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A key objective of the IBM Intelligent Bricks project is to create a
highly reliable system from commodity components. We envision
such systems to be architected for a service model called fail-in-
place or deferred maintenance. By delaying service actions,
possibly for the entire lifetime of the system, management of the
system is simplified. This paper examines the hardware reliability
and deferred maintenance of intelligent storage brick (ISB)
systems assuming a mesh-connected collection of bricks in which
each brick includes processing power, memory, networking, and
storage. On the basis of Monte Carlo simulations, we quantify the
fraction of bricks that become unusable by a distributed data
redundancy scheme due to degrading internal bandwidth and loss of
external host connectivity. We derive a system hardware reliability
expression and predict the length of time ISB systems can operate
without replacement of failed bricks. We also show via a Markov
analysis the level of fault tolerance that is required by the data
redundancy scheme to achieve a goal of less than two data loss
events per exabyte-year due to multiple failures.

Introduction

The Intelligent Bricks project investigates storage systems

based on a modular brick architecture with the objectives

of simplifying system management, providing a large

scaling range, and creating a reliable system from

commodity components. Storage servers built with a

single type of module, or brick, are attractive in terms of

simplicity, scalability, and cost. Bricks include processing,

memory, networking, and storage sufficient to run a

distributed software system that delivers higher data

reliability than that offered by the underlying hardware.

A key property of an intelligent storage brick (ISB)

system is its fail-in-place or deferred-maintenance

architecture: By over-provisioning or adding additional

bricks while operating, hardware maintenance can be

delayed for several years—possibly for the entire lifetime

of the system. The distributed system software is

responsible for automatically invoking spare disks or

bricks as components fail. The only maintenance task

users are expected to perform is to physically add bricks

to meet growing capacity requirements.

This paper presents quantitative insights into the

operating characteristics of mesh-connected ISB systems,

in which bricks communicate only with physically

adjacent bricks. We characterize such systems by the

fraction of unusable bricks due to degrading internal

bandwidth and external host connectivity, and a

reliability expression that approximates the length of time

that ISB systems can operate without replacement of

failed bricks. Our goal is that ISB systems provide

nearly 100% data availability, no ongoing hardware

maintenance actions for several years, and a very low

probability of data loss due to multiple failures. This

paper is a companion to [1], which presents the overall

ISB system and an operational 33 33 3-brick prototype.
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Related work

The approach of distributing data across independent

machines to build scalable storage systems has been

explored in DataMesh [2], FAB [3], Self-* [4], Petal [5],

and OceanStore [6]. Several companies are shipping

products based on distributed data redundancy, including

Panasas [7], Pivot3, LeftHand Networks, and Isilon.

However, none of these approaches focus on fail-in-place

or deferred maintenance. The Panasas system, while

implementing a distributed RAID5 scheme, is oriented

more toward delivering high performance. DataMesh [2]

was a two-dimensional mesh-connected storage server

that most closely resembled our ISB system and

introduced concepts of distributed redundancy, fault

isolation, and recovery. The more recent FAB project [3]

proposed to build a brick storage system from commodity

parts. The Self-* project [4] has a focus on simplifying

administration by using a brick storage system, including

mechanisms to schedule resources, classify files, and

manage replicas.

An initial analysis of overprovisioning for capacity and

bandwidth in an ISB system was first described by

Kirkpatrick et al. [8]. They conservatively defined usable

bricks as those that were connected to at least two or

three other bricks. Our approach places data on bricks

that may have only a single remaining connection to

other bricks while avoiding possible set partitioning due

to brick failures.

Brick usability in degrading cubes

A pristine cube (i.e., an initial cube with no failed bricks)

contains N bricks arranged as a two-dimensional (2D)

(h3 h) or three-dimensional (3D) (h3 h3 h) nearest-

neighbor network mesh. Each brick contributes storage,

network bandwidth, memory, and processing resources.

The bricks run system software that manages the storage

data and implements a distributed RAID (dRAID)

scheme, in which storage data is copied or encoded in

multiple chunks and each placed on a distinct brick. As

bricks progressively fail, a pristine cube slowly declines in

performance and capacity. In this section we establish

operating ranges of usable bricks in 2D and 3D mesh-

connected ISB systems.

For purposes of our analysis, we make the following

assumptions:

1. All bricks in the system are identical and contain

sufficient processing, memory, networking, and data

storage. Bricks communicate with adjacent

(neighbor) bricks in a 2D or 3D network mesh

topology.

2. A given brick is either completely functional (live) or

completely inoperative (failed). When a brick fails, it

reduces system network bandwidth as links between

it and neighbors are lost, creating ‘‘holes’’ in the

mesh.

3. Storage data is redundantly distributed across

multiple bricks to ensure a high probability of

restoring data after a failure of disks or bricks. When

there is a failure, redundant data is rebuilt by the

operating software over all surviving storage bricks.

We assume that data is randomly distributed across

all storage bricks, parameterized by the number of

bricks k over which the redundant data chunks are

distributed (its set-k, ranging from set-2 for simple

mirroring to set-14 for space-efficient or higher-fault-

tolerant codes). For example, a traditional 6-data

and 1-parity RAID5 scheme would be set-7.

Although details of distributed redundancy schemes

are not discussed here, see [9] for implementation

approaches.

4. The system is overprovisioned with bricks when it is

assembled. In realistic deployments, a user could add

bricks over time to compensate for brick losses,

undoubtedly with improved cost and capacity

attributes. Nevertheless, to simplify the analysis, we

assume that bricks are not added over time.

Although we analyze symmetrical 3D systems in this

paper, our approach can also be applied to systems with

nonsquare, rectangular cross sections. This is relevant for

actual implementations, because the system height may

be limited by floor loading or other structural

considerations.

Simulation methodology

For our analysis, we performed Monte Carlo simulations

of mesh-connected cubes with randomly selected failing

bricks. To find the number of usable bricks in a degrading

cube, we assumed that redundant data is placed via a

distributed-redundancy, set-k scheme in equal-sized

chunks across k bricks. A brick may be live but unusable

because of the set-k placement constraints described next.

For each run, the simulator started with an initial,

pristine cube and progressively failed one brick per

iteration step. For each step, the placement algorithm first

found the largest network of connected bricks with at

least two surface bricks and then constructed as many set-

ks as possible. An additional placement constraint was

that the potential failure of any brick would leave at least

k� 1 usable bricks for all of the constructed set-ks (i.e., a

set-k cannot be partitioned if any single brick fails). This

estimation process yielded a lower bound on the number

of usable bricks for a given set-k placement [10]. We also

assumed that chunks in 3D cubes are not placed together

in vertical columns of bricks that can fail due to shared
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power and cooling in the column. (We found that this had

little effect on the results.) We ran at least 300 different

simulation runs for each pristine cube size.

Figures 1(a) and 1(b) respectively show the average and

standard deviation results for degrading 63 63 6 ¼ 216

and 153 15¼ 225 brick systems. We also ran simulations

for larger and smaller cubes and found that the results

presented here generally apply to 3D cubes down to

64 bricks and 2D systems down to 16 bricks (with

set-5 placement).

Usable bricks in 3D mesh systems

Figure 1(a) plots the number of usable bricks in a

degrading 3D system of 63 63 6 ¼ 216 bricks with

distributed redundant data. It plots the percentage of live

bricks along the x-axis and the percentage of usable

bricks along the y-axis. A pristine cube corresponds to the

point in the upper right-hand corner. As a cube degrades,

the number of live bricks decreases, as illustrated from

right to left in the figure. Note that one should track the

lower end of the standard deviation error bars, not the

statistical mean.

The data shows that as live bricks decline to 60%, even

the large set-14 distributed data placement is able to use

nearly all live bricks. However, on losing more than about

50% of the bricks, there exists a noticeable fraction

(.10%) of live but unusable bricks. As can be seen in

the ‘‘bad’’ operating range, because of the increasing

variability in the standard deviation of usable bricks, we

suggest that a 3D cube not operate below approximately

60% live bricks.

(a) Mean and standard deviation of usable bricks in a degrading 6 � 6 � 6 mesh-connected cube with distributed data redundancy 
(assuming that no new bricks are added). (b) Percentage of live bricks usable in a degrading 15 � 15 mesh-connected 2D system with 
distributed data redundancy (assuming that no new bricks are added).
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Usable bricks in degrading 2D mesh systems

Figure 1(b) plots the number of usable bricks in a

degrading 2D system of 153 15 ¼ 225 bricks with

distributed redundant data. These 2D plots show that

once more than 15% of the bricks fail, the number of live

but unusable bricks rises rapidly. Note that these 2D

results are not applicable to smaller 2D systems (for

,16 bricks with smaller set-k placements). We do not

examine 2D systems further in this paper.

Network quality in degrading cubes

In the previous section we presented simulation results

for the fraction of usable bricks in a degrading cube.

In this section, we look at the performance of the

interconnection network as bricks fail in terms of total

and average random bandwidth (for 3D systems only).

These results were derived from the Monte Carlo

simulations described above and are combined in

Figure 2, where the x-axis shows the percentage of usable

bricks—not the percentage of live bricks, as in

Figures 1(a) and 1(b)—and the y-axis shows the

percentage of change in the metric as bricks fail

progressively from right to left in the figure.

Effect of brick failures on average network distance

Network distance, the number of hops required to route a

packet between two bricks via the shortest path, is a key

metric, reflecting brick-to-brick latency and internal

bandwidth. For a pristine, mesh-connected cube of

edge length h, the average network distance (i.e., the

average of the distance between two bricks taken over

all source and destination bricks in a cube) is given

by dpristine ¼ h � (1/h), derived under the assumption

that all source bricks communicate with all destination

bricks via the shortest paths. As bricks fail and the

cube degrades, the simulated brick configurations are

evaluated at each step to determine the actual average

network distance of the cube.

The average distance plot (Figure 2) increases slowly at

the beginning as bricks fail (right side) and then levels off

at about 40% usable bricks (on the left side), with an

average network distance about 40% greater than the

pristine cube.

From this plot, we conclude that the average network

distance does not appreciably increase in 3D cubes as

long as about 70% of the bricks remain usable. At 60%

usable bricks, the average network distance has increased

by about 10%.

Effect of brick failures on internal bandwidth

The total peak internal bandwidth of a cube is given by

the number of connections between all usable bricks

multiplied by the bandwidth provided by an internal

brick face. The internal bandwidth plot in Figure 2

decreases faster than the loss of usable bricks: At 80%

of usable bricks, only about 65% of the original peak

bandwidth remains, while at 60% of usable bricks, only

about 40% remains.

Although total internal bandwidth degrades faster than

failing bricks, the number of usable bricks also declines,

so the average bandwidth degradation per brick does not

decline as quickly. We plot the average internal

bandwidth per brick by dividing the total peak internal

bandwidth by the average network distance and by the

number of usable bricks. The average bandwidth per

brick plot in Figure 2 is nearly proportional to the

number of usable bricks: At 80% usable bricks, about

80% of the original average bandwidth per brick remains,

and at 60% of usable bricks, about 50% remains.

Effect of brick failures on external bandwidth

The external bandwidth of a cube is given by the number

of usable surface bricks multiplied by the bandwidth

provided by a surface brick face. The external bandwidth

plot in Figure 2 indicates that the external bandwidth of

the hosts decreases proportionally as the number of

usable bricks drops.

Figure 2 also shows that the number of usable surface

bricks in a cube is proportional to the total number of

usable bricks (labeled surface bricks/usable bricks). This

ratio remains nearly constant as bricks fail.

External host connectivity
We now examine the reliability of host connectivity to a

degrading cube. For simulations, we assumed that

external hosts can access the set of remaining usable

Figure 2

Change in several network bandwidth metrics for a degrading 
6 � 6 � 6 cube as a function of usable bricks. 
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bricks in the cube via at least one surface brick. However,

this implies that every host is connected to every brick on

the surface of the cube, which is not practical. Instead, we

need to assume that each host has multiple cube

connections, each to different surface bricks. We then

calculate the probability that the usable surface

connections to a host will not be members of the usable

bricks in the cube.

Given a cube with the number of usable surface bricks

U out of the total number of surface bricks

S ¼ 6
ffiffiffiffiffiffi
N23

p
� 12

ffiffiffiffi
N3

p
þ 8, C connections per host to the

cube, and assuming usable surface bricks proportional to

total usable bricks (as in the previous section), the

probability that a host has no connections to the usable

bricks is given by

P
host has no connection

¼ ðS� CÞ!ðS�UÞ!
ðS�U� CÞ!S! :

Using the above equation, Figure 3 plots the

probability of a host being unconnected to the usable

bricks against the number of per-host connections with

either 70% or 80% usable bricks. The graph illustrates

that, for every additional two per-host connections, the

risk of being unconnected to the usable bricks is reduced

by a factor of approximately 10. To achieve

Phost_has_connection . 0.99999 in a cube with 70% usable

bricks, the number of per-host connections should be 9 or

greater. Plotting the same graph for different cube sizes

shows that the probability depends primarily on the

number of host connections, not size.

From these results, we conclude that either an

external network switch is needed between the surface

bricks and the hosts or, alternatively, the hosts are in the

cube itself (which then moves the surface connectivity

problem to the clients of the hosts). Although it is

possible for a user to remove a host connection from a

failed brick and reconnect it to a remaining usable

surface brick, we assume that such maintenance activity

is undesirable.

System hardware reliability

A key objective for ISB systems is deferred maintenance,

i.e., that they can operate without replacement of failed

hardware for long periods of time. Failed bricks remain in

place at least until service or maintenance is performed,

and possibly until end of life of the system. Our goal is a

system that provides nearly 100% data availability with

no ongoing maintenance actions (except possibly to add

capacity). In this section, we calculate the deferred-

maintenance time period for a system as a function of the

fraction of brick failures and the reliability of disk and

brick controller electronics. We assume that a system is

fully functional and optionally overprovisioned with

bricks at its start of operation.

The reliability of a system is defined as the probability

that it operates properly over a time t. As illustrated in

Figure 4, a storage brick contains controller electronics in

series with d parallel disks that can fail independently

while leaving the brick operational. The reliability of the

independent, parallel-connected disks of a brick is the

complement of their unreliability; i.e., it is one minus the

probability that all of its disks fail over time t.

Furthermore, the reliability of the series-connected

controller electronics of a brick and its collection of

parallel disks is the product of their reliabilities [11].

Thus, the hardware reliability of a storage brick over a

time period t is given by

Figure 3

Probability of an external host not having a connection to the 
usable bricks as a function of number of per-host connections for 
the cases of 70% and 80% usable bricks in a 6 � 6 � 6 cube.
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Simplified reliability graph for a storage brick illustrating the 
reliability of the controller electronics Rcontroller(t) in series with 
the reliability of d independent disks in parallel, each with 
reliability Rdisk–d(t). 
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R
brick

ðtÞ ¼ R
controller

ðtÞ3R
disks

ðtÞ

¼ R
controller

ðtÞ3 1� F
d

disk
ðtÞ

h i

¼ R
controller

ðtÞ3 1� ½1� R
disk

ðtÞ�d
n o

:

From this equation, we observe that the parallel disks

can achieve a very high hardware reliability, even with

disks that have high rates of failure (e.g., Rdisks¼ 0.99999

for six parallel disks at 3% annual constant failure rate

each over five years). Thus, to simplify the analysis below,

we assume that the reliability of the storage brick is

approximately equal to the reliability of the controller

electronics, or Rbrick(t) ’ Rcontroller(t). Note that

Rcontroller(t) includes everything in the brick exclusive of

disks.

The system hardware reliability Rsystem(t) is defined as

the probability that a system will meet its mission to

provide a target number of live bricks and storage

capacity through the deferred-maintenance time period t.

Our approach to approximate Rsystem(t) is to use the

frequency interpretation of probability [12] and assume

ideal, identically deployed systems with no systematic

environmental influences, each with identical bricks and

disks that fail independently. The hardware reliability of

our uniform brick system can then be approximated by

the cumulative binomial distribution [11]—the

probability that M out of N independent and identical

bricks survive over time period t:

R
system

ðtÞ ¼
XN�M

i¼0

N
i

� �
R

N�i

brick
ðtÞ½1� R

brick
ðtÞ�i :

To determine the maximum deferred-maintenance time

duration t of our system, we first decide on a target value

for Rsystem(t) and then solve the binomial probability

distribution for t as a function of that target reliability,

M/N fraction of live bricks, and the predicted brick

reliability.

For setting a system reliability target, if our acceptable

goal is that one out of D deployed systems fails to achieve

a deferred-maintenance mission, we can set target

Rsystem(t)¼ 1� 1/D. For example, if Rsystem(t)¼ 0.99999,

approximately one system out of 100,000 will fail its

mission to remain above the target number of live bricks

or storage capacity over deferred-maintenance time t.

Substituting an expected, constant, and memoryless

failure rate kbrick with brick reliability RbrickðtÞ ¼ e�kbrickt

into the above binomial distribution yields

R
system

ðtÞ ¼
XN�M

i¼0

N
i

� �
e
�k

brick
tðN�iÞ

1� e
�k

brick
t

� �i

:

Using target constant values for Rsystem(t), M, N, and a

range of brick failure rates kbrick, we iteratively solve this

equation for maximum values of t.

As an example, we select a system hardware reliability

target of Rsystem(t)¼ 0.99999 for N¼ 63 63 6¼ 216 brick

systems and vary the fraction M/N of live bricks from

90% down to 60% in 10% steps, corresponding to 10% to

40% of failed bricks and optional initial overprovisioning

levels of 1/(1 � M/N), or 11%, 24%, 43%, and 67%,

respectively.

In Figure 5, we plot the brick failure rate kbrick on the

x-axis against the maximum deferred-maintenance period

t on the y-axis for these four brick failure cases. The

labeled compute brick point shows that a brick failure

rate of 2% in a system that expects 20% failed bricks

(optionally 25% overprovisioned), would allow for

deferred-maintenance system operation for nearly six

years. The labeled storage brick point in Figure 5

illustrates a 2.5-year deferred-maintenance period,

achievable with a combined controller, and a disk failure

rate of 4.5% per year, as described next.

Next we look at the hardware reliability of storage

capacity; that is, the probability that the system will have

sufficient storage disk capacity at the end of the deferred-

maintenance time period. Although all of the disks

operate in parallel and can fail independently, from the

perspective of the data stored on a disk, the brick

controller electronics are in series with each disk. Because

the reliability of series-dependent components is the

product of the component reliabilities [11], the reliability

of the storage capacity itself is Rstorage(t)¼ Rcontroller(t)3

Figure 5

Maximum maintenance-deferred durations for four cases of brick 
failure/overprovisioning in a 6 � 6 � 6 system with a system 
reliability target of 0.99999 as a function of the brick hardware 
failure rate. The four constant brick reliability curves correspond 
to 10%, 20%, 30%, and 40% brick failures at the end of the 
deferred-maintenance time period.  
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Rdisk(t). With our assumption of constant failure rate and

exponential reliability for brick electronics and disks, the

overall resulting storage capacity failure rate is kstorage ¼
kcontroller þ kdisk, per these equivalent equations:

R
storage

ðtÞ ¼ R
controller

ðtÞ3R
disk

ðtÞ;

e
�k

storage
t ¼ e

�k
controller

t
3 e

�k
disk

t
;

and

k
storage

¼ k
controller

þ k
disk

:

Substituting kstorage in place of kbrick as the failure rate

in the cumulative binomial equation, Figure 5 then shows

the expected deferred-maintenance intervals for storage

capacity. For example, if one assumes a brick controller

annual failure rate of 1.5% [mean time between failures

(MTBF) ’ 580,000 hours] and a disk failure rate of 3%
(MTBF ’ 300,000 hours), the effective hardware storage

failure rate is 1.5% þ 3%¼ 4.5% per year, yielding a

system deferred-maintenance duration of 2.5 years for

100,000 systems that expect up to 20% failed bricks

(optionally 25% overprovisioned).

System storage data reliability
The previous section examined the relationship between

brick hardware failure rates and the deferred-

maintenance duration of ISB systems before accumulated

hardware failures warrant maintenance. To implement a

high level of data reliability and to guard against

irrecoverable data loss, a distributed data redundancy

scheme is implemented by the system software across

multiple bricks. In this section we present results of

Markov models for deriving the probability that a system

will not lose data after multiple brick or disk failures,

assuming different distributed data redundancy schemes

and system performance characteristics.

Standard storage redundancy schemes store either one

or more copies of the original data or precomputed

redundancy information, such as parity. After brick or

disk failure and data erasure are detected, the system

software uses a copy to rebuild the original and

redundant data in spare, unused storage. Whether a

particular hardware or software fault results in the loss of

storage data is a function of three elements: the fault

tolerance of the redundancy coding scheme; the system

network and brick-internal bus bandwidths available to

rebuild redundant data (which determines rebuild time);

and the probability of additional hardware or software

faults during the rebuild process. Note that for

performance considerations, redundant parity

information is seldom verified on storage read operations.

We assume that if a brick or disk fails, the distributed

software will detect that erasure event, for example, when

disks return error codes or are unresponsive to multiple

retry commands, or when bricks do not respond after

multiple out-of-network reboot attempts. Our goal is a

very small probability of data loss after multiple brick or

disk failures: no more than one data-loss event in five

years for 100 one-petabyte systems, or, equivalently, only

two data-loss events per exabyte-year.

The redundancy scheme that is the easiest to implement

is to mirror or duplicate data. Although the storage write

performance is highest, the data storage efficiency is low.

There exist several redundancy schemes that guard

against multiple failures with high storage efficiency—

with the tradeoff of lower write performance. These

schemes include RAID5, RAID6, and others that tolerate

three or more failures [13, 14]. Redundancy schemes for

higher fault tolerance can be realized through several

erasure codes such as EVENODD [15], Reed–Solomon

[16], low-density parity check (LDPC) [17], and

WEAVER, a new constant-efficiency, high-fault-tolerant

erasure code [18].

Redundancy schemes can be characterized by several

parameters: number of faults tolerated, storage efficiency,

and storage write performance. These factors are

interrelated; optimizing for two usually results in

tradeoffs against the third. From the user’s perspective,

these parameters translate into the reliability of the

storage data, its cost, and overall application

performance. Thus, the choice of a particular data

redundancy scheme depends on the business cost of a

data-loss event, how much the user is willing to pay for

higher levels of fault tolerance, and the level of

application performance required. Ideally, the operating

software will allow the system administrator to make

reliability tradeoffs for the user’s data.

The fault tolerance and storage efficiency of a

particular redundancy scheme defines the minimum

number of bricks that must be usable and corresponds to

the set-k metric defined earlier. For example, an 80%
efficient, single-fault-tolerant RAID5 scheme requires a

minimum of five usable bricks for placing data and parity

chunks (set-5). A 50% efficient scheme with three data

and three parity chunks requires a set-6 placement.

When a brick or disk failure is detected, the distributed

operating software rebuilds the erased data across all of

the surviving usable bricks. Because the large aggregate

bandwidth of the entire 3D network is available for this

task, the rebuild times scale well with the size of the cube,

minimizing the exposure time to subsequent failures.

Note that data redundancy may be implemented not only

across bricks, but within bricks as well. Schemes with in-

brick redundancy assume that failing disks are not

replaced, so erased data in the brick is rebuilt across the

remaining operational disks in a brick (assuming

sufficient remaining capacity).

By constructing and analyzing Markov chain failure

models of representative systems, we compared the

efficacy of several dRAID schemes assuming typical brick
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and disk hardware failure rates. As an example, a simple

loss-of-data scenario for a redundancy scheme supporting

1-fault-tolerance1 among bricks with no in-brick

redundancy is illustrated in Figure 6.2 Loss of data due to

multiple failures occurs when either a brick controller or a

disk fails (at rates kb and kd), followed by a rebuild and

repair process (at rates lb and ld), during which time a

second brick controller or disk fails—or the more

probable case of a hard and unrecoverable error

occurring during a disk read (with probability er). The

3-fault-tolerant Markov graph is more complex,

requiring 16 states, as described in [19].

The Markov model reliability calculations for 1-, 2-,

and 3-fault-tolerant dRAID schemes for a pristine

43 43 4 cube with 12-disk bricks are presented in

Figure 7, which shows that mirrored, single-fault-tolerant

schemes such as RAID5 fall far short of our target,

coming in at about 30,000 data-loss events per exabyte-

year. Mirroring between bricks, together with single-

fault-tolerant RAID5 in the bricks, is 1,000 times

better, at about 30 data losses per exabyte-year.

At least 2-fault tolerance is required between bricks to

achieve our target of two data-loss events per exabyte-

year, using either of two schemes:

� A 2-fault-tolerant dRAID scheme across bricks,

combined with single-fault-tolerant RAID5 in the

bricks for 0.009 data-loss events per exabyte-year (or

9 data losses per zettabyte-year); or, alternatively,

� A 3-fault-tolerant dRAID scheme across bricks with
no redundancy in the bricks for 0.001 data-loss events
per exabyte-year (or one data loss per zettabyte-year).

The parameters used in these Markov model

calculations include disk MTBF ¼ 300,000 hours, brick

electronics MTBF ¼ 400,000 hours, disk read hard error

rate of 10�14, 43 43 4¼ 64 bricks, 12 disks per brick, 40-

MB/s disk bandwidth, six 800-MB/s 3D mesh network

links per brick, rebuild block size ¼ 128 KB, and 10%

bandwidth utilization for data redundancy rebuilding.

These calculations, including assumptions and sensitivity

analyses, are discussed in more detail elsewhere [19]. In

summary, we found that the probability of a data-loss

event was generally insensitive to the cube size, but

sensitive to three variables: the disk failure rate in bricks

without internal RAID, the brick controller electronics

failure rate, and the rebuild block size.

Conclusion

We quantified the effects of brick failures in modular,

mesh-connected ISB systems as gauged by capacity,

network performance, system reliability, and the

probability that a system does not lose data after multiple

disk or brick failures. Using Monte Carlo simulations, we

examined the effects of loss of usable bricks for

distributed data placement on network bandwidth in

order to recommend a fraction of usable bricks above

which systems should operate.

Figure 6
Markov failure model for a 1-fault-tolerant dRAID scheme with no 
redundancy in bricks.

0
3

1

2

N�b(1 � er)

Nder(�d � �b)

Nd�d(1 � er)

(N � 1)(d�d � �b)

(N � 1)(d�d � �b)

�b

�d

Figure 7

Comparison of predicted dRAID data-loss events per exabyte-year 
after multiple failures assuming six different fault-tolerant schemes 
for a pristine 4 � 4 � 4 cube of 12-disk bricks. “No redundancy in 
bricks” results assume only dRAID across bricks with no RAID in 
the bricks. “RAID5 in bricks” assumes a “fail-in-place” RAID5 
scheme in each brick together with N-fault redundancy across 
bricks, as shown on the x-axis. The dashed line is our target of two 
data-loss events per exabyte-year.
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1The number of disks or bricks that can fail, f, is specified by the fault tolerance of the
redundancy scheme. The Hamming distance of the redundancy scheme is f þ 1.
2Note that in the figure a transition from state 2 to 1 (a disk failure followed by its
brick controller failure before rebuild completes) is not shown, but has little effect on
the results.

C. FLEINER ET AL. IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

206



Our studies show that for 3D, mesh-connected cubes

with failing bricks, essentially all bricks are usable for

data placement as long as 60% or more of the bricks are

operational. Below this level, we found an increase in the

number of isolated and unusable bricks and a progressive

decrease in internal bandwidth.

Although our results show that 3D systems scale well

down to about 60% live bricks, to minimize optional

overprovisioning and allow margin for dependent or

nonconstant failure rates, we expect that ISB systems can

operate down to an 80% live-brick level (corresponding to

optional 25% overprovisioning). While operating in this

region for the deferred-maintenance duration, we found

the following:

� Essentially all live bricks are usable by distributed

data redundancy schemes up to set-14.
� Because the internal average bandwidth per brick is

approximately proportional to the number of usable

bricks, the average bandwidth per brick is about 80%

of the initial, pristine cube value.
� Either multiple connections per host or an external

switch is necessary between hosts and the cube surface

bricks.

We also showed the following for 63 63 6 cubes down

to the 80% live brick level:

� Deployment of 100,000 systems could achieve a

deferred-maintenance duration of approximately 2.5

years assuming typical hardware failure rates for disks

(3% per year) and brick controller electronics (1.5%

per year).
� A 3-fault-tolerant dRAID scheme across bricks can

achieve a storage reliability target of less than two

data-loss events per exabyte-year caused by multiple

disk or brick failures.

Assuming modest overprovisioning, we demonstrated

that maintenance in 3D mesh-connected storage systems

can be deferred for several years while maintaining

adequate performance and achieving high levels of data

reliability and availability.

* Trademark, service mark, or registered trademark of
International Business Machines Corporation.

** Trademark, service mark, or registered trademark of SPARC
International, Inc. in the United States, other countries, or both.
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