
Application of full-system
simulation in exploratory
system design and
development

J. L. Peterson
P. J. Bohrer

L. Chen
E. N. Elnozahy

A. Gheith
R. H. Jewell
M. D. Kistler

T. R. Maeurer
S. A. Malone
D. B. Murrell

N. Needel
K. Rajamani

M. A. Rinaldi
R. O. Simpson

K. Sudeep
L. Zhang

This paper describes the design and application of a full-system
simulation environment that has been widely used in the
exploration of the IBM PowerPCt processor and system design.
The IBM full-system simulator has been developed to meet the
needs of hardware and software designers for fast, accurate,
execution-driven simulation of complete systems, incorporating
parameterized architectural models. This environment enables the
development and tuning of production-level operating systems,
compilers, and critical software support well in advance of
hardware availability, which can significantly shorten the critical
path of system development. The ability to develop early versions
of software can benefit hardware development by identifying design
issues that may affect functionality and performance far earlier in
the development cycle, when they are much less costly to correct. In
this paper, we describe features of the simulation environment and
present examples of its application in the context of the Sony–
Toshiba–IBM Cell Broadband Enginee and IBM PERCS
development projects.

Introduction

Recent trends in processor technology suggest that future

gains in system performance will rely increasingly on

integrated solutions that leverage improvements across

many system components, such as memory architectures,

interconnect technologies, accelerators, operating

systems, compilers, and application libraries. This

development has led to increased design complexity in

individual system components, in the introduction of new

components, and in new component interactions. This

growth in complexity has placed a new emphasis on the

simulation of system behavior and characteristics as a key

aspect of system exploration and design. To make

effective design decisions, software developers and system

architects require tools that assist in quantifying the

merits and limitations of specific hardware and software

architecture alternatives [1]. As interactions among

processors and system components become increasingly

important in system design, full-system simulation has

become an indispensable tool for the evaluation of new

systems.

The IBM full-system simulator, internally referred to

as ‘‘Mambo’’ [2], has been developed and refined in

conjunction with several large system design projects built

on the IBM Power Architecture* [3]. The POWER*

technology is an instruction set architecture (ISA) that

spans applications from consumer electronics to

supercomputers. Power Architecture encompasses

PowerPC*, POWER4*, and POWER5* processors. As

one of many full-system simulators [4–6], Mambo allows

a full operating system (OS), such as Linux**, to run

interactively in the simulation, thereby furnishing a

complete environment for applications that require

interprocess or complex OS interactions. In addition, a

standalone environment is provided for self-contained

applications. In this environment, Mambo intercepts and

marshals the application system calls to the underlying

host to optimize execution. Mambo itself runs atop a

variety of host OS and platform combinations. Figure 1

shows the Mambo execution and simulation stack.

Mambo facilitates experimentation with and

evaluation of a wide variety of system elements, including

ISAs, address translation mechanisms, memory

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 J. L. PETERSON ET AL.

321

0018-8646/06/$5.00 ª 2006 IBM

coherence protocols, hypervisor software and hardware

support, hardware acceleration engines, and

microarchitectural features and resource allocation.

Mambo performance models may be driven by

instruction or memory traces. Environment flexibility

enables users to configure a simulation platform based on

customer-driven application and analysis requirements.

Mambo is particularly useful in evaluating new designs

that involve complex interactions among several different

system components. Mambo can support detailed

evaluation and testing of complex hardware interactions,

such as locking and cache coherence protocols.

Additionally, Mambo enables the development and

tuning of production-level operating systems, compilers,

and substantial application software before hardware

prototypes are available. By facilitating the concurrent

development of hardware and system software, Mambo

can significantly shorten the critical path of development

schedules. This early software development activity

can also benefit the hardware development effort by

identifying design issues that have an impact on

functionality or performance far earlier in the

development cycle, when the cost to fix such issues

is considerably less.

Technology overview and design techniques
A Mambo simulation accurately models an entire system

of processing elements, devices, interconnect topology,

and protocols. By virtue of its execution-driven

capabilities, it simulates core instruction execution and

the subtleties of interactions with surrounding system

components. At the heart of a Mambo simulation

environment is its processor model. Mambo provides

complete, bit-accurate models of several different

PowerPC processors [7], ranging from the embedded

405GP and 750 processors to the PowerPC 970 (used in

the Apple G5 systems and PowerPC-based blades) to the

new Sony–Toshiba–IBM (STI) Cell Broadband Engine**

(Cell BE) processor (used for the Sony PlayStation** 3).

The Power Architecture defines the basic instructions and

registers and their operation. The Mambo processor

model simulates the entire instruction set, including

both user and privileged-state operations, and optional

features defined by the architecture, such as 32-bit and 64-

bit modes and floating-point extensions. Each simulated

processor is defined as a collection of these features.

In addition to the processor core, Mambo provides

flexible PowerPC-based cache memory systems that

contain both functional and cycle-accurate models for

a data prefetch engine, L1 data and instruction caches,

noncacheable unit, core interface unit, L2 cache, fabric

bus controller, on-chip and off-chip L3 cache, memory

controller, embedded memory, DDR2 and DDR3

memory, and the symmetric multiprocessor scalability

port. Mambo also supports exploratory features, such as

prefetch engine variants, nonuniform cache, L1 bypass,

memory-in-processor, near-memory processing, data

scatter and gather unit, high-perfomance hub, cache

injection, and write-back history table.

The Mambo common bus model is designed to support

pluggable bus agents, each of which is connected to a bus

that behaves as the hub of a simulated system. A bus

agent can be a processor, a memory controller, an input/

output (I/O) unit, or a scalability port. To communicate

with the rest of the system, each bus agent must first

register itself on the bus, after which it communicates

with the bus through a predefined programming interface.

Configurability of Mambo

A Mambo simulation incorporates a number of

supported system component models, such as processors,

memory subsystems, caches, buses, and I/O devices, into

a full model of a system. To create a Mambo simulation,

properties are defined for the simulated architecture

components. In general, Mambo provides a high level

of user control over the runtime specification and

configuration of the simulated machine. Each component

typically has an extensive set of parameters that can be

specified to configure simulated system characteristics.

For example, the processor clock frequency can be

defined by the user. The size of memory can be varied.

Memory translation aspects, such as the size and shape of

translation lookaside buffers (TLBs), can be declared.

Additionally, Mambo cache memory models have more

than 300 dynamically configurable parameters, giving

users the ability to change almost every aspect of the

simulated cache memory hierarchy. Cache parameters

include size, associativity, replacement policy, latency,

number of ports, number of slices, size of various queues,

L3 position and use, coherence protocol, snooping

sequence, and cast-out and cast-in policies. Bus

Figure 1

Mambo execution and simulation stack.

D
eb

ug
gi

ng
 in

te
rf

ac
e

T
ra

ce
 o

ut
pu

t

V
is

ua
liz

at
io

n

St
an

da
lo

ne
ap

pl
ic

at
io

ns Application
libraries

Operating system
(e.g., Linux)

Host platform
Linux, IBM AIX*,

OS/X on PowerPC, x86, x86–64

Mambo
infrastructure

Input
traces

J. L. PETERSON ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

322

parameters include topology (ring, crossbar, and point-

to-point), unidirectional or bidirectional data path,

frequency, and latency. Memory parameters include

number of memory controllers, number of channels,

read/write width of each channel, number of arrays,

number of chips, number of banks, size of read/write/

prefetch queue, and DRAM type and timing.

A command language is provided to model, configure,

simulate, and tune components in a system. The

command-line interface can also be used to control the

execution of Mambo itself. Tcl [8] was chosen as the base

command language and then extended with Mambo-

specific commands to allow machines to be created,

modified, and managed. Additionally, the selection of Tcl

has facilitated the use of Tk and other packages, such as

BLT [9], to provide an extensible graphical user interface

(GUI).

Instrumentation of the simulated environment

Many Mambo models have been instrumented to

recognize and count performance events that characterize

behaviors, such as application instruction mix, pipeline

stall conditions, branch and cache functions, memory and

device transactions, and bus traffic. Processor, bridge,

and device models can be written to expose system

metrics by simulating the hardware performance monitor

resources (as is done in the Mambo POWER4 processor

model). Application binaries that interact with hardware

performance counters and control registers can be

executed without modification in simulation and on a

corresponding real system, providing an invaluable way

to determine how well Mambo matches hardware

behaviors. Furthermore, the level and degree of

instrumentation that can be incorporated in software

models often surpasses what can be implemented in

hardware. For example, using Mambo we are able to

capture all performance events simultaneously, in

contrast to current hardware, which can count only a

limited number of events at a time. Mambo furnishes an

inventory of mechanisms to expose event data collected in

the course of simulation runs.

The Mambo emitter framework is intended to support

very flexible and detailed analysis of a wide range of

processor and system activity. The emitter framework

decouples event generation from collection and analysis

tasks. Event generation is performed by instrumentation

within the simulation environment to detect events and

produce emitter data. During a simulation, Mambo can

identify a wide variety of architectural and programmatic

events that influence system and software performance.

Using configuration commands, the user can request that

Mambo emit data for a specific set of events into a

circular shared memory buffer.

Event processing is performed by one or more emitter

readers that access and analyze emitter data. Analysis

tasks generally include collecting and computing

performance measurements and statistics, visualizing

program and system behavior, and capturing traces for

postprocessing. An Application Programming Interface

(API) is provided to allow processes that read emitter

data to register with Mambo and receive records buffered

dynamically during a simulation run. The emitter

framework is naturally suited to trace generation, and

several emitter readers have been written to capture, filter,

and rearrange the event stream into a number of trace file

formats, such as instruction traces or memory traces.

Decoupling event generation from processing affords

greater flexibility in extending the data collection

capabilities. SimOS [10] also separates the data collection

of hardware-level event records from the data processing,

which is accomplished externally to the simulation

platform.

Also patterned after SimOS are Mambo trigger

facilities. Similar in flavor to Tcl annotations, Mambo

invokes user-supplied Tcl procedures associated with

model behavior and simulation control events. Substring

matches on text written to the simulated console may also

fire trigger procedures. The body of such Tcl triggers

may contain not only code to monitor and accumulate

statistics, but sequences to control simulation behavior.

For example, triggers can be used as a breakpoint

apparatus sensitive to program counter address values,

performance events, and console text strings.

Simulated applications can also control and query

Mambo models through a set of call-through interfaces.

Call-through instructions are placed in application code

as specially formed no-op opcode or illegal opcode.

Mambo intercepts these opcodes in simulation and

performs the indicated operation on behalf of the

application. Facilities exposed through these lightweight,

minimally intrusive instructions allow applications to

interact with the physical file system, interrogate

statistics, control and annotate emitter record

production, fire triggers, evaluate Tcl expressions, and

direct simulator operations.

Call-through instructions are also a primary avenue for

application interaction with novel devices for which no

OS drivers yet exist. Device commands can be issued by

the application as call-through functions that Mambo

redirects to the device model. Early assessment of these

novel devices is possible without having to invest in

developing all the intervening paths through the software

stack normally needed to access the hardware.

Mambo also supports a mechanism whereby a GNU

debugger (GDB) may be used to debug the software

running atop Mambo. Through this mechanism, GDB

can attach to and control a Mambo simulation running

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 J. L. PETERSON ET AL.

323

on either the same or a remote machine. Mambo supports

the standard debugger interface used by GDB to attach to

a real system. The GDB debugger interface allows the

debugger to query the state of the simulated machine

(register and memory), set breakpoints, and advance the

simulated machine.

Incremental performance modeling

The Mambo design has been driven by practical

simulation needs. The intent behind it is to assist in a

number of key aspects of the system design process:

software characterization, bring-up, debug, tuning,

examination of detailed architectural interactions,

credible performance projections, and as a validation

reference.

To address the user requirements for functional

accuracy and fast execution time, Mambo uses

compiletime feature selection to limit the alternatives that

must be considered during runtime simulation. This

results in multiple executable binaries: typically, one for

each simulated system. The tradeoff between runtime

feature selection and compiletime feature definition is

driven by an effort to balance generality against execution

speed.

Some users additionally require a cycle-accurate

projection of the time to execute an application on real

hardware. The most accurate projection of execution time

demands modeling of structural effects of the system,

particularly the parallelism present among multiple

functional unit pipelines, elements of the memory

hierarchy, buses, and so on. This more detailed cycle-

accurate model typically results in substantially increased

simulation execution time.

Mambo provides a range of options that compute more

or less accurate execution time statistics for the simulated

system. Mambo is designed to allow component models

to evolve over time. During the early stages of system

design, purely functional models for new processor and

system design proposals are developed that execute

quickly and are inexpensive to develop. As the hardware

design matures, detailed implementation characteristics

can be incorporated into the Mambo models, which can

then be used for system and application performance

analysis.

Mambo modeling constructs enable the development

team to easily add performance model features to existing

functional models. These constructs, representing

execution parallelism, resource contention, delay, and

transaction flow, can be incorporated incrementally. This

approach permits both investigation and iterative

refinement of critical performance paths in the

architecture until simulation results correlate with design

specifications, analytical projections, or measurement

data captured from existing hardware. A Mambo model

is then refined by the appropriate introduction of delays

in simulation time to provide greater accuracy in timing

information. For example, the time for cache operations

can be approximated with constant latency, with

stochastic delays, or according to precise modeling

of delays based on architectural state and resource

contention.

The level of timing accuracy and, consequently, the

speed of simulation can be chosen as needed at runtime.

Varying levels of timing accuracy can be used for the

various Mambo components. For instance, to evaluate

new cache designs, it may be sufficient to model the

timing of the cache model in great detail while using

simpler models of the processor, bus, and memory

and thus allowing them to simulate more rapidly.

Mambo component models can be classified in the

Virtual Socket Interface Alliance (VSIA) taxonomy [11]

as either functional or mixed-level. All models are at least

functionally accurate, and those that yield timing

information do so by augmenting a functional

representation. This approach differs from loose-coupling

techniques that employ interface layering between

otherwise independent cycle-accurate and functional

simulation engines [12, 13].

Application of Mambo in the STI Cell BE project
In 2001, Sony, Toshiba, and IBM combined research and

development efforts to create an advanced processor and

system architecture for a new wave of devices in the

emerging broadband era. As a result, the Cell Broadband

Engine Architecture (CBEA) [14] was designed to take

advantage of the most advanced IBM semiconductor

process technologies to deliver high performance with

good power efficiency. Shortly after project inception,

STI engaged the IBM Austin Research Laboratory to

develop a Mambo model for the processor and system

architecture to support software simulation and

performance testing. Mambo delivered vital feedback

at various stages of the Cell BE project life cycle. An

initial functional simulation model was developed for

preliminary validation. This model was later enhanced to

provide more accurate timing evaluations. The model was

first based on design specifications, then validated against

hardware-level simulators, and finally correlated with real

hardware. The result was a completely integrated working

system of Cell BE hardware and software that has been

successfully launched alongside actual hardware delivery.

Because CBEA contains cores with a new ISA

and a novel on-chip system structure, evaluating its

performance with traditional (trace-driven) methods was

not a viable option. Rather, a full-system, execution-

driven simulation platform was needed to facilitate

exploration of the programming model and to study

interactions among processing elements and the memory

J. L. PETERSON ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

324

hierarchy. For the STI Design Center, integrating

Mambo in the product cycle enabled developers to

iteratively develop multiple generations of operating

systems, libraries, and game software well before any

hardware was available. A clear measure of its success

is demonstrated by the fact that the OS and multiple

applications, which were first developed on Mambo, ran

on first hardware without modification. As a result, the

delivery of the STI Software Development Kit to third-

party companies was accelerated, and game programmers

were able to develop applications and operating systems

several years before the hardware was available. This

ability has been exceptionally important given that the

Cell BE chip presents the game development community

with a radically new programming model that requires

significant rethinking of application design and

implementation.

Early Cell BE environment

The availability of Mambo during the formative years

of the CBEA opened an avenue for the STI software

development team to contribute to the hardware design.

Initially, the general design goal centered around a

heterogeneous multiprocessor platform containing a 64-

bit PowerPC processor and some number of smaller

single-instruction multiple-data (SIMD) processors, each

of which would operate out of its own local memory. The

mechanism through which all of these processors would

communicate was just beginning to take shape. The

creation of a full-system simulation of the Cell BE design

was considered to be the most effective vehicle for

exploring the design and enabling the STI teams to

collaborate on early software development of the entire

software stack.

In addition to the directive to provide design guidance,

the software team was challenged to bring up the entire

software stack on the new system as soon as hardware

was available. Full-system simulation of the CBEA was

the only viable means of achieving this aggressive goal.

The Cell BE software team consisted of subteams

responsible for developing and porting the following

software components for the Cell BE: hypervisor, Linux,

compilers and tools, runtime libraries, applications,

debuggers, and the simulator. Coordination among the

various teams necessitated that the architecture be fully

specified in the design documentation. Once this was

drafted, simulation support pertaining to these

specifications was added. The hypervisor and OS teams

then added their contributions to the simulated

environment, followed by the runtime library and

applications teams.

As a first step in building a Cell BE simulation model,

we combined a 64-bit PowerPC processor available in the

Mambo library and an early model of the synergistic

processor unit (SPU) sufficient to run PowerPC and SPU

code simultaneously. Because the communication

mechanism between the PowerPC units and the SPUs was

not yet fully specified, the simulation team added

instrumentation (call-through instructions) to allow the

application to perform communication tasks directly at a

higher level. This first-order approximation in simulation

enabled the Cell BE software team to begin application

development three years in advance of hardware

availability. Tight coordination among the simulation,

architecture, and software development teams helped

finalize the specification and enabled early feedback to be

incorporated into the processor architecture.

Architecture evaluations

Every feature supported in the CBEA was exercised by

the Cell BE software development team before the

hardware was available. Mambo served as a proving

ground for the specifications, both as a catalyst for

practical discussion and as a platform to demonstrate the

value of proposed features before committing them to the

architecture. Mambo was key in providing support for

design decisions, such as the number of SPUs, the size of

the local store for each SPU, early definition and support

for the memory flow controller (MFC) direct memory

access (DMA) operations, operation of the synergistic

processing element (SPE) channel interface (blocking as

opposed to nonblocking semantics), operation of the SPE

signal notification channels, and operation of the SPE

atomic operations. Furthermore, Mambo served as

the early proving ground for three different Cell BE

programming models: data-parallel as opposed to task-

parallel computation on SPEs, shared-memory parallel as

opposed to message passing on SPEs, and SPE virtual

device model.

Some design tradeoffs, such as the number of SPUs in

the system or the size of SPU local storage, could be

accommodated by simple Mambo configuration changes.

Other modifications to the processor architecture were

more pervasive and required substantial alterations to the

Mambo models. For example, the addition of hardware

multithreading to the Cell BE PowerPC processor

required new thread support in Mambo. After the

support was added to Mambo, changes were made to the

OS to take advantage of the new feature. This change also

affected the internal interrupt controller, which could

now target a specific PowerPC thread. As a result, the

final design was implemented in silicon with the

knowledge that the OS support was written and

successfully working in simulation.

The development of the research hypervisor

demonstrates the value of Mambo for exploratory

software investigation. The simulation environment

allowed development to proceed on regular shared

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 J. L. PETERSON ET AL.

325

workstations (including x86-based systems), without the

need for dedicated hardware. It was possible to trace and

debug the hypervisor and step carefully through

important transitions to verify that memory allocation,

address translation, interrupts, and processor switching

operated correctly. Providing this level of support was

particularly important because crucial system software,

such as the hypervisor and parts of an OS, were often

very difficult to debug, especially on new hardware. With

Mambo, debug trace statements were included to allow

system developers to see a trace of address translation

exceptions and interrupts down to the instruction level.

Each exception, for example, was tagged with a message

to indicate exactly the problem detected, which was of

great assistance in explaining application operation,

particularly in the early bring-up stages of development.

Performance evaluation tool chain

Over the course of the Cell BE project, the Mambo

modeling of system performance grew as well. At first,

simple fixed latencies were associated with high-level

operations such as memory accesses. Caching was

modeled probabilistically, using fixed cache-hit ratios.

This level of modeling was useful for high-level

performance analysis. Models for the caches, bus, and

memory controller were developed initially to validate

coherence protocols, but were subsequently extended to

incorporate timing of low-level interactions. As described

earlier, Mambo allows functional models to be easily

extended to model timing, concurrency, and resource

contention, thus preserving the initial investment in these

functional models. These detailed timing models

significantly improved the accuracy of Mambo

performance results.

Initially, the accuracy of the performance models was

evaluated on the basis of comparisons to theoretical

performance estimates. After completion of the cache and

bus timing models, we extended this evaluation with a

comparison to SPCsim, an internal low-level performance

simulator developed within the STI Design Center. At

that time, access to hardware was severely constrained,

which precluded a direct validation against hardware.

We developed a collection of nanobenchmarks that

performed a variety of low-level DMA operations from

the SPUs to focus on memory interaction timings. By

tuning low-level latencies and redesigning certain aspects

of the models to allow greater concurrency, we achieved

performance within 15% of the results from SPCsim for

single SPU executions and within 26% of SPCsim in high-

contention tests employing all eight SPUs.

During this same time period, we were given the task of

projecting the performance of linear algebra workloads

for several future SPU microarchitectural alternatives.

The combined requirements imposed by these new studies

and the early SPCsim comparison efforts led us to

augment the Mambo data-collection capabilities. A

generalized transaction-tracking facility was introduced

to simplify the process of resolving discrepancies between

SPCsim and Mambo MFC behaviors. Traffic could be

traced by examination of tracking records presented

through the Mambo emitter framework. However, this

process proved to be labor-intensive, and the need for

facilities more conducive to detailed performance debug

and analysis became immediately apparent.

Consequently, three new graphical visualization tools

were developed to give deeper insight into SPU internal

operations. All GUIs were constructed as Tcl scripts

exploiting the Tk and BLT functions integral to Mambo

and extensions to the underlying data-collection features

previously described. GUIs could easily be prototyped

using this strategy. External users could compose custom

visualization and analysis tools in fashion.

Figure 2(a) is a sample screen from a statistics collector

that offers animated time-series plots of SPU stall

conditions, issue and execution pipe characteristics, and

DMA operations. BLT vector structures and charting

widgets were used to collect and present low-level SPE

performance event statistic data from instrumentation

already available in the Mambo SPU and MFC models.

Figure 2(b) shows a transaction visualization tool that

depicts SPU instructions as they flow through the internal

pipeline and queue structures. The tool builds on

elements developed for the aforementioned emitter-based

transaction trace with the addition of data structures

optimized for high-speed dynamic query and retrieval of

tracking information.

Figure 2(c) displays an interactive SPU local store map.

Similar to the SPU statistics collector of Figure 2(b), this

tool relies heavily on the BLT vector and plotting

functions incorporated in Mambo. Histograms of

memory accesses are charted across the span of local

store address space, which may be further inspected

and disassembled. Instruction breakpoints may also

be assigned using this dialog.

As an increasing number of Cell BE processor-based

systems are becoming available, we have begun to

validate our performance models against hardware.

While not yet complete, this effort has already identified

inaccuracies in the models that were not detected in

earlier validation. Mambo also simulates many of the key

performance counter registers of the Cell BE processor

and supports access to them through the standard

architected mechanisms. Validation efforts are planned to

ensure close correlation between the simulated and actual

performance counter results. The goal of this activity is to

allow the same suite of performance analysis tools to be

used on both the simulated and the actual systems.

J. L. PETERSON ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

326

Verification tool chain

IBM has a number of methodologies that focus on

verification of early hardware designs and early hardware

bring-up systems. One of the tools employed for

architectural verification is a random test-pattern

generator, which produces thousands of tests to exercise a

broad range of architectural features of a given design.

These same tests are run on low-level hardware models to

ensure their accuracy at the final stage of processor

design, before the circuit description is sent to

manufacturing. The simulation team made extensive use

of these tools to validate the architectural accuracy of the

core models supplied in Mambo.

In addition to these tests, the software teams developed

an entire Cell BE software stack consisting of a

hypervisor, Linux-based OS, libraries, and applications

running on the PowerPC and SPU cores. These

applications included a large number of verification

tests based on the same hardware specification used

by the simulation team. Any discrepancy between

interpretations of system documentation made by the

simulation team and those of the software team would be

quickly evident as a result of these tests. The effect was to

broaden the scope of testing that was available to

verification. The applications exercised the runtime

library that handled job scheduling, loading of state in the

SPUs, and communication between the application code

running on the various cores. These operations, in turn,

exercised the OS support that handled translation faults

from the various MFCs and caught other signals flowing

between the cores.

At this point, the verification team realized that the

extent of the software stack running on Mambo could

actually help further verify the hardware design. The

Mambo simulation team, the OS team, and the

verification team collaborated on a process whereby a

complete Cell BE workload was run on Mambo and

captured to a system snapshot. Using these system

snapshots, the verification team was able to load different

system configurations into the low-level simulation

environment to further test the hardware design.

System bring-up

The big test for the entire Cell BE software and

simulation team came when the first hardware arrived

at the bring-up laboratory. All of the simulation and

software stack development was done in preparation for

fast bring-up on early hardware. In general, working

around early hardware errata consumes considerable time

for the software bring-up teams. For the Cell BE project,

we instrumented Mambo to highlight known errata

conflicts in code that was run on the simulator. This

helped software teams to ensure that their software was

adapted appropriately to avoid early known hardware

Figure 2

Mambo visualization and analysis tools: (a) statistics collector;
(b) visualization tool; (c) interactive SPU local store map.

(a)

(b)

(c)

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 J. L. PETERSON ET AL.

327

problems. When the first systems became available, the

software teams used Mambo to work around newly

discovered system problems. Mambo provided a richer,

more convenient debug and test environment for the

software teams to complete their hardware workarounds.

Once this new code worked on Mambo, it was migrated

to the hardware, where it executed without further

modification.

After hardware availability

Once hardware is available, the natural tendency is to

shift focus to hardware execution rather than running in

simulation. However, the use of simulation in the process

of developing and refining the Cell BE processor system

has not ended with the recent delivery of this processor.

The ability of Mambo to run the exact same software

stack as real hardware facilitates an easy transition both

to and from hardware. The following are two realities

that lead to continued simulation use, even after

hardware becomes available:

� Hardware accessibility: It may not be practical to

provide dedicated hardware access to all developers.

In these situations, Mambo continues to serve as a

fully functional platform for software development

and testing.
� Debug environment: Years of software development

on Mambo have led to an extensive debug

environment that enables user visibility with respect

to state, structures, and events not immediately

accessible on the physical machine.

Application of Mambo in the PERCS project
As part of the High Productivity Computing Systems

(HPCS) initiative sponsored by the Defense Advanced

Research Projects Agency (DARPA) [15], IBM is

researching and developing the IBM PERCS—

productive, ease-to-use, reliable computing system—for

implementation by the year 2010. The overall goal of the

HPCS initiative is to take a broader look at high-end

computing systems to encompass issues such as

development time, programmer productivity, system

robustness, portability, and overall system value leading

to the next generation of supercomputers. PERCS will

support balanced, economically viable HPCS hardware

and software solutions that can be leveraged both in the

national security sector and in commercial markets.

The long lead time of the PERCS project and

associated ambitious plans call for examining many novel

design ideas, thus precluding hardware prototyping

except in the later phases of the project. In particular, the

complex interactions between software and hardware

must be examined closely to see whether they can be

exploited to yield the desired boost in productivity. These

interactions tend to be difficult to examine during regular

design cycles because of budget and schedule constraints.

We have decided to face the challenge partially by using

the Mambo tool as a platform for prototyping new

hardware features and software mechanisms.

Performance evaluation tool chain

Performance evaluation of modern systems uses one

of four approaches: measurements from hardware

prototypes, analytic modeling, trace-driven simulation,

and execution-driven simulation. Each of these

approaches has its advantages and disadvantages, and

we considered all of them as alternatives for the early

research phase of PERCS.

Measurements from actual hardware prototypes

provide accurate performance data on the system.

However, this approach requires expensive hardware

prototyping, and thus is best employed in the

preproduction phase after the design has been largely

decided. The sheer number of ideas that we had to

examine in PERCS excluded hardware prototyping as a

viable approach to conduct research in the concept phase.

We decided, instead, to use a combination of analytic

modeling, trace-driven simulation, and execution-driven

simulation. These approaches vary in expense and

accuracy but share the need for result validation. Analytic

modeling does not incur much expense, but it requires the

development of a matrix of application-design models,

each requiring about six months of effort by a skilled

developer who has a good understanding of the

application and its projected behavior on the modeled

platform. Trace-driven simulation does not require the

laborious development of the models, but it requires the

laborious and often expensive generation of application

traces and may be limited in its ability to predict

certain interactions, such as the memory behavior of

multiprocessor systems [16]. Execution-driven simulation

eliminates the need for generating and manipulating

traces, and if the simulation model represents the

hardware with good fidelity, the results can be as accurate

as those obtained from hardware [10, 17]. An execution-

driven model typically runs hundreds or thousands of

times slower than hardware, with increased modeling

fidelity coming at the expense of longer simulation time.

The increased simulation time limits this approach to

small-scale systems and may preclude the realistic

modeling of detailed interactions in a processor core.

Analytic modeling

We decided to use analytic modeling for the case in which

a validated application model exists on a reference design

point that can be manipulated to produce answers to

design alternatives quickly. One such example was for

commercial applications, such as transaction-processing

J. L. PETERSON ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

328

systems, for which we exploited existing models to test

cache enhancements [18]. These applications cannot be

realistically studied using a complete trace, and a

simulation model would be too slow to generate useful

results. Given the lack of hardware to validate the

analytic models of an advanced memory hierarchy, we

used Mambo to verify the results of the modified analytic

model of the memory hierarchy. To do so, we changed

the parameters of the analytic models for specific design

alternatives and produced results for simple applications.

We then used Mambo to run the same applications on an

equivalent simulation model of the memory hierarchy

and verified that the results of the simulation were

statistically identical to those of the analytic model. It is

interesting to note that this verification effort revealed

bugs in both models, and our experience leads us to

recommend that Mambo be used as a reality check for

analytic models whenever appropriate in the future.

Trace-driven simulation environment

Trace-driven simulation is most applicable to examining

ideas and research in processor cores and, in some cases,

the memory hierarchy. Trace-driven simulation requires

the laborious generation and maintenance of traces.

Several tools exist for generating traces from actual

hardware [19], but they tend to be cumbersome and

expensive to operate. In some cases, these tools may

require intrusive support in the processor or the memory

subsystem, or they may not be able to capture the traffic

at all levels in the memory hierarchy. For example, it may

not be possible to capture traces of on-chip Ll cache

accesses without specialized processor support.

Once a trace is generated, it typically requires some

filtering—for instance, to extract the portions of the

traces that may be deemed interesting for a particular

study. Statistical sampling and other methods have been

proposed in the literature [20], but these require a great

deal of labor and they may require a validation that the

sampled traces do not lose useful information. Finally,

traces require prodigious storage space and bandwidth.

Several trace-compression mechanisms have been

implemented in previous work [21], but they add more

processing overhead to the simulation for decompression

and require further effort on the part of the trace

maintainer.

We have used Mambo to mitigate these problems with

trace-driven simulation. Our methodology is to first run

the application through existing hardware and capture

the characteristics of the application during its execution

using hardware performance counters. For instance, it

may be expedient to focus on instructions per cycle (IPC)

as a metric for describing the performance of an

application as it passes through various phases of

program execution. A profile of IPC behavior over time is

then captured, as shown in Figure 3.

The IPC curve can be examined to identify intervals of

low IPC. These intervals of the program presumably

challenge the existing hardware architectures and may

reveal serious bottlenecks in the hardware, software,

or both. The number of executed instructions in each

interval is determined using the performance counters.

These intervals define the starting points for generating

application traces. We feed these starting points to

Mambo, which runs the application to generate the traces

for the desired intervals. These intervals can also be

customized depending on the requirement of the target

study itself. For instance, to produce traces that are useful

for core studies, it may be necessary to prepend each

interval with the preceding million instructions or so to

warm up the L1 cache in a trace-driven simulation.

OS interactions can be included or excluded from the

trace on the basis of the mode in which the simulator is

running: full-system or standalone. We have generated

full traces of applications that also include the OS

interactions.

Note that it is possible to do away with the need to

store traces in stable storage. Using the emitter interface,

the output fromMambo can be fed directly into the trace-

driven simulation. The overhead of this on demand

generation of a trace can be intuitively compared with

the overhead of reading the large trace file from stable

storage and performing the actual decompression. In

contrast, however, our approach does not require the

storage and manipulation of compressed traces.

Execution-driven simulation tool

Execution-driven simulation encompasses every aspect of

the system in great detail. The result is a model of a

system that can generate performance results close to

Figure 3

IPC behavior over time.

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

IP
C

0 200 400 600 800 1,000 1,200 1,400
Time (s)

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 J. L. PETERSON ET AL.

329

those obtained from an actual system [10]. This form

of simulation has a tradeoff between accuracy and

simulation time in which accuracy increases with time,

but often in a less than linear fashion. Choosing the

proper point in that tradeoff remains an art.

We have used Mambo to build a cycle-accurate cache

model to simulate the effects of new memory hierarchy

techniques on application performance. The model

includes fairly detailed simulation of a state machine that

governs the cache replacement and inclusion protocols

and simulates the way the cache interacts with main

memory and the processor core. Rather than construct

a full cycle-accurate core model, we implemented an

abstract core model that may be tuned to provide

different IPCs. Thus, we studied the effect of cache

hierarchy innovations with aggressive or conservative

core designs by selecting different parameters. The goal

here was to produce a range of plausible figures within a

spectrum of core designs from the most conservative to

the most aggressive. We measured the effect of each

innovation on cache hit ratios and memory latency on

average, and the outcome was a dynamic range of values

that show the effectiveness of the various innovations.

This approach can be used to eliminate design choices

that are likely to produce minimal performance

improvements. We have used this facility to study the

cache behavior of nonuniform cache architectures [22],

near-memory processors, and memory-in-processor

morphing of cache architectures to direct-addressable

memory. It is useful here to consider the last one as an

example of the way that Mambo can actually identify

serious problems with an idea that is initially perceived as

beneficial.

The MIP morphing of the cache architecture calls for

setting aside a portion of the cache as direct-addressable

memory. The idea has been tried in embedded systems,

such as the PowerPC 401* processor, and in some past

IBM mainframes. It has not been tried at the scale of

today’s high-end processors. The premise of the idea is

this: Giving the application control over some portion of

the cache allows the cache behavior to become more

deterministic, which is good for performance tuning and

programmer productivity. In addition, this arrangement

can improve performance because access to the direct-

addressable on-chip memory does not go through the

cache directory phase, thus reducing access time and

power consumption. Such memory can also be used by

the OS to store some important structures, which can

speed up the context switching of applications and

improve overall system performance.

Initially, the MIP morphing feature was well received

by internal development and HPCS customers alike. The

team was aware of the need to both manage this

hardware feature at the OS level and provide portable

abstractions to the programmer to exploit this feature in

a productive way. None of these problems appeared

insurmountable, given the large body of academic

research that has addressed this problem [23]. Mambo

was used as a platform for exploring the performance

aspects of this feature and examining potential

software issues on this yet-to-be-built hardware. The

implementation effort was facilitated by Mambo,

allowing the OS team to prototype the MIP morph

idea in a controlled development environment. Taking

the prototyping effort to this level of realism uncovered

many complexities in supporting the MIP morph in

a virtualized manner. These complexities included

partitioning the cache between cacheable memory and

direct-addressable memory, bringing a process into a

different processor after a context switch, and managing

coherence if threads on different cores or different

processor chips were to access the local memory. Other

complexities—such as hypervisor support, page table

construction, and compiler layout of the memory space—

were confronted as well. The results showed that the

conventional wisdom concerning MIP morphing did not

go deep enough in examining the issues. By prototyping

the software support that was needed at the OS level and

exposing the usage issues at the application programmer’s

level, the magnitude of the problem was exposed at its

fullest. Further, the improvement in performance did not

show a sufficient payback for the immense effort that

would be required at the software level to support the

idea, and as a result it was dropped from further

consideration.

Summary and future direction
Mambo has proven to be a critical part of several projects

developing new PowerPC processor systems. It allows

new features to be prototyped quickly and evaluated in

the context of a full-system simulation. It has been used

successfully to develop a complete system software stack

before hardware availability. Mambo also plays a role in

the performance evaluation environment as a validation

tool for analytic models, as a trace generation and

manipulation facility in trace-driven environments, and

as an execution model with the right balance between

simulation speed and result accuracy. As a result, the

designer can focus on analyzing the application and on

choosing the relevant parts of the execution or system

that must be examined closely.

We are continuing to use Mambo for new processor

and system development. IBM Research actively

continues to collaborate with teams within IBM, in

academia, and in various government agencies to

ensure that new features and support for performance

innovations are consistently built into the Mambo model.

Future versions of Mambo will include enhancements

J. L. PETERSON ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

330

to the core simulator infrastructure to provide greater

usability and enrich the overall simulation environment.

Also, the Austin research team has added Mambo for

the PowerPC 970 and STI Cell BE processor to the

alphaWorks [24] family of emerging technologies and will

continue to provide additional variants to the research

and development community.

At the same time, we are extending Mambo in several

directions. Current research includes efforts to extend

more of the Mambo model of the simulated system to be

defined at runtime, allowing greater flexibility in the range

of systems that can be explored. There is also a new effort

to provide more accurate models of complex, out-of-

order, superscalar processor designs. We are constantly

working to improve its simulation speed and scalability to

support its role as a platform for software development.

Acknowledgments
This work has been supported in part by the Defense

Advanced Research Projects Agency (DARPA) under

Contract No. NBCH30390004. Mambo is managed as an

open source project within IBM and has an extensive

set of contributors throughout the company. We

acknowledge the Austin Research Laboratory team for

its focus on continual innovation, which ensures that new

features and support for new technologies are consistently

built into the Mambo simulator. We also acknowledge

the following individuals external to the Austin research

team who have assisted in developing and extending

Mambo features and functionality: Max Aguilar, Michael

Day, Jonathan J. DeMent, Stan Gowen, Sid Manning,

Mark Nutter, Mike Stafford, and James Xenidis.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation.

**Trademark, service mark, or registered trademark of Linus
Torvalds or Sony Computer Entertainment America Inc. in the
United States, other countries, or both.

References
1. P. Bose, ‘‘Performance Analysis and Verification of

Superscalar Processors,’’ Research Report RC-20094, IBM
Thomas J. Watson Research Center, Yorktown Heights, NY
10598, June 1995.

2. P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra, J.
Peterson, R. Rajamony, R. Rockhold, H. Shafi, R. Simpson,
E. Speight, K. Sudeep, E. Van Hensbergen, and L. Zhang,
‘‘Mambo—A Full System Simulator for the PowerPC
Architecture,’’ ACM SIGMETRICS Perform. Eval. Rev. 31,
No. 4, 8–12 (March 2004).

3. C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC
Architecture: A Specification for a New Family of RISC
Processors, Morgan Kaufmann Publishers Inc., San
Francisco, 1994.

4. R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang,
‘‘SoftSDV: A Pre-Silicon Software Development Environment
for the IA-64 Architecture,’’ Intel Technol. J. 3, No. 4
(November 1999); see ftp://download.intel.com/technology/itj/
q41999/pdf/softSDV.pdf.

5. M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta,
‘‘Complete Computer System Simulation: The SimOS
Approach,’’ IEEE Parallel & Distr. Technol. Syst. & Appl. 3,
No. 4, 34–43 (December 1995).

6. Simics white papers, Virtutech Inc., 2005; see http://
www.virtutech.com/our-tech/white-papers.pl.

7. IBM Corporation, Power Architecture; see http://
www-03.ibm.com/chips/power/index.html.

8. J. K. Ousterhout, ‘‘Tcl: An Embeddable Control Language,’’
Proceedings of the USENIX Winter Conference, January 1990,
pp. 133–146.

9. M. Harrison, Tcl/Tk Tools, O’Reilly & Associates, Sebastopol,
CA, 1997.

10. S. A. Herrod, ‘‘Using Complete Machine Simulation to
Understand Computer System Behavior,’’ Ph.D. dissertation,
Stanford University, CA, February 1998.

11. VSI Alliance, System Level Design Development Working
Group, ‘‘VSIA System Level Design Model Taxonomy
Document, Version 2.1 (SLD 2 2.1),’’ July 2001.

12. H. Wang, S. Manor, D. LaFollette, N. Nesher, and K.-J.
King, ‘‘Inferno: A Functional Simulation Infrastructure for
Modeling Microarchitectural Data Speculations,’’ Proceedings
of the IEEE International Symposium on Performance Analysis
of Systems and Software, March 2003, pp. 11–21.

13. J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S.
Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert,
R. Espasa, and T. Juan, ‘‘Asim: A Performance Model
Framework,’’ IEEE Computer 35, No. 2, 68–76
(February 2002).

14. Cell Broadband Engine Architecture; see http://
www-128.ibm.com/developerworks/power/cell/.

15. R. Graybill, ‘‘High Productivity Computing Systems
(HPCS),’’ DARPA Information Processing Technology Office,
June 2005; see http://www.darpa.mil/ipto/Programs/hpcs/.

16. R. A. Uhlig and T. N. Mudge, ‘‘Trace-Driven Memory
Simulation: A Survey,’’ ACM Computing Surv. 29, No. 2,
128–170 (June 1997).

17. D. Burger and T. M. Austin, ‘‘The SimpleScalar Tool Set,
Version 2.0,’’ Computer Arch. News 25, No. 3, 13–25 (June
1997).

18. E. Speight, H. Shafi, L. Zhang, and R. Rajamony, ‘‘Adaptive
Mechanisms and Policies for Managing Cache Hierarchies in
Chip Multiprocessors,’’ Proceedings of the 32nd Annual
International Symposium on Computer Architecture, June 2005,
pp. 346–356.

19. F. E. Levine, B. C. Twichell, and E. H. Welborn, ‘‘Hardware
Mechanism for Instruction/Data Address Tracing,’’ U.S.
Patent 5,446,876, August 1995.

20. R. E. Kessler, M. D. Hill, and D. A. Wood, ‘‘A Comparison of
Trace-Sampling Techniques for Multi-Megabyte Caches,’’
IEEE Trans. Computers 43, No. 6, 664–675 (June 1994).

21. E. N. Elnozahy, ‘‘Address Trace Compression Through Loop
Detection and Reduction,’’ Proceedings of the ACM
SIGMETRICS Conference on the Measurement and Modeling
of Computer Systems, May 1999, pp. 214–215.

22. J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler, ‘‘A NUCA Substrate for Flexible CMP Cache
Sharing,’’ Proceedings of the 19th Annual ACM International
Conference on Supercomputing, June 2005, pp. 31–40.

23. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J.
Torrellas, ‘‘Programming the FlexRAM Parallel Intelligent
Memory System,’’ Proceedings of the 9th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, June 2003, pp. 49–60.

24. IBM Corporation, ‘‘alphaWorks: Emerging Technologies,’’
June 2005; see http://www.alphaworks.ibm.com/.

Received June 28, 2005; accepted for publication
August 19,

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 J. L. PETERSON ET AL.

331

2005; Internet publication March 3, 2006

James L. Peterson IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(petersjl@us.ibm.com). Dr. Peterson is a Research Staff Member.
He received a Ph.D. degree from Stanford University in 1974
and then joined the Department of Computer Sciences of the
University of Texas at Austin. Dr. Peterson joined IBM in 1989.

Patrick J. Bohrer IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(pbohrer@us.ibm.com). Mr. Bohrer is a Research Staff Member,
and manages the Performance and Tools Department. He received
a B.S. degree in computer science from the University of Texas at
Austin. He joined IBM in 1994.

Lei Chen IBM Research Division, Austin Research Laboratory,
11501 Burnet Road, Austin, Texas 78758 (chenl@us.ibm.com). Dr.
Chen is a member of the Performance and Tools team at the IBM
Austin Research Laboratory. He received a Ph.D. degree from the
University of Rochester. Dr. Chen joined IBM in 2004.

Elmootazbellah N. Elnozahy IBM Systems and
Technology Group, 11400 Burnet Road, Austin, Texas 78758
(mootaz@us.ibm.com). Dr. Elnozahy received a Ph.D. degree in
computer science from Rice University. From 1993 to 1997 he
served as an Assistant Professor at Carnegie Mellon University. In
1997 he joined the IBM Austin Research Laboratory, where he
managed the System Software Department until 2005. Dr.
Elnozahy currently leads PERCS.

Ahmed Gheith IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(ahmedg@us.ibm.com). Dr. Gheith is a Research Staff Member.
He received a Ph.D. degree from Georgia Institute of Technology
in 1990 and then joined the IBM Advanced Workstation Division.
After pursuing interests outside IBM from 1996 to 2003, he
returned to IBM and joined the Austin Research Laboratory.

Richard H. Jewell IBM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(rhjewell@us.ibm.com). Mr. Jewell is a Senior Software Engineer
working on the system simulator for the Cell processor. He
received a B.S.E.E. degree from the Christian Brothers University
and an M.S.E.E. degree from the University of Kentucky.

Michael D. Kistler IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(mkistler@us.ibm.com). Mr. Kistler received a B.S. degree in
computer science from Susquehanna University and an M.S.
degree in computer science from Syracuse University. He joined
IBM in 1982 and is currently working on simulation technologies
for IBM POWER and PowerPC processors and systems.

Theodore R. (Ted) Maeurer IBM Systems and Technology
Group, STI Design Center, 11501 Burnet Road, Austin, Texas 78758
(maeurer@us.ibm.com). Mr. Maeurer is the manager of the
software organization for the Austin-based STI Design Center,
where he has been responsible for the development of software
technologies for the Cell processor. He received B.S. and M.S.
degrees in computer science from Rensselaer Polytechnic Institute,
and an M.S. degree in engineering and management from the
Massachusetts Institute of Technology.

Sean A. Malone IBM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(seaxouri@us.ibm.com). Mr. Malone received a B.S. degree in
electrical engineering from the State University of New York at
Buffalo. He joined IBM in 1997.

David B. Murrell IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(dmurrell@us.ibm.com). Mr. Murrell received his degrees from
Purdue University and has focused on simulation and performance
analysis since 1989. He joined the Austin Research Laboratory in
2004.

Neena Needel IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(nneedel@us.ibm.com). Ms. Needel is a member of the
Performance and Tools team at the IBM Austin Research
Laboratory, where she develops technical communications. She
received a B.S. degree in communications from St. Edward’s
University in 1996. She joined IBM in 2004.

Karthick Rajamani IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(karthick@us.ibm.com). Dr. Rajamani is a Research Staff Member
in the Power-Aware Systems Department. He received a B.S.
degree in electronics and communications engineering from the
Indian Institute of Technology, Madras, and M.S. and Ph.D.
degrees in electrical and computer engineering from Rice
University. He joined IBM in 2001 and has since been engaged in
computer systems research.

Mark A. Rinaldi IBM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(nalds@us.ibm.com). Mr. Rinaldi is a Senior Technical Staff
Member in the xSeries* Engineering Software Department. He
received B.S. and M.S. degrees in electrical engineering from
Rensselaer Polytechnic Institute, joining IBM in 1974.

Richard O. Simpson IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(simpson@us.ibm.com). Dr. Simpson has worked in computer
architecture, operating systems, and simulation at various IBM
laboratories since 1969. He received a Ph.D. degree from the
University of Texas at Austin in 1988.

Kartik Sudeep IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(kartik@us.ibm.com). Mr. Sudeep is a Staff Engineer working
on designing performance tools for next-generation systems.
He received an M.S. degree in electrical and computer
engineering from Duke University in 2000.

Lixin Zhang IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(zhangl@us.ibm.com). Dr. Zhang received a B.S. degree in
computer science from Fudan University, China, and a Ph.D.
degree in computer science from the University of Utah. He was a
postdoctoral research associate at the University of Utah from
2001 to 2003, when he left to join the IBM Austin Research
Laboratory.

J. L. PETERSON ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

332

