Building web
services for
scientific grid
applications

G. Kandaswamy
L. Fang

Y. Huang

S. Shirasuna

S. Marru

D. Gannon

Web service architectures have gained popularity in recent years
within the scientific grid research community. One reason for this
is that web services allow software and services from various
organizations to be combined easily to provide integrated and
distributed applications. However, most applications developed and
used by scientific communities are not web-service-oriented, and
there is a growing need to integrate them into grid applications
based on service-oriented architectures. In this paper, we describe a
framework that allows scientists to provide a web service interface
to their existing applications as web services without having to
write extra code or modify their applications in any way. In
addition, application providers do not need to be experts in web
services standards, such as Web Services Description Language,
Web Services Addressing, Web Services Security, or secure
authorization, because the framework automatically generates
these details. The framework also enables users to discover these
application services, interact with them, and compose scientific
workflows from the convenience of a grid portal.

Introduction

Large scientific collaborations are increasingly employing
web-service-oriented architectures to manage their
scientific enterprises. The reasons for this are tied to the
fact that science is becoming more multidisciplinary and,
to make progress on key scientific questions, it is
increasingly dependent upon complex workflows of data
analysis and simulation tasks. For example, in the area of
biology, modeling a cell involves the integration of many
complex, interacting processes, each of which may be
understood by only one or two specialists on a team
(physicists, biochemists, or complex systems engineers).
In the area of severe storm prediction, as illustrated by
the examples in this paper, a single storm prediction may
involve the interaction of a data mining task with data
integration from real-time instruments and massive
simulations which, in the future, will drive the control of
online instruments such as Doppler radars. These large
research communities are often divided into teams of
specialists, each responsible for a particular set of
resources and applications. All of the resources used to
host each team’s applications—together with a layer of

services (described below) that ties them together—are
often referred to as a grid. The users of this grid are the
members of the community who need to invoke these
applications individually or as part of a workflow to solve
particular problems. To build these workflows, it is
necessary to overcome the barriers introduced by the
heterogeneous nature of the community’s grid and
applications. Web services are designed specifically to
solve this problem, and they have become the foundation
for most new grid standards.

Unfortunately, most of the applications developed and
used by scientific communities are command-line
applications written in Fortran, C, and a host of scripting
languages. These applications are fast and efficient, and
they represent state-of-the-art science; however, they are
often platform-dependent and difficult to integrate with
applications from other disciplines. Programmatic access
to these applications from remote clients is usually
difficult. Many of them lack a graphical user interface
(GUI), which makes them cumbersome for end users.
Also, there is no standard way to describe their input
parameters and output results or to monitor their

©Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/06/$5.00 © 2006 IBM

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

G. KANDASWAMY ET AL.

249

250

progress as they run for extended periods of time on the
grid. By converting these command-line applications into
application services, we can overcome many of the
limitations mentioned above. In this paper, an application
service is an application with a web-service interface that
is described by the Web Service Definition Language
(WSDL) [1] as a set of endpoints operating on messages
containing document-oriented information.

A web service can wrap an application, enclosing it and
invoking it without the application having to be modified.
In principle, the task of wrapping an application as a web
service is not difficult for a specialist trained in web and
web-service programming, but for most scientific
application specialists, this is an extremely high barrier
to surmount. There are a number of tools to help
accomplish this task. However, simply providing a web-
service interface is not sufficient to make the application a
usable component in a distributed computation. One
major concern is security. In particular, how can a
scientist provide a selected group of users with access to
application services without building a separate security
infrastructure or requiring users to have login accounts
on the host running the service? Another problem is
making the service usable directly from a web portal,
as well as making it a component in a workflow. The
primary research contribution of this paper is to describe
a framework we have built that allows scientists to wrap
their applications as web services and deploy them on a
grid; it also automatically provides an authorization
system that allows selected users to securely interact with
these services through automatically generated web
interfaces, to compose scientific workflows using these
services, and to monitor the status of their workflows on
the grid using standard publish-subscription notification
systems. The framework has four primary components:

* Grid portal—A web server and gateway with which
users may access services, compose workflows, and
manage data. The portal is used by the application
provider to create the service for others to use and by
the users who wish to interact with the service through
its automatically generated web interface.

* Generic factory service—Invoked from the portal by
application providers to wrap applications as services
and create new instances of these services on the grid
(first introduced in [2]). It is integrated with a
capability-based authorization system that allows
fine-grained control over user access to the deployed
services.

* Workflow composer—A tool that allows users to
compose complex and interesting workflows from
application services.

G. KANDASWAMY ET AL.

* Notification service—Allows application services to
send messages that are logged by the portal and
monitored by the workflow instance.

Finally, there is the grid itself. There are perhaps as
many definitions of the term grid as there are grid
deployments. The Global Grid Forum is in the process of
defining a reference model for grids called the Open Grid
Service Architecture [3]. However, for the tools described
here, we assume very little. We define a grid to be a
collection of computers that are configured in such a way
that if they are separated by firewalls, a range of Internet
Protocol (IP) ports have been left open so that services
hosted on these machines can exchange messages. In
addition, we assume that at least one machine in this set
has some ports open to the outside world so that external
facing services, such as the portal, can be used by clients
elsewhere. We also make extensive use of the grid security
infrastructure (GSI) security model [4] for user
authentication. GSI offers us two advantages:

* A user authentication framework that allows an
application provider to present a signed certificate
of identity that authenticates that user with each
resource in the grid. This is called the single sign-on
property because a user needs to enter a password
only once to obtain a proxy certificate, which can be
used by the portal or other clients to act on behalf of
the user.

¢ A mechanism that allows remote execution, so that a
process with a valid certificate running on one grid
resource can instantiate a process on another grid
resource. This can be done using the GSI-enabled
SSH (Secure Shell) protocol or the Globus Resource
Allocation Manager (GRAM) protocol.

In general, installing Globus [5] is one easy way to
build a grid, but there are other solutions, such as the
Open Middleware Infrastructure Institute [6] framework
that may also be suitable. Within the grid, we deploy a set
of persistent services that is part of the framework that
supports the application services we create. These include
the grid portal server, which contains the generic factory
service used to create instances of application services
(Figure 1).

The portal server also has a database that stores user
context information that is loaded into the user session
when the user connects through a web browser. The
portal also loads the user’s proxy certificate from a
certificate vault and service authorization capabilities via
a capability manager. When an application provider uses
the factory service to start an instance of an application
service, the application service registers its WSDL with a

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

persistent service registry. The application service also
publishes notifications about itself to the persistent
notification service. To support service clients that are
outside the grid and may not have fixed IP addresses, a
message box service is provided as a messaging proxy.
External clients can route messages to other services
through the message box, or they can pull event
notifications from a queue maintained on their behalf by
the message box.

Related work

Over the last several years there has been substantial
progress in building grid applications by composing them
from predefined components and web services. The most
notable among these are Taverna [7], Triana [8], and
Kepler [9]. Each of these represents a powerful tool for
composing workflows. Taverna is part of the myGrid
project, focused on building middleware to support data-
intensive experiments in molecular biology. Taverna has
more than a thousand services that can be used as
components in workflows. It also has an elegant
approach to service discovery and capturing the full
metadata context, including the provenance of all aspects
of the scientific experiment represented by the workflow,
including the data derivations and the workflow audit
trail of invoked services.

At the user level, Triana provides an elegant and well-
tested composition tool and a large toolbox of ready-to-
use components. For grid application, Triana uses a
software layer, called the grid application prototype, to
distribute subsystems of the workflow graph to remote
grid resources for execution.

The approach Kepler takes is based on an actor-
oriented model that allows hierarchical modeling and
dataflow semantics. The Kepler tools support a well-
designed graphical composition interface that is very
intuitive and easy to use. To support the interaction with
web services, Kepler uses a form of actor proxy for each
web service that is invoked.

While these and other frameworks have been developed
to compose and run scientific workflows on a grid, few
have addressed the issues of security, and most of them
do not support wrapping an application as a web service.
Soaplab [10, 11] is a set of web services that provides
programmatic access to some applications on remote
computers. It can create two types of web service—
analysis service and derived analysis service. While the
former allows users to send input data as weakly typed
name—value pairs, the latter has strongly typed methods
for sending input data and receiving results. Soaplab uses
Apache Axis [12] to create Sun Java** implementation
classes and deployment descriptors for all derived
analysis services. It uses CORBA [13] on the server side
for finding, starting, controlling, and using applications.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Service
registry

User identity

Capability
manager

certificate vault

4. Service
lookup

®

2. Load user context,
proxy certification
and authorization

1

1

1

1

1

1

1

1

1

1

1

capabilities :

3 ol
2 : st GU 1
% @ Portal Generic 5. Requcstf]l,l '5 g |
5 server factory 6. Return (rUl_ '§ g :
) 1. Log in service 7. Invoke service —'&g 0
23, Request 1 \E/' < E X
service : 2

1

1 User |

|| context X

| | database 8. Publish !

: 8. Dkver notifications :

1 notifications \

[1

Message !

User g . . 1
box for Notification !

desktop m . \
clients pu service !
clients The grid 1

1

Scenario for creating and using an application service.

Although Soaplab serves to wrap as a web service almost
any command-line tool, it has a number of limitations.
Soaplab does not have a web-service-based notification
system that can accept CORBA events and propagate
them to clients, but it does implement the Object
Management Group life-science analysis engine, which
has a CORBA-based event notification model. Soaplab
does not support grid standards for service-level
authentication and authorization.

Gowlab [14] is an application that enables ordinary
web pages to be wrapped as web services. It also allows
programmatic access to these services. However, these
services are difficult to maintain because of the
nonstandardized and changeable nature of web pages.
Also, most web pages are nontrivial and require the
Gowlab service provider to write Java implementation
classes to extract information from them.

The GridLab [15] project aims to provide application
tools and middleware for grid environments. It uses the
grid application toolkit (GAT) [16] in Triana, which is a
set of application program interfaces (APIs) that grid
application programmers can use for uniformly accessing
numerous grid services and middleware. However, GAT
does not address the problem of wrapping existing
applications as web services.

G. KANDASWAMY ET AL.

252

There are a number of other frameworks, such as
SeqHound [17], BioMOBY [18], and KEGG [19], that are
specific to bio-informatics and may not be general enough
for applications in other domains.

Building services from applications

The generic service toolkit described here allows
application providers to wrap their applications as secure
web services. There are two primary components to the
toolkit:

* The generic factory service, which is a stateless and
persistent web service that can be used for creating
and instantiating application services.

® The generic service client, which can be used to
interact with the factory and the application services
that it creates.

To understand how the factory service can be used to
create application services, we describe a typical use case.
Suppose there is an application MyProgram that runs
from the command line with a single integer parameter.
Suppose also that MyProgram expects to find an input
file inFile and produces an output file outFile. The
user would like to create a web service that will allow
anyone known to the web portal as a member of the
MyTrustedUsers group to run this program. The user
should provide only the value of the input parameter, the
location of the input file, and the location in which the
output is to be stored. The user should be able to provide
this information either from the portal through a web
interface generated by the application service or as part of
a workflow. We assume that the input files are large and
that they may be stored in some remote location, which is
the case in many scientific enterprises. Consequently, we
do not assume that the user will upload the file directly to
the portal or the service, though this is possible. Rather, it
is often better to pass the Uniform Resource Locator
(URL) for the input files to the service. On the grid, this is
often a GridFTP protocol [20] URL or a regular file path
if the resources are network-file-system-mounted. The
user should also receive a notification when the task has
been completed or has failed.

We assume that MyProgram has been installed on
some host. For example, assume that it is at MyHost.com
and is located in the directory path /u/myapps/bin/
MyProgram. There are two actions that our application
provider must take to create an application service with
the above capabilities:

* Write a service map document (SMD), which is a
simple Extensible Markup Language (XML)
description of the service. We describe the document
for this case in detail below. The document contains

G. KANDASWAMY ET AL.

information about the parameters of the application,
the location of the application, and the policy
information concerning which individuals and groups
are authorized to invoke the service.

¢ If the application is to be run on a machine that is
part of a Globus-based grid, the service can be
instantiated from the portal. In this case, the
application provider logs in to the portal and uses the
generic service portlet to upload the SMD. We
describe this step in greater detail below. If the
application is on a machine that is not on a Globus-
based grid, it is possible to start the service from the
command line on that machine.

The letters in Figure 1 illustrate the detailed flow of
service interactions. In step A, the application provider
has uploaded the service map document to the portal.
The portal then pushes the SMD to the factory service,
which, in step B, uses GRAM to launch the application
service on the remote host. The application service on the
remote host uses the service map to configure itself as the
web service and generates its WSDL, which is registered
with a well-known registry service so that it can be
discovered by the portal or a workflow (step C). Finally,
in step D, the service registers the authorization
capabilities with a capability manager. The details of the
capability manager are described in greater detail in the
next section of this paper.

The numbered steps in Figure 1 illustrate the user view
of an interaction with the service. When a user logs in to
the portal, it loads the user’s authorization capabilities.
Then, using the generic service portlet, the user can search
the service registry for the service and, in step 5, request
the user interface to the service. The interface, which is
generated by the service and returned to the portal,
provides the user with a web interface to supply the input
parameters to the service. If the user has the required
authorization capabilities, the portal automatically
invokes the service. In step 7, the service invokes the
application and passes it to the parameters defined in the
SMD. The service runs the application and publishes
notifications about the progress of the execution.

Service map schema

The service map schema contains information about the
service port types, including their operation and input
and output parameters. It also contains configuration
parameters that are needed to instantiate the service. An
SMD that conforms to the service map schema has three
main elements: service, port type, and creation parameter.
The service element describes the service to be created. It
contains the name of the service and a short description
of the service. It also contains metadata about the service.
In our simple example of a MyProgram service, the
document has the top-level structure shown below. Note

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

that the document is XML, but we have tried to present it
in a more human-readable form that uses indentation to
denote nesting and italics to represent string values. (Our
future work includes building a tool to guide users
through the construction of the document without
requiring the users to write raw XML.)

ServiceMap:
service:
serviceName: MyProgram Service
serviceDescription:
This is the service wrapper to execute
MyProgram.
portType:
Method: ...
Method: ...
creationParameter: ...

The port-type element contains a list of operations (also
known as methods). Each operation has a name, an
access policy, a description, metadata, and, if desired, a
list of default values. The main method in our service
example is “run,” which is the one that we use to pass the
application parameters inFile and the integer we call
count. The complete specification of this method is shown
below. There are several things to notice. First, the run
method has an associated application tag that provides a
path to the application. The tag policy defines the
authorization policy. In the current implementation,
the policy specification is quite simple and allows the
application provider to specify a list of users and groups
authorized to access the service and a lifetime for the
policy. In this case, it indicates that users in the group
defined by myFriends are allowed to invoke this method.

Each parameter can also have associated metadata,
which can be used by the portal to help guide the user in
the selection of a valid parameter. In the case of the
output file URL, the portal can use the metadata to
present the user with a set of valid locations that the user
and the service can access and store the output file. In this
case, the metadata for the input parameter outFile
specifies a requirement that the directory must be
accessible by GridFTP. This information allows our
workflow composer to query the registry service for input
parameter values that satisfy the input parameter
requirements. In the future, it will allow the workflow
composer to compose workflows by allowing users to
connect outputs of a service to the inputs of other services
only if they are semantically correct. Finally, there is an
output parameter called outFileURL, which is a message
generated by the service when the execution terminates.
Output parameters are used when the service is employed
in a workflow and the user wishes to use the output of this
service as input to another.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Method:
methodName: Run
methodDescription: Run myApplication
policy:
group: myFriends
application (type=“jython”):
path: scripts/myApp-script.py
inputParameter:
parameterName: Tnfile
parameterDescription:
The GridFTP URL of the user’s input file
inputParameter:
parameterName: count
parameterDescription:
the integer command 1 ine parameter for the app
inputParameter:
parameterName: outfile
parameterDescription:
The GridFTP URL of the directory for where the
user wants the output file stored
metadata:
nameValuePair:
name: AccessServiceType
value: GridfTP
outputParameter:
parameterName: outFileURL
parameterDescription:
This isanoutput message that canbe usedas
an input to another service in a workflow

In the run method, there are two additional parameters
that are hidden (i.e., they are values that are not
provided by the user). These values are used by the portal
and the workflow to identify the URL of the message
broker that is the target of notifications. The second is the
topic of the notifications. The topic uniquely identifies
this service or workflow invocation so that it is possible to
subscribe to the message stream to see messages related
only to this service invocation.

inputParameter (hidden=“true”):
parameterName: brokerURL
parameterDescription:
This is the URL of the broker to which
messages will be sent
inputParameter (hidden=“true”):
parameterName: topic
parameterDescription:
The topic towhich notification messages
will be sent

The creation parameter element specifies the physical

location in which the service will be created and the other
parameters that are needed to create the service, including

G. KANDASWAMY ET AL.

253

254

the installation path for the service code base, the
application working directory, a temporary directory for
the application to save temporary files, and a range of
ports to use for the service.

creationParameter:

host: myHost.com
gFacPath: /usr/local/gfac
workDir: /u/myapps
tmpDir: /tmp
java: /1/jdkl1.4/bin/java
portRange:

start: 12346

end: 12446

Creating and accessing services from the portal
The standard grid portals we describe here are based on
the JSR-168 portlet container model [21] as implemented
in the Open Grid Computing Environment portal
framework [22]. When a user authenticates with the
portal, a context is created for that user session. What the
user sees is a set of portlets that each have a user interface
and some back-end logic that runs in the portal server.
The application provider uses the generic factory service
to wrap an application as a web service. To do so, the
provider first uses the proxy-manager portlet to load

the grid proxy certificate into the portal context. The
provider then uses the generic service client (also known
as the generic service portlet) to access the factory. To
create a service, the SMD is uploaded to the portlet,
which then transfers it to the factory. After validating the
service map document, the factory creates and starts the
service on the specified host using GRAM [23, 24]. After
it is instantiated, the service registers its WSDL with a
registry service. This allows the service to be discovered
by interested clients and end users who search for it in the
registry using its name or metadata. The registry returns
the service WSDL that the clients use to access the
service. While client programs such as workflows access
the service programmatically, end users rely on a web
interface that is generated by the service itself—a concept
that we borrowed from the Web Services for Remote
Portlets specification [25].

When a user accesses a service using the generic service
portlet, the portlet requests the service for a user
interface. The service then creates a user interface, which
is a Hypertext Markup Language (HTML) form, and
sends it back to the portlet, which is displayed to the user.
The user interface shows all of the operations that the
user is allowed to invoke on the service. When the user
selects an operation, the portlet sends another request
to the service to obtain the user interface for that
operation—an HTML form that the user must complete
in order to invoke the operation. In the SMD, the

G. KANDASWAMY ET AL.

application provider can describe the user interface
the service should create for its users.

For example, the application provider can specify the
user interface for an input parameter using its display As
attribute, which tells the service what HTML form
element to use to display the default values for that input
parameter. A number of values are supported for this
attribute, including ListBox, RadioButton, CheckBox,
and RemoteFile. Some of these have special properties;
for example, the RemoteFile provides a browse button
for the user to upload a file to the portlet, which then
transfers it to the application service using GridFTP.

For example, Figure 2 illustrates the user interface
generated from the SMD for the standard basic local
alignment search tool (BLAST) service [26]. In this case,
there are four methods that can be invoked. The text in
the web page is generated from the description of the
methods in the service map.

When the user selects a specific method (in this case,
B12seq), the user is presented with the specific parameter
form that must be completed to invoke that method
(Figure 3). After the user specifies all input parameter
values for an operation, the portlet sends a Simple Object
Access Protocol (SOAP) message to the service to invoke
that operation. The service then invokes the application
and sends notification messages about its status and the
status of its application to a notification service. Clients
and end users can then listen to these notification
messages by subscribing to the topic to which the
notification messages are being sent.

The notification service we use is called Web Services
Messenger (WS-Messenger). It is our implementation
of a notification model and is compliant with the WS-
Notification [27] and WS-Eventing [28] specifications. It
provides a messaging service for web services based on
the publish and subscribe paradigm. WS-Messenger
uses a topic-based notification channel for sending
notifications. A topic is a subject of common interest
among the services participating in a workflow to which
all notification messages of the workflow are sent. The
publish and subscribe notification mechanism and the
creation of a topic are transparent to end users. There are
three main components in our notification model: the
notification consumer, the notification publisher, and the
notification broker [29]. The notification consumer is an
event sink; it is a web service that waits for notifications
to arrive and handles them appropriately. All services
that have to receive notifications use this service. Some
clients, such as desktop tools, must listen for notifications
that are generated by services. Unfortunately, these
clients are often not associated with a fixed IP address
that is visible to WS-Messenger, or they are behind a
firewall. Consequently, we use a subscription proxy tool
called the message box [30] that can hold message

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Generic Service Toolkit =2 0O 2]

Welcome to BLAST service

Please choose the method you want to invoke.

Service Description: BLAST (Basic Local Alignment Search Tool) can be used for rapid searching of nuclectide and protein
databases. It detects local as well as global alignments, regions of similanity embedded in otherwise unrelated proteins.

C Bi2seq Bl2seq performs a comg

T CreateBLASTDatabase

LAST
LS using a protein database

© SearchBLASTDatabase

Both sequences must be either nucleotides or protemns

This method lets you create your own database using a FASTA formatted proten or nucleotid
sequence. You can download FASTA formatted files from fip/ftp. ncbi nh gow/blast/db/

This takes a protemn query and performs PSI-BLAST search to creates a position specific matrix

This method lets you search a protein or nucleotide database for the given DNA sequence

two sequences using either the blastn or blastp algonthm.

BLAST service interface generated from the service map document (SMD).

subscriptions for mobile clients or those hidden behind
firewalls. These clients periodically pull messages from the
message box rather than having them delivered via a
standard WS-Eventing push.

The workflow execution engine that executes a
workflow subscribes to this service to receive notifications
from all of the services in the workflow; the notification
publisher is used to publish these notifications. All
services created by the generic factory service have a
built-in notification publisher to publish notifications.
The notification broker is a service that acts as an
intermediary and relays messages from a publisher to a
consumer. It is persistent in nature and stores messages
that cannot be delivered to the consumer. These messages
can be retrieved later by the consumer.

A mediation approach is used to achieve compliance
between the WS-Notification and WS-Eventing
specifications. The WS-Messenger broker automatically
converts the messages from one format to the other
according to predefined transformation rules. The
subscription request type for a listener determines the
message format that the notification consumer receives. If
a WS-Notification subscription request is received by the
broker, it sends WS-Notification messages to the listener.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Similarly, if a WS-Eventing subscription is received by the
broker, the broker sends WS-Eventing messages to that
listener. The publisher can publish messages in either
format to the WS-Messenger broker; it makes no
difference to the notification consumers.

Architecture of an application service

The factory creates an application service from its
description in the SMD. Neither the application provider
nor the factory generates any code for implementing the
service interface. Also, no client-side stubs or server-side
skeletons are created. (A stub is a client’s local proxy for a
remote object. The client uses the stub to communicate
with the remote object—actually, the skeleton of the
remote object. The skeleton is responsible for dispatching
the client’s communication to the actual remote object.)
So how does the factory convert a service description into
an actual service?

The answer lies in the message processor that is present
in all application services created by the factory. The
message processor is a very simple web service. It receives
SOAP request messages and returns SOAP response
messages, as many web services do. However, it cannot
process the request messages because it does not know

G. KANDASWAMY ET AL.

255

256

Generic Service Toolkit 20

Please fill in all the input parameters for the method Bi2seq

-1: The first sequence file

-j: The second sequence file

-p: The name of the program to use

Here is a desciption of the above parameter values
blastn :
blastx :
blastp :

-g: Gapped or not

|»

blastn =
blastx =]

Discontiguous Megablast Algorithm to identify the query
sequence

Find similar protemns to translated query in a protein database
Identify the query sequence or find proten sequences similar to
the query

[T=

User interface for the Bl2seq method generated by the BLAST service.

how to process them. The information that it needs to
process the request messages is given to it by the
application provider as an SMD. When given an SMD,
the message processor reconfigures itself to support all the
operations specified in the document. It then generates its
WSDL and registers it with a registry. On the basis of the
information in the service WSDL, a client can create a
SOAP request message for the operation that the user
wants to invoke on the service. When the message
processor receives such a request message, it validates the
message and invokes the application associated with the
operation in a separate thread of execution. The mapping
between the operation and the application is obtained
from the SMD. The list of input parameter values for the
operation has a one-to-one correspondence to the list of
input parameter values for the application. The factory
can invoke almost any command-line application, such as
UNIX** commands, or more sophisticated scripts written
in languages such as Jython, Python, and Perl. The
design of the message processor is simple yet powerful.
It makes the application service lightweight but highly
configurable. No code generation is needed to create a
service from its description.

G. KANDASWAMY ET AL.

Security in application services

There are two primary security components in this
system: authentication and authorization. Our working
assumption is that users authenticate with the portal
server through a standard https-based username and
password or, if available, a more advanced approach. The
portal loads a grid proxy certificate into the user’s portal
context. The proxy certificate is an X.509 certificate
extension defined in the GSI for the purposes of
delegation and single sign-on.

Once authenticated, the portal fetches capability
authorization tokens from the authorization system. Our
authorization system, called XPOLA, is a fine-grained
authorization infrastructure for web and grid services
based on capabilities [31] and the principle of least
authority (POLA). A capability token is a detailed policy
document containing authorization information for each
service instance and all of its operations. It is signed by
the application provider proxy certificate. The XPOLA
infrastructure includes a persistent capability manager
service, plug-in capability handlers on the service and
client sides, and a portlet-based user interface for
application providers and users to manage their
capability tokens. Enforcement plug-in handlers ensure

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

that a user request can do no more than what is allowed
as specified in the assigned capability token. XPOLA also
supports role-based authorization by providing a group
manager service. A service provider may create groups
from users’ distinguished names or make use of the
existing group definitions to create supergroups from
groups. The capability manager service and group
manager service have persistent support based on a
database. It is important to note that application
providers and users rarely need to manage their capability
tokens because the framework manages them on their
behalf, as follows:

* The application services create the capability tokens
from the policy information in the SMD and register
them with the capability manager service.

* The generic service portlet contacts the capability
manager service and loads the user’s capability tokens
into the user’s portal context just before accessing any
service.

e The application services renew their capability tokens
before they expire. The renewal policy is specified in
the SMD by the application provider.

In the previous section, we outlined the basic protocol
to access a service. We now describe it in more detail with
respect to security. To access a service, a user logs in to
the portal and then uses the generic service portlet to
access the service. The portlet contacts the capability
manager service and loads the user’s capability tokens
into the portal context. The portlet then sends a request
to the service using the secure socket layer (SSL). The
user’s proxy certificate is used for authenticating the user
to the service, and the application provider’s proxy
certificate is used for authenticating the service to the
user. After mutual authentication, the service returns the
user interface. All further interactions with the service are
secure and are done through the portlet using SSL. When
the user invokes an operation on the service, the portlet
sends a SOAP request message and the user’s capability
token, signed by the user’s proxy certificate. The service
verifies the authenticity of the request and, if the user is
authorized to do so, carries out the operation according
to the capability token. While this protocol may seem
potentially complex, the framework handles the
complexity in a manner that is transparent to application
providers and users. A more detailed and quantitative
analysis of the performance is underway and will be
published later.

Our web services rely on proxy certificates to
authenticate users. A proxy certificate has a short
lifetime of two hours to minimize the damage if it is
compromised. However, if a service must run longer than
that, the proxy certificate must be renewed. The certificate

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

is renewed by the application service, which contacts a
MyProxy server that stores the application providers’
credentials [32].

Composing workflows from the portal

So far, we have described how to wrap a single
application as a web service. In this section we describe
how to create workflows from the services using our
workflow composer, called X-Workflow. X-Workflow
provides an easy-to-use GUI that allows users to search
for interesting services, visually connect them together to
form workflows, and execute the workflows on the grid.
Although this is not a new concept, X-Workflow has been
designed with some additional features. It can monitor
the progress of a workflow by subscribing to notifications
from the workflow, make use of the metadata in the SMD
to compose workflows, and compile the workflow into a
standard workflow language for execution.

As discussed in the building services section above, an
application provider uses the SMD to describe a service.
This document is converted to an abstract WSDL by
X-Workflow and registered with a registry. While a
WSDL represents a service instance, an abstract WSDL
represents a service. It allows the user to create workflows
from nonexistent services. These services can be
instantiated dynamically by the factory when the
workflow is actually executed on the grid. The abstract
WSDL contains information about the port types of the
service, the operations, and their input and output data
types.

Using X-Workflow, the user first searches a registry for
interesting services. Each service is represented as a node
with one or more inputs and outputs. The user creates a
graph by interconnecting the services that constitute the
workflow. The abstract WSDL also contains metadata
about the service, port types, operations, and input and
output parameters. Some of this metadata is made
available by the application provider in the SMD. Other
metadata about the input and output parameters can be
obtained from other sources, such as the THREDDS [33]
catalog generator service. After the user creates the graph
that represents the workflow, the composer analyzes the
dependencies among the constituent web services. It can
then compile the workflow into a Jython script or a BPEL
[34] script.

A particular abstract application service may have
several concrete instances running at the same time on the
grid. Each service instance may have a different policy
associated with it. For example, services of a particular
scientific community may not allow users of other
communities to access them. The services created by our
generic factory service include this policy information in
the metadata for the operation elements in the WSDL.
Before executing the workflow, our workflow engine

G. KANDASWAMY ET AL.

257

258

Workflow MyLead Component Monitor

[sXsXs) X Workflow Composer

Help

= T =
| Add Node | Remove Node || Cannect/Discannect|

f Composer

Gridded Data Configuration File
Config

Surface Configuration File
Config

Ext2ARPS Model Data

ARPS2WRF Configuration File
Config

Config
Surface Data Files
Config

>

Surface-Preprocessor

>

Gridded-Data-Interpolator

b
4

Terrain Input Cenfiguration File

ADAS Input Configuration File
C Terrain-Preprocessor Config
L

WRF Configuration File
Config

C ARPS-to-WRF Data-Converter

‘WRF-Model

YYVvYY

WRF-to-ARPS data Converter

>
~ | Terrain data sets
Config

> L
ADAS-ARPS Data Analysis System b)
Level-1l Radar Configuration File : Ly
Confi >
- -
>
Radar raw data files Level-Il Radar-Remapper j_.
Config B P

fi

Level-IIl Radar Configuration File
Config Level-1ll Radar-Remapper
P L
P
Radar raw data files

Config
Satellite Data-Remapper
Satellite Configuration File b R »

Config 3

Raw Satellite data files
Config

ARPS-Plotting-Program
> L

ARPSPLT Configruration File o)
Config

ArpsPlt_Output_PostScript_File
Config

Atmospheric Data Assimilation System—Weather Research Forecast system workflow.

searches the registry for service instances that satisfy the
policy requirements. After starting the workflow, the
workflow engine receives notification messages from the
services to monitor their status. Notification messages
contain status information and output parameters. The
workflow engine may use the output parameters of a
service as the input parameters to the next service in

the workflow. It also monitors the services for error
messages. In the event of a failure of a service invocation,
the entire workflow is stopped.

Example application

We have successfully used our generic service toolkit to
wrap scientific applications as web services for the Linked
Environments for Atmospheric Discovery (LEAD)
project [35]—a large National Science Foundation
Information Technology Research (NSF ITR) grant to
advance the art of severe storm prediction using advanced
grid and supercomputing methods. In this section, we
show some of the services we have created and how they

G. KANDASWAMY ET AL.

are used by X-Workflow to compose workflows for
weather forecasting.

Figure 4 is a screen shot of the sample LEAD-coupled
mesoscale weather forecasting experiment, which consists
of prediction initialized by the ARPS Data Analysis
System (ADAS) [36, 37] and forecasted by the Weather
Research Forecast (WRF) model [38] system. The
workflow involves 11 distinct services associated with 16
different input and configuration files. The application
services are all wrapped with the tools described here.

This workflow is not yet in service as a production
weather forecast tool, but it is being evaluated with the
help of the LEAD meteorology team. One of the goals of
the LEAD project is to put this, and other similar
workflows, into the hands of forecasters and researchers
as part of the Storm Prediction Centers Spring
Experiments 2006, which tests promising new
meteorological insights and technologies with the goal of
creating advances in operational forecasting techniques
for hazardous mesoscale weather events. To accomplish
this goal will require substantial testing and, we are sure,

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

countless improvements to the implementation of this
service architecture.

Conclusions

Our generic framework allows scientists to wrap
applications as web services, compose workflows from
them, and execute them on a grid. The services created by
our framework generate their own web interface, which
allows end users to interact with them using thin and
generic web service clients. Security is one of the prime
concerns in a distributed environment. Our framework
manages authentication and authorization during all
interactions between clients and services in a manner that
is almost transparent to application developers and end
users. Users can search for services and compose
workflows by visually interconnecting them in a workflow
composer. Services use notification messages to report
their status and results.

Much more work is needed to understand how well this
system works in real applications. We are currently using
this system with the LEAD severe storm prediction
project and a bioinformatics grid project, but we have not
done a rigorous usability analysis. We are currently
planning to build a tool to allow users to compose SMDs
without having to type XML. One thing we have learned
is that complex workflows involving many services may
require a complex array of input configuration and data
files. Users may want to edit these files or interact with
them in other ways. We need to be able to generate a
good user interface for workflows in the same way that we
can generate interfaces for services. Finally, we need to
evaluate the robustness of the services and make them
scalable by automatically creating new instances when the
demand is high.

Acknowledgment

This research is supported by NSF ITR Grant ATM-
0331480 and NMI ANI-0330613 and the Department of
Energy Office of Science DE-FC02-01ER25492.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., or The Open Group in the United States, other
countries, or both.

References

1. E. Christensen, F. Curbera, G. Meredith, and S.
Weerawarana, “Web Services Description Language
(WSDL),” Version 1.1, March 15, 2000; see http.//www.w3.org/
TR/wsdl.

2. D. Gannon, R. Ananthakrishnan, S. Krishnan, M.
Govindaraju, L. Ramakrishnan, and A. Slominski, “Grid Web
Services and Application Factories,” Grid Computing: Making
the Global Infrastructure a Reality, F. Berman, G. Fox, and T.
Hey, Eds., John Wiley & Sons, Hoboken, NJ, 2003.

3. 1. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,

A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R.
Subramaniam, J. Treadwell, and J. Von Reich, “The Open

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

20.

21.

22.

23.

24.

25.

26.

27.

”»

Grid Service Architecture,” Version 1.0, January 2005; see
www.gridforum.org/documents/GFD.30.pdf.

. 1. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A

Security Architecture for Computational Grids,” Proceedings
of the 5th ACM Conference on Computers and Communications
Security, 1998, pp. 83-92.

. The Globus Project; see http://www.globus.org/toolkit/.
. Open Middleware Infrastructure Institute; see htp.//

www.omii.ac.uk.

. T. Oinn, M. Greenwood, M. Addis, J. Ferris, K. Glover,

C. Goble, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, A. Wipat, and C. Wroe, “Taverna: Lessons in
Creating a Workflow Environment for the Life Sciences,”
Concurrency & Computation: Pract. & Exper., Special Issue:
Scientific Workflows (to be published 2006).

. D. Churches, G. Gombas, A. Harrison, J. Maassen, C.

Robinson, M. Shields, I. Taylor, and I. Wang, “Programming
Scientific and Distributed Workflow with Triana Services,”
Concurrency & Computation: Pract. & Exper., Special Issue:
Scientific Workflows (to be published 2006).

. B. Ludaescher, 1. Altintas, C. Berkley, D. Higgins, E. Jaeger-

Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao, “Scientific
Workflow Management and the Kepler System,” Concurrency
& Computation: Pract. & Exper., Special Issue: Scientific
Workflows (to be published 2006).

. M. Senger, “Soaplab: SOAP-Based Analysis Web Service,”

February 2005; see http://www.ebi.ac.uk/soaplab.

. M. Senger, P. Rice, and T. Oinn, “Soaplab—A Unified Sesame

Door to Analysis Tools,” Proceedings of the UK e-Science All
Hands Meeting, 2003; see http://www.nesc.ac.uk/events|
ahm2003|AHMCD|pdf]115.pdf.

. Axis, The Apache Software Foundation, April 10, 2005; see

http:||ws.apache.orglaxis.

. CORBA/IIOP Specification, Object Management Group, Inc.,

March 4, 2001; see http.//www.omg.org/technology/documents/|
formal/corba_iiop.htm.

. M. Senger, “Gowlab: Web Pages as Web Services,” March

2005; see http://www.ebi.ac.uk/soaplab/Gowlab.

. GridLab Products and Technologies; see http://

www.gridlab.orglabout.html.

. Grid(Lab) Grid Application Toolkit; see http://

www.gridlab.org|Work Packages|wp-1.

. SeqHound; see http://www.blueprint.org/seqhound.
. BioMOBY; see http://biomoby.org.
. Kyoto Encyclopedia of Genes and Genomes (KEGG); see

http:|lwww.genome.jplkegg].

The GridFTP Protocol and Software; see http.//www-
[fp.globus.org/datagrid|gridftp.html.

JSR-000168 Portlet Specification (Final Release); see http://
www.jep.orglaboutJavalcommunityprocess|/final[jsr168.

Open Grid Computing Environment, The Open Grid
Computing Environments Collaboratory; see http://
www.ogce.org.

I. Foster and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit,” Intl. J. Supercomputer Appl. & High
Performance Computing 11, No. 2, 115-128 (1997).

GT3 GRAM Architecture; see http://www-unix.globus.org/
ogsaldocs|alphalgram/gt3_ gram_overview.htm.

A. Kropp, C. Leue, R. Thompson, C. Braun, J. Broberg, M.
Cassidy, M. Freedman, T. N. Jones, T. Schaeck, and G.
Tayar, “Web Services for Remote Portlets Specification,”
Version 1.0; see http.//www.oasis-open.org/committees/|
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, “Basic Local Alignment Search Tool,” J. Molec. Biol.
215, No. 3, 403-410 (October 1990).

S. Graham, P. Niblett, D. Chappell, A. Lewis, N.
Nagaratnam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D.
Snelling, S. Tuecke, W. Vambenepe, and B. Weihl, “Web
Services Base Notification (WS-Base Notification),” Version
1.0; see ftp://www6.software.ibm.com/software/developer/
library|ws-notification/WS-BaseN .pdf. 259

G. KANDASWAMY ET AL.

260

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

. D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson,

A. Geller, S. Graham, D. Hull, G. Kakivaya, A. Lewis, B.
Lovering, M. Mihic, P. Niblett, D. Orchard, J. Saiyed, S.
Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, B. Smith,
S. Weerawarana, and D. Wortendyke, “Web Services Eventing
(WS-Eventing),” August 2004; see ftp://
wwwo6.software.ibm.com/software/developer/library/
ws-eventing|/WS-Eventing.pdf.

S. Graham, P. Niblett, D. Chappell, A. Lewis, N.
Nagaratnam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D.
Snelling, S. Tuecke, W. Vambenepe, and B. Weihl, “Web
Services Brokered Notification (WS-BrokeredNotification),”
Version 1.0, March 5, 2004; see ftp://www6.software.ibm.com/
software/developer/library|ws-notification/ WS-BrokeredN .pdf.
A. Slominski, A. di Costanzo, D. Gannon, and D. Caromel,
“Asynchronous Peer-to-Peer Web Services and Firewalls,”
Proceedings of the 7th International Workshop on Java for
Parallel and Distributed Programming, 2005; see http://
www.extreme.indiana.edu/xgws/papers|
ws_dispatcher_ipdps2005.pdf.

L. Fang, D. Gannon, and F. Siebenlist, “XPOLA: An
Extensible Capability-Based Authorization Infrastructure

for Grids,” Proceedings of the 4th Annual PKI R&D
Workshop: Multiple Paths to Trust, 2005; see http://
middleware.internet2.edu/pkiO5 [proceedings|fang-xpola.pdyf.

J. Novotny, S. Tuecke, and V. Welch, “An Online Credential
Repository for the Grid: MyProxy,” Proceedings of the 10th
IEEE International Symposium on High Performance
Distributed Computing, 2001, pp. 104-114.

B. Domenico, J. Caron, E. Davis, R. Kambic, and S. Nativi,
“Thematic Real-Time Environmental Distributed Data
Services (THREDDS): Incorporating Interactive Analysis
Tools into NSDL,” J. Digital Info. 2, No. 4 (2002); see http://

Jjodi.ecs.soton.ac.uk|Articles/v02/i04/Domenico).

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,
and S. Weerawarana, “Business Process Execution Language
for Web Services,” Version 1.1, May 5, 2002; see fip://
wwwé.software.ibm.com/software|/developer/library|ws-bpel.pdf.
B. Plale, D. Gannon, D. Reed, S. Graves, K. Droegemeier, B.
Wilhelmson, and M. Ramamurthy, “Towards Dynamically
Adaptive Weather Analysis and Forecasting in LEAD,”
Proceedings of the International Conference on Computational
Science, 2005, pp. 624-631.

M. Xue, K. K. Droegemeier, and V. Wong, “The Advanced
Regional Prediction System (ARPS)—A Multi-Scale
Nonhydrostatic Atmospheric Simulation and Prediction
Model. Part I: Model Dynamics and Verification,” Meteorol.
& Atmospher. Phys. 75, No. 3/4, 161-193 (2000).

M. Xue, D. Wang, J. Gao, K. Brewster, and K. K.
Droegemeier, “The Advanced Regional Prediction System
(ARPS), Storm-Scale Numerical Weather Prediction and Data
Assimilation,” Meteorol. & Atmospher. Phys. 82, No. 3/4,
139-170 (2003).

J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W.
Skamarock, and W. Wang, “The Weather Research and
Forecast Model: Software Architecture and Performance,”
Proceedings of the 11th ECMWF Workshop on the Use of High
Performance Computing in Meteorology, 2004; see http://
wrf-model.org/wrfadmin/docs/ecmwf_2004.pdf.

Received July 11, 2005, accepted for publication
August 8, 2005; Internet publication March 1, 2006

G. KANDASWAMY ET AL.

Gopi Kandaswamy Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(gkandasw@.cs.indiana.edu). Mr. Kandaswamy is a Ph.D. student
in the Computer Science Department at Indiana University, where
he is currently a Research Assistant under the guidance of
Professor Dennis Gannon. He received a B.E. degree from
Bharathidasan University, India, and an M.S. degree from Indiana
University. Mr. Kandaswamy’s current research interests include
generic application factories for web services and grid workflow
systems.

Liang Fang Computer Science Department, Indiana University,
150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(lifang @ cs.indiana.edu). Mr. Fang is a Ph.D. student in the
Computer Science Department at Indiana University, where he is a
Research Assistant responsible for investigating authorization and
other security solutions to the LEAD project. He received a B.E.
degree in computer engineering from Nanjing University of Science
and Technology, China, and an M.S. degree in computer science
from Indiana University. Mr. Fang’s current research interests
include grid computing, web services, portals, and their security
and scalability issues.

Yi Huang Computer Science Department, Indiana University,
150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(yihuan@cs.indiana.edu). Mr. Huang is a doctoral candidate in the
Computer Science Department at Indiana University, under the
guidance of Dr. Dennis Gannon. He holds a B.E. degree from
Beijing University of Technology, China, and an M.S. degree from
Florida State University. Mr. Huang’s research interests include
web services, distributed messaging systems, grid computing,
system integration, and analysis of message pattern and workflow.

Satoshi Shirasuna Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(sshirasu@cs.indiana.edu). Mr. Shirasuna is a Ph.D. student in the
Computer Science Department at Indiana University. He works
with Dr. Dennis Gannon as a Research Assistant. He received B.S.
and M.S. degrees from Tokyo Institute of Technology, Japan. Mr.
Shirasuna’s research interests include software tools for distributed
systems, and workflow and security performance for web and grid
services.

Suresh Marru Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(smarru@cs.indiana.edu). Mr. Marru is a Scientific Computing
Research Specialist working with Dr. Dennis Gannon on the
LEAD and Teragrid Science Gateways projects. He received a B.E.
degree in electrical and electronics engineering from Osmania
University, India, and an M.S. degree in electrical and computer
engineering from the University of Oklahoma. Mr. Marru’s
research interests include distributed and grid computing, portals,
web services, and developing user-friendly interfaces with
atmospheric applications.

Dennis Gannon Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(gannon@.cs.indiana.edu). Dr. Gannon is a professor of computer
science at Indiana University. He received his Ph.D. degree in
computer science from the University of Illinois and his Ph.D.
degree in mathematics from the University of California. He was
on the faculty at Purdue University from 1980 to 1985. Dr.
Gannon’s research interests include software tools for high-
performance distributed systems and problem-solving
environments for scientific computation.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

