
Building web
services for
scientific grid
applications

G. Kandaswamy
L. Fang

Y. Huang
S. Shirasuna

S. Marru
D. Gannon

Web service architectures have gained popularity in recent years
within the scientific grid research community. One reason for this
is that web services allow software and services from various
organizations to be combined easily to provide integrated and
distributed applications. However, most applications developed and
used by scientific communities are not web-service-oriented, and
there is a growing need to integrate them into grid applications
based on service-oriented architectures. In this paper, we describe a
framework that allows scientists to provide a web service interface
to their existing applications as web services without having to
write extra code or modify their applications in any way. In
addition, application providers do not need to be experts in web
services standards, such as Web Services Description Language,
Web Services Addressing, Web Services Security, or secure
authorization, because the framework automatically generates
these details. The framework also enables users to discover these
application services, interact with them, and compose scientific
workflows from the convenience of a grid portal.

Introduction

Large scientific collaborations are increasingly employing

web-service-oriented architectures to manage their

scientific enterprises. The reasons for this are tied to the

fact that science is becoming more multidisciplinary and,

to make progress on key scientific questions, it is

increasingly dependent upon complex workflows of data

analysis and simulation tasks. For example, in the area of

biology, modeling a cell involves the integration of many

complex, interacting processes, each of which may be

understood by only one or two specialists on a team

(physicists, biochemists, or complex systems engineers).

In the area of severe storm prediction, as illustrated by

the examples in this paper, a single storm prediction may

involve the interaction of a data mining task with data

integration from real-time instruments and massive

simulations which, in the future, will drive the control of

online instruments such as Doppler radars. These large

research communities are often divided into teams of

specialists, each responsible for a particular set of

resources and applications. All of the resources used to

host each team’s applications—together with a layer of

services (described below) that ties them together—are

often referred to as a grid. The users of this grid are the

members of the community who need to invoke these

applications individually or as part of a workflow to solve

particular problems. To build these workflows, it is

necessary to overcome the barriers introduced by the

heterogeneous nature of the community’s grid and

applications. Web services are designed specifically to

solve this problem, and they have become the foundation

for most new grid standards.

Unfortunately, most of the applications developed and

used by scientific communities are command-line

applications written in Fortran, C, and a host of scripting

languages. These applications are fast and efficient, and

they represent state-of-the-art science; however, they are

often platform-dependent and difficult to integrate with

applications from other disciplines. Programmatic access

to these applications from remote clients is usually

difficult. Many of them lack a graphical user interface

(GUI), which makes them cumbersome for end users.

Also, there is no standard way to describe their input

parameters and output results or to monitor their

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 G. KANDASWAMY ET AL.

249

0018-8646/06/$5.00 ª 2006 IBM

progress as they run for extended periods of time on the

grid. By converting these command-line applications into

application services, we can overcome many of the

limitations mentioned above. In this paper, an application

service is an application with a web-service interface that

is described by the Web Service Definition Language

(WSDL) [1] as a set of endpoints operating on messages

containing document-oriented information.

A web service can wrap an application, enclosing it and

invoking it without the application having to be modified.

In principle, the task of wrapping an application as a web

service is not difficult for a specialist trained in web and

web-service programming, but for most scientific

application specialists, this is an extremely high barrier

to surmount. There are a number of tools to help

accomplish this task. However, simply providing a web-

service interface is not sufficient to make the application a

usable component in a distributed computation. One

major concern is security. In particular, how can a

scientist provide a selected group of users with access to

application services without building a separate security

infrastructure or requiring users to have login accounts

on the host running the service? Another problem is

making the service usable directly from a web portal,

as well as making it a component in a workflow. The

primary research contribution of this paper is to describe

a framework we have built that allows scientists to wrap

their applications as web services and deploy them on a

grid; it also automatically provides an authorization

system that allows selected users to securely interact with

these services through automatically generated web

interfaces, to compose scientific workflows using these

services, and to monitor the status of their workflows on

the grid using standard publish-subscription notification

systems. The framework has four primary components:

� Grid portal—A web server and gateway with which

users may access services, compose workflows, and

manage data. The portal is used by the application

provider to create the service for others to use and by

the users who wish to interact with the service through

its automatically generated web interface.
� Generic factory service—Invoked from the portal by

application providers to wrap applications as services

and create new instances of these services on the grid

(first introduced in [2]). It is integrated with a

capability-based authorization system that allows

fine-grained control over user access to the deployed

services.
� Workflow composer—A tool that allows users to

compose complex and interesting workflows from

application services.

� Notification service—Allows application services to

send messages that are logged by the portal and

monitored by the workflow instance.

Finally, there is the grid itself. There are perhaps as

many definitions of the term grid as there are grid

deployments. The Global Grid Forum is in the process of

defining a reference model for grids called the Open Grid

Service Architecture [3]. However, for the tools described

here, we assume very little. We define a grid to be a

collection of computers that are configured in such a way

that if they are separated by firewalls, a range of Internet

Protocol (IP) ports have been left open so that services

hosted on these machines can exchange messages. In

addition, we assume that at least one machine in this set

has some ports open to the outside world so that external

facing services, such as the portal, can be used by clients

elsewhere. We also make extensive use of the grid security

infrastructure (GSI) security model [4] for user

authentication. GSI offers us two advantages:

� A user authentication framework that allows an

application provider to present a signed certificate

of identity that authenticates that user with each

resource in the grid. This is called the single sign-on

property because a user needs to enter a password

only once to obtain a proxy certificate, which can be

used by the portal or other clients to act on behalf of

the user.
� A mechanism that allows remote execution, so that a

process with a valid certificate running on one grid

resource can instantiate a process on another grid

resource. This can be done using the GSI-enabled

SSH (Secure Shell) protocol or the Globus Resource

Allocation Manager (GRAM) protocol.

In general, installing Globus [5] is one easy way to

build a grid, but there are other solutions, such as the

Open Middleware Infrastructure Institute [6] framework

that may also be suitable. Within the grid, we deploy a set

of persistent services that is part of the framework that

supports the application services we create. These include

the grid portal server, which contains the generic factory

service used to create instances of application services

(Figure 1).

The portal server also has a database that stores user

context information that is loaded into the user session

when the user connects through a web browser. The

portal also loads the user’s proxy certificate from a

certificate vault and service authorization capabilities via

a capability manager. When an application provider uses

the factory service to start an instance of an application

service, the application service registers its WSDL with a

G. KANDASWAMY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

250

persistent service registry. The application service also

publishes notifications about itself to the persistent

notification service. To support service clients that are

outside the grid and may not have fixed IP addresses, a

message box service is provided as a messaging proxy.

External clients can route messages to other services

through the message box, or they can pull event

notifications from a queue maintained on their behalf by

the message box.

Related work
Over the last several years there has been substantial

progress in building grid applications by composing them

from predefined components and web services. The most

notable among these are Taverna [7], Triana [8], and

Kepler [9]. Each of these represents a powerful tool for

composing workflows. Taverna is part of the myGrid

project, focused on building middleware to support data-

intensive experiments in molecular biology. Taverna has

more than a thousand services that can be used as

components in workflows. It also has an elegant

approach to service discovery and capturing the full

metadata context, including the provenance of all aspects

of the scientific experiment represented by the workflow,

including the data derivations and the workflow audit

trail of invoked services.

At the user level, Triana provides an elegant and well-

tested composition tool and a large toolbox of ready-to-

use components. For grid application, Triana uses a

software layer, called the grid application prototype, to

distribute subsystems of the workflow graph to remote

grid resources for execution.

The approach Kepler takes is based on an actor-

oriented model that allows hierarchical modeling and

dataflow semantics. The Kepler tools support a well-

designed graphical composition interface that is very

intuitive and easy to use. To support the interaction with

web services, Kepler uses a form of actor proxy for each

web service that is invoked.

While these and other frameworks have been developed

to compose and run scientific workflows on a grid, few

have addressed the issues of security, and most of them

do not support wrapping an application as a web service.

Soaplab [10, 11] is a set of web services that provides

programmatic access to some applications on remote

computers. It can create two types of web service—

analysis service and derived analysis service. While the

former allows users to send input data as weakly typed

name–value pairs, the latter has strongly typed methods

for sending input data and receiving results. Soaplab uses

Apache Axis [12] to create Sun Java** implementation

classes and deployment descriptors for all derived

analysis services. It uses CORBA [13] on the server side

for finding, starting, controlling, and using applications.

Although Soaplab serves to wrap as a web service almost

any command-line tool, it has a number of limitations.

Soaplab does not have a web-service-based notification

system that can accept CORBA events and propagate

them to clients, but it does implement the Object

Management Group life-science analysis engine, which

has a CORBA-based event notification model. Soaplab

does not support grid standards for service-level

authentication and authorization.

Gowlab [14] is an application that enables ordinary

web pages to be wrapped as web services. It also allows

programmatic access to these services. However, these

services are difficult to maintain because of the

nonstandardized and changeable nature of web pages.

Also, most web pages are nontrivial and require the

Gowlab service provider to write Java implementation

classes to extract information from them.

The GridLab [15] project aims to provide application

tools and middleware for grid environments. It uses the

grid application toolkit (GAT) [16] in Triana, which is a

set of application program interfaces (APIs) that grid

application programmers can use for uniformly accessing

numerous grid services and middleware. However, GAT

does not address the problem of wrapping existing

applications as web services.

Figure 1

Scenario for creating and using an application service.

User
context
database

Notification
service

Message
box for

pull
clients

Service
registryUser identity

certificate vault

U
se

r
br

ow
se

r

User
desktop
clients

Capability
manager

1. Log in
3. Request
service

4. Service
 lookup

5. Request GUI
6. Return GUI
7. Invoke service

8. Publish
notifications9. Deliver

notifications

2. Load user context,
proxy certification
and authorization
capabilities

A

B

D C

The grid

A
pp

lic
at

io
n

se
rv

ic
e

in
st

an
ce

Portal
server

Generic
factory
service

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 G. KANDASWAMY ET AL.

251

There are a number of other frameworks, such as

SeqHound [17], BioMOBY [18], and KEGG [19], that are

specific to bio-informatics and may not be general enough

for applications in other domains.

Building services from applications
The generic service toolkit described here allows

application providers to wrap their applications as secure

web services. There are two primary components to the

toolkit:

� The generic factory service, which is a stateless and

persistent web service that can be used for creating

and instantiating application services.
� The generic service client, which can be used to

interact with the factory and the application services

that it creates.

To understand how the factory service can be used to

create application services, we describe a typical use case.

Suppose there is an application MyProgram that runs

from the command line with a single integer parameter.

Suppose also that MyProgram expects to find an input

file inFile and produces an output file outFile. The

user would like to create a web service that will allow

anyone known to the web portal as a member of the

MyTrustedUsers group to run this program. The user

should provide only the value of the input parameter, the

location of the input file, and the location in which the

output is to be stored. The user should be able to provide

this information either from the portal through a web

interface generated by the application service or as part of

a workflow. We assume that the input files are large and

that they may be stored in some remote location, which is

the case in many scientific enterprises. Consequently, we

do not assume that the user will upload the file directly to

the portal or the service, though this is possible. Rather, it

is often better to pass the Uniform Resource Locator

(URL) for the input files to the service. On the grid, this is

often a GridFTP protocol [20] URL or a regular file path

if the resources are network-file-system-mounted. The

user should also receive a notification when the task has

been completed or has failed.

We assume that MyProgram has been installed on

some host. For example, assume that it is at MyHost.com

and is located in the directory path /u/myapps/bin/

MyProgram. There are two actions that our application

provider must take to create an application service with

the above capabilities:

� Write a service map document (SMD), which is a

simple Extensible Markup Language (XML)

description of the service. We describe the document

for this case in detail below. The document contains

information about the parameters of the application,

the location of the application, and the policy

information concerning which individuals and groups

are authorized to invoke the service.
� If the application is to be run on a machine that is

part of a Globus-based grid, the service can be

instantiated from the portal. In this case, the

application provider logs in to the portal and uses the

generic service portlet to upload the SMD. We

describe this step in greater detail below. If the

application is on a machine that is not on a Globus-

based grid, it is possible to start the service from the

command line on that machine.

The letters in Figure 1 illustrate the detailed flow of

service interactions. In step A, the application provider

has uploaded the service map document to the portal.

The portal then pushes the SMD to the factory service,

which, in step B, uses GRAM to launch the application

service on the remote host. The application service on the

remote host uses the service map to configure itself as the

web service and generates its WSDL, which is registered

with a well-known registry service so that it can be

discovered by the portal or a workflow (step C). Finally,

in step D, the service registers the authorization

capabilities with a capability manager. The details of the

capability manager are described in greater detail in the

next section of this paper.

The numbered steps in Figure 1 illustrate the user view

of an interaction with the service. When a user logs in to

the portal, it loads the user’s authorization capabilities.

Then, using the generic service portlet, the user can search

the service registry for the service and, in step 5, request

the user interface to the service. The interface, which is

generated by the service and returned to the portal,

provides the user with a web interface to supply the input

parameters to the service. If the user has the required

authorization capabilities, the portal automatically

invokes the service. In step 7, the service invokes the

application and passes it to the parameters defined in the

SMD. The service runs the application and publishes

notifications about the progress of the execution.

Service map schema

The service map schema contains information about the

service port types, including their operation and input

and output parameters. It also contains configuration

parameters that are needed to instantiate the service. An

SMD that conforms to the service map schema has three

main elements: service, port type, and creation parameter.

The service element describes the service to be created. It

contains the name of the service and a short description

of the service. It also contains metadata about the service.

In our simple example of a MyProgram service, the

document has the top-level structure shown below. Note

G. KANDASWAMY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

252

that the document is XML, but we have tried to present it

in a more human-readable form that uses indentation to

denote nesting and italics to represent string values. (Our

future work includes building a tool to guide users

through the construction of the document without

requiring the users to write raw XML.)

ServiceMap:

service:

serviceName: MyProgram Service

serviceDescription:

This is the service wrapper to execute

MyProgram.

portType:

Method: . . .

Method: . . .

creationParameter: . . .

The port-type element contains a list of operations (also

known as methods). Each operation has a name, an

access policy, a description, metadata, and, if desired, a

list of default values. The main method in our service

example is ‘‘run,’’ which is the one that we use to pass the

application parameters inFile and the integer we call

count. The complete specification of this method is shown

below. There are several things to notice. First, the run

method has an associated application tag that provides a

path to the application. The tag policy defines the

authorization policy. In the current implementation,

the policy specification is quite simple and allows the

application provider to specify a list of users and groups

authorized to access the service and a lifetime for the

policy. In this case, it indicates that users in the group

defined by myFriends are allowed to invoke this method.

Each parameter can also have associated metadata,

which can be used by the portal to help guide the user in

the selection of a valid parameter. In the case of the

output file URL, the portal can use the metadata to

present the user with a set of valid locations that the user

and the service can access and store the output file. In this

case, the metadata for the input parameter outFile

specifies a requirement that the directory must be

accessible by GridFTP. This information allows our

workflow composer to query the registry service for input

parameter values that satisfy the input parameter

requirements. In the future, it will allow the workflow

composer to compose workflows by allowing users to

connect outputs of a service to the inputs of other services

only if they are semantically correct. Finally, there is an

output parameter called outFileURL, which is a message

generated by the service when the execution terminates.

Output parameters are used when the service is employed

in a workflow and the user wishes to use the output of this

service as input to another.

Method:

methodName: Run

methodDescription: Run myApplication

policy:

group: myFriends

application (type¼ ‘‘jython’’):

path: scripts/myApp-script.py

inputParameter:

parameterName: inFile

parameterDescription:

The GridFTP URL of the user’s input file

inputParameter:

parameterName: count

parameterDescription:

the integer command line parameter for the app

inputParameter:

parameterName: outFile

parameterDescription:

The GridFTP URL of the directory for where the

user wants the output file stored

metadata:

nameValuePair:

name: AccessServiceType

value: GridFTP

outputParameter:

parameterName: outFileURL

parameterDescription:

This is an output message that can be used as

an input to another service in a workflow

In the run method, there are two additional parameters

that are hidden (i.e., they are values that are not

provided by the user). These values are used by the portal

and the workflow to identify the URL of the message

broker that is the target of notifications. The second is the

topic of the notifications. The topic uniquely identifies

this service or workflow invocation so that it is possible to

subscribe to the message stream to see messages related

only to this service invocation.

inputParameter (hidden¼ ‘‘true’’):

parameterName: brokerURL

parameterDescription:

This is the URL of the broker to which

messages will be sent

inputParameter (hidden¼ ‘‘true’’):

parameterName: topic

parameterDescription:

The topic to which notification messages

will be sent

The creation parameter element specifies the physical

location in which the service will be created and the other

parameters that are needed to create the service, including

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 G. KANDASWAMY ET AL.

253

the installation path for the service code base, the

application working directory, a temporary directory for

the application to save temporary files, and a range of

ports to use for the service.

creationParameter:

host: myHost.com

gFacPath: /usr/local/gfac

workDir: /u/myapps

tmpDir: /tmp

java: /1/jdk1.4/bin/java

portRange:

start: 12346

end: 12446

Creating and accessing services from the portal

The standard grid portals we describe here are based on

the JSR-168 portlet container model [21] as implemented

in the Open Grid Computing Environment portal

framework [22]. When a user authenticates with the

portal, a context is created for that user session. What the

user sees is a set of portlets that each have a user interface

and some back-end logic that runs in the portal server.

The application provider uses the generic factory service

to wrap an application as a web service. To do so, the

provider first uses the proxy-manager portlet to load

the grid proxy certificate into the portal context. The

provider then uses the generic service client (also known

as the generic service portlet) to access the factory. To

create a service, the SMD is uploaded to the portlet,

which then transfers it to the factory. After validating the

service map document, the factory creates and starts the

service on the specified host using GRAM [23, 24]. After

it is instantiated, the service registers its WSDL with a

registry service. This allows the service to be discovered

by interested clients and end users who search for it in the

registry using its name or metadata. The registry returns

the service WSDL that the clients use to access the

service. While client programs such as workflows access

the service programmatically, end users rely on a web

interface that is generated by the service itself—a concept

that we borrowed from the Web Services for Remote

Portlets specification [25].

When a user accesses a service using the generic service

portlet, the portlet requests the service for a user

interface. The service then creates a user interface, which

is a Hypertext Markup Language (HTML) form, and

sends it back to the portlet, which is displayed to the user.

The user interface shows all of the operations that the

user is allowed to invoke on the service. When the user

selects an operation, the portlet sends another request

to the service to obtain the user interface for that

operation—an HTML form that the user must complete

in order to invoke the operation. In the SMD, the

application provider can describe the user interface

the service should create for its users.

For example, the application provider can specify the

user interface for an input parameter using its displayAs

attribute, which tells the service what HTML form

element to use to display the default values for that input

parameter. A number of values are supported for this

attribute, including ListBox, RadioButton, CheckBox,

and RemoteFile. Some of these have special properties;

for example, the RemoteFile provides a browse button

for the user to upload a file to the portlet, which then

transfers it to the application service using GridFTP.

For example, Figure 2 illustrates the user interface

generated from the SMD for the standard basic local

alignment search tool (BLAST) service [26]. In this case,

there are four methods that can be invoked. The text in

the web page is generated from the description of the

methods in the service map.

When the user selects a specific method (in this case,

B12seq), the user is presented with the specific parameter

form that must be completed to invoke that method

(Figure 3). After the user specifies all input parameter

values for an operation, the portlet sends a Simple Object

Access Protocol (SOAP) message to the service to invoke

that operation. The service then invokes the application

and sends notification messages about its status and the

status of its application to a notification service. Clients

and end users can then listen to these notification

messages by subscribing to the topic to which the

notification messages are being sent.

The notification service we use is called Web Services

Messenger (WS-Messenger). It is our implementation

of a notification model and is compliant with the WS-

Notification [27] and WS-Eventing [28] specifications. It

provides a messaging service for web services based on

the publish and subscribe paradigm. WS-Messenger

uses a topic-based notification channel for sending

notifications. A topic is a subject of common interest

among the services participating in a workflow to which

all notification messages of the workflow are sent. The

publish and subscribe notification mechanism and the

creation of a topic are transparent to end users. There are

three main components in our notification model: the

notification consumer, the notification publisher, and the

notification broker [29]. The notification consumer is an

event sink; it is a web service that waits for notifications

to arrive and handles them appropriately. All services

that have to receive notifications use this service. Some

clients, such as desktop tools, must listen for notifications

that are generated by services. Unfortunately, these

clients are often not associated with a fixed IP address

that is visible to WS-Messenger, or they are behind a

firewall. Consequently, we use a subscription proxy tool

called the message box [30] that can hold message

G. KANDASWAMY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

254

subscriptions for mobile clients or those hidden behind

firewalls. These clients periodically pull messages from the

message box rather than having them delivered via a

standard WS-Eventing push.

The workflow execution engine that executes a

workflow subscribes to this service to receive notifications

from all of the services in the workflow; the notification

publisher is used to publish these notifications. All

services created by the generic factory service have a

built-in notification publisher to publish notifications.

The notification broker is a service that acts as an

intermediary and relays messages from a publisher to a

consumer. It is persistent in nature and stores messages

that cannot be delivered to the consumer. These messages

can be retrieved later by the consumer.

A mediation approach is used to achieve compliance

between the WS-Notification and WS-Eventing

specifications. The WS-Messenger broker automatically

converts the messages from one format to the other

according to predefined transformation rules. The

subscription request type for a listener determines the

message format that the notification consumer receives. If

a WS-Notification subscription request is received by the

broker, it sends WS-Notification messages to the listener.

Similarly, if a WS-Eventing subscription is received by the

broker, the broker sends WS-Eventing messages to that

listener. The publisher can publish messages in either

format to the WS-Messenger broker; it makes no

difference to the notification consumers.

Architecture of an application service

The factory creates an application service from its

description in the SMD. Neither the application provider

nor the factory generates any code for implementing the

service interface. Also, no client-side stubs or server-side

skeletons are created. (A stub is a client’s local proxy for a

remote object. The client uses the stub to communicate

with the remote object—actually, the skeleton of the

remote object. The skeleton is responsible for dispatching

the client’s communication to the actual remote object.)

So how does the factory convert a service description into

an actual service?

The answer lies in the message processor that is present

in all application services created by the factory. The

message processor is a very simple web service. It receives

SOAP request messages and returns SOAP response

messages, as many web services do. However, it cannot

process the request messages because it does not know

BLAST service interface generated from the service map document (SMD).

Figure 2

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 G. KANDASWAMY ET AL.

255

how to process them. The information that it needs to

process the request messages is given to it by the

application provider as an SMD. When given an SMD,

the message processor reconfigures itself to support all the

operations specified in the document. It then generates its

WSDL and registers it with a registry. On the basis of the

information in the service WSDL, a client can create a

SOAP request message for the operation that the user

wants to invoke on the service. When the message

processor receives such a request message, it validates the

message and invokes the application associated with the

operation in a separate thread of execution. The mapping

between the operation and the application is obtained

from the SMD. The list of input parameter values for the

operation has a one-to-one correspondence to the list of

input parameter values for the application. The factory

can invoke almost any command-line application, such as

UNIX** commands, or more sophisticated scripts written

in languages such as Jython, Python, and Perl. The

design of the message processor is simple yet powerful.

It makes the application service lightweight but highly

configurable. No code generation is needed to create a

service from its description.

Security in application services
There are two primary security components in this

system: authentication and authorization. Our working

assumption is that users authenticate with the portal

server through a standard https-based username and

password or, if available, a more advanced approach. The

portal loads a grid proxy certificate into the user’s portal

context. The proxy certificate is an X.509 certificate

extension defined in the GSI for the purposes of

delegation and single sign-on.

Once authenticated, the portal fetches capability

authorization tokens from the authorization system. Our

authorization system, called XPOLA, is a fine-grained

authorization infrastructure for web and grid services

based on capabilities [31] and the principle of least

authority (POLA). A capability token is a detailed policy

document containing authorization information for each

service instance and all of its operations. It is signed by

the application provider proxy certificate. The XPOLA

infrastructure includes a persistent capability manager

service, plug-in capability handlers on the service and

client sides, and a portlet-based user interface for

application providers and users to manage their

capability tokens. Enforcement plug-in handlers ensure

User interface for the Bl2seq method generated by the BLAST service.

Figure 3

G. KANDASWAMY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

256

that a user request can do no more than what is allowed

as specified in the assigned capability token. XPOLA also

supports role-based authorization by providing a group

manager service. A service provider may create groups

from users’ distinguished names or make use of the

existing group definitions to create supergroups from

groups. The capability manager service and group

manager service have persistent support based on a

database. It is important to note that application

providers and users rarely need to manage their capability

tokens because the framework manages them on their

behalf, as follows:

� The application services create the capability tokens

from the policy information in the SMD and register

them with the capability manager service.
� The generic service portlet contacts the capability

manager service and loads the user’s capability tokens

into the user’s portal context just before accessing any

service.
� The application services renew their capability tokens

before they expire. The renewal policy is specified in

the SMD by the application provider.

In the previous section, we outlined the basic protocol

to access a service. We now describe it in more detail with

respect to security. To access a service, a user logs in to

the portal and then uses the generic service portlet to

access the service. The portlet contacts the capability

manager service and loads the user’s capability tokens

into the portal context. The portlet then sends a request

to the service using the secure socket layer (SSL). The

user’s proxy certificate is used for authenticating the user

to the service, and the application provider’s proxy

certificate is used for authenticating the service to the

user. After mutual authentication, the service returns the

user interface. All further interactions with the service are

secure and are done through the portlet using SSL. When

the user invokes an operation on the service, the portlet

sends a SOAP request message and the user’s capability

token, signed by the user’s proxy certificate. The service

verifies the authenticity of the request and, if the user is

authorized to do so, carries out the operation according

to the capability token. While this protocol may seem

potentially complex, the framework handles the

complexity in a manner that is transparent to application

providers and users. A more detailed and quantitative

analysis of the performance is underway and will be

published later.

Our web services rely on proxy certificates to

authenticate users. A proxy certificate has a short

lifetime of two hours to minimize the damage if it is

compromised. However, if a service must run longer than

that, the proxy certificate must be renewed. The certificate

is renewed by the application service, which contacts a

MyProxy server that stores the application providers’

credentials [32].

Composing workflows from the portal
So far, we have described how to wrap a single

application as a web service. In this section we describe

how to create workflows from the services using our

workflow composer, called X-Workflow. X-Workflow

provides an easy-to-use GUI that allows users to search

for interesting services, visually connect them together to

form workflows, and execute the workflows on the grid.

Although this is not a new concept, X-Workflow has been

designed with some additional features. It can monitor

the progress of a workflow by subscribing to notifications

from the workflow, make use of the metadata in the SMD

to compose workflows, and compile the workflow into a

standard workflow language for execution.

As discussed in the building services section above, an

application provider uses the SMD to describe a service.

This document is converted to an abstract WSDL by

X-Workflow and registered with a registry. While a

WSDL represents a service instance, an abstract WSDL

represents a service. It allows the user to create workflows

from nonexistent services. These services can be

instantiated dynamically by the factory when the

workflow is actually executed on the grid. The abstract

WSDL contains information about the port types of the

service, the operations, and their input and output data

types.

Using X-Workflow, the user first searches a registry for

interesting services. Each service is represented as a node

with one or more inputs and outputs. The user creates a

graph by interconnecting the services that constitute the

workflow. The abstract WSDL also contains metadata

about the service, port types, operations, and input and

output parameters. Some of this metadata is made

available by the application provider in the SMD. Other

metadata about the input and output parameters can be

obtained from other sources, such as the THREDDS [33]

catalog generator service. After the user creates the graph

that represents the workflow, the composer analyzes the

dependencies among the constituent web services. It can

then compile the workflow into a Jython script or a BPEL

[34] script.

A particular abstract application service may have

several concrete instances running at the same time on the

grid. Each service instance may have a different policy

associated with it. For example, services of a particular

scientific community may not allow users of other

communities to access them. The services created by our

generic factory service include this policy information in

the metadata for the operation elements in the WSDL.

Before executing the workflow, our workflow engine

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 G. KANDASWAMY ET AL.

257

searches the registry for service instances that satisfy the

policy requirements. After starting the workflow, the

workflow engine receives notification messages from the

services to monitor their status. Notification messages

contain status information and output parameters. The

workflow engine may use the output parameters of a

service as the input parameters to the next service in

the workflow. It also monitors the services for error

messages. In the event of a failure of a service invocation,

the entire workflow is stopped.

Example application

We have successfully used our generic service toolkit to

wrap scientific applications as web services for the Linked

Environments for Atmospheric Discovery (LEAD)

project [35]—a large National Science Foundation

Information Technology Research (NSF ITR) grant to

advance the art of severe storm prediction using advanced

grid and supercomputing methods. In this section, we

show some of the services we have created and how they

are used by X-Workflow to compose workflows for

weather forecasting.

Figure 4 is a screen shot of the sample LEAD-coupled

mesoscale weather forecasting experiment, which consists

of prediction initialized by the ARPS Data Analysis

System (ADAS) [36, 37] and forecasted by the Weather

Research Forecast (WRF) model [38] system. The

workflow involves 11 distinct services associated with 16

different input and configuration files. The application

services are all wrapped with the tools described here.

This workflow is not yet in service as a production

weather forecast tool, but it is being evaluated with the

help of the LEAD meteorology team. One of the goals of

the LEAD project is to put this, and other similar

workflows, into the hands of forecasters and researchers

as part of the Storm Prediction Centers Spring

Experiments 2006, which tests promising new

meteorological insights and technologies with the goal of

creating advances in operational forecasting techniques

for hazardous mesoscale weather events. To accomplish

this goal will require substantial testing and, we are sure,

Atmospheric Data Assimilation System–Weather Research Forecast system workflow.

Figure 4

G. KANDASWAMY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

258

countless improvements to the implementation of this

service architecture.

Conclusions
Our generic framework allows scientists to wrap

applications as web services, compose workflows from

them, and execute them on a grid. The services created by

our framework generate their own web interface, which

allows end users to interact with them using thin and

generic web service clients. Security is one of the prime

concerns in a distributed environment. Our framework

manages authentication and authorization during all

interactions between clients and services in a manner that

is almost transparent to application developers and end

users. Users can search for services and compose

workflows by visually interconnecting them in a workflow

composer. Services use notification messages to report

their status and results.

Much more work is needed to understand how well this

system works in real applications. We are currently using

this system with the LEAD severe storm prediction

project and a bioinformatics grid project, but we have not

done a rigorous usability analysis. We are currently

planning to build a tool to allow users to compose SMDs

without having to type XML. One thing we have learned

is that complex workflows involving many services may

require a complex array of input configuration and data

files. Users may want to edit these files or interact with

them in other ways. We need to be able to generate a

good user interface for workflows in the same way that we

can generate interfaces for services. Finally, we need to

evaluate the robustness of the services and make them

scalable by automatically creating new instances when the

demand is high.

Acknowledgment
This research is supported by NSF ITR Grant ATM-

0331480 and NMI ANI-0330613 and the Department of

Energy Office of Science DE-FC02-01ER25492.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc., or The Open Group in the United States, other
countries, or both.

References
1. E. Christensen, F. Curbera, G. Meredith, and S.

Weerawarana, ‘‘Web Services Description Language
(WSDL),’’ Version 1.1, March 15, 2000; see http://www.w3.org/
TR/wsdl.

2. D. Gannon, R. Ananthakrishnan, S. Krishnan, M.
Govindaraju, L. Ramakrishnan, and A. Slominski, ‘‘Grid Web
Services and Application Factories,’’ Grid Computing: Making
the Global Infrastructure a Reality, F. Berman, G. Fox, and T.
Hey, Eds., John Wiley & Sons, Hoboken, NJ, 2003.

3. I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,
A. Grimshaw, B. Horn, F. Maciel, F. Siebenlist, R.
Subramaniam, J. Treadwell, and J. Von Reich, ‘‘The Open

Grid Service Architecture,’’ Version 1.0, January 2005; see
www.gridforum.org/documents/GFD.30.pdf.

4. I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, ‘‘A
Security Architecture for Computational Grids,’’ Proceedings
of the 5th ACM Conference on Computers and Communications
Security, 1998, pp. 83–92.

5. The Globus Project; see http://www.globus.org/toolkit/.
6. Open Middleware Infrastructure Institute; see http://

www.omii.ac.uk.
7. T. Oinn, M. Greenwood, M. Addis, J. Ferris, K. Glover,

C. Goble, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, A. Wipat, and C. Wroe, ‘‘Taverna: Lessons in
Creating a Workflow Environment for the Life Sciences,’’
Concurrency & Computation: Pract. & Exper., Special Issue:
Scientific Workflows (to be published 2006).

8. D. Churches, G. Gombas, A. Harrison, J. Maassen, C.
Robinson, M. Shields, I. Taylor, and I. Wang, ‘‘Programming
Scientific and Distributed Workflow with Triana Services,’’
Concurrency & Computation: Pract. & Exper., Special Issue:
Scientific Workflows (to be published 2006).

9. B. Ludaescher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-
Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao, ‘‘Scientific
Workflow Management and the Kepler System,’’ Concurrency
& Computation: Pract. & Exper., Special Issue: Scientific
Workflows (to be published 2006).

10. M. Senger, ‘‘Soaplab: SOAP-Based Analysis Web Service,’’
February 2005; see http://www.ebi.ac.uk/soaplab.

11. M. Senger, P. Rice, and T. Oinn, ‘‘Soaplab—AUnified Sesame
Door to Analysis Tools,’’ Proceedings of the UK e-Science All
Hands Meeting, 2003; see http://www.nesc.ac.uk/events/
ahm2003/AHMCD/pdf/115.pdf.

12. Axis, The Apache Software Foundation, April 10, 2005; see
http://ws.apache.org/axis.

13. CORBA/IIOP Specification, Object Management Group, Inc.,
March 4, 2001; see http://www.omg.org/technology/documents/
formal/corba_iiop.htm.

14. M. Senger, ‘‘Gowlab: Web Pages as Web Services,’’ March
2005; see http://www.ebi.ac.uk/soaplab/Gowlab.

15. GridLab Products and Technologies; see http://
www.gridlab.org/about.html.

16. Grid(Lab) Grid Application Toolkit; see http://
www.gridlab.org/WorkPackages/wp-1.

17. SeqHound; see http://www.blueprint.org/seqhound.
18. BioMOBY; see http://biomoby.org.
19. Kyoto Encyclopedia of Genes and Genomes (KEGG); see

http://www.genome.jp/kegg/.
20. The GridFTP Protocol and Software; see http://www-

fp.globus.org/datagrid/gridftp.html.
21. JSR-000168 Portlet Specification (Final Release); see http://

www.jcp.org/aboutJava/communityprocess/final/jsr168.
22. Open Grid Computing Environment, The Open Grid

Computing Environments Collaboratory; see http://
www.ogce.org.

23. I. Foster and C. Kesselman, ‘‘Globus: A Metacomputing
Infrastructure Toolkit,’’ Intl. J. Supercomputer Appl. & High
Performance Computing 11, No. 2, 115–128 (1997).

24. GT3 GRAM Architecture; see http://www-unix.globus.org/
ogsa/docs/alpha/gram/gt3_ gram_overview.htm.

25. A. Kropp, C. Leue, R. Thompson, C. Braun, J. Broberg, M.
Cassidy, M. Freedman, T. N. Jones, T. Schaeck, and G.
Tayar, ‘‘Web Services for Remote Portlets Specification,’’
Version 1.0; see http://www.oasis-open.org/committees/
download.php/3343/oasis-200304-wsrp-specification-1.0.pdf.

26. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman, ‘‘Basic Local Alignment Search Tool,’’ J. Molec. Biol.
215, No. 3, 403–410 (October 1990).

27. S. Graham, P. Niblett, D. Chappell, A. Lewis, N.
Nagaratnam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D.
Snelling, S. Tuecke, W. Vambenepe, and B. Weihl, ‘‘Web
Services Base Notification (WS-Base Notification),’’ Version
1.0; see ftp://www6.software.ibm.com/software/developer/
library/ws-notification/WS-BaseN.pdf.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 G. KANDASWAMY ET AL.

259

28. D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson,
A. Geller, S. Graham, D. Hull, G. Kakivaya, A. Lewis, B.
Lovering, M. Mihic, P. Niblett, D. Orchard, J. Saiyed, S.
Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, B. Smith,
S. Weerawarana, and D. Wortendyke, ‘‘Web Services Eventing
(WS-Eventing),’’ August 2004; see ftp://
www6.software.ibm.com/software/developer/library/
ws-eventing/WS-Eventing.pdf.

29. S. Graham, P. Niblett, D. Chappell, A. Lewis, N.
Nagaratnam, J. Parikh, S. Patil, S. Samdarshi, I. Sedukhin, D.
Snelling, S. Tuecke, W. Vambenepe, and B. Weihl, ‘‘Web
Services Brokered Notification (WS-BrokeredNotification),’’
Version 1.0, March 5, 2004; see ftp://www6.software.ibm.com/
software/developer/library/ws-notification/WS-BrokeredN.pdf.

30. A. Slominski, A. di Costanzo, D. Gannon, and D. Caromel,
‘‘Asynchronous Peer-to-Peer Web Services and Firewalls,’’
Proceedings of the 7th International Workshop on Java for
Parallel and Distributed Programming, 2005; see http://
www.extreme.indiana.edu/xgws/papers/
ws_dispatcher_ipdps2005.pdf.

31. L. Fang, D. Gannon, and F. Siebenlist, ‘‘XPOLA: An
Extensible Capability-Based Authorization Infrastructure
for Grids,’’ Proceedings of the 4th Annual PKI R&D
Workshop: Multiple Paths to Trust, 2005; see http://
middleware.internet2.edu/pki05/proceedings/fang-xpola.pdf.

32. J. Novotny, S. Tuecke, and V. Welch, ‘‘An Online Credential
Repository for the Grid: MyProxy,’’ Proceedings of the 10th
IEEE International Symposium on High Performance
Distributed Computing, 2001, pp. 104–114.

33. B. Domenico, J. Caron, E. Davis, R. Kambic, and S. Nativi,
‘‘Thematic Real-Time Environmental Distributed Data
Services (THREDDS): Incorporating Interactive Analysis
Tools into NSDL,’’ J. Digital Info. 2, No. 4 (2002); see http://
jodi.ecs.soton.ac.uk/Articles/v02/i04/Domenico/.

34. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F.
Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic,
and S. Weerawarana, ‘‘Business Process Execution Language
for Web Services,’’ Version 1.1, May 5, 2002; see ftp://
www6.software.ibm.com/software/developer/library/ws-bpel.pdf.

35. B. Plale, D. Gannon, D. Reed, S. Graves, K. Droegemeier, B.
Wilhelmson, and M. Ramamurthy, ‘‘Towards Dynamically
Adaptive Weather Analysis and Forecasting in LEAD,’’
Proceedings of the International Conference on Computational
Science, 2005, pp. 624–631.

36. M. Xue, K. K. Droegemeier, and V. Wong, ‘‘The Advanced
Regional Prediction System (ARPS)—A Multi-Scale
Nonhydrostatic Atmospheric Simulation and Prediction
Model. Part I: Model Dynamics and Verification,’’ Meteorol.
& Atmospher. Phys. 75, No. 3/4, 161–193 (2000).

37. M. Xue, D. Wang, J. Gao, K. Brewster, and K. K.
Droegemeier, ‘‘The Advanced Regional Prediction System
(ARPS), Storm-Scale Numerical Weather Prediction and Data
Assimilation,’’ Meteorol. & Atmospher. Phys. 82, No. 3/4,
139–170 (2003).

38. J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp, W.
Skamarock, and W. Wang, ‘‘The Weather Research and
Forecast Model: Software Architecture and Performance,’’
Proceedings of the 11th ECMWF Workshop on the Use of High
Performance Computing in Meteorology, 2004; see http://
wrf-model.org/wrfadmin/docs/ecmwf_2004.pdf.

Received July 11, 2005; accepted for publication
August 8,

Gopi Kandaswamy Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(gkandasw@cs.indiana.edu). Mr. Kandaswamy is a Ph.D. student
in the Computer Science Department at Indiana University, where
he is currently a Research Assistant under the guidance of
Professor Dennis Gannon. He received a B.E. degree from
Bharathidasan University, India, and an M.S. degree from Indiana
University. Mr. Kandaswamy’s current research interests include
generic application factories for web services and grid workflow
systems.

Liang Fang Computer Science Department, Indiana University,
150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(lifang@cs.indiana.edu). Mr. Fang is a Ph.D. student in the
Computer Science Department at Indiana University, where he is a
Research Assistant responsible for investigating authorization and
other security solutions to the LEAD project. He received a B.E.
degree in computer engineering from Nanjing University of Science
and Technology, China, and an M.S. degree in computer science
from Indiana University. Mr. Fang’s current research interests
include grid computing, web services, portals, and their security
and scalability issues.

Yi Huang Computer Science Department, Indiana University,
150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(yihuan@cs.indiana.edu). Mr. Huang is a doctoral candidate in the
Computer Science Department at Indiana University, under the
guidance of Dr. Dennis Gannon. He holds a B.E. degree from
Beijing University of Technology, China, and an M.S. degree from
Florida State University. Mr. Huang’s research interests include
web services, distributed messaging systems, grid computing,
system integration, and analysis of message pattern and workflow.

Satoshi Shirasuna Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(sshirasu@cs.indiana.edu). Mr. Shirasuna is a Ph.D. student in the
Computer Science Department at Indiana University. He works
with Dr. Dennis Gannon as a Research Assistant. He received B.S.
and M.S. degrees from Tokyo Institute of Technology, Japan. Mr.
Shirasuna’s research interests include software tools for distributed
systems, and workflow and security performance for web and grid
services.

Suresh Marru Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(smarru@cs.indiana.edu). Mr. Marru is a Scientific Computing
Research Specialist working with Dr. Dennis Gannon on the
LEAD and Teragrid Science Gateways projects. He received a B.E.
degree in electrical and electronics engineering from Osmania
University, India, and an M.S. degree in electrical and computer
engineering from the University of Oklahoma. Mr. Marru’s
research interests include distributed and grid computing, portals,
web services, and developing user-friendly interfaces with
atmospheric applications.

Dennis Gannon Computer Science Department, Indiana
University, 150 S. Woodlawn Avenue, Bloomington, Indiana 47405
(gannon@cs.indiana.edu). Dr. Gannon is a professor of computer
science at Indiana University. He received his Ph.D. degree in
computer science from the University of Illinois and his Ph.D.
degree in mathematics from the University of California. He was
on the faculty at Purdue University from 1980 to 1985. Dr.
Gannon’s research interests include software tools for high-
performance distributed systems and problem-solving
environments for scientific computation.

G. KANDASWAMY ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

260

2005; Internet publication March 1, 2006

