Reliability of
modular mesh-
connected
intelligent
storage brick
systems

A key objective of the IBM Intelligent Bricks project is to create a
highly reliable system from commodity components. We envision
such systems to be architected for a service model called fail-in-
place or deferred maintenance. By delaying service actions,
possibly for the entire lifetime of the system, management of the
system is simplified. This paper examines the hardware reliability
and deferred maintenance of intelligent storage brick (ISB)
systems assuming a mesh-connected collection of bricks in which
each brick includes processing power, memory, networking, and
storage. On the basis of Monte Carlo simulations, we quantify the
fraction of bricks that become unusable by a distributed data

redundancy scheme due to degrading internal bandwidth and loss of

external host connectivity. We derive a system hardware reliability
expression and predict the length of time ISB systems can operate
without replacement of failed bricks. We also show via a Markov
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analysis the level of fault tolerance that is required by the data
redundancy scheme to achieve a goal of less than two data loss
events per exabyte-year due to multiple failures.

Introduction
The Intelligent Bricks project investigates storage systems
based on a modular brick architecture with the objectives
of simplifying system management, providing a large
scaling range, and creating a reliable system from
commodity components. Storage servers built with a
single type of module, or brick, are attractive in terms of
simplicity, scalability, and cost. Bricks include processing,
memory, networking, and storage sufficient to run a
distributed software system that delivers higher data
reliability than that offered by the underlying hardware.
A key property of an intelligent storage brick (ISB)
system is its fail-in-place or deferred-maintenance
architecture: By over-provisioning or adding additional
bricks while operating, hardware maintenance can be
delayed for several years—possibly for the entire lifetime
of the system. The distributed system software is
responsible for automatically invoking spare disks or

bricks as components fail. The only maintenance task
users are expected to perform is to physically add bricks
to meet growing capacity requirements.

This paper presents quantitative insights into the
operating characteristics of mesh-connected ISB systems,
in which bricks communicate only with physically
adjacent bricks. We characterize such systems by the
fraction of unusable bricks due to degrading internal
bandwidth and external host connectivity, and a
reliability expression that approximates the length of time
that ISB systems can operate without replacement of
failed bricks. Our goal is that ISB systems provide
nearly 100% data availability, no ongoing hardware
maintenance actions for several years, and a very low
probability of data loss due to multiple failures. This
paper is a companion to [1], which presents the overall
ISB system and an operational 3 X 3 X 3-brick prototype.
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Related work

The approach of distributing data across independent
machines to build scalable storage systems has been
explored in DataMesh [2], FAB [3], Self-* [4], Petal [5],
and OceanStore [6]. Several companies are shipping
products based on distributed data redundancy, including
Panasas [7], Pivot3, LeftHand Networks, and Isilon.
However, none of these approaches focus on fail-in-place
or deferred maintenance. The Panasas system, while
implementing a distributed RAIDS scheme, is oriented
more toward delivering high performance. DataMesh [2]
was a two-dimensional mesh-connected storage server
that most closely resembled our ISB system and
introduced concepts of distributed redundancy, fault
isolation, and recovery. The more recent FAB project [3]
proposed to build a brick storage system from commodity
parts. The Self-* project [4] has a focus on simplifying
administration by using a brick storage system, including
mechanisms to schedule resources, classify files, and
manage replicas.

An initial analysis of overprovisioning for capacity and
bandwidth in an ISB system was first described by
Kirkpatrick et al. [8]. They conservatively defined usable
bricks as those that were connected to at least two or
three other bricks. Our approach places data on bricks
that may have only a single remaining connection to
other bricks while avoiding possible set partitioning due
to brick failures.

Brick usability in degrading cubes
A pristine cube (i.e., an initial cube with no failed bricks)
contains N bricks arranged as a two-dimensional (2D)
(h X h) or three-dimensional (3D) (& X h X h) nearest-
neighbor network mesh. Each brick contributes storage,
network bandwidth, memory, and processing resources.
The bricks run system software that manages the storage
data and implements a distributed RAID (dRAID)
scheme, in which storage data is copied or encoded in
multiple chunks and each placed on a distinct brick. As
bricks progressively fail, a pristine cube slowly declines in
performance and capacity. In this section we establish
operating ranges of usable bricks in 2D and 3D mesh-
connected ISB systems.

For purposes of our analysis, we make the following
assumptions:

1. All bricks in the system are identical and contain
sufficient processing, memory, networking, and data
storage. Bricks communicate with adjacent
(neighbor) bricks in a 2D or 3D network mesh
topology.

2. A given brick is either completely functional (live) or
completely inoperative (failed). When a brick fails, it

C. FLEINER ET AL.

reduces system network bandwidth as links between
it and neighbors are lost, creating “holes” in the
mesh.

3. Storage data is redundantly distributed across
multiple bricks to ensure a high probability of
restoring data after a failure of disks or bricks. When
there is a failure, redundant data is rebuilt by the
operating software over all surviving storage bricks.
We assume that data is randomly distributed across
all storage bricks, parameterized by the number of
bricks k over which the redundant data chunks are
distributed (its set-k, ranging from set-2 for simple
mirroring to set-14 for space-efficient or higher-fault-
tolerant codes). For example, a traditional 6-data
and l-parity RAIDS scheme would be set-7.
Although details of distributed redundancy schemes
are not discussed here, see [9] for implementation
approaches.

4. The system is overprovisioned with bricks when it is
assembled. In realistic deployments, a user could add
bricks over time to compensate for brick losses,
undoubtedly with improved cost and capacity
attributes. Nevertheless, to simplify the analysis, we
assume that bricks are not added over time.

Although we analyze symmetrical 3D systems in this
paper, our approach can also be applied to systems with
nonsquare, rectangular cross sections. This is relevant for
actual implementations, because the system height may
be limited by floor loading or other structural
considerations.

Simulation methodology
For our analysis, we performed Monte Carlo simulations
of mesh-connected cubes with randomly selected failing
bricks. To find the number of usable bricks in a degrading
cube, we assumed that redundant data is placed via a
distributed-redundancy, set-k scheme in equal-sized
chunks across k bricks. A brick may be live but unusable
because of the set-k placement constraints described next.
For each run, the simulator started with an initial,
pristine cube and progressively failed one brick per
iteration step. For each step, the placement algorithm first
found the largest network of connected bricks with at
least two surface bricks and then constructed as many set-
ks as possible. An additional placement constraint was
that the potential failure of any brick would leave at least
k — 1 usable bricks for all of the constructed set-ks (i.c., a
set-k cannot be partitioned if any single brick fails). This
estimation process yielded a lower bound on the number
of usable bricks for a given set-k placement [10]. We also
assumed that chunks in 3D cubes are not placed together
in vertical columns of bricks that can fail due to shared
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(a) Mean and standard deviation of usable bricks in a degrading 6 X 6 X 6 mesh-connected cube with distributed data redundancy
(assuming that no new bricks are added). (b) Percentage of live bricks usable in a degrading 15 X 15 mesh-connected 2D system with

distributed data redundancy (assuming that no new bricks are added).

power and cooling in the column. (We found that this had
little effect on the results.) We ran at least 300 different
simulation runs for each pristine cube size.

Figures 1(a) and 1(b) respectively show the average and
standard deviation results for degrading 6 X 6 X 6 =216
and 15 X 15=225 brick systems. We also ran simulations
for larger and smaller cubes and found that the results
presented here generally apply to 3D cubes down to
64 bricks and 2D systems down to 16 bricks (with
set-5 placement).

Usable bricks in 3D mesh systems

Figure 1(a) plots the number of usable bricks in a
degrading 3D system of 6 X 6 X 6 =216 bricks with
distributed redundant data. It plots the percentage of live
bricks along the x-axis and the percentage of usable
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bricks along the y-axis. A pristine cube corresponds to the
point in the upper right-hand corner. As a cube degrades,
the number of live bricks decreases, as illustrated from
right to left in the figure. Note that one should track the
lower end of the standard deviation error bars, not the
statistical mean.

The data shows that as live bricks decline to 60%, even
the large set-14 distributed data placement is able to use
nearly all live bricks. However, on losing more than about
50% of the bricks, there exists a noticeable fraction
(>10%) of live but unusable bricks. As can be seen in
the “bad” operating range, because of the increasing
variability in the standard deviation of usable bricks, we
suggest that a 3D cube not operate below approximately
60% live bricks.
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Usable bricks in degrading 2D mesh systems
Figure 1(b) plots the number of usable bricks in a
degrading 2D system of 15 X 15 = 225 bricks with
distributed redundant data. These 2D plots show that
once more than 15% of the bricks fail, the number of live
but unusable bricks rises rapidly. Note that these 2D
results are not applicable to smaller 2D systems (for
<16 bricks with smaller set-k placements). We do not
examine 2D systems further in this paper.

Network quality in degrading cubes

In the previous section we presented simulation results
for the fraction of usable bricks in a degrading cube.
In this section, we look at the performance of the
interconnection network as bricks fail in terms of total
and average random bandwidth (for 3D systems only).
These results were derived from the Monte Carlo
simulations described above and are combined in
Figure 2, where the x-axis shows the percentage of usable
bricks—not the percentage of live bricks, as in

Figures 1(a) and 1(b)—and the y-axis shows the
percentage of change in the metric as bricks fail
progressively from right to left in the figure.

Effect of brick failures on average network distance
Network distance, the number of hops required to route a
packet between two bricks via the shortest path, is a key
metric, reflecting brick-to-brick latency and internal
bandwidth. For a pristine, mesh-connected cube of

edge length £, the average network distance (i.e., the
average of the distance between two bricks taken over
all source and destination bricks in a cube) is given
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by dpristine = 1 — (1/h), derived under the assumption
that all source bricks communicate with all destination
bricks via the shortest paths. As bricks fail and the
cube degrades, the simulated brick configurations are
evaluated at each step to determine the actual average
network distance of the cube.

The average distance plot (Figure 2) increases slowly at
the beginning as bricks fail (right side) and then levels off
at about 40% usable bricks (on the left side), with an
average network distance about 40% greater than the
pristine cube.

From this plot, we conclude that the average network
distance does not appreciably increase in 3D cubes as
long as about 70% of the bricks remain usable. At 60%
usable bricks, the average network distance has increased
by about 10%.

Effect of brick failures on internal bandwidth

The total peak internal bandwidth of a cube is given by
the number of connections between all usable bricks
multiplied by the bandwidth provided by an internal
brick face. The internal bandwidth plot in Figure 2
decreases faster than the loss of usable bricks: At 80%
of usable bricks, only about 65% of the original peak
bandwidth remains, while at 60% of usable bricks, only
about 40% remains.

Although total internal bandwidth degrades faster than
failing bricks, the number of usable bricks also declines,
so the average bandwidth degradation per brick does not
decline as quickly. We plot the average internal
bandwidth per brick by dividing the total peak internal
bandwidth by the average network distance and by the
number of usable bricks. The average bandwidth per
brick plot in Figure 2 is nearly proportional to the
number of usable bricks: At 80% usable bricks, about
80% of the original average bandwidth per brick remains,
and at 60% of usable bricks, about 50% remains.

Effect of brick failures on external bandwidth

The external bandwidth of a cube is given by the number
of usable surface bricks multiplied by the bandwidth
provided by a surface brick face. The external bandwidth
plot in Figure 2 indicates that the external bandwidth of
the hosts decreases proportionally as the number of
usable bricks drops.

Figure 2 also shows that the number of usable surface
bricks in a cube is proportional to the total number of
usable bricks (labeled surface bricks/usable bricks). This
ratio remains nearly constant as bricks fail.

External host connectivity

We now examine the reliability of host connectivity to a
degrading cube. For simulations, we assumed that
external hosts can access the set of remaining usable
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Probability of an external host not having a connection to the
usable bricks as a function of number of per-host connections for
the cases of 70% and 80% usable bricks ina 6 X 6 X 6 cube.

bricks in the cube via at least one surface brick. However,
this implies that every host is connected to every brick on
the surface of the cube, which is not practical. Instead, we
need to assume that each host has multiple cube
connections, each to different surface bricks. We then
calculate the probability that the usable surface
connections to a host will not be members of the usable
bricks in the cube.

Given a cube with the number of usable surface bricks
U out of the total number of surface bricks
S=6vVN — 129N+ 8, C connections per host to the
cube, and assuming usable surface bricks proportional to
total usable bricks (as in the previous section), the
probability that a host has no connections to the usable
bricks is given by
(S=O)N(S-U)!

F T S—U-O)s!

host_has_no_connection

Using the above equation, Figure 3 plots the
probability of a host being unconnected to the usable
bricks against the number of per-host connections with
either 70% or 80% usable bricks. The graph illustrates
that, for every additional two per-host connections, the
risk of being unconnected to the usable bricks is reduced
by a factor of approximately 10. To achieve
Phost_has_connection > 0.99999 in a cube with 70% usable
bricks, the number of per-host connections should be 9 or
greater. Plotting the same graph for different cube sizes
shows that the probability depends primarily on the
number of host connections, not size.

From these results, we conclude that either an
external network switch is needed between the surface
bricks and the hosts or, alternatively, the hosts are in the
cube itself (which then moves the surface connectivity
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commller(t)

Simplified reliability graph for a storage brick illustrating the
reliability of the controller electronics R_ . .(f) in series with
the reliability of d independent disks in parallel, each with
reliability R, ,(0).

problem to the clients of the hosts). Although it is
possible for a user to remove a host connection from a
failed brick and reconnect it to a remaining usable
surface brick, we assume that such maintenance activity
is undesirable.

System hardware reliability

A key objective for ISB systems is deferred maintenance,
i.e., that they can operate without replacement of failed
hardware for long periods of time. Failed bricks remain in
place at least until service or maintenance is performed,
and possibly until end of life of the system. Our goal is a
system that provides nearly 100% data availability with
no ongoing maintenance actions (except possibly to add
capacity). In this section, we calculate the deferred-
maintenance time period for a system as a function of the
fraction of brick failures and the reliability of disk and
brick controller electronics. We assume that a system is
fully functional and optionally overprovisioned with
bricks at its start of operation.

The reliability of a system is defined as the probability
that it operates properly over a time ¢. As illustrated in
Figure 4, a storage brick contains controller electronics in
series with d parallel disks that can fail independently
while leaving the brick operational. The reliability of the
independent, parallel-connected disks of a brick is the
complement of their unreliability; i.e., it is one minus the
probability that all of its disks fail over time z.

Furthermore, the reliability of the series-connected
controller electronics of a brick and its collection of
parallel disks is the product of their reliabilities [11].
Thus, the hardware reliability of a storage brick over a
time period ¢ is given by

C. FLEINER ET AL.
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Maximum maintenance-deferred durations for four cases of brick
failure/overprovisioning in a 6 X 6 X 6 system with a system
reliability target of 0.99999 as a function of the brick hardware
failure rate. The four constant brick reliability curves correspond
to 10%, 20%, 30%, and 40% brick failures at the end of the
deferred-maintenance time period.

Rbrick(t) = Rcontmller(t) x Rdisks(t)

d
= Rcontroller ( [) x [1 - Fdisk ( Z)i|

= Rcomroller(l) X{l - [l - Rdisk(l)]d} .

From this equation, we observe that the parallel disks
can achieve a very high hardware reliability, even with
disks that have high rates of failure (e.g., Rgisks = 0.99999
for six parallel disks at 3% annual constant failure rate
each over five years). Thus, to simplify the analysis below,
we assume that the reliability of the storage brick is
approximately equal to the reliability of the controller
electronics, or Rpick(?) = Reontrolter(?). Note that
Reontrolter(?) includes everything in the brick exclusive of
disks.

The system hardware reliability Rgysiem(?) is defined as
the probability that a system will meet its mission to
provide a target number of live bricks and storage
capacity through the deferred-maintenance time period ¢.
Our approach to approximate Rgysem(?) 1S to use the
frequency interpretation of probability [12] and assume
ideal, identically deployed systems with no systematic
environmental influences, each with identical bricks and
disks that fail independently. The hardware reliability of
our uniform brick system can then be approximated by
the cumulative binomial distribution [11]—the
probability that M out of N independent and identical
bricks survive over time period #:

C. FLEINER ET AL.
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Bonl®) = 3 () Ria(01 = Ryt
p

To determine the maximum deferred-maintenance time
duration ¢ of our system, we first decide on a target value
for Ryysiem(?) and then solve the binomial probability
distribution for ¢ as a function of that target reliability,
M| N fraction of live bricks, and the predicted brick
reliability.

For setting a system reliability target, if our acceptable
goal is that one out of D deployed systems fails to achieve
a deferred-maintenance mission, we can set target
Rgystem(t) =1 — 1/D. For example, if Rgystem(?) = 0.99999,
approximately one system out of 100,000 will fail its
mission to remain above the target number of live bricks
or storage capacity over deferred-maintenance time .

Substituting an expected, constant, and memoryless
failure rate Apge With brick reliability Ryye(2) = e e
into the above binomial distribution yields

YN v N
Ry =Y <i>" a0 (1 g )
i=0

=

Using target constant values for Ryygem(?), M, N, and a
range of brick failure rates Ay, We iteratively solve this
equation for maximum values of z.

As an example, we select a system hardware reliability
target of Ryysiem(?) =0.99999 for N =6 X 6 X 6 =216 brick
systems and vary the fraction M/N of live bricks from
90% down to 60% in 10% steps, corresponding to 10% to
40% of failed bricks and optional initial overprovisioning
levels of 1/(1 — M/N), or 11%, 24%, 43%, and 67%,
respectively.

In Figure 5, we plot the brick failure rate Apc on the
x-axis against the maximum deferred-maintenance period
t on the y-axis for these four brick failure cases. The
labeled compute brick point shows that a brick failure
rate of 2% in a system that expects 20% failed bricks
(optionally 25% overprovisioned), would allow for
deferred-maintenance system operation for nearly six
years. The labeled storage brick point in Figure 5
illustrates a 2.5-year deferred-maintenance period,
achievable with a combined controller, and a disk failure
rate of 4.5% per year, as described next.

Next we look at the hardware reliability of storage
capacity; that is, the probability that the system will have
sufficient storage disk capacity at the end of the deferred-
maintenance time period. Although all of the disks
operate in parallel and can fail independently, from the
perspective of the data stored on a disk, the brick
controller electronics are in series with each disk. Because
the reliability of series-dependent components is the
product of the component reliabilities [11], the reliability
of the storage capacity itself is Ryorage(t) = Reontrotier(?) X
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Ryisi(1). With our assumption of constant failure rate and
exponential reliability for brick electronics and disks, the
overall resulting storage capacity failure rate is Agorage =
Acontroller + Zdisk» Per these equivalent equations:

Rstorage ( l) = Rcontroller ( l) X Rdisk (l) ’

t

- t -/, t -,
storage controller disk
e =e Xe R

and

storage /Lcomroller

+ )“disk .

Substituting Asorage i place of Ayrick as the failure rate
in the cumulative binomial equation, Figure 5 then shows
the expected deferred-maintenance intervals for storage
capacity. For example, if one assumes a brick controller
annual failure rate of 1.5% [mean time between failures
(MTBF) =~ 580,000 hours] and a disk failure rate of 3%
(MTBF =~ 300,000 hours), the effective hardware storage
failure rate is 1.5% + 3% = 4.5% per year, yielding a
system deferred-maintenance duration of 2.5 years for
100,000 systems that expect up to 20% failed bricks
(optionally 25% overprovisioned).

System storage data reliability

The previous section examined the relationship between
brick hardware failure rates and the deferred-
maintenance duration of ISB systems before accumulated
hardware failures warrant maintenance. To implement a
high level of data reliability and to guard against
irrecoverable data loss, a distributed data redundancy
scheme is implemented by the system software across
multiple bricks. In this section we present results of
Markov models for deriving the probability that a system
will not lose data after multiple brick or disk failures,
assuming different distributed data redundancy schemes
and system performance characteristics.

Standard storage redundancy schemes store either one
or more copies of the original data or precomputed
redundancy information, such as parity. After brick or
disk failure and data erasure are detected, the system
software uses a copy to rebuild the original and
redundant data in spare, unused storage. Whether a
particular hardware or software fault results in the loss of
storage data is a function of three elements: the fault
tolerance of the redundancy coding scheme; the system
network and brick-internal bus bandwidths available to
rebuild redundant data (which determines rebuild time);
and the probability of additional hardware or software
faults during the rebuild process. Note that for
performance considerations, redundant parity
information is seldom verified on storage read operations.

We assume that if a brick or disk fails, the distributed
software will detect that erasure event, for example, when
disks return error codes or are unresponsive to multiple
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retry commands, or when bricks do not respond after
multiple out-of-network reboot attempts. Our goal is a
very small probability of data loss after multiple brick or
disk failures: no more than one data-loss event in five
years for 100 one-petabyte systems, or, equivalently, only
two data-loss events per exabyte-year.

The redundancy scheme that is the easiest to implement
is to mirror or duplicate data. Although the storage write
performance is highest, the data storage efficiency is low.
There exist several redundancy schemes that guard
against multiple failures with high storage efficiency—
with the tradeoff of lower write performance. These
schemes include RAIDS5, RAID6, and others that tolerate
three or more failures [13, 14]. Redundancy schemes for
higher fault tolerance can be realized through several
erasure codes such as EVENODD [15], Reed-Solomon
[16], low-density parity check (LDPC) [17], and
WEAVER, a new constant-efficiency, high-fault-tolerant
erasure code [18].

Redundancy schemes can be characterized by several
parameters: number of faults tolerated, storage efficiency,
and storage write performance. These factors are
interrelated; optimizing for two usually results in
tradeoffs against the third. From the user’s perspective,
these parameters translate into the reliability of the
storage data, its cost, and overall application
performance. Thus, the choice of a particular data
redundancy scheme depends on the business cost of a
data-loss event, how much the user is willing to pay for
higher levels of fault tolerance, and the level of
application performance required. Ideally, the operating
software will allow the system administrator to make
reliability tradeoffs for the user’s data.

The fault tolerance and storage efficiency of a
particular redundancy scheme defines the minimum
number of bricks that must be usable and corresponds to
the set-k metric defined earlier. For example, an 80%
efficient, single-fault-tolerant RAIDS5 scheme requires a
minimum of five usable bricks for placing data and parity
chunks (set-5). A 50% efficient scheme with three data
and three parity chunks requires a set-6 placement.

When a brick or disk failure is detected, the distributed
operating software rebuilds the erased data across all of
the surviving usable bricks. Because the large aggregate
bandwidth of the entire 3D network is available for this
task, the rebuild times scale well with the size of the cube,
minimizing the exposure time to subsequent failures.
Note that data redundancy may be implemented not only
across bricks, but within bricks as well. Schemes with in-
brick redundancy assume that failing disks are not
replaced, so erased data in the brick is rebuilt across the
remaining operational disks in a brick (assuming
sufficient remaining capacity).

By constructing and analyzing Markov chain failure
models of representative systems, we compared the
efficacy of several dRAID schemes assuming typical brick
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Markov failure model for a 1-fault-tolerant dRAID scheme with no
redundancy in bricks.

and disk hardware failure rates. As an example, a simple
loss-of-data scenario for a redundancy scheme supporting
1-fault-tolerance’ among bricks with no in-brick
redundancy is illustrated in Figure 6. Loss of data due to
multiple failures occurs when either a brick controller or a
disk fails (at rates A, and Z4), followed by a rebuild and
repair process (at rates p, and pg), during which time a
second brick controller or disk fails—or the more
probable case of a hard and unrecoverable error
occurring during a disk read (with probability e;). The
3-fault-tolerant Markov graph is more complex,
requiring 16 states, as described in [19].

The Markov model reliability calculations for 1-, 2-,
and 3-fault-tolerant dRAID schemes for a pristine
4 X 4 X 4 cube with 12-disk bricks are presented in
Figure 7, which shows that mirrored, single-fault-tolerant
schemes such as RAIDS fall far short of our target,
coming in at about 30,000 data-loss events per exabyte-
year. Mirroring between bricks, together with single-
fault-tolerant RAIDS5 in the bricks, is 1,000 times
better, at about 30 data losses per exabyte-year.

At least 2-fault tolerance is required between bricks to
achieve our target of two data-loss events per exabyte-
year, using either of two schemes:

e A 2-fault-tolerant dRAID scheme across bricks,
combined with single-fault-tolerant RAIDS in the
bricks for 0.009 data-loss events per exabyte-year (or
9 data losses per zettabyte-year); or, alternatively,

* A 3-fault-tolerant dRAID scheme across bricks with
no redundancy in the bricks for 0.001 data-loss events
per exabyte-year (or one data loss per zettabyte-year).

"The number of disks or bricks that can fail, £, is specified by the fault tolerance of the
redundancy scheme. The Hamming distance of the redundancy scheme is /' + 1.
®Note that in the figure a transition from state 2 to 1 (a disk failure followed by its
brick controller failure before rebuild completes) is not shown, but has little effect on
the results.
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The parameters used in these Markov model
calculations include disk MTBF = 300,000 hours, brick
electronics MTBF = 400,000 hours, disk read hard error
rate of 107 "%, 4 X 4 X 4 =64 bricks, 12 disks per brick, 40-
MB/s disk bandwidth, six 800-MB/s 3D mesh network
links per brick, rebuild block size = 128 KB, and 10%
bandwidth utilization for data redundancy rebuilding.
These calculations, including assumptions and sensitivity
analyses, are discussed in more detail elsewhere [19]. In
summary, we found that the probability of a data-loss
event was generally insensitive to the cube size, but
sensitive to three variables: the disk failure rate in bricks
without internal RAID, the brick controller electronics
failure rate, and the rebuild block size.

Conclusion

We quantified the effects of brick failures in modular,
mesh-connected ISB systems as gauged by capacity,
network performance, system reliability, and the
probability that a system does not lose data after multiple
disk or brick failures. Using Monte Carlo simulations, we
examined the effects of loss of usable bricks for
distributed data placement on network bandwidth in
order to recommend a fraction of usable bricks above
which systems should operate.

103

. T3 No redundancy in brick
10° E=2 RAIDS in bricks
102 F - - - Data-loss target

Data-loss events per exabyte-year

1-fault 2-fault 3-fault
dRAID fault tolerance

Comparison of predicted dRAID data-loss events per exabyte-year
after multiple failures assuming six different fault-tolerant schemes
for a pristine 4 X 4 X 4 cube of 12-disk bricks. “No redundancy in
bricks” results assume only dRAID across bricks with no RAID in
the bricks. “RAIDS in bricks” assumes a “fail-in-place” RAIDS
scheme in each brick together with N-fault redundancy across
bricks, as shown on the x-axis. The dashed line is our target of two
data-loss events per exabyte-year.
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Our studies show that for 3D, mesh-connected cubes
with failing bricks, essentially all bricks are usable for
data placement as long as 60% or more of the bricks are
operational. Below this level, we found an increase in the
number of isolated and unusable bricks and a progressive
decrease in internal bandwidth.

Although our results show that 3D systems scale well
down to about 60% live bricks, to minimize optional
overprovisioning and allow margin for dependent or
nonconstant failure rates, we expect that ISB systems can
operate down to an 80% live-brick level (corresponding to
optional 25% overprovisioning). While operating in this
region for the deferred-maintenance duration, we found
the following:

e Essentially all live bricks are usable by distributed
data redundancy schemes up to set-14.

e Because the internal average bandwidth per brick is
approximately proportional to the number of usable
bricks, the average bandwidth per brick is about 80%
of the initial, pristine cube value.

e Either multiple connections per host or an external
switch is necessary between hosts and the cube surface
bricks.

We also showed the following for 6 X 6 X 6 cubes down
to the 80% live brick level:

* Deployment of 100,000 systems could achieve a
deferred-maintenance duration of approximately 2.5
years assuming typical hardware failure rates for disks
(3% per year) and brick controller electronics (1.5%
per year).

e A 3-fault-tolerant dRAID scheme across bricks can
achieve a storage reliability target of less than two
data-loss events per exabyte-year caused by multiple
disk or brick failures.

Assuming modest overprovisioning, we demonstrated
that maintenance in 3D mesh-connected storage systems
can be deferred for several years while maintaining
adequate performance and achieving high levels of data
reliability and availability.

* Trademark, service mark, or registered trademark of
International Business Machines Corporation.

** Trademark, service mark, or registered trademark of SPARC
International, Inc. in the United States, other countries, or both.
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