perlbmk
twolf

(a)

100
90 k
80
70 b
60 |
50
40 +
30 F
20 b
10 b

L1/L2/VEFC filter bits hit rate (%)

ammp
art

o
o
[¢0]

bzip?
crafty
gcc
9zip
mcf
mesa
mst
perlbmk
twolf
vpr
Average

(&)
X
©
>
o
(&)
Il Hit + on (set) [0 Hit + off (clear)

5.0
45
4.0
35F
3.0}
25F
20F
15k
1.0
0.5 F

Request queue (% full)

eon
mcf
mesa
mst

perlbmk
vpr

Q
£ <
E ©
©

bzip2
crafty
gzip
twolf
Average

(a) Breakdown of the HeapMon helper-thread execution time by
request type; (b) percentage of accesses that find their filter bit in
the L1/L2/VFC; (c) percentage of time during which the request
queue is full.

We use Table 1 to choose a representative application for
each of the following behaviors: few but very large

allocations (mcf), few and small allocations (crafty),

R. SHETTY ET AL.

271

272

Table 3 Average service time (in cycles) of the helper thread
for each type of heap request. N/A indicates that the helper thread
never encounters the request. For example, bzip2, equake, and
mst do not have deallocation requests because they never
deallocate their heap objects, whereas in bz1p2 and mst, filter bits
eliminate all read requests.

128%
40
97%
[No VFC
: 0 No VFC + private L2
Sk I 16-KB VEC
ks @ 32-KB VFC
f;j B 64-KB VFC
>
o 20F
£
=
.S
§10—
=
0 Mol o :'"-:Hﬂl: — :mﬂ:”‘“:m—:
aQ o+ > o (&) (&) Q Y4 © + X 4 [—]
E £ O O X O — 0O v u g — o
1= © o~ Y4 [} < oD N E o = © o > =
© N © = =} = — = Q
o} [o < + <
(&} () ()
a
(a)
35
=30 | = 2-MB L2
< T = 1-MB L2
225F O 512-KB L2
Q
5
> 20 F
)
Q
E15}
<
.8
5 10 F
8 l
%
0 H=-: B :m: ——
a N > < () (&) Q Y4 © + X 4 [
E £« o O xXx O — O un v e — o
E © — % O ©® O N E O E QO O > &
© N © =] o £ — = L
o < o < D Z
3]) o

Sensitivity of execution time overhead of HeapMon in always-on
mode for (a) different VFC sizes; (b) different L2 cache sizes.

many small allocations (art), and a very high number of
allocations (equake). We introduce three types of bugs:
alloc-bug reduces randomly selected memory allocation
requests by 32 bytes; dealloc-bug deallocates some
randomly selected heap objects; and noinit-bug removes
randomly selected initialization writes. We inject multiple
bugs on each run. When a bug is detected, we reverse the
impact of the bug so it does not crash the application,
allowing HeapMon to detect bugs that are injected later.

HeapMon detected all injected bugs except for five
alloc-bugs in crafty (Table 4). These injections reduce
allocation size for heap objects that are used as string
buffers, and the 32 missing bytes are never used. As a
result, the injected bug is never manifested and is not
detected. This result once again illustrates the elusiveness
of some bugs, which may be manifested only in

R. SHETTY ET AL.

Application — Allocation — Deallocation Read — Write Filter-bit
requests
ammp 179 1,791 19 28 305
art 69 3,789 21 24 181
bzip2 201,956 N/A N/A 33 230
crafty 4,206 3,204 480 20 257
eon 159 155 70 76 532
equake 61 N/A 20 24 214
gcc 655 483 26 26 193
gzip 5,469 251 54 23 236
mcf 1,850,878 2,627,350 15 48 329
mesa 58,146 64,971 26 20 221
mst 6,242 N/A N/A 38 264
perlbmk 3,825 7,484 48 20 225
twolf 72 36 18 27 157
vpr 83 42 47 28 178

Table 4 HeapMon bug-detection capability showing the
percentage of inserted bugs detected and the number of injected

bugs.
Benchmark alloc-bug dealloc-bug noinit-bug
[% (no.)] [% (no.)] [% (no.)]
art 100 (20) 100 (5) 100 (20)
crafty 61 (13) 100 (4) 100 (20)
equake 100 (20) 100 (4) 100 (20)
mcf 100 (3) 100 (3) 100 (20)

production environments that stress the application to its
limits. This observation supports the argument that a
low-overhead bug detection deployable in production

environments is needed.

We also tested bug-detection capability on set B
applications using the input sets from [23]. The
applications ncompress-4.2.4 and polymorph-0.4.0 have
reported stack-related bugs but no heap-related bugs
(that we know of), and HeapMon did not detect any bugs
with the input sets used. However, HeapMon successfully
detected the two previously reported [23] heap-related
bugs in be-1.06 as writes to unallocated locations.

We also ran set A applications (SPEC2000) through
HeapMon without bug injection. HeapMon was able to

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Table 5 Total memory not deallocated in the benchmarks tested. HeapMon lumps together true memory leaks and objects that are

intentionally left allocated by the programmer.

Benchmark Allocations Not deallocated Not deallocated (%) Total memory leak (bytes)
ammp 34,766 34,764 99.9 13,867,154
art 30,490 30,489 99.9 2,276,734
bzip2 13 13 100.0 13,667,680
crafty 44 42 95.5 881,680
eon 2,595 632 24.4 53,720
equake 316,854 316,854 100.0 11,406,744
gcc 4,305 1,180 27.4 3,001,720
gzip 246 7 2.9 6,605,308
mcf 10 3 30.0 4,600
mesa 69 9 13.0 13,836
mst 422 422 100.0 13,681,240
parser 105 7 6.7 31,470,635
perlbmk 423 323 76.4 4,233,204
twolf 9,413 1,408 14.9 7,821,619
vpr 1,594 50 3.1 80,462

identify all objects that were left allocated when the
applications terminated in each of the 15 benchmarks.
Table 5 shows, for each benchmark, the number of
memory allocations made, the number of these that are
not deallocated (both as an absolute number and as a
percentage of allocations), and the total number of bytes
that remain allocated at the end of program execution.
Note that HeapMon does not distinguish between true
memory leaks and heap objects that are intentionally left
allocated by the programmer. HeapMon identifies that
six benchmarks (ammp, art, bzip2, crafty, equake, and
mst) either never deallocate their heap memory or
deallocate fewer than 5% of their allocations.

Conclusions

This paper presents HeapMon, a heap memory bug-
detection scheme that has a very low performance
overhead, is automatic, and is easy to deploy. HeapMon
relies on two new techniques. First, application execution
is decoupled from bug monitoring, which executes as a
helper thread on a separate core in a CMP system. The
second new technique in HeapMon is to associate a filter
bit with each cached word to safely reduce bug-checking
frequency (by 95% on average). Our experimental results
show that HeapMon effectively detects and identifies
most forms of heap memory bugs and incurs an average
performance overhead of only 5% on SPEC2000
applications. Such an overhead is orders of magnitude
smaller than in existing tools. HeapMon requires modest
on-chip storage overhead: 3.1% of the cache size and a

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

32-KB victim cache for on-chip filter bits. It also uses a
software data structure for state bits, which uses only
6.2% of the allocated heap memory size.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Standard
Performance Evaluation Corporation, Microsoft Corporation, or
Macromedia, Inc. in the United States, other countries, or both.

References

1. IBM Corporation, IBM Rational PurifyPlus for UNIX; see
http:|[www-306.ibm.com/softwarelawdtools/purifyplus/.

2. P.Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torellas, “iWatcher:
Efficient Architectural Support for Software Debugging,”
Proceedings of the 31st Annual International Symposium on
Computer Architecture, 2004; see http:|/|opera.cs.uiuc.edu/
paper|/Zhoul SCA04.pdf.

3. T. M. Austin, S. E. Breach, and G. S. Sohi, “Efficient
Detection of All Pointer and Array Access Errors,”
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1994,
pp- 290-301.

4. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, “StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks,” Proceedings of the 7th USENIX Security
Symposium, 1998, pp. 63-78.

5. S. Hangal and M. S. Lam, “Tracking Down Software Bugs
Using Automatic Anomaly Detection,” Proceedings of the
International Conference on Software Engineering, 2002,
pp. 291-301.

6. Intel Corporation, Intel Thread Checker; see htp://
www.intel.com/cd/software[products/asmo-nalengthreading/
219783.htm.

R. SHETTY ET AL.

273

274

10.

12.

13.
. J. Boletta, SecurityFocus Newsletter No. 172, 2002; see http.//

15.

16.

18.

20.

21.

22.

23.

24.

25.

A. Loginov, S. H. Yong, S. Horwitz, and T. W. Reps,
“Debugging via Run-Time Type Checking,” Lecture Notes in
Computer Science 2029, 217-232 (2001).

. G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-

Safe Retrofitting of Legacy Code,” Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2002, pp. 128—139.

H. Patil and C. Fischer, “Low-Cost, Concurrent Checking of
Pointer and Array Accesses in C Programs,” Software Pract. &
Exper. 27, No. 1, 87-110 (1997).

H. Patil and C. N. Fischer, “Efficient Run-time Monitoring
Using Shadow Processing,” Proceedings of the 2nd
International Workshop on Automated and Algorithmic
Debugging, 1995, pp. 119-132.

. IBM Corporation, Rational software; see http://www-306.

ibm.com/software/rational].

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.
Anderson, “Eraser: A Dynamic Data Race Detector for
Multithreaded Programs,” ACM Trans. Computer Syst. 15,
No. 4, 391-411 (1997).

Valgrind Developers, Valgrind; see http://valgrind.kde.org|.

www.pantek.com/librarylinux/lists/securityfocus.com/sf-news/
msg00002.html.

Symantec Corporation, “Microsoft IIS HTR Chunked
Encoding Heap Overflow Allows Arbitrary Code”; see http://
securityresponse.symantec.com/avcenter/security/Content/
2033.html.

United States Computer Emergency Readiness Team, “Buffer
Overflow in Microsoft Internet Explorer,” Technical Cyber
Security Alert TA04-315A4; see http://www.us-cert.gov/cas/
techalerts|/TA04-315A.html.

. United States Computer Emergency Readiness Team, “ ‘Code

Red” Worm Exploiting Buffer Overflow in IIS Indexing
Service DLL,” FedCIRC Advisory FA-2001-19; see http:/|
www.us-cert.gov|/federallarchiveladvisories|FA-2001-19.html.
M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. L. Dill, “CMC: A Pragmatic Approach to Model Checking
Real Code,” Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002, pp. 75-88.

. U. Stern and D. L. Dill, “Automatic Verification of the SCI

Cache Coherence Protocol,” Proceedings of the Conference on
Correct Hardware Design and Verification Methods, 1995,

pp. 21-34.

J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan, “Efficient and Precise Datarace Detection
for Multithreaded Object-Oriented Programs,” Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2002, pp. 258-269.

D. Engler and K. Ashcraft, “RacerX: Effective, Static
Detection of Race Conditions and Deadlocks,” Proceedings of
the 19th ACM Symposium on Operating Systems Principles,
2003, pp. 237-252.

S. Hallem, B. Chelf, Y. Xie, and D. Engler, “A System and
Language for Building System-Specific, Static Analyses,”
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2002,

pp. 69-82.

P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torellas, “AccMon: Automatically Detecting Memory-
Related Bugs via Program Counter-Based Invariants,”
Proceedings of the 37th International Symposium on
Microarchitecture, 2004, pp. 269-280.

F. Qin, S. Lu, and Y. Zhou, “SafeMem: Exploiting ECC-
Memory for Detecting Memory Leaks and Memory
Corruption During Production Runs,” Proceedings of the 11th
International Symposium on High-Performance Computer
Architecture, 2005; see http://www.hpcaconf.org/hpcall [papers|
28_gin-safemem.pdyf.

M. L. Corliss, E. C. Lewis, and A. Roth, “Low-Overhead
Interactive Debugging via Dynamic Instrumentation with

R. SHETTY ET AL.

DISE,” Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, 2005, pp. 303-314.

26. J. Oplinger and M. S. Lam, “Enhancing Software Reliability
with Speculative Threads,” Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002,
pp. 184-196.

27. J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen,
“Dynamic Speculative Precomputation,” Proceedings of the
34th International Symposium on Microarchitecture, 2001,

p. 306.

28. Y. H. Song and M. Dubois, “Assisted Execution,” Technical
Report No. CENG 98-25, Department of Electrical
Engineering—Systems, University of Southern California, Los
Angeles, CA 90089, 1998.

29. D. Kim, S. S.-W. Liao, P. H. Wang, J. del Cuvillo, X. Tian,
X. Zou, H. Wang, D. Yeung, M. Girkar, and J. P. Shen,
“Physical Experimentation with Prefetching Helper Threads
on Intel’s Hyper-Threaded Processors,” Proceedings of the
International Symposium on Code Generation and Optimization,
2004, p. 27.

30. C.-K. Luk, “Tolerating Memory Latency Through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors,” Proceedings of the 28th Annual International
Symposium on Computer Architecture, 2001, pp. 40-51.

31. A. Roth and G. Sohi, “Speculative Data-Driven
Multithreading,” Proceedings of the 7th International
Symposium on High-Performance Computer Architecture,
2001, pp. 37-48.

32. Y. Solihin, J. Lee, and J. Torrellas, “Using a User-Level
Memory Thread for Correlation Prefetching,” Proceedings of
the 29th International Symposium on Computer Architecture,
2002, pp. 171-182.

33. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A.
Porterfield, and B. Smith, “The Tera Computer System,”
Proceedings of the 4th International Conference on
Supercomputing, 1990, pp. 1-6.

34. W. Hillis and L. Tucker, “The CM-5 Connection Machine: A
Scalable Supercomputer,” Commun. ACM 36, No. 11, 31-40
(1993).

35. S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Tempest and
Typhoon: User-Level Shared Memory,” Proceedings of the
21st Annual International Symposium on Computer
Architecture, 1994; see http:|/www.eecs.umich.edu/~stever/|
pubslisca94_typhoon.pdf.

36. E. Spertus, S. C. Goldstein, K. E. Schauser, T. von Eicken,
D. E. Culler, and W. J. Dally, “Evaluation of Mechanisms for
Fine-Grained Parallel Programs in the J-Machine and the
CM-5,” Proceedings of the 20th Annual International
Symposium on Computer Architecture, 1993; see http://
citeseer.csail.mit.edu/cachelpapers|cs|1282 [http.:
z8zzSzwww.cs.ucsb.eduzSz~schauserzSzpaperszSz93-isca.
pdf]spertus93evaluation.pdf.

37. W.J. Dally, L. Chao, A. Chein, S. Hassoun, W. Horwat, J.
Kaplan, P. Song, B. Totty, and S. Wills, “Architecture of a
Message-Driven Processor,” Proceedings of the 14th Annual
International Symposium on Computer Architecture, 1987,
pp. 189-196.

38. E. Witchel, J. Cates, and K. Asanovic, “Mondrian Memory
Protection,” Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2002, pp. 304-315.

39. SPEC Benchmarks, Standard Performance Evaluation
Corporation; see http://www.spec.org.

40. SESC; see http://sesc.sourceforge.net.

Received June 21, 2005, accepted for publication
July 25, 2005; Internet publication February 28, 2006

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Rithin Shetty Network Appliance, Inc., 495 East Java Drive,
Sunnyvale, California 94089 (rithin@gmail.com). Mr. Shetty is a
member of the technical staff, working with the Enterprise Data
Management business unit on disk-based backup and mirroring
technologies. He received a B.E. degree in computer science and
engineering from Sri Jayachamarajendra College of Engineering,
India, and an M.S. degree in computer science from North
Carolina State University.

Mazen Kharbutli Department of Electrical and Computer
Engineering, North Carolina State University, P.O. Box 7256,
Raleigh, North Carolina 27695 (mazen.kharbutli@gmail.com).

Mr. Kharbutli received a B.S. degree in electrical and computer
engineering from the Jordan University of Science and
Technology, and an M.S. degree in electrical engineering from the
University of Maryland. He is currently pursuing a Ph.D. degree in
computer engineering at North Carolina State University.

Yan Solihin Department of Electrical and Computer
Engineering, North Carolina State University, P.O. Box 7256,
Raleigh, North Carolina 27695 (solihin@ece.ncsu.edu). Dr. Solihin
received a B.S. degree in computer science from the Institut
Teknologi Bandung, Indonesia, an M.S. degree in computer
engineering from Nanyang Technological University, Singapore,
and M.S. and Ph.D. degrees in computer science from the
University of Illinois at Urbana—Champaign. He is currently an
assistant professor in the Department of Electrical and Computer
Engineering, North Carolina State University. He has published
more than 25 papers in computer architecture and image
processing, which cover chip multiprocessor systems, performance
modeling, interaction of architecture and systems software, and
architecture support for security and software reliability.

Milos Prvulovic College of Computing, Georgia Institute

of Technology, 801 Atlantic Drive, Atlanta, Georgia 30332
(milos@cc.gatech.edu). Dr. Prvulovic is an assistant professor at
the College of Computing at the Georgia Institute of Technology.
He received a B.Eng. degree in electrical engineering from the
University of Belgrade, and M.S. and Ph.D. degrees in computer
science from the University of Illinois at Urbana—Champaign.
He has published numerous papers on computer architecture,
primarily in the area of architectural support for thread-level
speculation, reliability, and programmability of multiprocessors.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

R. SHETTY ET AL.

275

