Application of full-system J
simulation in exploratory
system design and

development

This paper describes the design and application of a full-system
simulation environment that has been widely used in the
exploration of the IBM PowerPC® processor and system design.
The IBM full-system simulator has been developed to meet the
needs of hardware and software designers for fast, accurate,
execution-driven simulation of complete systems, incorporating
parameterized architectural models. This environment enables the
development and tuning of production-level operating systems,
compilers, and critical software support well in advance of

. L. Peterson
P. J. Bohrer
L. Chen

E. N. Elnozahy
A. Gheith

R. H. Jewell
M. D. Kistler
T. R. Maeurer
S. A. Malone
D. B. Murrell
N. Needel

K. Rajamani
M. A. Rinaldi
R. O. Simpson
K. Sudeep
L. Zhang

hardware availability, which can significantly shorten the critical
path of system development. The ability to develop early versions
of software can benefit hardware development by identifying design
issues that may affect functionality and performance far earlier in
the development cycle, when they are much less costly to correct. In
this paper, we describe features of the simulation environment and
present examples of its application in the context of the Sony—
Toshiba—IBM Cell Broadband Engine™ and IBM PERCS

development projects.

Introduction

Recent trends in processor technology suggest that future
gains in system performance will rely increasingly on
integrated solutions that leverage improvements across
many system components, such as memory architectures,
interconnect technologies, accelerators, operating
systems, compilers, and application libraries. This
development has led to increased design complexity in
individual system components, in the introduction of new
components, and in new component interactions. This
growth in complexity has placed a new emphasis on the
simulation of system behavior and characteristics as a key
aspect of system exploration and design. To make
effective design decisions, software developers and system
architects require tools that assist in quantifying the
merits and limitations of specific hardware and software
architecture alternatives [1]. As interactions among
processors and system components become increasingly
important in system design, full-system simulation has
become an indispensable tool for the evaluation of new
systems.

The IBM full-system simulator, internally referred to
as “Mambo” [2], has been developed and refined in
conjunction with several large system design projects built
on the IBM Power Architecture* [3]. The POWER*
technology is an instruction set architecture (ISA) that
spans applications from consumer electronics to
supercomputers. Power Architecture encompasses
PowerPC*, POWER4*, and POWERS5* processors. As
one of many full-system simulators [4-6], Mambo allows
a full operating system (OS), such as Linux**, to run
interactively in the simulation, thereby furnishing a
complete environment for applications that require
interprocess or complex OS interactions. In addition, a
standalone environment is provided for self-contained
applications. In this environment, Mambo intercepts and
marshals the application system calls to the underlying
host to optimize execution. Mambo itself runs atop a
variety of host OS and platform combinations. Figure 1
shows the Mambo execution and simulation stack.

Mambo facilitates experimentation with and
evaluation of a wide variety of system elements, including
ISAs, address translation mechanisms, memory

©Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/06/$5.00 © 2006 IBM

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

J. L. PETERSON ET AL.

321

322

Tnput g é A{){llca}tlon
traces || = & 1Drares
EE Operati t
— sa perating system ®
2 (e.g., Linux) &
528
S\ &E
E5| s
Mambo ol © ||
infrastructure £ 3 5
an|| & .2
il
Host platform [
Linux, IBM AIX*,
0OS/X on PowerPC, x86, x86-64

Mambo execution and simulation stack.

coherence protocols, hypervisor software and hardware
support, hardware acceleration engines, and
microarchitectural features and resource allocation.
Mambo performance models may be driven by
instruction or memory traces. Environment flexibility
enables users to configure a simulation platform based on
customer-driven application and analysis requirements.
Mambo is particularly useful in evaluating new designs
that involve complex interactions among several different
system components. Mambo can support detailed
evaluation and testing of complex hardware interactions,
such as locking and cache coherence protocols.
Additionally, Mambo enables the development and
tuning of production-level operating systems, compilers,
and substantial application software before hardware
prototypes are available. By facilitating the concurrent
development of hardware and system software, Mambo
can significantly shorten the critical path of development
schedules. This early software development activity
can also benefit the hardware development effort by
identifying design issues that have an impact on
functionality or performance far earlier in the
development cycle, when the cost to fix such issues
is considerably less.

Technology overview and design techniques

A Mambo simulation accurately models an entire system
of processing elements, devices, interconnect topology,
and protocols. By virtue of its execution-driven
capabilities, it simulates core instruction execution and
the subtleties of interactions with surrounding system
components. At the heart of a Mambo simulation
environment is its processor model. Mambo provides
complete, bit-accurate models of several different
PowerPC processors [7], ranging from the embedded
405GP and 750 processors to the PowerPC 970 (used in
the Apple G5 systems and PowerPC-based blades) to the

J. L. PETERSON ET AL.

new Sony-Toshiba—IBM (STI) Cell Broadband Engine**
(Cell BE) processor (used for the Sony PlayStation** 3).
The Power Architecture defines the basic instructions and
registers and their operation. The Mambo processor
model simulates the entire instruction set, including
both user and privileged-state operations, and optional
features defined by the architecture, such as 32-bit and 64-
bit modes and floating-point extensions. Each simulated
processor is defined as a collection of these features.

In addition to the processor core, Mambo provides
flexible PowerPC-based cache memory systems that
contain both functional and cycle-accurate models for
a data prefetch engine, L1 data and instruction caches,
noncacheable unit, core interface unit, L2 cache, fabric
bus controller, on-chip and off-chip L3 cache, memory
controller, embedded memory, DDR2 and DDR3
memory, and the symmetric multiprocessor scalability
port. Mambo also supports exploratory features, such as
prefetch engine variants, nonuniform cache, L1 bypass,
memory-in-processor, near-memory processing, data
scatter and gather unit, high-perfomance hub, cache
injection, and write-back history table.

The Mambo common bus model is designed to support
pluggable bus agents, each of which is connected to a bus
that behaves as the hub of a simulated system. A bus
agent can be a processor, a memory controller, an input/
output (I/O) unit, or a scalability port. To communicate
with the rest of the system, each bus agent must first
register itself on the bus, after which it communicates
with the bus through a predefined programming interface.

Configurability of Mambo
A Mambo simulation incorporates a number of
supported system component models, such as processors,
memory subsystems, caches, buses, and I/O devices, into
a full model of a system. To create a Mambo simulation,
properties are defined for the simulated architecture
components. In general, Mambo provides a high level
of user control over the runtime specification and
configuration of the simulated machine. Each component
typically has an extensive set of parameters that can be
specified to configure simulated system characteristics.
For example, the processor clock frequency can be
defined by the user. The size of memory can be varied.
Memory translation aspects, such as the size and shape of
translation lookaside buffers (TLBs), can be declared.
Additionally, Mambo cache memory models have more
than 300 dynamically configurable parameters, giving
users the ability to change almost every aspect of the
simulated cache memory hierarchy. Cache parameters
include size, associativity, replacement policy, latency,
number of ports, number of slices, size of various queues,
L3 position and use, coherence protocol, snooping
sequence, and cast-out and cast-in policies. Bus

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

parameters include topology (ring, crossbar, and point-
to-point), unidirectional or bidirectional data path,
frequency, and latency. Memory parameters include
number of memory controllers, number of channels,
read/write width of each channel, number of arrays,
number of chips, number of banks, size of read/write/
prefetch queue, and DRAM type and timing.

A command language is provided to model, configure,
simulate, and tune components in a system. The
command-line interface can also be used to control the
execution of Mambo itself. Tcl [8] was chosen as the base
command language and then extended with Mambo-
specific commands to allow machines to be created,
modified, and managed. Additionally, the selection of Tcl
has facilitated the use of Tk and other packages, such as
BLT [9], to provide an extensible graphical user interface
(GUD).

Instrumentation of the simulated environment
Many Mambo models have been instrumented to
recognize and count performance events that characterize
behaviors, such as application instruction mix, pipeline
stall conditions, branch and cache functions, memory and
device transactions, and bus traffic. Processor, bridge,
and device models can be written to expose system
metrics by simulating the hardware performance monitor
resources (as is done in the Mambo POWER4 processor
model). Application binaries that interact with hardware
performance counters and control registers can be
executed without modification in simulation and on a
corresponding real system, providing an invaluable way
to determine how well Mambo matches hardware
behaviors. Furthermore, the level and degree of
instrumentation that can be incorporated in software
models often surpasses what can be implemented in
hardware. For example, using Mambo we are able to
capture all performance events simultaneously, in
contrast to current hardware, which can count only a
limited number of events at a time. Mambo furnishes an
inventory of mechanisms to expose event data collected in
the course of simulation runs.

The Mambo emitter framework is intended to support
very flexible and detailed analysis of a wide range of
processor and system activity. The emitter framework
decouples event generation from collection and analysis
tasks. Event generation is performed by instrumentation
within the simulation environment to detect events and
produce emitter data. During a simulation, Mambo can
identify a wide variety of architectural and programmatic
events that influence system and software performance.
Using configuration commands, the user can request that
Mambo emit data for a specific set of events into a
circular shared memory buffer.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Event processing is performed by one or more emitter
readers that access and analyze emitter data. Analysis
tasks generally include collecting and computing
performance measurements and statistics, visualizing
program and system behavior, and capturing traces for
postprocessing. An Application Programming Interface
(API) is provided to allow processes that read emitter
data to register with Mambo and receive records buffered
dynamically during a simulation run. The emitter
framework is naturally suited to trace generation, and
several emitter readers have been written to capture, filter,
and rearrange the event stream into a number of trace file
formats, such as instruction traces or memory traces.
Decoupling event generation from processing affords
greater flexibility in extending the data collection
capabilities. SimOS [10] also separates the data collection
of hardware-level event records from the data processing,
which is accomplished externally to the simulation
platform.

Also patterned after SimOS are Mambo trigger
facilities. Similar in flavor to Tcl annotations, Mambo
invokes user-supplied Tcl procedures associated with
model behavior and simulation control events. Substring
matches on text written to the simulated console may also
fire trigger procedures. The body of such Tecl triggers
may contain not only code to monitor and accumulate
statistics, but sequences to control simulation behavior.
For example, triggers can be used as a breakpoint
apparatus sensitive to program counter address values,
performance events, and console text strings.

Simulated applications can also control and query
Mambo models through a set of call-through interfaces.
Call-through instructions are placed in application code
as specially formed no-op opcode or illegal opcode.
Mambo intercepts these opcodes in simulation and
performs the indicated operation on behalf of the
application. Facilities exposed through these lightweight,
minimally intrusive instructions allow applications to
interact with the physical file system, interrogate
statistics, control and annotate emitter record
production, fire triggers, evaluate Tcl expressions, and
direct simulator operations.

Call-through instructions are also a primary avenue for
application interaction with novel devices for which no
OS drivers yet exist. Device commands can be issued by
the application as call-through functions that Mambo
redirects to the device model. Early assessment of these
novel devices is possible without having to invest in
developing all the intervening paths through the software
stack normally needed to access the hardware.

Mambo also supports a mechanism whereby a GNU
debugger (GDB) may be used to debug the software
running atop Mambo. Through this mechanism, GDB
can attach to and control a Mambo simulation running

J. L. PETERSON ET AL.

323

324

on either the same or a remote machine. Mambo supports
the standard debugger interface used by GDB to attach to
a real system. The GDB debugger interface allows the
debugger to query the state of the simulated machine
(register and memory), set breakpoints, and advance the
simulated machine.

Incremental performance modeling

The Mambo design has been driven by practical
simulation needs. The intent behind it is to assist in a
number of key aspects of the system design process:
software characterization, bring-up, debug, tuning,
examination of detailed architectural interactions,
credible performance projections, and as a validation
reference.

To address the user requirements for functional
accuracy and fast execution time, Mambo uses
compiletime feature selection to limit the alternatives that
must be considered during runtime simulation. This
results in multiple executable binaries: typically, one for
each simulated system. The tradeoff between runtime
feature selection and compiletime feature definition is
driven by an effort to balance generality against execution
speed.

Some users additionally require a cycle-accurate
projection of the time to execute an application on real
hardware. The most accurate projection of execution time
demands modeling of structural effects of the system,
particularly the parallelism present among multiple
functional unit pipelines, elements of the memory
hierarchy, buses, and so on. This more detailed cycle-
accurate model typically results in substantially increased
simulation execution time.

Mambo provides a range of options that compute more
or less accurate execution time statistics for the simulated
system. Mambo is designed to allow component models
to evolve over time. During the early stages of system
design, purely functional models for new processor and
system design proposals are developed that execute
quickly and are inexpensive to develop. As the hardware
design matures, detailed implementation characteristics
can be incorporated into the Mambo models, which can
then be used for system and application performance
analysis.

Mambo modeling constructs enable the development
team to easily add performance model features to existing
functional models. These constructs, representing
execution parallelism, resource contention, delay, and
transaction flow, can be incorporated incrementally. This
approach permits both investigation and iterative
refinement of critical performance paths in the
architecture until simulation results correlate with design
specifications, analytical projections, or measurement
data captured from existing hardware. A Mambo model

J. L. PETERSON ET AL.

is then refined by the appropriate introduction of delays
in simulation time to provide greater accuracy in timing
information. For example, the time for cache operations
can be approximated with constant latency, with
stochastic delays, or according to precise modeling

of delays based on architectural state and resource
contention.

The level of timing accuracy and, consequently, the
speed of simulation can be chosen as needed at runtime.
Varying levels of timing accuracy can be used for the
various Mambo components. For instance, to evaluate
new cache designs, it may be sufficient to model the
timing of the cache model in great detail while using
simpler models of the processor, bus, and memory
and thus allowing them to simulate more rapidly.

Mambo component models can be classified in the
Virtual Socket Interface Alliance (VSIA) taxonomy [11]
as either functional or mixed-level. All models are at least
functionally accurate, and those that yield timing
information do so by augmenting a functional
representation. This approach differs from loose-coupling
techniques that employ interface layering between
otherwise independent cycle-accurate and functional
simulation engines [12, 13].

Application of Mambo in the STI Cell BE project
In 2001, Sony, Toshiba, and IBM combined research and
development efforts to create an advanced processor and
system architecture for a new wave of devices in the
emerging broadband era. As a result, the Cell Broadband
Engine Architecture (CBEA) [14] was designed to take
advantage of the most advanced IBM semiconductor
process technologies to deliver high performance with
good power efficiency. Shortly after project inception,
STI engaged the IBM Austin Research Laboratory to
develop a Mambo model for the processor and system
architecture to support software simulation and
performance testing. Mambo delivered vital feedback
at various stages of the Cell BE project life cycle. An
initial functional simulation model was developed for
preliminary validation. This model was later enhanced to
provide more accurate timing evaluations. The model was
first based on design specifications, then validated against
hardware-level simulators, and finally correlated with real
hardware. The result was a completely integrated working
system of Cell BE hardware and software that has been
successfully launched alongside actual hardware delivery.
Because CBEA contains cores with a new ISA
and a novel on-chip system structure, evaluating its
performance with traditional (trace-driven) methods was
not a viable option. Rather, a full-system, execution-
driven simulation platform was needed to facilitate
exploration of the programming model and to study
interactions among processing elements and the memory

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

hierarchy. For the STI Design Center, integrating
Mambo in the product cycle enabled developers to
iteratively develop multiple generations of operating
systems, libraries, and game software well before any
hardware was available. A clear measure of its success
is demonstrated by the fact that the OS and multiple
applications, which were first developed on Mambo, ran
on first hardware without modification. As a result, the
delivery of the STI Software Development Kit to third-
party companies was accelerated, and game programmers
were able to develop applications and operating systems
several years before the hardware was available. This
ability has been exceptionally important given that the
Cell BE chip presents the game development community
with a radically new programming model that requires
significant rethinking of application design and
implementation.

Early Cell BE environment

The availability of Mambo during the formative years
of the CBEA opened an avenue for the STI software
development team to contribute to the hardware design.
Initially, the general design goal centered around a
heterogeneous multiprocessor platform containing a 64-
bit PowerPC processor and some number of smaller
single-instruction multiple-data (SIMD) processors, each
of which would operate out of its own local memory. The
mechanism through which all of these processors would
communicate was just beginning to take shape. The
creation of a full-system simulation of the Cell BE design
was considered to be the most effective vehicle for
exploring the design and enabling the STI teams to
collaborate on early software development of the entire
software stack.

In addition to the directive to provide design guidance,
the software team was challenged to bring up the entire
software stack on the new system as soon as hardware
was available. Full-system simulation of the CBEA was
the only viable means of achieving this aggressive goal.

The Cell BE software team consisted of subteams
responsible for developing and porting the following
software components for the Cell BE: hypervisor, Linux,
compilers and tools, runtime libraries, applications,
debuggers, and the simulator. Coordination among the
various teams necessitated that the architecture be fully
specified in the design documentation. Once this was
drafted, simulation support pertaining to these
specifications was added. The hypervisor and OS teams
then added their contributions to the simulated
environment, followed by the runtime library and
applications teams.

As a first step in building a Cell BE simulation model,
we combined a 64-bit PowerPC processor available in the
Mambo library and an early model of the synergistic

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

processor unit (SPU) sufficient to run PowerPC and SPU
code simultaneously. Because the communication
mechanism between the PowerPC units and the SPUs was
not yet fully specified, the simulation team added
instrumentation (call-through instructions) to allow the
application to perform communication tasks directly at a
higher level. This first-order approximation in simulation
enabled the Cell BE software team to begin application
development three years in advance of hardware
availability. Tight coordination among the simulation,
architecture, and software development teams helped
finalize the specification and enabled early feedback to be
incorporated into the processor architecture.

Architecture evaluations

Every feature supported in the CBEA was exercised by
the Cell BE software development team before the
hardware was available. Mambo served as a proving
ground for the specifications, both as a catalyst for
practical discussion and as a platform to demonstrate the
value of proposed features before committing them to the
architecture. Mambo was key in providing support for
design decisions, such as the number of SPUs, the size of
the local store for each SPU, early definition and support
for the memory flow controller (MFC) direct memory
access (DMA) operations, operation of the synergistic
processing element (SPE) channel interface (blocking as
opposed to nonblocking semantics), operation of the SPE
signal notification channels, and operation of the SPE
atomic operations. Furthermore, Mambo served as

the early proving ground for three different Cell BE
programming models: data-parallel as opposed to task-
parallel computation on SPEs, shared-memory parallel as
opposed to message passing on SPEs, and SPE virtual
device model.

Some design tradeoffs, such as the number of SPUs in
the system or the size of SPU local storage, could be
accommodated by simple Mambo configuration changes.
Other modifications to the processor architecture were
more pervasive and required substantial alterations to the
Mambo models. For example, the addition of hardware
multithreading to the Cell BE PowerPC processor
required new thread support in Mambo. After the
support was added to Mambo, changes were made to the
OS to take advantage of the new feature. This change also
affected the internal interrupt controller, which could
now target a specific PowerPC thread. As a result, the
final design was implemented in silicon with the
knowledge that the OS support was written and
successfully working in simulation.

The development of the research hypervisor
demonstrates the value of Mambo for exploratory
software investigation. The simulation environment
allowed development to proceed on regular shared

J. L. PETERSON ET AL.

325

326

workstations (including x86-based systems), without the
need for dedicated hardware. It was possible to trace and
debug the hypervisor and step carefully through
important transitions to verify that memory allocation,
address translation, interrupts, and processor switching
operated correctly. Providing this level of support was
particularly important because crucial system software,
such as the hypervisor and parts of an OS, were often
very difficult to debug, especially on new hardware. With
Mambo, debug trace statements were included to allow
system developers to see a trace of address translation
exceptions and interrupts down to the instruction level.
Each exception, for example, was tagged with a message
to indicate exactly the problem detected, which was of
great assistance in explaining application operation,
particularly in the early bring-up stages of development.

Performance evaluation tool chain

Over the course of the Cell BE project, the Mambo
modeling of system performance grew as well. At first,
simple fixed latencies were associated with high-level
operations such as memory accesses. Caching was
modeled probabilistically, using fixed cache-hit ratios.
This level of modeling was useful for high-level
performance analysis. Models for the caches, bus, and
memory controller were developed initially to validate
coherence protocols, but were subsequently extended to
incorporate timing of low-level interactions. As described
earlier, Mambo allows functional models to be easily
extended to model timing, concurrency, and resource
contention, thus preserving the initial investment in these
functional models. These detailed timing models
significantly improved the accuracy of Mambo
performance results.

Initially, the accuracy of the performance models was
evaluated on the basis of comparisons to theoretical
performance estimates. After completion of the cache and
bus timing models, we extended this evaluation with a
comparison to SPCsim, an internal low-level performance
simulator developed within the STI Design Center. At
that time, access to hardware was severely constrained,
which precluded a direct validation against hardware.
We developed a collection of nanobenchmarks that
performed a variety of low-level DMA operations from
the SPUs to focus on memory interaction timings. By
tuning low-level latencies and redesigning certain aspects
of the models to allow greater concurrency, we achieved
performance within 15% of the results from SPCsim for
single SPU executions and within 26% of SPCsim in high-
contention tests employing all eight SPUs.

During this same time period, we were given the task of
projecting the performance of linear algebra workloads
for several future SPU microarchitectural alternatives.
The combined requirements imposed by these new studies

J. L. PETERSON ET AL.

and the early SPCsim comparison efforts led us to
augment the Mambo data-collection capabilities. A
generalized transaction-tracking facility was introduced
to simplify the process of resolving discrepancies between
SPCsim and Mambo MFC behaviors. Traffic could be
traced by examination of tracking records presented
through the Mambo emitter framework. However, this
process proved to be labor-intensive, and the need for
facilities more conducive to detailed performance debug
and analysis became immediately apparent.

Consequently, three new graphical visualization tools
were developed to give deeper insight into SPU internal
operations. All GUIs were constructed as Tcl scripts
exploiting the Tk and BLT functions integral to Mambo
and extensions to the underlying data-collection features
previously described. GUIs could easily be prototyped
using this strategy. External users could compose custom
visualization and analysis tools in fashion.

Figure 2(a) is a sample screen from a statistics collector
that offers animated time-series plots of SPU stall
conditions, issue and execution pipe characteristics, and
DMA operations. BLT vector structures and charting
widgets were used to collect and present low-level SPE
performance event statistic data from instrumentation
already available in the Mambo SPU and MFC models.

Figure 2(b) shows a transaction visualization tool that
depicts SPU instructions as they flow through the internal
pipeline and queue structures. The tool builds on
elements developed for the aforementioned emitter-based
transaction trace with the addition of data structures
optimized for high-speed dynamic query and retrieval of
tracking information.

Figure 2(c) displays an interactive SPU local store map.
Similar to the SPU statistics collector of Figure 2(b), this
tool relies heavily on the BLT vector and plotting
functions incorporated in Mambo. Histograms of
memory accesses are charted across the span of local
store address space, which may be further inspected
and disassembled. Instruction breakpoints may also
be assigned using this dialog.

As an increasing number of Cell BE processor-based
systems are becoming available, we have begun to
validate our performance models against hardware.
While not yet complete, this effort has already identified
inaccuracies in the models that were not detected in
earlier validation. Mambo also simulates many of the key
performance counter registers of the Cell BE processor
and supports access to them through the standard
architected mechanisms. Validation efforts are planned to
ensure close correlation between the simulated and actual
performance counter results. The goal of this activity is to
allow the same suite of performance analysis tools to be
used on both the simulated and the actual systems.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Verification tool chain

IBM has a number of methodologies that focus on
verification of early hardware designs and early hardware
bring-up systems. One of the tools employed for
architectural verification is a random test-pattern
generator, which produces thousands of tests to exercise a
broad range of architectural features of a given design.
These same tests are run on low-level hardware models to
ensure their accuracy at the final stage of processor
design, before the circuit description is sent to
manufacturing. The simulation team made extensive use
of these tools to validate the architectural accuracy of the
core models supplied in Mambo.

In addition to these tests, the software teams developed
an entire Cell BE software stack consisting of a
hypervisor, Linux-based OS, libraries, and applications
running on the PowerPC and SPU cores. These
applications included a large number of verification
tests based on the same hardware specification used
by the simulation team. Any discrepancy between
interpretations of system documentation made by the
simulation team and those of the software team would be
quickly evident as a result of these tests. The effect was to
broaden the scope of testing that was available to
verification. The applications exercised the runtime
library that handled job scheduling, loading of state in the
SPUs, and communication between the application code
running on the various cores. These operations, in turn,
exercised the OS support that handled translation faults
from the various MFCs and caught other signals flowing
between the cores.

At this point, the verification team realized that the
extent of the software stack running on Mambo could
actually help further verify the hardware design. The
Mambo simulation team, the OS team, and the
verification team collaborated on a process whereby a
complete Cell BE workload was run on Mambo and
captured to a system snapshot. Using these system
snapshots, the verification team was able to load different
system configurations into the low-level simulation
environment to further test the hardware design.

System bring-up

The big test for the entire Cell BE software and
simulation team came when the first hardware arrived
at the bring-up laboratory. All of the simulation and
software stack development was done in preparation for
fast bring-up on early hardware. In general, working
around early hardware errata consumes considerable time
for the software bring-up teams. For the Cell BE project,
we instrumented Mambo to highlight known errata
conflicts in code that was run on the simulator. This
helped software teams to ensure that their software was
adapted appropriately to avoid early known hardware

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

B b |

cuansk
T I i

it
T12lpgsgin

]

|

]

]

(b)

e o s 0

§F3RE

Mambo visualization and analysis tools: (a) statistics collector;
(b) visualization tool; (c) interactive SPU local store map.

J. L. PETERSON ET AL.

327

328

problems. When the first systems became available, the
software teams used Mambo to work around newly
discovered system problems. Mambo provided a richer,
more convenient debug and test environment for the
software teams to complete their hardware workarounds.
Once this new code worked on Mambo, it was migrated
to the hardware, where it executed without further
modification.

After hardware availability

Once hardware is available, the natural tendency is to
shift focus to hardware execution rather than running in
simulation. However, the use of simulation in the process
of developing and refining the Cell BE processor system
has not ended with the recent delivery of this processor.
The ability of Mambo to run the exact same software
stack as real hardware facilitates an easy transition both
to and from hardware. The following are two realities
that lead to continued simulation use, even after
hardware becomes available:

* Hardware accessibility: 1t may not be practical to
provide dedicated hardware access to all developers.
In these situations, Mambo continues to serve as a
fully functional platform for software development
and testing.

* Debug environment: Years of software development
on Mambo have led to an extensive debug
environment that enables user visibility with respect
to state, structures, and events not immediately
accessible on the physical machine.

Application of Mambo in the PERCS project

As part of the High Productivity Computing Systems
(HPCS) initiative sponsored by the Defense Advanced
Research Projects Agency (DARPA) [15], IBM is
researching and developing the IBM PERCS—
productive, ease-to-use, reliable computing system—for
implementation by the year 2010. The overall goal of the
HPCS initiative is to take a broader look at high-end
computing systems to encompass issues such as
development time, programmer productivity, system
robustness, portability, and overall system value leading
to the next generation of supercomputers. PERCS will
support balanced, economically viable HPCS hardware
and software solutions that can be leveraged both in the
national security sector and in commercial markets.

The long lead time of the PERCS project and
associated ambitious plans call for examining many novel
design ideas, thus precluding hardware prototyping
except in the later phases of the project. In particular, the
complex interactions between software and hardware
must be examined closely to see whether they can be
exploited to yield the desired boost in productivity. These

J. L. PETERSON ET AL.

interactions tend to be difficult to examine during regular
design cycles because of budget and schedule constraints.
We have decided to face the challenge partially by using
the Mambo tool as a platform for prototyping new
hardware features and software mechanisms.

Performance evaluation tool chain

Performance evaluation of modern systems uses one
of four approaches: measurements from hardware
prototypes, analytic modeling, trace-driven simulation,
and execution-driven simulation. Each of these
approaches has its advantages and disadvantages, and
we considered all of them as alternatives for the early
research phase of PERCS.

Measurements from actual hardware prototypes
provide accurate performance data on the system.
However, this approach requires expensive hardware
prototyping, and thus is best employed in the
preproduction phase after the design has been largely
decided. The sheer number of ideas that we had to
examine in PERCS excluded hardware prototyping as a
viable approach to conduct research in the concept phase.

We decided, instead, to use a combination of analytic
modeling, trace-driven simulation, and execution-driven
simulation. These approaches vary in expense and
accuracy but share the need for result validation. Analytic
modeling does not incur much expense, but it requires the
development of a matrix of application-design models,
each requiring about six months of effort by a skilled
developer who has a good understanding of the
application and its projected behavior on the modeled
platform. Trace-driven simulation does not require the
laborious development of the models, but it requires the
laborious and often expensive generation of application
traces and may be limited in its ability to predict
certain interactions, such as the memory behavior of
multiprocessor systems [16]. Execution-driven simulation
eliminates the need for generating and manipulating
traces, and if the simulation model represents the
hardware with good fidelity, the results can be as accurate
as those obtained from hardware [10, 17]. An execution-
driven model typically runs hundreds or thousands of
times slower than hardware, with increased modeling
fidelity coming at the expense of longer simulation time.
The increased simulation time limits this approach to
small-scale systems and may preclude the realistic
modeling of detailed interactions in a processor core.

Analytic modeling

We decided to use analytic modeling for the case in which
a validated application model exists on a reference design
point that can be manipulated to produce answers to
design alternatives quickly. One such example was for
commercial applications, such as transaction-processing

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

systems, for which we exploited existing models to test
cache enhancements [18]. These applications cannot be
realistically studied using a complete trace, and a
simulation model would be too slow to generate useful
results. Given the lack of hardware to validate the
analytic models of an advanced memory hierarchy, we
used Mambo to verify the results of the modified analytic
model of the memory hierarchy. To do so, we changed
the parameters of the analytic models for specific design
alternatives and produced results for simple applications.
We then used Mambo to run the same applications on an
equivalent simulation model of the memory hierarchy
and verified that the results of the simulation were
statistically identical to those of the analytic model. It is
interesting to note that this verification effort revealed
bugs in both models, and our experience leads us to
recommend that Mambo be used as a reality check for
analytic models whenever appropriate in the future.

Trace-driven simulation environment

Trace-driven simulation is most applicable to examining
ideas and research in processor cores and, in some cases,
the memory hierarchy. Trace-driven simulation requires
the laborious generation and maintenance of traces.
Several tools exist for generating traces from actual
hardware [19], but they tend to be cumbersome and
expensive to operate. In some cases, these tools may
require intrusive support in the processor or the memory
subsystem, or they may not be able to capture the traffic
at all levels in the memory hierarchy. For example, it may
not be possible to capture traces of on-chip LI cache
accesses without specialized processor support.

Once a trace is generated, it typically requires some
filtering—for instance, to extract the portions of the
traces that may be deemed interesting for a particular
study. Statistical sampling and other methods have been
proposed in the literature [20], but these require a great
deal of labor and they may require a validation that the
sampled traces do not lose useful information. Finally,
traces require prodigious storage space and bandwidth.
Several trace-compression mechanisms have been
implemented in previous work [21], but they add more
processing overhead to the simulation for decompression
and require further effort on the part of the trace
maintainer.

We have used Mambo to mitigate these problems with
trace-driven simulation. Our methodology is to first run
the application through existing hardware and capture
the characteristics of the application during its execution
using hardware performance counters. For instance, it
may be expedient to focus on instructions per cycle (IPC)
as a metric for describing the performance of an
application as it passes through various phases of

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

i
]II |||1 |r

l|Ii|i|| |

IPC

0 200 400 600 800 1,000 1,200 1,400
Time (s)

IPC behavior over time.

program execution. A profile of IPC behavior over time is
then captured, as shown in Figure 3.

The IPC curve can be examined to identify intervals of
low IPC. These intervals of the program presumably
challenge the existing hardware architectures and may
reveal serious bottlenecks in the hardware, software,
or both. The number of executed instructions in each
interval is determined using the performance counters.
These intervals define the starting points for generating
application traces. We feed these starting points to
Mambo, which runs the application to generate the traces
for the desired intervals. These intervals can also be
customized depending on the requirement of the target
study itself. For instance, to produce traces that are useful
for core studies, it may be necessary to prepend each
interval with the preceding million instructions or so to
warm up the L1 cache in a trace-driven simulation.

OS interactions can be included or excluded from the
trace on the basis of the mode in which the simulator is
running: full-system or standalone. We have generated
full traces of applications that also include the OS
interactions.

Note that it is possible to do away with the need to
store traces in stable storage. Using the emitter interface,
the output from Mambo can be fed directly into the trace-
driven simulation. The overhead of this on demand
generation of a trace can be intuitively compared with
the overhead of reading the large trace file from stable
storage and performing the actual decompression. In
contrast, however, our approach does not require the
storage and manipulation of compressed traces.

Execution-driven simulation tool

Execution-driven simulation encompasses every aspect of

the system in great detail. The result is a model of a

system that can generate performance results close to 329

J. L. PETERSON ET AL.

330

those obtained from an actual system [10]. This form
of simulation has a tradeoff between accuracy and
simulation time in which accuracy increases with time,
but often in a less than linear fashion. Choosing the
proper point in that tradeoff remains an art.

We have used Mambo to build a cycle-accurate cache
model to simulate the effects of new memory hierarchy
techniques on application performance. The model
includes fairly detailed simulation of a state machine that
governs the cache replacement and inclusion protocols
and simulates the way the cache interacts with main
memory and the processor core. Rather than construct
a full cycle-accurate core model, we implemented an
abstract core model that may be tuned to provide
different IPCs. Thus, we studied the effect of cache
hierarchy innovations with aggressive or conservative
core designs by selecting different parameters. The goal
here was to produce a range of plausible figures within a
spectrum of core designs from the most conservative to
the most aggressive. We measured the effect of each
innovation on cache hit ratios and memory latency on
average, and the outcome was a dynamic range of values
that show the effectiveness of the various innovations.
This approach can be used to eliminate design choices
that are likely to produce minimal performance
improvements. We have used this facility to study the
cache behavior of nonuniform cache architectures [22],
near-memory processors, and memory-in-processor
morphing of cache architectures to direct-addressable
memory. It is useful here to consider the last one as an
example of the way that Mambo can actually identify
serious problems with an idea that is initially perceived as
beneficial.

The MIP morphing of the cache architecture calls for
setting aside a portion of the cache as direct-addressable
memory. The idea has been tried in embedded systems,
such as the PowerPC 401* processor, and in some past
IBM mainframes. It has not been tried at the scale of
today’s high-end processors. The premise of the idea is
this: Giving the application control over some portion of
the cache allows the cache behavior to become more
deterministic, which is good for performance tuning and
programmer productivity. In addition, this arrangement
can improve performance because access to the direct-
addressable on-chip memory does not go through the
cache directory phase, thus reducing access time and
power consumption. Such memory can also be used by
the OS to store some important structures, which can
speed up the context switching of applications and
improve overall system performance.

Initially, the MIP morphing feature was well received
by internal development and HPCS customers alike. The
team was aware of the need to both manage this
hardware feature at the OS level and provide portable

J. L. PETERSON ET AL.

abstractions to the programmer to exploit this feature in
a productive way. None of these problems appeared
insurmountable, given the large body of academic
research that has addressed this problem [23]. Mambo
was used as a platform for exploring the performance
aspects of this feature and examining potential

software issues on this yet-to-be-built hardware. The
implementation effort was facilitated by Mambo,
allowing the OS team to prototype the MIP morph

idea in a controlled development environment. Taking
the prototyping effort to this level of realism uncovered
many complexities in supporting the MIP morph in

a virtualized manner. These complexities included
partitioning the cache between cacheable memory and
direct-addressable memory, bringing a process into a
different processor after a context switch, and managing
coherence if threads on different cores or different
processor chips were to access the local memory. Other
complexities—such as hypervisor support, page table
construction, and compiler layout of the memory space—
were confronted as well. The results showed that the
conventional wisdom concerning MIP morphing did not
go deep enough in examining the issues. By prototyping
the software support that was needed at the OS level and
exposing the usage issues at the application programmer’s
level, the magnitude of the problem was exposed at its
fullest. Further, the improvement in performance did not
show a sufficient payback for the immense effort that
would be required at the software level to support the
idea, and as a result it was dropped from further
consideration.

Summary and future direction

Mambo has proven to be a critical part of several projects
developing new PowerPC processor systems. It allows
new features to be prototyped quickly and evaluated in
the context of a full-system simulation. It has been used
successfully to develop a complete system software stack
before hardware availability. Mambo also plays a role in
the performance evaluation environment as a validation
tool for analytic models, as a trace generation and
manipulation facility in trace-driven environments, and
as an execution model with the right balance between
simulation speed and result accuracy. As a result, the
designer can focus on analyzing the application and on
choosing the relevant parts of the execution or system
that must be examined closely.

We are continuing to use Mambo for new processor
and system development. IBM Research actively
continues to collaborate with teams within IBM, in
academia, and in various government agencies to
ensure that new features and support for performance
innovations are consistently built into the Mambo model.
Future versions of Mambo will include enhancements

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

to the core simulator infrastructure to provide greater
usability and enrich the overall simulation environment.
Also, the Austin research team has added Mambo for
the PowerPC 970 and STI Cell BE processor to the
alphaWorks [24] family of emerging technologies and will
continue to provide additional variants to the research
and development community.

At the same time, we are extending Mambo in several
directions. Current research includes efforts to extend
more of the Mambo model of the simulated system to be
defined at runtime, allowing greater flexibility in the range
of systems that can be explored. There is also a new effort
to provide more accurate models of complex, out-of-
order, superscalar processor designs. We are constantly
working to improve its simulation speed and scalability to
support its role as a platform for software development.

Acknowledgments

This work has been supported in part by the Defense
Advanced Research Projects Agency (DARPA) under
Contract No. NBCH30390004. Mambo is managed as an
open source project within IBM and has an extensive
set of contributors throughout the company. We
acknowledge the Austin Research Laboratory team for
its focus on continual innovation, which ensures that new
features and support for new technologies are consistently
built into the Mambo simulator. We also acknowledge
the following individuals external to the Austin research
team who have assisted in developing and extending
Mambo features and functionality: Max Aguilar, Michael
Day, Jonathan J. DeMent, Stan Gowen, Sid Manning,
Mark Nutter, Mike Stafford, and James Xenidis.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation.

**Trademark, service mark, or registered trademark of Linus
Torvalds or Sony Computer Entertainment America Inc. in the
United States, other countries, or both.

References

1. P. Bose, “Performance Analysis and Verification of
Superscalar Processors,” Research Report RC-20094, 1IBM
Thomas J. Watson Research Center, Yorktown Heights, NY
10598, June 1995.

2. P. Bohrer, M. Elnozahy, A. Gheith, C. Lefurgy, T. Nakra, J.
Peterson, R. Rajamony, R. Rockhold, H. Shafi, R. Simpson,
E. Speight, K. Sudeep, E. Van Hensbergen, and L. Zhang,
“Mambo—A Full System Simulator for the PowerPC
Architecture,” ACM SIGMETRICS Perform. Eval. Rev. 31,
No. 4, 8-12 (March 2004).

3. C. May, E. Silha, R. Simpson, and H. Warren, The PowerPC
Architecture: A Specification for a New Family of RISC
Processors, Morgan Kaufmann Publishers Inc., San
Francisco, 1994.

4. R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and H. Wang,
“SoftSDV: A Pre-Silicon Software Development Environment
for the IA-64 Architecture,” Intel Technol. J. 3, No. 4
(November 1999); see fip://download.intel.com/technology]itj/
q41999/pdf]softSDV .pdf.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

5. M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta,
“Complete Computer System Simulation: The SimOS
Approach,” IEEE Parallel & Distr. Technol. Syst. & Appl. 3,
No. 4, 3443 (December 1995).

6. Simics white papers, Virtutech Inc., 2005; see http://
www.virtutech.comjour-tech/white-papers.pl.

7. IBM Corporation, Power Architecture; see http://
www-03.ibm.com/chips/power|index.html.

8. J. K. Ousterhout, “Tcl: An Embeddable Control Language,”
Proceedings of the USENIX Winter Conference, January 1990,
pp. 133-146.

9. M. Harrison, Tc//Tk Tools, O’Reilly & Associates, Sebastopol,
CA, 1997.

10. S. A. Herrod, “Using Complete Machine Simulation to
Understand Computer System Behavior,” Ph.D. dissertation,
Stanford University, CA, February 1998.

11. VSI Alliance, System Level Design Development Working
Group, “VSIA System Level Design Model Taxonomy
Document, Version 2.1 (SLD 2 2.1),” July 2001.

12. H. Wang, S. Manor, D. LaFollette, N. Nesher, and K.-J.
King, “Inferno: A Functional Simulation Infrastructure for
Modeling Microarchitectural Data Speculations,” Proceedings
of the IEEE International Symposium on Performance Analysis
of Systems and Software, March 2003, pp. 11-21.

13. J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S.
Manne, S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert,

R. Espasa, and T. Juan, “Asim: A Performance Model
Framework,” IEEE Computer 35, No. 2, 68-76
(February 2002).

14. Cell Broadband Engine Architecture; see http://
www-128.ibm.com|developerworks/power/cell].

15. R. Graybill, “High Productivity Computing Systems
(HPCS),” DARPA Information Processing Technology Office,
June 2005; see http.//www.darpa.millipto/ Programs/hpcs).

16. R. A. Uhlig and T. N. Mudge, “Trace-Driven Memory
Simulation: A Survey,” ACM Computing Surv. 29, No. 2,
128-170 (June 1997).

17. D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Computer Arch. News 25, No. 3, 13-25 (June
1997).

18. E. Speight, H. Shafi, L. Zhang, and R. Rajamony, “Adaptive
Mechanisms and Policies for Managing Cache Hierarchies in
Chip Multiprocessors,” Proceedings of the 32nd Annual
International Symposium on Computer Architecture, June 2005,
pp. 346-356.

19. F. E. Levine, B. C. Twichell, and E. H. Welborn, “Hardware
Mechanism for Instruction/Data Address Tracing,” U.S.
Patent 5,446,876, August 1995.

20. R.E.Kessler, M. D. Hill, and D. A. Wood, “A Comparison of
Trace-Sampling Techniques for Multi-Megabyte Caches,”
IEEE Trans. Computers 43, No. 6, 664-675 (June 1994).

21. E. N. Elnozahy, “Address Trace Compression Through Loop
Detection and Reduction,” Proceedings of the ACM
SIGMETRICS Conference on the Measurement and Modeling
of Computer Systems, May 1999, pp. 214-215.

22. J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and S. W.
Keckler, “A NUCA Substrate for Flexible CMP Cache
Sharing,” Proceedings of the 19th Annual ACM International
Conference on Supercomputing, June 2005, pp. 31-40.

23. B. Fraguela, J. Renau, P. Feautrier, D. Padua, and J.
Torrellas, “Programming the FlexRAM Parallel Intelligent
Memory System,” Proceedings of the 9th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming, June 2003, pp. 49-60.

24. IBM Corporation, “alphaWorks: Emerging Technologies,”
June 2005; see http.|/www.alphaworks.ibm.com|.

Received June 28, 2005; accepted for publication
August 19, 2005; Internet publication March 3, 2006

J. L. PETERSON ET AL.

331

332

James L. Peterson [BM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(petersjl@us.ibm.com). Dr. Peterson is a Research Staff Member.
He received a Ph.D. degree from Stanford University in 1974
and then joined the Department of Computer Sciences of the
University of Texas at Austin. Dr. Peterson joined IBM in 1989.

Patrick J. Bohrer [IBM Research Division, Austin

Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(pbohrer@us.ibm.com). Mr. Bohrer is a Research Staff Member,
and manages the Performance and Tools Department. He received
a B.S. degree in computer science from the University of Texas at
Austin. He joined IBM in 1994.

Lei Chen IBM Research Division, Austin Research Laboratory,
11501 Burnet Road, Austin, Texas 78758 (chenl@us.ibm.com). Dr.
Chen is a member of the Performance and Tools team at the IBM
Austin Research Laboratory. He received a Ph.D. degree from the
University of Rochester. Dr. Chen joined IBM in 2004.

Elmootazbellah N. Elnozahy IBM Systems and
Technology Group, 11400 Burnet Road, Austin, Texas 78758
(mootaz@us.ibm.com). Dr. Elnozahy received a Ph.D. degree in
computer science from Rice University. From 1993 to 1997 he
served as an Assistant Professor at Carnegie Mellon University. In
1997 he joined the IBM Austin Research Laboratory, where he
managed the System Software Department until 2005. Dr.
Elnozahy currently leads PERCS.

Ahmed Gheith IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(ahmedg@us.ibm.com). Dr. Gheith is a Research Staff Member.
He received a Ph.D. degree from Georgia Institute of Technology
in 1990 and then joined the IBM Advanced Workstation Division.
After pursuing interests outside IBM from 1996 to 2003, he
returned to IBM and joined the Austin Research Laboratory.

Richard H. Jewell 1BM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(rhjewell@us.ibm.com). Mr. Jewell is a Senior Software Engineer
working on the system simulator for the Cell processor. He
received a B.S.E.E. degree from the Christian Brothers University
and an M.S.E.E. degree from the University of Kentucky.

Michael D. Kistler IBM Research Division, Austin

Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(mkistler@us.ibm.com). Mr. Kistler received a B.S. degree in
computer science from Susquehanna University and an M.S.
degree in computer science from Syracuse University. He joined
IBM in 1982 and is currently working on simulation technologies
for IBM POWER and PowerPC processors and systems.

Theodore R. (Ted) Maeurer [BM Systems and Technology
Group, STI Design Center, 11501 Burnet Road, Austin, Texas 78758
(maeurer@us.ibm.com). Mr. Maeurer is the manager of the
software organization for the Austin-based STI Design Center,
where he has been responsible for the development of software
technologies for the Cell processor. He received B.S. and M.S.
degrees in computer science from Rensselaer Polytechnic Institute,
and an M.S. degree in engineering and management from the
Massachusetts Institute of Technology.

J. L. PETERSON ET AL.

Sean A. Malone IBM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(seaxouri@us.ibm.com). Mr. Malone received a B.S. degree in
electrical engineering from the State University of New York at
Buffalo. He joined IBM in 1997.

David B. Murrell [BM Research Division, Austin

Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(dmurrell@us.ibm.com). Mr. Murrell received his degrees from
Purdue University and has focused on simulation and performance
analysis since 1989. He joined the Austin Research Laboratory in
2004.

Neena Needel [BM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(nneedel@us.ibm.com). Ms. Needel is a member of the
Performance and Tools team at the IBM Austin Research
Laboratory, where she develops technical communications. She
received a B.S. degree in communications from St. Edward’s
University in 1996. She joined IBM in 2004.

Karthick Rajamani IBM Research Division, Austin

Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(karthick@us.ibm.com). Dr. Rajamani is a Research Staff Member
in the Power-Aware Systems Department. He received a B.S.
degree in electronics and communications engineering from the
Indian Institute of Technology, Madras, and M.S. and Ph.D.
degrees in electrical and computer engineering from Rice
University. He joined IBM in 2001 and has since been engaged in
computer systems research.

Mark A. Rinaldi IBM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(nalds@us.ibm.com). Mr. Rinaldi is a Senior Technical Staff
Member in the xSeries* Engineering Software Department. He
received B.S. and M.S. degrees in electrical engineering from
Rensselaer Polytechnic Institute, joining IBM in 1974.

Richard O. Simpson IBM Research Division, Austin
Research Laboratory, 11501 Burnet Road, Austin, Texas 78758
(simpson@us.ibm.com). Dr. Simpson has worked in computer
architecture, operating systems, and simulation at various IBM
laboratories since 1969. He received a Ph.D. degree from the
University of Texas at Austin in 1988.

Kartik Sudeep IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(kartik@us.ibm.com). Mr. Sudeep is a Staff Engineer working
on designing performance tools for next-generation systems.
He received an M.S. degree in electrical and computer
engineering from Duke University in 2000.

Lixin Zhang IBM Research Division, Austin Research
Laboratory, 11501 Burnet Road, Austin, Texas 78758
(zhangl@us.ibm.com). Dr. Zhang received a B.S. degree in
computer science from Fudan University, China, and a Ph.D.
degree in computer science from the University of Utah. He was a
postdoctoral research associate at the University of Utah from
2001 to 2003, when he left to join the IBM Austin Research
Laboratory.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

