
Preface
This issue of the IBM Journal of Research and

Development focuses on exploratory systems. As the name

suggests, exploratory systems cover a wide range of

cutting-edge technologies that will make future systems

better: faster, lower-power, more reliable, more

expandable, easier to use, easier to design. The systems in

question span a wide range from small embedded devices

such as those found in cell phones, washing machines,

and animal-tracking collars to installations with

thousands of processors and petabytes of storage for

handling large databases or for large-scale simulation.

The first set of papers in this issue explore how a wide

range of systems can be supported with a few simple

building blocks. The paper by Agerwala and Gupta

surveys the challenges in constructing a large, robust

system from a large number of relatively simple

processors. Difficulties range from the fact that an

individual component in a very large system can be

expected to fail every few days to employing enough

parallelism via algorithms, compilers, and runtime

optimizers to utilize thousands of processors. The paper

uses examples from the Blue Genet project to illustrate

these challenges.

In a similar vein, Wilcke et al. describe how a data

center can be composed of large numbers of atomic

elements, i.e., ‘‘intelligent bricks’’ of storage. In addition

to defining the properties required in individual bricks to

allow efficient construction of large systems, the paper

also shows how bricks permit high-density storage—

not areal bit density on an individual disk platter but

volumetric efficiency (i.e., the number of bytes that can be

stored in a cubic meter). The question then arises, Can a

dense system of bricks be efficiently cooled? The answer

is ‘‘yes,’’ as the paper shows in part by presenting

measurements and experience with a prototype model. In

a companion paper, Fleiner et al. examine the reliability

of brick systems. Even if one or more bricks fail, it is

important that the system not lose data, continue running

with no immediate human intervention, and suffer little

or no loss in performance. Through Monte Carlo

simulations, the authors show that brick-based systems

score very well on all of these metrics.

Given this foundation of large systems built from

simple building blocks, the next set of papers describe

how large systems can be efficiently managed and used.

Bacon and Shen tackle the memory wall problem—the

increasing number of processor cycles required to retrieve

data from memory. They do so by taking advantage of

the growing numbers of threads and processors in large

systems. The observation that a second thread can run

while a first waits for data from memory is not new.

However, exploitation of this observation has been

limited by the difficulty in finding independent threads

within one program or by having a large enough

collection of simultaneously running independent

programs. To overcome these difficulties, Bacon and Shen

introduce the high-level language constructs of braids and

fibers, which enable adaptive responses to memory

latencies. They show that a small amount of new

architecture and microarchitecture efficiently supports

braids and fibers and significantly helps mitigate the

memory wall problem.

Dongarra et al. discuss a three-pronged approach

employed at the University of Tennessee for efficiently

mapping numerical problems to large systems:

1) choosing the right algorithm; 2) tuning kernels to run

well on particular processors on the basis of latency and

bandwidth to cache, number of processor execution

units, etc.; and 3) managing the system, e.g., assigning

computations (threads) to processors, especially so as to

adjust to the changing state of the entire system—whether

these changes be idle processors or failed processors. In

their paper, Caşcaval et al. discuss alternative means of

handling the second and third problems. In particular,

they use the performance-monitor counters present in

most modern processors to detect sub-optimal system

performance and adjust execution to help overcome such

problems. A particularly effective example of such tuning

is adjustment of the page size. When the processor

counters report many misses in the TLB (translation

lookaside buffer), the data may be spread over more

pages of memory than the processor can efficiently track.

To overcome this problem, this paper finds that it is often

helpful to increase the amount of data stored in specific

pages. Many modern processors and operating systems

provide efficient mechanisms to make such changes, for

example by allowing the page size for a problematic set of

data to be changed from 4 kilobytes to 16 megabytes.

Even once the techniques proposed in the papers above

allow applications to effectively use large systems, there

remains a need for people to find and use these

applications and systems. A promising direction in this

regard is grid systems, whereby a user ‘‘plugs in’’ to a

large array of machines available on a network and uses

their combined computational power to solve a problem.

Kandaswamy et al. describe a novel web service which

allows scientific applications to be used, unmodified, by

other users on the network. In addition, multiple scientific

applications can be composed in this framework, so as to

allow new meta-level applications to be built.

The previous set of papers all assume that correct,

debugged programs are being run. However, it often

requires a great deal of time and effort for a program even

to approach this state. Some of the most common bugs

relate to improper management of memory (at least in C

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 PREFACE

169



and Cþþ programs). For example, memory may be

allocated, but not freed when it is no longer needed,

or pointers may point to memory that has been

(erroneously) freed. Shetty et al. propose to use some of

the processors and threads available on larger systems to

automatically detect such problems and report them to

the programmer. Thus, some resources are used for

reliability (program correctness) instead of performance.

All of the papers thus far have dealt with the use of

large systems and the construction of large systems from

simple components. For a system to be effective, it is

important that these ‘‘simple’’ components be designed

well. The final set of papers deal with issues in this area, in

particular the circuits with which microprocessors are

built, the tools used to design them, and some important

aspects of those designs.

In their paper, Belluomini et al. describe limited

switch dynamic logic circuits (LSDL), a new static–

dynamic hybrid circuit family with many desirable

characteristics—in particular, low power, the ability to

operate at high frequency, and simplified design, in the

sense that evaluation of each LSDL circuit is triggered by

a rising clock edge. As proof of concept, the paper reports

on test implementations, including a 90-nm multiplier

that can run at up to 8 GHz.

Good circuits are but one element of a good processor

design. The higher-level structures in the processor

pipeline must also perform well, executing multiple

instructions in parallel with as little power as possible,

but at high frequency and without an excessive number

of stages in the pipeline. The load-store unit is very

important in this regard, particularly in enabling parallel

instruction execution, since much computation depends

on data values loaded from cache or memory. Baugh and

Zilles present a new technique for managing the queue of

stores waiting to go to memory. Traditionally such

queues have been structured around the order in which

store instructions occur in a program. As a result, load

instructions must search every element of the store queue

to see whether the most recent value from the location

being loaded resides in the store queue instead of in cache

or in memory. Baugh and Zilles describe a novel method

of organizing the store queue by store address instead of

program order. As a result, loads can efficiently (and with

less power) search only a small subset of the store queue,

for which the address of a store may match the address

being loaded.

The paper by Cheng and Tyson focuses on reducing

power consumption. To achieve this goal, they restrict the

set of instructions executed by a processor to the set of

instructions needed to efficiently execute a particular

(embedded) application. However, without going further,

this approach would likely restrict the use of such a

processor to a limited domain. The lower volumes and

resultant higher costs of designing a processor for a

limited domain would then serve to limit the appeal of

this approach. To overcome this problem, Cheng and

Tyson propose the use of programmable decoders, which

can be tuned in the field for each domain or application.

As a result, each domain executes its own limited set

of instructions, thus saving power. Each domain or

application executes a different set of instructions, thus

maintaining flexibility.

Even with good circuits and good microarchitecture,

there are often difficulties in fitting the two together. The

microarchitecture breaks computation into pipeline

stages and assumes that the circuits can complete the

work in each stage in one cycle. If such assumptions are

incorrect, major design changes may be required late in

the design cycle. Even if these problems are avoided

or overcome, there is an additional problem of

floorplanning, i.e., deciding where on the chip to place the

different parts of the design. Signals may take a full cycle

or more to cross a chip. As a result, ‘‘bubbles’’ in the

pipeline may be required to allow transmission of results

from one stage to another. Such bubbles may not have

been envisaged in the original microarchitecture, again

resulting in major design changes late in the design cycle.

Carter and Hussain address these and other problems

with Justice, a simulation model that includes all of the

elements just described, thus allowing these problems to

be detected and addressed early in the design cycle.

Feedback cycles in processor design are not

limited to those involving circuits, floorplanning, and

microarchitecture. There are similarly important cycles

involving microarchitecture, compilers, and operating

systems. For example, how much does a particular

microarchitectural feature speed up a particular program?

How much does a particular compiler optimization

improve performance? Local compiler scheduling of

instructions may be less important to good performance

in an out-of-order superscalar design than in a very long

instruction word (VLIW) design. However, a VLIW

design with compiler scheduling may require less power.

In the final paper, Peterson et al. describe the Mambo

full-system simulator, which allows fast, detailed

simulation of this latter set of interactions and tradeoffs

among microarchitecture, compilers, and operating

systems. The paper provides particular insight into how

the Mambo capabilities were used in the design of the Cell

Broadband Enginee and in the IBM PERCS project.

Preliminary versions of several papers in this issue were

presented at the 2004 P¼ac2 Conference at the IBM

Thomas J. Watson Research Center, September 28–30,

PREFACE IBM J. RES. & DEV. VOL. 50 NO. 1 JANUARY 2006

170



2004. In addition, we are grateful to Siddhartha

Chatterjee for many helpful suggestions and ideas, and to

Tilak Agerwala for his encouragement and support for

this special issue of the IBM Journal of Research and

Development.

Erik Altman

Architecture and Performance

IBM Research Division

Sumedh Sathaye

Microprocessor Architect

IBM Systems and Technology Group

Guest Editors

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 PREFACE

171


