Preface

This issue of the IBM Journal of Research and
Development focuses on exploratory systems. As the name
suggests, exploratory systems cover a wide range of
cutting-edge technologies that will make future systems
better: faster, lower-power, more reliable, more
expandable, easier to use, easier to design. The systems in
question span a wide range from small embedded devices
such as those found in cell phones, washing machines,
and animal-tracking collars to installations with
thousands of processors and petabytes of storage for
handling large databases or for large-scale simulation.

The first set of papers in this issue explore how a wide
range of systems can be supported with a few simple
building blocks. The paper by Agerwala and Gupta
surveys the challenges in constructing a large, robust
system from a large number of relatively simple
processors. Difficulties range from the fact that an
individual component in a very large system can be
expected to fail every few days to employing enough
parallelism via algorithms, compilers, and runtime
optimizers to utilize thousands of processors. The paper
uses examples from the Blue Gene® project to illustrate
these challenges.

In a similar vein, Wilcke et al. describe how a data
center can be composed of large numbers of atomic
elements, i.e., “intelligent bricks” of storage. In addition
to defining the properties required in individual bricks to
allow efficient construction of large systems, the paper
also shows how bricks permit high-density storage—
not areal bit density on an individual disk platter but
volumetric efficiency (i.e., the number of bytes that can be
stored in a cubic meter). The question then arises, Can a
dense system of bricks be efficiently cooled? The answer
is “yes,” as the paper shows in part by presenting
measurements and experience with a prototype model. In
a companion paper, Fleiner et al. examine the reliability
of brick systems. Even if one or more bricks fail, it is
important that the system not lose data, continue running
with no immediate human intervention, and suffer little
or no loss in performance. Through Monte Carlo
simulations, the authors show that brick-based systems
score very well on all of these metrics.

Given this foundation of large systems built from
simple building blocks, the next set of papers describe
how large systems can be efficiently managed and used.
Bacon and Shen tackle the memory wall problem—the
increasing number of processor cycles required to retrieve
data from memory. They do so by taking advantage of
the growing numbers of threads and processors in large
systems. The observation that a second thread can run
while a first waits for data from memory is not new.
However, exploitation of this observation has been

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

limited by the difficulty in finding independent threads
within one program or by having a large enough
collection of simultaneously running independent
programs. To overcome these difficulties, Bacon and Shen
introduce the high-level language constructs of braids and
fibers, which enable adaptive responses to memory
latencies. They show that a small amount of new
architecture and microarchitecture efficiently supports
braids and fibers and significantly helps mitigate the
memory wall problem.

Dongarra et al. discuss a three-pronged approach
employed at the University of Tennessee for efficiently
mapping numerical problems to large systems:

1) choosing the right algorithm; 2) tuning kernels to run
well on particular processors on the basis of latency and
bandwidth to cache, number of processor execution
units, etc.; and 3) managing the system, e.g., assigning
computations (threads) to processors, especially so as to
adjust to the changing state of the entire system—whether
these changes be idle processors or failed processors. In
their paper, Cagcaval et al. discuss alternative means of
handling the second and third problems. In particular,
they use the performance-monitor counters present in
most modern processors to detect sub-optimal system
performance and adjust execution to help overcome such
problems. A particularly effective example of such tuning
is adjustment of the page size. When the processor
counters report many misses in the TLB (translation
lookaside buffer), the data may be spread over more
pages of memory than the processor can efficiently track.
To overcome this problem, this paper finds that it is often
helpful to increase the amount of data stored in specific
pages. Many modern processors and operating systems
provide efficient mechanisms to make such changes, for
example by allowing the page size for a problematic set of
data to be changed from 4 kilobytes to 16 megabytes.

Even once the techniques proposed in the papers above
allow applications to effectively use large systems, there
remains a need for people to find and use these
applications and systems. A promising direction in this
regard is grid systems, whereby a user “plugs in” to a
large array of machines available on a network and uses
their combined computational power to solve a problem.
Kandaswamy et al. describe a novel web service which
allows scientific applications to be used, unmodified, by
other users on the network. In addition, multiple scientific
applications can be composed in this framework, so as to
allow new meta-level applications to be built.

The previous set of papers all assume that correct,
debugged programs are being run. However, it often
requires a great deal of time and effort for a program even
to approach this state. Some of the most common bugs
relate to improper management of memory (at least in C

PREFACE

169



170

and C++ programs). For example, memory may be
allocated, but not freed when it is no longer needed,

or pointers may point to memory that has been
(erroneously) freed. Shetty et al. propose to use some of
the processors and threads available on larger systems to
automatically detect such problems and report them to
the programmer. Thus, some resources are used for
reliability (program correctness) instead of performance.

All of the papers thus far have dealt with the use of
large systems and the construction of large systems from
simple components. For a system to be effective, it is
important that these “simple” components be designed
well. The final set of papers deal with issues in this area, in
particular the circuits with which microprocessors are
built, the tools used to design them, and some important
aspects of those designs.

In their paper, Belluomini et al. describe limited
switch dynamic logic circuits (LSDL), a new static—
dynamic hybrid circuit family with many desirable
characteristics—in particular, low power, the ability to
operate at high frequency, and simplified design, in the
sense that evaluation of each LSDL circuit is triggered by
a rising clock edge. As proof of concept, the paper reports
on test implementations, including a 90-nm multiplier
that can run at up to 8 GHz.

Good circuits are but one element of a good processor
design. The higher-level structures in the processor
pipeline must also perform well, executing multiple
instructions in parallel with as little power as possible,
but at high frequency and without an excessive number
of stages in the pipeline. The load-store unit is very
important in this regard, particularly in enabling parallel
instruction execution, since much computation depends
on data values loaded from cache or memory. Baugh and
Zilles present a new technique for managing the queue of
stores waiting to go to memory. Traditionally such
queues have been structured around the order in which
store instructions occur in a program. As a result, load
instructions must search every element of the store queue
to see whether the most recent value from the location
being loaded resides in the store queue instead of in cache
or in memory. Baugh and Zilles describe a novel method
of organizing the store queue by store address instead of
program order. As a result, loads can efficiently (and with
less power) search only a small subset of the store queue,
for which the address of a store may match the address
being loaded.

The paper by Cheng and Tyson focuses on reducing
power consumption. To achieve this goal, they restrict the
set of instructions executed by a processor to the set of
instructions needed to efficiently execute a particular
(embedded) application. However, without going further,

PREFACE

this approach would likely restrict the use of such a
processor to a limited domain. The lower volumes and
resultant higher costs of designing a processor for a
limited domain would then serve to limit the appeal of
this approach. To overcome this problem, Cheng and
Tyson propose the use of programmable decoders, which
can be tuned in the field for each domain or application.
As a result, each domain executes its own limited set

of instructions, thus saving power. Each domain or
application executes a different set of instructions, thus
maintaining flexibility.

Even with good circuits and good microarchitecture,
there are often difficulties in fitting the two together. The
microarchitecture breaks computation into pipeline
stages and assumes that the circuits can complete the
work in each stage in one cycle. If such assumptions are
incorrect, major design changes may be required late in
the design cycle. Even if these problems are avoided
or overcome, there is an additional problem of
floorplanning, i.e., deciding where on the chip to place the
different parts of the design. Signals may take a full cycle
or more to cross a chip. As a result, “bubbles” in the
pipeline may be required to allow transmission of results
from one stage to another. Such bubbles may not have
been envisaged in the original microarchitecture, again
resulting in major design changes late in the design cycle.
Carter and Hussain address these and other problems
with Justice, a simulation model that includes all of the
elements just described, thus allowing these problems to
be detected and addressed early in the design cycle.

Feedback cycles in processor design are not
limited to those involving circuits, floorplanning, and
microarchitecture. There are similarly important cycles
involving microarchitecture, compilers, and operating
systems. For example, how much does a particular
microarchitectural feature speed up a particular program?
How much does a particular compiler optimization
improve performance? Local compiler scheduling of
instructions may be less important to good performance
in an out-of-order superscalar design than in a very long
instruction word (VLIW) design. However, a VLIW
design with compiler scheduling may require less power.
In the final paper, Peterson et al. describe the Mambo
full-system simulator, which allows fast, detailed
simulation of this latter set of interactions and tradeoffs
among microarchitecture, compilers, and operating
systems. The paper provides particular insight into how
the Mambo capabilities were used in the design of the Cell
Broadband Engine™ and in the IBM PERCS project.

Preliminary versions of several papers in this issue were
presented at the 2004 P=ac” Conference at the IBM
Thomas J. Watson Research Center, September 28-30,

IBM J. RES. & DEV. VOL. 50 NO. I JANUARY 2006



2004. In addition, we are grateful to Siddhartha
Chatterjee for many helpful suggestions and ideas, and to
Tilak Agerwala for his encouragement and support for
this special issue of the IBM Journal of Research and
Development.

Erik Altman
Architecture and Performance
IBM Research Division

Sumedh Sathaye
Microprocessor Architect
IBM Systems and Technology Group

Guest Editors

171

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 PREFACE



