
HeapMon: A helper-thread
approach to programmable,
automatic, and low-
overhead memory bug
detection

R. Shetty
M. Kharbutli

Y. Solihin
M. Prvulovic

The ability to detect and pinpoint memory-related bugs in
production runs is important because in-house testing may miss
bugs. This paper presents HeapMon, a heap memory bug-detection
scheme that has a very low performance overhead, is automatic,
and is easy to deploy. HeapMon relies on two new techniques.
First, it decouples application execution from bug monitoring,
which executes as a helper thread on a separate core in a chip
multiprocessor system. Second, it associates a filter bit with each
cached word to safely and significantly reduce bug checking
frequency—by 95% on average. We test the effectiveness of these
techniques using existing and injected memory bugs in SPECt2000
applications and show that HeapMon effectively detects and
identifies most forms of heap memory bugs. Our results also
indicate that the HeapMon performance overhead is only 5%, on
average—orders of magnitude less than existing tools. Its overhead
is also modest: 3.1% of the cache size and a 32-KB victim cache for
on-chip filter bits and 6.2% of the allocated heap memory size for
state bits, which are maintained by the helper thread as a software
data structure.

Introduction

Many software tools have been developed to find errors

through the static analysis of code or to monitor an

aspect of program behavior at runtime and detect

problems. Static methods can be used without affecting

performance, but imperfect memory disambiguation and

input-dependent program behavior severely limit their

scope. Runtime tools can significantly improve

programmer productivity and reduce development costs

[1], but they suffer from large performance overheads that

preclude their use in production runs of deployed

applications. As a result, problems that remain in

deployed code can create errors, crashes, and security

vulnerabilities.

This is especially true for memory bugs such as reads

from uninitialized memory, reads or writes using dangling

pointers, and memory leaks, which are common problems

in C and Cþþ programs. Memory bugs are difficult to

detect by code inspection because they may involve

different code fragments and exist in different modules or

source code files. The compiler is of little help because it

typically fails to accurately disambiguate pointers [2].

Thus, in practice, memory bug detection relies on runtime

checkers [3–13] that insert monitoring into the application

using a compiler or binary instrumentation, but the

resulting performance overhead is tolerable only in

debugging runs. In deployed software, instrumentation is

removed and bugs that occur in production runs are not

detected.

Detection of memory-related bugs in production runs

can help pinpoint surviving bugs. Left undetected, such

bugs may cause behavior that is difficult to discern, such

as occasional wrong computation outputs, late, obscure,

or intermittent system crashes, security attacks, and

subtle performance loss. For example, reading from an

uninitialized variable may result in crash-free execution

with wrong computation outputs, while undetected

memory leaks can induce excessive page faults or much-

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

261

0018-8646/06/$5.00 ª 2006 IBM

delayed crashes when the available memory is eventually

exhausted. Security vulnerabilities due to memory bugs

may become apparent only when an attack is successful.

Popular programs such as Microsoft Internet Explorer**,

Microsoft Internet Information Services, and

Macromedia Flash** and ColdFusion**, among others,

are known to be vulnerable to heap-related attacks

[14–16]. The Code Red worm [17] is a recent example.

In this paper, we focus on architecture support for

efficient detection of memory bugs in production runs.

We carefully designed the hardware support so that it is

not specific to the type of bugs to be detected or the type

of checkers used for detection. We have avoided bug- or

checker-specific hardware extensions because different

users, applications, programming languages, and

environments may require different checks.

The bug checks in our design are performed in software

by a helper thread. Our memory bug checker, HeapMon,

monitors application heap space to detect heap memory

bugs. This approach takes advantage of chip

multiprocessing (CMP) and multithreading and allows

checks to overlap with regular program execution in the

application thread. In HeapMon, the status of each word

on the heap is monitored by associating with it a state

that indicates whether the word is unallocated (U),

allocated but uninitialized (AU), or allocated and

initialized (AI). Each state defines the accesses to that

word that are legal and those that are illegal (bugs). When

a bug is detected, its type, program counter, and data

address are logged so that developers can determine the

nature of the bug and its precise location.

To facilitate this approach, we use three hardware

mechanisms that focus on efficient and effective

communication between threads. The first is a

communication queue for forwarding events from an

application thread to its helper thread, together with

instruction set architecture (ISA) extensions to insert and

extract events from this queue. This avoids long-latency

communication of events through shared memory. The

second mechanism automatically forwards memory

access events to the helper thread. This avoids the need

to instrument load/store instructions, which must be

checked in most monitoring and bug-detection schemes.

The third mechanism filters out redundant or unnecessary

memory access events using a set of bits in the application

processor cache. Because the definition of redundant or

unnecessary depends on the kind of checking being done

by the helper thread, the helper-thread code has full

control over these filter bits.

With this design, HeapMon offers the following

benefits:

� Low-overhead: The helper-thread approach

completely decouples bug monitoring from

application execution, and the filtering mechanism

reduces bug-check frequency. Consequently,

HeapMon achieves a very low performance overhead

(see the section on evaluation results).
� Automatic: HeapMon automatically monitors the

entire heap region of the application; there is no need

to insert watchpoints or specify memory regions for

monitoring in the application code.
� Deployable: HeapMon monitors existing program

object files. It is deployed by relinking the application

with a new static memory allocation library, or simply

running it with a new dynamically linked memory

allocation library.1

Architectural support for HeapMon is quite

inexpensive. The communication queues between the

application and the HeapMon helper thread are small,

and the filter bits require modest storage overhead: 3.1%

of the cache size and a 32-KB victim cache for the on-chip

filter bits. Software storage overhead of HeapMon

includes 6.2% of the allocated heap memory size for

storing the per-word state information, which is incurred

only for applications that are monitored by HeapMon.

Although HeapMon uses an extra CMP processor to run

the helper thread, there is still a significant savings of total

processor utilization (i.e., processor count3 time). The

HeapMon thread is running only 15% of the overall

application execution time, indicating the possibility of

time-sharing the processor with other tasks. Its low

overhead allows more prerelease software testing and

the use of more realistic test inputs, improving the

productivity of testing and debugging. It may also affect

whether monitoring and checking will be always used,

even in production runs of deployed software.

Related work
Our work focuses on low-overhead architectural support

for runtime bug detection using a helper-thread approach.

Detection ofmemory bugs can also be performed statically

by explicit model checking [18, 19] and program analysis

[20–22]. Staticmethodsdonot affect performance, but their

scope is severely limited by input-dependent program

behavior and difficulties in disambiguating memory

references. Detection of memory bugs can also be

performed at runtime by instrumenting the code with

checks, as in IBM Purify* [11], Valgrind [13], Intel Thread

Checker [6], DIDUCE [5], Eraser [12], CCured [8], and

others [3, 4, 7, 9, 10]. Such instrumentation typically

introduces large performance overheads because

instrumentedmemory references (loads and stores) execute

often, and execution of the instrumentation code is

1Some applications manage their own heap through custom allocation and
deallocation routines. However, we found that custom routines are typically localized
in very few functions. They can be modified to work with HeapMon without a
significant programming effort.

R. SHETTY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

262

interleaved with normal program execution. Extending

data structure definition (such as pointers) can greatly

improve the ability of runtime checkers to detect bugs

[3]. Such extensions are orthogonal and largely

complementary to our HeapMon approach.

Recently, hardware support concepts for detecting

memory bugs or to support debugging—such as iWatcher

[2], AccMon [23], SafeMem [24], DISE [25], and that by

Oplinger and Lam [26]—have been proposed. iWatcher,

AccMon, and DISE essentially extend hardware

watchpoints and breakpoints to an arbitrary number of

locations. In iWatcher and AccMon, a load or a store

address is checked against watched addresses maintained

in hardware tables. A match triggers an exception and

transfers control to bug-checking code, which returns

control to the application when the check is complete.

These exceptions disrupt application execution and occur

even if the check is redundant or unnecessary. To avoid

these overheads, AccMon introduces a bloom filter that

avoids the exception for certain loads or stores. However,

the filter is specific to the particular checking technique

proposed. In DISE, store instructions are instrumented

by dynamically replacing each with a set of instructions at

fetch time. These instructions check the store address

against watched addresses and call a debugging function

when there is a match. This address matching is

performed in software and is interleaved with the

application execution; it is unsuitable for watching a large

number of addresses. All three schemes (iWatcher,

AccMon, and DISE) interleave application execution

with bug-checking, address-matching, or debugging

functions. In contrast, our helper-thread mechanisms are

unique in that they execute checks in parallel with

application execution and eliminate most unnecessary

checks on loads and stores without using a bug- or

checker-specific hardware extension. Note that our

helper-thread approach is not specific to HeapMon, and

may help hide bug-checking latencies in other schemes.

In past studies, helper threads have been used mainly

for prefetching [27–32] and branch prediction [31];

HeapMon uses them for bug detection. Our checkers are

also related to hardware tags that store and manage the

state of main memory locations [33–37] and, more

recently, Mondrian memory protection [38]. In contrast

to hardware tags, our helper thread maintains tags in

software data structures without any special hardware

support for storing, managing, checking, and updating

them. This allows HeapMon to be adapted to different

kinds of checks with different tags, or even without tags,

by implementing different code in the helper thread.

Bug detection: Coverage and limitations
This section discusses the types of bugs that can be

detected by HeapMon and the limitations of our current

implementation.

Bug-detection coverage

To detect bugs, HeapMon helper thread allocates and

maintains two bits of state for each word in the heap area

(Figure 1). All free words in the heap region have a U

state. When an object is allocated (via malloc or an

equivalent function), the state of all words of the object

changes to AU. When a word in the object is written or

initialized, the state of the word changes to AI. Finally,

when an object is deallocated (via free or equivalent

functions), the state of its words changes back to U. The

states and the state transition diagram are adopted from

Purify [11]. Consequently, HeapMon inherits some of

the Purify bug-detection capability and some of its

limitations. The main advantage of HeapMon over Purify

lies in the decoupling of the application code and the bug

monitoring, and the use of architecture support to

efficiently reduce bug-monitoring frequency, which results

in orders of magnitude lower execution time overhead.

As in Purify, bug-checking conditions shown in

Figure 1 can detect six types of memory-related bugs at

runtime. Memory leaks are detected when, at the end of

program execution, some words in the heap region are

still in one of the allocated state.2 Note, however, that

HeapMon does not distinguish between true memory

leaks with heap objects that are intentionally left

allocated by the programmer.

Like Purify, HeapMon can detect heap buffer

overflows. To accomplish this, the memory allocation

and deallocation routine is modified to leave a small

unallocated block between each pair of consecutive

allocated regions. This would detect buffer overflow

Figure 1

State transition for each word. The table shows the legal requests
and the illegal requests (detectable bugs) for each state.

Allocate

Deallocate

Initialize

Deallocate

Unallocated
(U)

Allocated and
uninitialized

(AU)

Current state Illegal (bugs)

Read/Write/Deallocate

Read/Write/Deallocate

Write/Deallocate Read/Allocate

Allocated and
initialized

(AI)

Legal

U

Allocate

Allocate

AU

AI

2Note that Purify employs a more accurate and timely memory-leak detection that
relies on mark and sweep-conservative garbage collection.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

263

attacks, such as the Code Red worm [17], because the

attack attempts to write to such unallocated blocks. It

would also detect some array-out-of-bounds errors.

Bug-detection limitations

Because HeapMon monitors the heap memory, where

most pointer-related bugs occur, it cannot detect bugs in

the global data and stack segments. Since we track states

at the granularity of 32-bit words, bugs on accesses to

byte-sized locations may not always be detected.

Bug-detection mechanisms

Basic implementation

Like Purify, HeapMon can be implemented in software

by intercepting memory allocation and deallocation

library calls and load/store instructions, and adding

code for checks and state updates. Unfortunately, each

check and state update may result in executing many

instructions, some of which are memory references and

difficult-to-predict branches. Because most applications

frequently execute load and store instructions, the checks

and state updates they trigger may introduce significant

performance overheads. Although static analyses in some

cases can determine when checks or state updates are

unnecessary, they are limited by imperfect memory

disambiguation and unavailability of the source code.

HeapMon operates on application binaries and does

not use any compile-time information. As a result, all

static load and store instructions must trigger appropriate

checks and state updates. However, instead of

interleaving checks and state updates with regular

application execution, HeapMon performs them in a

separate thread that runs in parallel with the application

thread. This approach is possible without any hardware

support but is impractical because of its performance

impact.

Optimizing helper-thread communication

To allow fast communication and synchronization

between the two threads, HeapMon hardware support

includes a set of hardware communication queues

(Figure 2) and new instructions that insert event

notifications into and extract them from the queues.

There are two types of first-in first-out (FIFO) queues: a

request queue stores the bug-check requests generated by

the application processor; a reply queue stores the bug-

check results computed by the helper thread. Queue-

insertion instructions stall when the queue is full, which

provides synchronization when the helper thread cannot

keep up but allows the application thread to work at full

speed when the helper thread is able to keep up.

We note that any helper-thread checker that monitors

frequent events in the application thread would have

similar communication and synchronization problems.

Our communication and synchronization support is not

specific to HeapMon and can be used by any other

checker implemented as a helper thread.

Reducing instrumentation overhead

Even with special instructions for inserting events into the

request queue, instrumentation of all load and store

instructions in the application would have a heavy impact

on both performance and code size. To eliminate this

instrumentation, HeapMon includes support for

automatically placing load and store events in the request

queue. Such support is needed only for frequent events,

while infrequent events are still inserted into the queue in

software. This approach simplifies our hardware support

because it forwards only a few classes of frequent events,

such as loads and stores. In HeapMon, memory

allocation and deallocation events are still forwarded

using software instrumentation and our ISA extensions,

but such instrumentation is now required only in the

heap memory-management library. As a result, to use

HeapMon with an application, we need to use only a

modified dynamic library or relink it with a modified

static library.

We note that this support for automatic forwarding of

load and store events is, again, not specific to HeapMon.

Other checkers that must observe memory accesses can

enable the forwarding of loads, stores, or both to avoid

heavy instrumentation of the application code and the

resulting performance overheads.

Reducing helper-thread workload

One important factor in maintaining good application

performance is to keep the helper thread less busy than

the main thread. Otherwise, the helper thread cannot

keep up, the request queue becomes full, and the

application thread stalls. Helper-thread workload can

be reduced by optimizing its code, but even then, the

Figure 2

HeapMon hardware support.

P0 P1

L1 $ L1 $

Communication queues

Checker
helper threadApplication

L2 $
Victim filter
cache (VFC)

...

Filter
bits

Filter
bits

Filter
bits

R. SHETTY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

264

processing time per load or store event is longer than the

typical time the application thread spends between

consecutive load or store instructions. Fortunately, many

events forwarded to the helper thread are redundant or

unnecessary. For example, HeapMon detects heap bugs,

so only heap-related events have to be forwarded to its

helper thread. There are other checker-specific requests

that can be omitted: An example is a store to an already

allocated and initialized heap memory location that

always results in a successful HeapMon check and

does not change the HeapMon state for that location.

However, forwarding of such events to the helper thread

still results in a state lookup to determine that no action is

needed.

We have introduced two filtering mechanisms to

prevent some forwarding of unnecessary events to the

helper thread. Because we wanted to avoid checker-

specific hardware support, both filtering mechanisms are

not checker-specific and can be programmed by the

checker helper thread. First, we use an address filter that

specifies the start and end of the virtual address range in

the application for which events should be forwarded to

the helper thread. For example, the helper thread may

program the address filter to forward only events related

to the heap, the stack, another range, or the entire address

space.

The second mechanism provides fine-grain filtering that

consists of a filter bit for every word in the application

processor cache. If a filter bit is set to 1, load or store

events for that memory location are not forwarded to the

helper thread. If the filter bit is set to 0 (cleared), events

for that memory location are forwarded to the helper

thread. Filter bits are examined by the forwarding

hardware when a decision is being made about whether

to place an event in the request queue.

The decision about when to set or clear a particular

filter bit depends on the kind of checking performed by

the helper thread. Different checkers have different

definitions of redundant and unnecessary events.

Consequently, our filter bits are under the control of the

helper-thread software. For this purpose, the helper

thread puts filter bit set and clear operations into the

reply queue. These operations are extracted from the

queue by the application processor hardware, which sets

and clears the filter bits accordingly.

If every word were associated with a filter bit, these bits

would be too numerous for all of them to be kept on chip.

To simplify our HeapMon hardware, filter bits are kept

only for cached data and are discarded when data is

displaced from the cache. Fetching a block from memory

into the cache triggers a request to the helper thread for

generating the filter bits for the entire cache block. The

performance impact of keeping filter bits only on chip can

be further reduced by introducing another level of on-

chip caches for filter bits only, which we call the victim

filter cache (VFC) (Figure 2). Because filter bits are much

smaller than the corresponding data, the VFC can be

small and fast, yet still provide filter bits for most data

accesses that miss in on-chip caches and consequently,

eliminate most of the extra event forwarding.

Finally, our event-filtering mechanism is not specific to

HeapMon—another checker can control these filter bits

to safely filter out memory read/write events that are

redundant or unnecessary for that particular checker.

Reporting modes

We envision two major scenarios for using HeapMon-

based checkers. Our primary focus is the always-on

scenario, in which checking is done in production runs of

software that is already deployed. In this scenario, the

application is not debugged interactively; problems are

logged and sent to the software vendor for analysis. The

second scenario is in prerelease testing and debugging,

where it is best if each detected problem triggers an

exception at the instruction for which the problem is

detected in order to facilitate interactive debugging. In the

debugging mode, after completing the check for an event,

the helper thread uses the ISA extensions to insert a

response into the reply queue. The application processor

hardware consumes these responses automatically.

Responses indicating that no error is detected are used

to allow retirement of the event-causing instruction.

Responses that indicate the detection of errors trigger an

exception in the event-causing instruction. To maintain

precise exceptions, the application processor delays

retirement of instructions for which responses from the

helper thread are still pending.

There are two requirements for the correctness of bug

detection in HeapMon.3 First, the order in which requests

are inserted into the request queue must correspond to

the program order of the instructions that generate the

requests. Without following the program order, false bugs

may be detected whereas true bugs may not be detected.

The second requirement is that speculative instructions

that will eventually be squashed should not update any

state maintained in the helper thread.

Always-on mode

In the always-on mode, both requirements are met by

forwarding events to the helper thread as each instruction

retires, which occurs in program order and only for

nonspeculative instructions. For a load or store

instruction, we check whether the filter bit for the

accessed word is available (i.e., has been looked up

from the caches). If it is available and its value is 1, the

3There are also requirements for the order in which a filter bit is looked up or cleared.
For clarity and space, we omit a discussion on how this is handled, but it is taken into
account in our experiments.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

265

instruction is immediately retired. If it is available and its

value is 0, an event corresponding to the instruction is

inserted into the request queue and the instruction is

retired. If the request queue is full, the retirement of the

instruction stalls until an entry in the request queue

becomes available. If the filter bit is not available because

it is not found in the cache, an event is also inserted

into the request queue, conservatively assuming that

checking is needed for this instruction. Because a load

instruction must access its data before it can be executed,

by the time it is ready to retire, the filter bit will have been

looked up from the cache. However, a store instruction is

typically retired before it accesses the caches. To avoid

generating an event because the filter bit has not been

looked up, we issue a filter bit access for a store

instruction as soon as its address becomes available.

In most cases, by the time the store is ready to retire,

its filter bit has been looked up. If it has not, the store

conservatively assumes that the filter bit is 0 and places

an event in the request queue. Thus, in the always-on

mode, instruction retirement stalls only if the request

queue is full.

Debugging mode

In the debugging mode, the retirement of a check-causing

instruction is delayed until the checker response is

received. If, as in our always-on mode, a check is

requested just before an instruction commits, retirement

in the application thread stalls until the check is complete.

With this in mind, checks in the debugging mode are

forwarded to the helper thread when the request-

triggering instruction is executed. Because instruction

execution can be speculative and out of order, the actual

exception processing is delayed until retirement. To

achieve this, each load, store, or queue-insertion

instruction in the processor is tagged with a no-bug-found

bit, which, if set to 1, indicates that the instruction check

has been completed without any bug being detected, and

therefore the instruction can retire without raising an

exception.

We note that the program-order requirement in the

request queue is too strong and can be relaxed to

dependence-based ordering, in which the order in which

requests are inserted into the request queue must

correspond to the program order of the corresponding

instructions only if they access the same or overlapping

addresses. However, instructions that access non-

overlapping addresses can be inserted into the request

queue out of order. To enforce this ordering, a load,

store, or queue-insertion instruction waits until all

preceding load, store, or queue-insertion instructions

have their addresses disambiguated. After that, the

request is inserted into the request queue if there is no

address overlap or if the only address overlap is with

instructions whose requests are filtered out or already

inserted in the request queue.

The second requirement is to prevent speculative

instructions from causing permanent state updates in the

helper thread. To satisfy this requirement, each request in

the request queue is tagged with a speculative bit that is

set for an instruction that generates a request while it is

still speculative. The bit is 0 if a request is generated by an

instruction that is about to retire. Upon receiving a

request, the helper thread checks the bit and may perform

a state update only when the request is not speculative.

For speculative requests, the checker determines whether

an update request will be needed when the instruction

retires. Details of this mechanism are omitted because of

space limitations.

Overall recommendation

Delayed instruction retirement and separate check and

update requests in the debugging mode make it more

complex and can adversely affect its performance. The

always-on mode is likely to be used in most systems, while

the debugging mode will be used primarily in software

development. Consequently, the principle of optimizing

the common case first leads us to believe that the always-

on mode with simple error logging should be

implemented first. The debugging mode with precise

exceptions can be added if cost and complexity

considerations permit.

HeapMon operation

To illustrate how HeapMon interacts with our hardware

support, we present a timeline of a check-triggering

instruction from execution to retirement in the

application thread.

HeapMon helper-thread implementation

Figure 3(a) shows a simplified view of the helper-thread

main loop. The thread operates in a tight loop that

retrieves and processes bug-check requests, using

lightweight sleep to wait when the request queue is empty.

Allocation requests in the figure correspond to malloc (),

calloc (), and similar library calls.

Figure 3(b) shows HeapMon helper-thread code for

processing a check request for a read event. The code in

lines 02–04 locates the byte that contains state bits in the

HeapMon thread data structure, and the code on line 06

extracts these bits. Lines 07 and 08 show the code for

detecting and reporting reads to unallocated or

uninitialized words. A bug report contains the type of

event (a load, store, allocation, or deallocation), the

current state and virtual address of the heap word in

question, and the program counter that corresponds to

the event. Some statements for statistics collection and

filter-bit manipulation are implemented but are not

shown in Figure 3(b).

R. SHETTY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

266

In implementing the helper thread, we started with a

clean, high-level implementation. However, we found the

response time of the helper thread to be unsatisfactory.

We applied more aggressive compiler and manual

optimizations on the code, including using immediates

(defines) for some values, constant propagation, strength

reduction, function inlining, loop unrolling, etc. To

efficiently handle allocation and deallocation requests to a

large region (128 bytes or more), the helper thread

updates the state bits using 8-byte writes. Overall, the

optimizations reduce the helper-thread response time by

80–95% compared with the unoptimized version.

Request timeline in HeapMon

Figure 4 shows the sequence of events for a bug check

in HeapMon running in the always-on mode. Each

allocation or deallocation function is augmented with an

instruction that inserts an event into the request queue.

When the application calls such a function, a request

event is placed in the request queue (circle la in Figure 4).

The event also requests that the helper-thread bug

checking pause while it is executing the function, so that

loads and stores needed for heap management are not

detected as bugs. While paused, the helper thread ignores

bug-check requests until it is resumed. For a read or write

instruction, the filter bit for the accessed word in on-chip

caches is checked. If the filter bit is found to be set to 1 for

an access, the access is safe (i.e., it will not result in bug

detection), and no bug-check request is generated. If the

filter bit is found (or assumed) to be 0, a bug check is

generated for that access (circle 1b or 1c) by placing a

request in the request queue (circle 2), if the access is to an

address in the address range specified in the address filter.

When the filter bit is not found in the caches, the request

also requests that the filter bits of the entire cache block

be generated by the helper thread. A request in the

request queue contains the application process

identification, program counter of the requesting

instruction, request type, starting virtual address, request

size, and speculative bit. Virtual addresses are preferred in

a request because regions of memory (heap, stack, code,

etc.) are contiguous in the virtual address space, which

allows easier tracking of state for each location in the

helper-thread code and avoids issues that would arise

because of paging and disk swapping.

After processing a request, the helper thread checks

the queue and retrieves the next request (circle 3).

Alternatively, it may have been in a lightweight sleep

because there were no more requests to process, in which

case it receives a wake up signal when a new request is

(a) HeapMon helper-thread main loop code. (b) HeapMon helper-thread code for processing a bug-check request from a read.

Figure 3

01 while(!exitApp){
02 getNextEvent(&event);
03 switch (event.eventType) {
04 case HM_MALLOC, HM_CALLOC_, HM_REALLOC : alloc_handler(addr_info, event); break;
05 case HM_FREE : free_handler(addr_info, event); break;
06 case HM_READ : read_handler(addr_info, event); break;
07 case HM_WRITE : write_handler(addr_info, event); break;
08 case HM_GET_FILTER_BITS: get_filter_bit_handler(addr_info, event); break;
09 case HM_PAUSE_CHECKING: pause_handler(); break;
10 case HM_RESUME_CHECKING: resume_handler(); break;
11 case HM_NOEVENT: lightsleep(); break; // Request Queue empty
12 case HM_EXIT : check_for_leaks(); exitApp=true; break;
13 }
14 }

(a)

01 void read_handler(AddrSpace_t addr_info, Event_t event) {
02 int byteOffset = (event.dAddr - addr_info.heapStart) >> LOG2_NUMBYTES_PER_TAGBYTE;
03 int bitOffset = ((((event.dAddr - addr_info.heapStart) % NUMBYTES_PER_TAGBYTE)
04 >> LOG2_BLOCK_SIZE)) << LOG2_NUM_TAG_BITS;
05
06 unsigned char heapState = (heapStateBits[byteOffset] >> bitOffset) & 0x03;
07 if (heapState != INIT_ALLOC)
08 reportBug(event.eventType, heapState, event.dAddr, event.iAddr);
09 }

(b)

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

267

placed in the queue. In both cases, the thread obtains the

request and reads the heap state bits (circle 4) to

determine whether the request corresponds to a valid

heap access or a bug. On the basis of the request type

and the current heap state for the accessed word, the

thread may reply with a filter-bit-set or a filter-bit-clear

signal (circle 5) to turn the filter bit on or off. With the

checker, the signal is sent in two cases. In the first case,

the request is from a read or a write that finds the word in

the AI state or from a write that puts the word in that

state. In this case, the thread sends a filter-bit-set signal to

turn the filter bit on so that future reads/writes to the

word will not generate bug-check requests. In the second

case, the request is a deallocation; here, a filter-bit-clear

signal is sent to enable bug-check requests on future

accesses to those words.

If a request results in a state transition, the thread

performs a state update on the heap state bits (circle 6).

Because the state bits were recently read by the thread,

they probably still reside in the cache, and the update is a

cache hit. Finally, if a bug is found, it is logged, together

with all relevant information that can be reported to the

programmer or user (circle 7). In the always-on mode,

bug detection, if desired, can also raise an (imprecise)

exception in the application, for example to terminate the

application and prevent corruption of sensitive data.

Other implementation issues

� Communication queue implementation: In both

always-on and debugging modes, a request-generating

instruction stalls if the request queue is full. Reducing

this stall time is an important issue. In practice, we

found that with a sufficiently large request queue (64

entries), the application processor rarely stalls because

of transient increases in the request rate. The

processor can still stall when the helper thread is busy

for a long time, such as when it is processing a large

allocation in HeapMon, while the application thread

keeps generating and queuing up requests that

eventually fill the request queue. In contrast, the reply

queue can be very small (we use eight entries in our

experiments) because replies are quickly consumed by

the application processor hardware.
� Helper-thread scheduling: To be effective, the helper

thread should be gang-scheduled with the application

so that event-check requests will be serviced in a

reasonable amount of time. In our evaluation, we

assume that the helper-thread processor is not

multitasked.

Evaluation setup

Applications

We use two sets of applications in our evaluation of

HeapMon. Set A is used to evaluate the performance

overheads and characteristics. We use 14 applications,

mostly from SPEC**2000 [39]. The applications, their

sources, input sets, L1 and L2 cache miss rates, number of

allocations, average allocation size, and percentage of

memory accesses that go to the heap region are shown in

Table 1. We omitted Fortran benchmarks because they

use no heap memory and can neither produce HeapMon

checks nor benefit from them. Among C/Cþþ
benchmarks, vortex, gap, and parser are not included

because they currently do not run on our simulator. To

correctly detect bugs, the program must be monitored

from the beginning to track, for example, exactly which

heap locations have been initialized. Consequently, all

benchmarks are simulated from the beginning to the end

using primarily test input sets to keep the simulation

times reasonable.

Set B is used to evaluate HeapMon bug-detection

capability. We use applications and input sets supplied

by the authors of AccMon [23]. We were able to compile

and run three of these applications (ncompress-4.2.4,

polymorph-0.4.0, and bc-1.06). Two other applications

(gzip-1.2.41 and man-1.5h1) could not be compiled

because of limitations in our cross-compiler
infrastructure. Of the three compiled applications, only

bc-1.06 was reported to have heap-related bugs; thus, we
expected to detect bugs only in bc-1.06. We did not use set
B applications to evaluate performance because their
input sets were designed to make bugs manifest, but are

very small and unrealistic for performance evaluation.

In set A applications, HeapMon identifies only

memory leaks. This is not surprising: They have gone

through rigorous debugging and testing for the standard

Figure 4

HeapMon bug-check protocol in the always-on mode. For brevity,
we show only one pair of request and reply queues and do not show
the memory hierarchy. Heap state bits are a software data structure
maintained by the helper thread.

Heap
state bits

P1

4 6

P0

Application

2

1a

1b

1c

5

3 7

Request
queue

HeapMon
helper thread

Reply
queue

To cache

State
check

State
update

Allocation/
deallocation

Filter bit = OFF

Filter bit miss in
L1�L2�VFC

Fi
lte

r b
it

se
t/c

lea
r

Retrieve/
wake up

Addr
filter

Bug log
write

R. SHETTY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

268

input sets over the years. To further evaluate our bug-

detection capability, we injected bugs into these

applications.

Simulation environment

The evaluation is performed on an extension of SESC

[40], a detailed cycle-accurate execution-driven CMP

simulator. Table 2 shows the parameters used for each

component of the architecture. Each CMP core is an

aggressive out-of-order superscalar processor with private

L1 instruction and data caches. In CMPs, the L2 cache

can be configured to be per-processor private or shared

among processors. The memory hierarchy below the L2

cache is always shared by all CMP cores. We assume that

the helper thread can obtain a request from its request

queue with a single-cycle latency. We note, however, that

this has little effect on the overall request-processing

latency, which is of the order of hundreds of cycles.

Evaluation results
In this section we present execution time overheads of

HeapMon running in two modes. We discuss in detail its

performance characteristics and the sensitivity of the

overhead to different cache parameters, and we evaluate

its bug-detection effectiveness.

Performance overhead and characteristics

Figure 5 shows execution time overhead of HeapMon

running in the always-on mode and in the debug mode

with precise exceptions for bug detection. We use a 64-

entry request queue, an eight-entry reply queue, a filter bit

for each cached word, and a 32-KB VFC that caches filter

bits for displaced L2 blocks. Each bar represents the

additional execution time with HeapMon, relative to

baseline execution time without HeapMon.

The execution time overheads are quite low, with

averages of 4.9% for the always-on mode and 10.8% for

the debug mode. In the always-on mode, HeapMon

overhead is above 10% only for equake (28.6%). In the

debug mode, the overhead is less than 10% in nine of 14

benchmarks. The largest overhead is that of perlbmk

(49%). The low overhead in the always-on mode supports

the argument that, unlike existing bug-detection tools,

HeapMon can be used in production runs.

To better understand HeapMon overhead, we

characterize its always-on performance. Figure 6(a)

shows the helper-thread’s execution time, broken down

into the time it is busy servicing allocation requests,

deallocation requests, read requests, write requests, and

computing filter bits. Each bar is normalized to the

application execution time. Therefore, the height of the

entire bar for each application shows the fraction of the

execution time during which the helper thread is busy.4

The figure shows that, on average, HeapMon processor

services requests only 15% of the time and is busy more

than 30% of the time in only two applications (ammp and

equake). This shows that although the HeapMon helper

thread runs on a separate CMP processor, it does not

Table 1 The applications used in our performance evaluation (set A).

Benchmark Source Input set L1 cache

miss rate (%)

L2 cache

miss rate (%)

Number of

allocations

Average allocation

size (bytes)

Heap

accesses (%)

ammp SPECfp**2000 test 19.44 33.7 34,766 399 32.8

art SPECfp2000 test 9.65 48.03 30,490 75 27.45

bzip2 SPECint**2000 test 0.84 1.66 13 1,051,360 3.86

crafty SPECint2000 test 2.15 0.06 44 20,140 0.38

eon SPECint2000 test 0.14 0.13 2,595 85 5.03

equake SPECfp2000 test 1.24 57.59 316,854 36 32.37

gcc SPECint2000 test 1.29 0.89 4,305 3,529 17.37

gzip SPECint2000 test 2.82 3.64 246 27,866 4.11

mcf SPECint2000 test 7.16 13.35 10 9,660,180 22.42

mesa SPECfp2000 test 0.13 61.71 69 302,464 14.03

mst Olden 1,024

nodes

1.7 37.21 422 32,420 40.12

perlbmk SPECint2000 test 0.36 14.46 423 19,948 34.34

twolf SPECint2000 test 1.09 0.08 9,413 73 26.28

vpr SPECint2000 test 2.17 0.01 1,594 127 25.21

4This ‘‘busy’’ time still includes various pipeline stalls in the HeapMon thread
processor.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

269

fully occupy the processor and could be interleaved with

other activity to maximize system throughput.

In most benchmarks, the HeapMon helper thread

spends most of its time computing filter bits. There are

two reasons for this. First, HeapMon computes filter bits

for an entire cache line (16 words) at a time, which

requires more time than to service reads or writes to

individual memory locations. Second, such filter-bit

computation helps eliminate later read and write check

requests, which reduces the time spent servicing such

requests. In mcf, however, most of the time is spent on

servicing allocation and deallocation requests, owing to

very large allocations and deallocations (averaging

9.7 MB).

Figure 6(b) shows the percentage of memory accesses

that find the filter bits in the L1 cache, L2 cache, or the

VFC. We also show whether the filter bit is set or clear.

Several observations can be made from this figure. First,

the HeapMon filtering mechanism is very effective in

reducing the frequency of bug checks. On average, 95% of

all accesses find their filter bit set in the cache (Hit þ on).

Consequently, only 5% of the accesses generate bug-check

requests, which is key to the low performance overheads.

Lower filter-bit hit rates are observed in only ammp and

art, which are also the only applications with very high

L2 miss rates (34% and 48%, respectively), L1 miss rates

(19% and 10%, respectively), and heap accesses (33% and

27%, respectively), indicating a large and active working

set in the heap. However, even for these applications, the

execution time overhead is low (0.4% and 9.8%,

respectively). Finally, we observe that, on average, only

1.5% of all accesses find the filter bits in one of the caches,

but the bits are clear (Hitþ off). This confirms that a heap

object is accessed many times after it is allocated and

initialized, and that filter-bit caching almost always

results in avoiding bug-check requests.

Table 3 shows the helper-thread’s average service time

(in cycles) for different types of activity. The table shows

that a single read or write request is usually processed in

less than 100 cycles, and even cache-block filter bits are

typically computed in less than 400 cycles. However,

allocations and deallocations may involve a large memory

region, and their service time varies greatly. Ten large

allocations in mcf average 9.7 MB each (Table 1) and

have the longest average service time of 1.85 million

cycles per allocation and 2.6 million cycles per

deallocation. Note that allocation and deallocation

requests result in changing the state of each word in the

affected region, so HeapMon processing time for these

requests grows in proportion with request size.

Figure 6(c) shows the time during which the request

queue is full as a percentage of the application execution

time. The figure shows that on average the queue is full

only 1.3% of the time. The worst case is mcf, for which

Table 2 Parameters of the simulated architecture. Latencies

correspond to contention-free conditions. RT¼ round trip from

the processor.

Processor core 4-GHz, six-way out-of-order issue

Integer, floating-point, and load/store

functional units: 4, 4, 3

Branch penalty: 17 cycles

Reorder buffer size: 248

Memory

hierarchy

L1 instruction (per processor):

write-back, 16-KB, two-way, 64-B line,

RT: three cycles, least recently used

(LRU) replacement, Miss Status

Handling Register (MSHR) size: 24.

L1 data (per processor): WB, 16 KB,

two-way, 64-B line, RT: three cycles,

LRU repl., MSHR size: 24.

L2 unified (shared): 1-MB, eight-way,

64-B line, RT: 13 cycles, LRU repl.,

MSHR size: 48.

Memory bus: split-transaction,

8 B wide, 1 GHz, 8-GB/s peak

RT memory latency: 400 cycles

Additional

hardware

Request/reply queues: 64/8 entries,

FIFO, one-cycle access time

Filter-bit storage in L1 and L2: 3.1% of

cache sizes (512 B at the L1 þ 32 KB

at the L2)

Victim filter cache: 32 KB, eight-way,

2-B line, four-cycle access time

Figure 5

Execution time overhead of HeapMon in two configurations.

0

10

20

30

40

50

60

am
mp ar
t

bz
ip
2

cr
af
ty eo
n

eq
ua
ke gc
c

gz
ip mc
f

me
sa ms
t

pe
rl
bm
k

tw
ol
f

vp
r

A
ve

ra
ge

E
xe

cu
tio

n
tim

e
ov

er
he

ad
 (

%
)

HeapMon (always-on)

HeapMon (debug)

R. SHETTY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

270

the request queue is full 4.6% of the time. For most of

this time, the helper thread is busy processing a large

allocation or deallocation request, and the application

thread fills the queue with subsequent load and store

requests. We find that even substantially larger queues

(thousands of entries) are insufficient to prevent

application stall in such situations. Overall, however,

these results indicate that the queue size of 64 entries is

sufficient for most programs, and that most of the

HeapMon execution time overhead can be attributed

to other factors.

Sensitivity study

We tested the sensitivity of HeapMon performance to

changes in the L2 cache and VFC parameters. Figure 7(a)

shows the performance overhead when no VFC is used, a

1-MB private L2 cache for the helper thread in lieu of a

VFC, and configurations with a 16-KB, a 32-KB, and

a 64-KB VFC. Without a VFC, the HeapMon thread

introduces an average overhead of 15.2%. We suspected

that this performance overhead might be caused by cache

contention between the application and the helper thread,

so we tried adding a 1-MB private L2 cache for

HeapMon. This is not a realistic configuration, but it

helps us determine whether cache contention introduces

a bottleneck. Although the average overhead with a

separate L2 cache decreases to 11.8%, it is not much

lower than with no VFC, suggesting that cache

contention is not the main bottleneck. Because most of

the helper-thread’s time is spent computing filter bits,

adding a VFC to prevent repeating such work is the more

effective solution. The figure also shows that a small VFC

helps reduce overhead considerably, but additional VFC

space yields little additional benefit. This is because even a

small VFC stores filter bits for a large amount of data.

Figure 7(b) shows the performance overhead given

different L2 cache sizes (512-KB, 1-MB, and 2-MB) while

keeping the cache associativity constant and a fixed 32-

KB VFC. The overhead is always relative to the

configuration with the same cache size, but without

any bug checking. The average overheads are 6.9% for

512 KB, 5.0% for 1 MB, and 5.6% for 2 MB. In general,

larger caches result in fewer cache misses, fewer filter bits

‘‘lost’’ due to cache replacements, fewer bug-check

requests, and less HeapMon activity. However, since

baseline execution speeds up significantly with larger

caches, the relative HeapMon overhead can increase (e.g.,

to 5.6% for 2-MB caches). Overall, the results suggests

that HeapMon performance overhead remains low as

long as the application has good caching behavior.

Bug-detection capability

HeapMon tags heap words with states adopted from

Purify; therefore, their bug-detection capability is similar,

and we expect HeapMon to detect all bugs that we inject.

We use Table 1 to choose a representative application for

each of the following behaviors: few but very large

allocations (mcf), few and small allocations (crafty),

Figure 6

(a) Breakdown of the HeapMon helper-thread execution time by
request type; (b) percentage of accesses that find their filter bit in
the L1/L2/VFC; (c) percentage of time during which the request
queue is full.

H
ea

pM
on

 th
re

ad
 a

ct
iv

ity
 ti

m
e

 (
%

)

Allocate
Deallocate
Read
Write
Filter

am
mp ar
t

bz
ip
2

cr
af
ty eo
n

eq
ua
ke gc
c

gz
ip mc
f

me
sa ms
t

pe
rl
bm
k

tw
ol
f

vp
r

A
ve

ra
ge

am
mp ar
t

bz
ip
2

cr
af
ty eo
n

eq
ua
ke gc
c

gz
ip mc
f

me
sa ms
t

pe
rl
bm
k

tw
ol
f

vp
r

A
ve

ra
ge

L
1/

L
2/

V
FC

 f
ilt

er
 b

its
 h

it
ra

te
 (

%
)

Hit + on (set) Hit + off (clear)

(a)

(b)

(c)

R
eq

ue
st

 q
ue

ue
 (

%
 f

ul
l)

am
mp ar
t

bz
ip
2

cr
af
ty eo
n

eq
ua
ke gc
c

gz
ip mc
f

me
sa ms
t

pe
rl
bm

k

tw
ol
f

vp
r

A
ve

ra
ge

0

10

20

30

40

50

60

0
10
20
30
40
50
60
70
80
90

100

0.0

0.5

1.0

1.5
2.0

2.5

3.0

3.5

4.0

4.5

5.0

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

271

many small allocations (art), and a very high number of

allocations (equake). We introduce three types of bugs:

alloc-bug reduces randomly selected memory allocation

requests by 32 bytes; dealloc-bug deallocates some

randomly selected heap objects; and noinit-bug removes

randomly selected initialization writes. We inject multiple

bugs on each run. When a bug is detected, we reverse the

impact of the bug so it does not crash the application,

allowing HeapMon to detect bugs that are injected later.

HeapMon detected all injected bugs except for five

alloc-bugs in crafty (Table 4). These injections reduce

allocation size for heap objects that are used as string

buffers, and the 32 missing bytes are never used. As a

result, the injected bug is never manifested and is not

detected. This result once again illustrates the elusiveness

of some bugs, which may be manifested only in

production environments that stress the application to its
limits. This observation supports the argument that a
low-overhead bug detection deployable in production
environments is needed.

We also tested bug-detection capability on set B

applications using the input sets from [23]. The

applications ncompress-4.2.4 and polymorph-0.4.0 have

reported stack-related bugs but no heap-related bugs

(that we know of), and HeapMon did not detect any bugs

with the input sets used. However, HeapMon successfully

detected the two previously reported [23] heap-related

bugs in bc-1.06 as writes to unallocated locations.

We also ran set A applications (SPEC2000) through

HeapMon without bug injection. HeapMon was able to

Table 3 Average service time (in cycles) of the helper thread

for each type of heap request. N/A indicates that the helper thread

never encounters the request. For example, bzip2, equake, and
mst do not have deallocation requests because they never

deallocate their heap objects, whereas in bzip2 and mst, filter bits
eliminate all read requests.

Application Allocation Deallocation Read Write Filter-bit

requests

ammp 179 1,791 19 28 305

art 69 3,789 21 24 181

bzip2 201,956 N/A N/A 33 230

crafty 4,206 3,204 480 20 257

eon 159 155 70 76 532

equake 61 N/A 20 24 214

gcc 655 483 26 26 193

gzip 5,469 251 54 23 236

mcf 1,850,878 2,627,350 15 48 329

mesa 58,146 64,971 26 20 221

mst 6,242 N/A N/A 38 264

perlbmk 3,825 7,484 48 20 225

twolf 72 36 18 27 157

vpr 83 42 47 28 178

Figure 7

Sensitivity of execution time overhead of HeapMon in always-on
mode for (a) different VFC sizes; (b) different L2 cache sizes.

0

10

20

30

40
E

xe
cu

tio
n

tim
e

ov
er

he
ad

 (
%

)

No VFC
No VFC + private L2
16-KB VFC
32-KB VFC
64-KB VFC

128%
97%

0

5

10

15

20

25

30

35

E
xe

cu
tio

n
tim

e
ov

er
he

ad
 (

%
) 2-MB L2

1-MB L2
512-KB L2

(a)

(b)

am
mp ar
t

bz
ip
2

cr
af
ty eo
n

eq
ua
ke gc
c

gz
ip mc
f

me
sa ms
t

pe
rl
bm
k

tw
ol
f

vp
r

A
ve

ra
ge

am
mp ar
t

bz
ip
2

cr
af
ty eo
n

eq
ua
ke gc
c

gz
ip mc
f

me
sa ms
t

pe
rl
bm
k

tw
ol
f

vp
r

A
ve

ra
ge Table 4 HeapMon bug-detection capability showing the

percentage of inserted bugs detected and the number of injected

bugs.

Benchmark alloc-bug

[% (no.)]

dealloc-bug

[% (no.)]

noinit-bug

[% (no.)]

art 100 (20) 100 (5) 100 (20)

crafty 61 (13) 100 (4) 100 (20)

equake 100 (20) 100 (4) 100 (20)

mcf 100 (3) 100 (3) 100 (20)

R. SHETTY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

272

identify all objects that were left allocated when the

applications terminated in each of the 15 benchmarks.

Table 5 shows, for each benchmark, the number of

memory allocations made, the number of these that are

not deallocated (both as an absolute number and as a

percentage of allocations), and the total number of bytes

that remain allocated at the end of program execution.

Note that HeapMon does not distinguish between true

memory leaks and heap objects that are intentionally left

allocated by the programmer. HeapMon identifies that

six benchmarks (ammp, art, bzip2, crafty, equake, and

mst) either never deallocate their heap memory or

deallocate fewer than 5% of their allocations.

Conclusions
This paper presents HeapMon, a heap memory bug-

detection scheme that has a very low performance

overhead, is automatic, and is easy to deploy. HeapMon

relies on two new techniques. First, application execution

is decoupled from bug monitoring, which executes as a

helper thread on a separate core in a CMP system. The

second new technique in HeapMon is to associate a filter

bit with each cached word to safely reduce bug-checking

frequency (by 95% on average). Our experimental results

show that HeapMon effectively detects and identifies

most forms of heap memory bugs and incurs an average

performance overhead of only 5% on SPEC2000

applications. Such an overhead is orders of magnitude

smaller than in existing tools. HeapMon requires modest

on-chip storage overhead: 3.1% of the cache size and a

32-KB victim cache for on-chip filter bits. It also uses a

software data structure for state bits, which uses only

6.2% of the allocated heap memory size.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of Standard
Performance Evaluation Corporation, Microsoft Corporation, or
Macromedia, Inc. in the United States, other countries, or both.

References
1. IBM Corporation, IBM Rational PurifyPlus for UNIX; see

http://www-306.ibm.com/software/awdtools/purifyplus/.
2. P. Zhou, F. Qin, W. Liu, Y. Zhou, and J. Torellas, ‘‘iWatcher:

Efficient Architectural Support for Software Debugging,’’
Proceedings of the 31st Annual International Symposium on
Computer Architecture, 2004; see http://opera.cs.uiuc.edu/
paper/ZhouISCA04.pdf.

3. T. M. Austin, S. E. Breach, and G. S. Sohi, ‘‘Efficient
Detection of All Pointer and Array Access Errors,’’
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1994,
pp. 290–301.

4. C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, ‘‘StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-
Overflow Attacks,’’ Proceedings of the 7th USENIX Security
Symposium, 1998, pp. 63–78.

5. S. Hangal and M. S. Lam, ‘‘Tracking Down Software Bugs
Using Automatic Anomaly Detection,’’ Proceedings of the
International Conference on Software Engineering, 2002,
pp. 291–301.

6. Intel Corporation, Intel Thread Checker; see http://
www.intel.com/cd/software/products/asmo-na/eng/threading/
219783.htm.

Table 5 Total memory not deallocated in the benchmarks tested. HeapMon lumps together true memory leaks and objects that are

intentionally left allocated by the programmer.

Benchmark Allocations Not deallocated Not deallocated (%) Total memory leak (bytes)

ammp 34,766 34,764 99.9 13,867,154

art 30,490 30,489 99.9 2,276,734

bzip2 13 13 100.0 13,667,680

crafty 44 42 95.5 881,680

eon 2,595 632 24.4 53,720

equake 316,854 316,854 100.0 11,406,744

gcc 4,305 1,180 27.4 3,001,720

gzip 246 7 2.9 6,605,308

mcf 10 3 30.0 4,600

mesa 69 9 13.0 13,836

mst 422 422 100.0 13,681,240

parser 105 7 6.7 31,470,635

perlbmk 423 323 76.4 4,233,204

twolf 9,413 1,408 14.9 7,821,619

vpr 1,594 50 3.1 80,462

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

273

7. A. Loginov, S. H. Yong, S. Horwitz, and T. W. Reps,
‘‘Debugging via Run-Time Type Checking,’’ Lecture Notes in
Computer Science 2029, 217–232 (2001).

8. G. C. Necula, S. McPeak, and W. Weimer, ‘‘CCured: Type-
Safe Retrofitting of Legacy Code,’’ Proceedings of the 29th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 2002, pp. 128–139.

9. H. Patil and C. Fischer, ‘‘Low-Cost, Concurrent Checking of
Pointer and Array Accesses in C Programs,’’ Software Pract. &
Exper. 27, No. 1, 87–110 (1997).

10. H. Patil and C. N. Fischer, ‘‘Efficient Run-time Monitoring
Using Shadow Processing,’’ Proceedings of the 2nd
International Workshop on Automated and Algorithmic
Debugging, 1995, pp. 119–132.

11. IBM Corporation, Rational software; see http://www-306.
ibm.com/software/rational/.

12. S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T.
Anderson, ‘‘Eraser: A Dynamic Data Race Detector for
Multithreaded Programs,’’ ACM Trans. Computer Syst. 15,
No. 4, 391–411 (1997).

13. Valgrind Developers, Valgrind; see http://valgrind.kde.org/.
14. J. Boletta, SecurityFocus Newsletter No. 172, 2002; see http://

www.pantek.com/library/linux/lists/securityfocus.com/sf-news/
msg00002.html.

15. Symantec Corporation, ‘‘Microsoft IIS HTR Chunked
Encoding Heap Overflow Allows Arbitrary Code’’; see http://
securityresponse.symantec.com/avcenter/security/Content/
2033.html.

16. United States Computer Emergency Readiness Team, ‘‘Buffer
Overflow in Microsoft Internet Explorer,’’ Technical Cyber
Security Alert TA04-315A; see http://www.us-cert.gov/cas/
techalerts/TA04-315A.html.

17. United States Computer Emergency Readiness Team, ‘‘ ‘Code
Red’ Worm Exploiting Buffer Overflow in IIS Indexing
Service DLL,’’ FedCIRC Advisory FA-2001-19; see http://
www.us-cert.gov/federal/archive/advisories/FA-2001-19.html.

18. M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. L. Dill, ‘‘CMC: A Pragmatic Approach to Model Checking
Real Code,’’ Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, 2002, pp. 75–88.

19. U. Stern and D. L. Dill, ‘‘Automatic Verification of the SCI
Cache Coherence Protocol,’’ Proceedings of the Conference on
Correct Hardware Design and Verification Methods, 1995,
pp. 21–34.

20. J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar,
and M. Sridharan, ‘‘Efficient and Precise Datarace Detection
for Multithreaded Object-Oriented Programs,’’ Proceedings of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2002, pp. 258–269.

21. D. Engler and K. Ashcraft, ‘‘RacerX: Effective, Static
Detection of Race Conditions and Deadlocks,’’ Proceedings of
the 19th ACM Symposium on Operating Systems Principles,
2003, pp. 237–252.

22. S. Hallem, B. Chelf, Y. Xie, and D. Engler, ‘‘A System and
Language for Building System-Specific, Static Analyses,’’
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2002,
pp. 69–82.

23. P. Zhou, W. Liu, L. Fei, S. Lu, F. Qin, Y. Zhou, S. Midkiff,
and J. Torellas, ‘‘AccMon: Automatically Detecting Memory-
Related Bugs via Program Counter-Based Invariants,’’
Proceedings of the 37th International Symposium on
Microarchitecture, 2004, pp. 269–280.

24. F. Qin, S. Lu, and Y. Zhou, ‘‘SafeMem: Exploiting ECC-
Memory for Detecting Memory Leaks and Memory
Corruption During Production Runs,’’ Proceedings of the 11th
International Symposium on High-Performance Computer
Architecture, 2005; see http://www.hpcaconf.org/hpca11/papers/
28_qin-safemem.pdf.

25. M. L. Corliss, E. C. Lewis, and A. Roth, ‘‘Low-Overhead
Interactive Debugging via Dynamic Instrumentation with

DISE,’’ Proceedings of the 11th International Symposium on
High-Performance Computer Architecture, 2005, pp. 303–314.

26. J. Oplinger and M. S. Lam, ‘‘Enhancing Software Reliability
with Speculative Threads,’’ Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems, 2002,
pp. 184–196.

27. J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen,
‘‘Dynamic Speculative Precomputation,’’ Proceedings of the
34th International Symposium on Microarchitecture, 2001,
p. 306.

28. Y. H. Song and M. Dubois, ‘‘Assisted Execution,’’ Technical
Report No. CENG 98-25, Department of Electrical
Engineering—Systems, University of Southern California, Los
Angeles, CA 90089, 1998.

29. D. Kim, S. S.-W. Liao, P. H. Wang, J. del Cuvillo, X. Tian,
X. Zou, H. Wang, D. Yeung, M. Girkar, and J. P. Shen,
‘‘Physical Experimentation with Prefetching Helper Threads
on Intel’s Hyper-Threaded Processors,’’ Proceedings of the
International Symposium on Code Generation and Optimization,
2004, p. 27.

30. C.-K. Luk, ‘‘Tolerating Memory Latency Through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors,’’ Proceedings of the 28th Annual International
Symposium on Computer Architecture, 2001, pp. 40–51.

31. A. Roth and G. Sohi, ‘‘Speculative Data-Driven
Multithreading,’’ Proceedings of the 7th International
Symposium on High-Performance Computer Architecture,
2001, pp. 37–48.

32. Y. Solihin, J. Lee, and J. Torrellas, ‘‘Using a User-Level
Memory Thread for Correlation Prefetching,’’ Proceedings of
the 29th International Symposium on Computer Architecture,
2002, pp. 171–182.

33. R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A.
Porterfield, and B. Smith, ‘‘The Tera Computer System,’’
Proceedings of the 4th International Conference on
Supercomputing, 1990, pp. 1–6.

34. W. Hillis and L. Tucker, ‘‘The CM-5 Connection Machine: A
Scalable Supercomputer,’’ Commun. ACM 36, No. 11, 31–40
(1993).

35. S. K. Reinhardt, J. R. Larus, and D. A. Wood, ‘‘Tempest and
Typhoon: User-Level Shared Memory,’’ Proceedings of the
21st Annual International Symposium on Computer
Architecture, 1994; see http://www.eecs.umich.edu/;stever/
pubs/isca94_typhoon.pdf.

36. E. Spertus, S. C. Goldstein, K. E. Schauser, T. von Eicken,
D. E. Culler, and W. J. Dally, ‘‘Evaluation of Mechanisms for
Fine-Grained Parallel Programs in the J-Machine and the
CM-5,’’ Proceedings of the 20th Annual International
Symposium on Computer Architecture, 1993; see http://
citeseer.csail.mit.edu/cache/papers/cs/1282/http:
zSzzSzwww.cs.ucsb.eduzSz;schauserzSzpaperszSz93-isca.
pdf/spertus93evaluation.pdf.

37. W. J. Dally, L. Chao, A. Chein, S. Hassoun, W. Horwat, J.
Kaplan, P. Song, B. Totty, and S. Wills, ‘‘Architecture of a
Message-Driven Processor,’’ Proceedings of the 14th Annual
International Symposium on Computer Architecture, 1987,
pp. 189–196.

38. E. Witchel, J. Cates, and K. Asanovic, ‘‘Mondrian Memory
Protection,’’ Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2002, pp. 304–315.

39. SPEC Benchmarks, Standard Performance Evaluation
Corporation; see http://www.spec.org.

40. SESC; see http://sesc.sourceforge.net.

Received June 21, 2005; accepted for publication
July 25,

R. SHETTY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

274

2005; Internet publication February 28, 2006

Rithin Shetty Network Appliance, Inc., 495 East Java Drive,
Sunnyvale, California 94089 (rithin@gmail.com). Mr. Shetty is a
member of the technical staff, working with the Enterprise Data
Management business unit on disk-based backup and mirroring
technologies. He received a B.E. degree in computer science and
engineering from Sri Jayachamarajendra College of Engineering,
India, and an M.S. degree in computer science from North
Carolina State University.

Mazen Kharbutli Department of Electrical and Computer
Engineering, North Carolina State University, P.O. Box 7256,
Raleigh, North Carolina 27695 (mazen.kharbutli@gmail.com).
Mr. Kharbutli received a B.S. degree in electrical and computer
engineering from the Jordan University of Science and
Technology, and an M.S. degree in electrical engineering from the
University of Maryland. He is currently pursuing a Ph.D. degree in
computer engineering at North Carolina State University.

Yan Solihin Department of Electrical and Computer
Engineering, North Carolina State University, P.O. Box 7256,
Raleigh, North Carolina 27695 (solihin@ece.ncsu.edu). Dr. Solihin
received a B.S. degree in computer science from the Institut
Teknologi Bandung, Indonesia, an M.S. degree in computer
engineering from Nanyang Technological University, Singapore,
and M.S. and Ph.D. degrees in computer science from the
University of Illinois at Urbana–Champaign. He is currently an
assistant professor in the Department of Electrical and Computer
Engineering, North Carolina State University. He has published
more than 25 papers in computer architecture and image
processing, which cover chip multiprocessor systems, performance
modeling, interaction of architecture and systems software, and
architecture support for security and software reliability.

Milos Prvulovic College of Computing, Georgia Institute
of Technology, 801 Atlantic Drive, Atlanta, Georgia 30332
(milos@cc.gatech.edu). Dr. Prvulovic is an assistant professor at
the College of Computing at the Georgia Institute of Technology.
He received a B.Eng. degree in electrical engineering from the
University of Belgrade, and M.S. and Ph.D. degrees in computer
science from the University of Illinois at Urbana–Champaign.
He has published numerous papers on computer architecture,
primarily in the area of architectural support for thread-level
speculation, reliability, and programmability of multiprocessors.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 R. SHETTY ET AL.

275

