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Energy efficiency, performance, area, and cost are critical concerns
in designing microprocessors for embedded systems, such as
portable handheld computing and personal telecommunication
devices. This work introduces framework-based instruction set
architecture (ISA) synthesis, which reduces code size and energy
consumption by tailoring the instruction set to the requirement of
a targeted application. This is achieved by replacing the fixed
instruction and register decoding of general-purpose embedded
processors with programmable decoders that can achieve
application-specific processor performance, low energy
consumption, and smaller code size while maintaining the
fabrication advantages of a mass-produced single-chip solution.
Experimental results show that our synthesized instruction set
results in significant power reduction in the L1 instruction cache
compared with ARMt instructions.

Introduction
Power consumption is a leading design constraint in

microprocessor designs, especially in the low-end

embedded systems market [1]. In addition to requiring

costly heat removal, excessive power consumption in

embedded devices reduces battery life. Since battery

power density is increasing at a rate of only

approximately 5% per year, extending battery lifetime

must come from improvements in the energy efficiency of

system components. Memory structures are by far the

most predominant source of power dissipation. For

instance, in the Intel StrongARM** processor, caches

consume more than 40% of total chip power, with 27%

being devoted to the instruction cache (I-cache) [2]. We

address this issue by presenting a novel instruction

synthesis technique that can reduce significant I-cache

power loss.

Embedded system applications, such as cell phones,

personal digital assistants, digital cameras, MP3 players,

and mobile personal communicators, require growing

instruction throughput within limits of cost, power

dissipation, and code size. One approach is to move away

from general-purpose processors to application-specific

processors (ASPs) designed to provide only those

capabilities necessary to execute the targeted workload,

thereby achieving higher levels of performance and

efficiency than are attainable with general-purpose

processors [3, 4].

In this paper, we present the framework-based

instruction-set tuning synthesis (FITS) technique, which

enables designers to use a tunable, general-purpose

processor solution to meet code size, energy, and time-to-

market constraints with minimal impact on area. FITS

delays instruction-set synthesis until after processor

fabrication. With a fixed microarchitecture, synthesis is

performed by replacing the fixed instruction and register

access decoder with programmable decoders through

which we can optimize the instruction encoding, address

modes, operand, and immediate bit widths to match the

requirements of a targeted application. FITS is cost-

effective in three ways: It reduces the code size by

synthesizing 16-bit-length instructions with minimal

performance degradation for a full range of embedded

applications that would normally require 32-bit

instruction set architectures (ISAs); it reduces energy

consumption by deactivating those parts of the datapath

not mapped to any instructions of the synthesized

architecture; and it reduces cost and time to market for

new products by utilizing a single processor platform

across a wide range of applications while retaining the
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ability to optimize the instruction set and register

organization for the specific needs of each application.

The datapath of a FITS processor would be similar to

that of a general-purpose embedded processor such as

ARM, containing numerous functions but mapping only

a subset of those to the synthesized instruction set. This

makes it possible to encode all instructions in a short,

16-bit format while retaining all of the special-purpose

operations found in high-end 32-bit embedded

processors.

The contributions of our work are threefold. First,

we provide thorough analyses of the characteristics of

embedded applications showing that a 16-bit instruction

set is sufficient for these high-performance embedded

applications. Second, we present a novel cost-effective

16-bit instruction-set synthesis framework optimized for

modern reduced instruction set computing (RISC)

pipelined architectures. Third, we demonstrate the

effectiveness of this framework of leverage compact,

energy-efficient, high-performance designs comparable to

an ASP with substantially less engineering cost.

Related work
Kadri et al. [5] observed that energy consumption and

program execution time are very sensitive to the L1

I-cache size. One way to address this issue is to compress

the code, which can decrease the number of cache misses

because a smaller footprint of instructions is being

accessed. The IBM CodePack technique [6], included in

its PowerPC* processors [7], used Huffman tables to

compress cache blocks. Xie et al. [8] proposed a code-

compression algorithm based on arithmetic coding in

combination with a precalculated Markov model.

Because these code-compression schemes compress all

of the instructions in the program, the decompression

overhead occurs at every instruction fetch. Benini et al. [9]

and Lekatsas et al. [10] propose a dictionary-based code-

compression algorithm to compress only instructions that

appear frequently. These code-compression approaches

have the disadvantage of complicating instruction fetch

and decode logic, because instructions can differ in size.

Instruction reuse is another popular approach to

reduce code size. Procedural abstraction [11] is a compiler

optimization that identifies common code sequences and

abstracts them into procedures. The original sites of each

code sequence are replaced with function calls. A

hardware extension of this technique is to use echo

instructions [12], which indicate where the abstracted

code sequence is located and the number of instructions

to be executed. Unlike conventional procedure calls, echo

instructions do not call returns at the end of the

abstracted sequence. An advantage of this approach is

that abstracted sequences can overlap to further facilitate

code reuse. The main disadvantage of both procedural

abstraction and echo instruction is that the overhead of

executing calls and returns for each abstracted code

sequence usually slows down program execution. Spatial

locality may also be reduced, which may decrease cache

performance.

Configurable architecture is a recent trend to improve

program encoding efficiency. Configurable processors,

such as the Tensilica Xtensa** [13] and Lx [14], consist of

a basic instruction set that exists in all implementations

extended by configurable resources. Designers have the

ability to choose from optional functional units, memory

interfaces, and peripherals. Customizations are made

through user-defined instructions. The advantage is that

common code sequences may be replaced with one or a

few user-defined instructions to save code size. However,

it is extremely difficult to design a general-purpose

configurable datapath that is well balanced with respect

to speed, area, and energy.

Dual-instruction-set processors—such as the ARM

Thumb** [15] and Thumb-2 [16], MIPS Technologies

MIPS16 [17], STMicroelectronics ST100** [18], and the

ARC International ARCtangent** [19]—have been

proposed to improve memory use and power dissipation

by improving the code density. They support 16-bit and

32-bit instruction sets. The 16-bit instruction set provides

a subset of the 32-bit instruction set functionality to trade

off the execution time for smaller memory footprint and

better energy consumption. Some of the functionality

of the native 32-bit instructions must be abandoned

to obtain a more compact 16-bit encoding version.

Nevertheless, the 16-bit instructions alone cannot give the

performance desired, so the 32-bit instructions are still

needed. Instruction coalescing [20] extends the Thumb

architecture with augmenting instructions that allow the

execution of two 16-bit Thumb instructions as a single

32-bit ARM instruction. This avoids some of the

performance penalty in replacing 32-bit code with

16-bit code in a dual-width ISA.

More recently, Hines et al. [21] proposed an

instruction-packing technique to reduce code size.

Instruction packing removes instruction-fetch cost by

placing frequently occurring instructions in special

registers. The advantage is that code size is reduced

without the use of large dictionaries. The difference

between this technique and FITS is at instruction decode;

FITS uses a programmable instruction decoder to achieve

application-specific customization by allowing a subset of

instructions implemented in the microarchitecture to be

mapped to the ISA for each different application. The

advantage is that instructions are half-sized (16 bits long)

and native; there is no need to decompress or unpack an

instruction before its corresponding control signal can be

fetched from the decoder and passed down to the

pipeline.
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FITS framework
The basic philosophy of FITS is that high performance

and high code density can both be achieved if we can

match the instruction set to the requirements of a targeted

application. FITS improves code density by adopting a

16-bit instruction set instead of the conventional 32-bit

one. Because the instruction width is reduced by half, the

total code size can be reduced by half as long as what was

originally done in a single 32-bit instruction can also be

done in a single 16-bit instruction. In a later section, we

show that FITS can achieve a code size reduction close to

50%. Through application-specific customization, FITS

can achieve high performance using only 16-bit-wide

instructions. To best utilize the half-sized instruction

width, the instruction space is allocated to only those

operations that are necessary and useful to the given

application.

Methodology

A FITS processor consists of a fairly large set of

functional units, including standard arithmetic logic unit

(ALU) operations and other useful instructions (multiply/

accumulate, looping instructions, etc.). Limitations on the

functions provided are due to chip area goals, not

instruction-set size limits. This can greatly increase the

number of similar operations, such as saturating add,

because the additional circuitry to add saturation to an

add operation is minimal. Since instruction space

encoding is decoupled, it is possible to add many

instructions that may be useful to only a small subset of

applications. With a programmable decoder, FITS can

tune an ISA to include only those operations necessary

for a single application. Moreover, FITS is extremely

flexible in terms of the range of underlying

microarchitectures with which it can work—from

general-purpose digital signal processors and embedded

processors, such as ARM, to application-specific

customized datapaths. FITS provides the same level of

customization as many ASPs, trading somewhat greater

chip area requirements for elimination of the need to

synthesize a new chip for each application.

To tune a FITS processor, a FITS-aware compiler

analyzes the instruction and register requirements of an

application before instruction selection and register

allocation. We currently use profile information, but

we are exploring new optimization heuristics using

static dataflow information to perform the code

transformation. Once code generation is complete, the

compiler can specify the register organization and

instruction decoding to perform for the application. This

configuration information is then downloaded to a

nonvolatile state in a FITS processor. At this point, the

processor instruction set and register file organization is

complete. If the application is later upgraded with

increased functionality, FITS can reconfigure the

decoders to match the new requirements. In general,

FITS can transform any general-purpose machine

into an application-specific processor platform with

overprovisioned resources that can be dynamically

configured to adapt to the needs of different applications.

System design flow

The system design flow of FITS consists of five stages:

profile, synthesize, compile, configure, and execute. The

targeted application is first analyzed by the FITS profiler

to extract its characteristics. The output of the profile

stage is a list of extensive requirements analyses related to

each element that makes up an instruction set, such as

opcode field, operand field, immediate field, and register

pressure.

FITS then uses this information as a guideline to

synthesize an appropriate instruction set. Instruction

selection and encoding take place at this stage.

Instructions are selected on the basis of their referenced

frequencies. When the instruction synthesis finishes, the

definition of a complete ISA is formed. The FITS

compiler then uses the instruction-set definition to

compile the given application into a 16-bit FITS binary.

Any unused portions of the datapath are turned off to

reduce power consumption [22]. Until this point, when

the instruction synthesis is completed, everything is

performed offline. During chip initialization, the

programmable decoder is configured using the instruction

decoding and register organization specified by the

compiler. The overhead of this one-time configuration is

minimal. More details on the initialization are given in

the programmable decoder section. Once everything

completes successfully, the compact FITS code is

executed without performance degradation.

Instruction synthesis

The compiler must make tradeoffs in the instruction-

selection phase of optimization. This may include

software emulation of rarely used instructions. In almost

all cases, the instruction-set mapping includes a base

instruction set (BIS) and a supplemental instruction set

(SIS). A BIS includes instructions found across all

applications (e.g., branch, compare, add). A SIS includes

instructions required to make the instruction set Turing-

complete [23, 24]. The BIS and SIS together contain

enough functionality to simulate any instructions not

mapped for an application. BIS and SIS are generated

differently and separately during the instruction-selection

phase. For the purpose of clarity, they are separated into

two different instruction sets, and we include both of

them in all applications.

FITS also includes an application-specific instruction

set (AIS), taken from the set of functional units in the
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microarchitecture that are necessary for the application to

meet its performance goals. The AIS is determined by

evaluating the performance of various 16-bit encoding

methods. Register allocation is also designed to trade off

the register file size and encoding with register spill

frequency.

To improve the operand space utilization, FITS uses

the two-operand version of an instruction (e.g., add)

when the instruction can be used almost all of the time

with two operands without requiring an additional move,

provided there is a register space, and three operands

otherwise. FITS can mix and match these two address

modes so that some instructions have two operands and

some have three, as long as any two-operand definition

that has a three-operand use is in the part of the register

file that can be read by the three-operand instructions.

Since there is only one address mode for each instruction,

there is no need for an extra opcode bit to indicate a mode

switch.

The space requirements for different categories of

immediate operands demonstrate distinctive trends; thus,

it makes sense to partition the immediate synthesis

problem into three subcategories and perform a category-

based synthesis accordingly. FITS adopts a utilization-

based technique to encode the immediate-operand space.

It identifies the most frequently accessed immediate

operands and places them in programmable, nonvolatile

memory storage, replacing the immediate operand of the

instruction with an index into the immediate storage. This

is similar to the dictionary compression method in [25],

except that FITS can dynamically reconfigure the total

immediate field width and adjust widths of other

instruction fields accordingly to best reflect the

application requirements, and FITS targets only the

immediate fields rather than a whole instruction.

Instruction formats

FITS instructions are all 16 bits in various different

instruction formats specifying zero, one, two, or three

register fields. Generally speaking, all FITS ISAs have

four basic instruction categories: operate, memory,

branch, and trap. The details of the instruction format

may vary depending on the application. Figure 1 is an

example instruction format used for the CRC32 program

from the MiBench telecommunication benchmark group.

Operate instructions such as arithmetic, compare, and

logical are used for data processing. They use a source

register RA and a source operand OPRD and write the

result register RC. For three-operand instructions, the

OPRD field can be either a register specifier or an

immediate value, depending on the addressing mode.

For two-operand instructions, the OPRD field can be

combined with RA to specify an 8-bit zero-extended

literal. The memory instructions move data between

register RA and memory, using RB plus a displacement

indicated by the IMM field as the memory address. The

branch instructions change the program control flow to

the target specified by the sum of 12-bit DISP offset and

the program counter. Subroutine calls place the return

address in the register specified by the first four bits of the

DISP field. The trap instructions perform interrupts,

exceptions, task switching, and other complex operations

that must be done atomically.

FITS programmable decoder
In almost all modern processors, datapath control lines

for an instruction are hardwired and regulate the

behavior (e.g., reads or writes) of different parts of the

processor datapath, such as changes to the program

counter, register files, ALU selection, memories, and

other processor states. A nonvolatile read-only memory

(ROM) is usually used to store control lines associated

with each instruction. This conventional instruction

decoder scheme is illustrated in Figure 2(a). When an

instruction is decoded, its opcode is used to select the

corresponding row of control line patterns to set the

control on different parts of the processor datapath.

In contrast to this conventional hardwired fixed

decoding scheme, the instruction decoding of a FITS

processor is programmable [Figure 2(b)]. The FITS

instruction decoder consists of a standard n-to-2n binary

row decoder and a 2n-entry SRAM, where n is the opcode

width and 2n is the number of instructions specified by the

ISA. (Although DRAM has a higher density that may use

only one transistor per bit, a periodic refresh operation is

required to keep its memory contents from disappearing.

Thus, SRAM was chosen for its better performance.) For

all of the embedded applications we studied, 4-bit-wide

opcode was large enough to meet the execution

requirements, which makes the number of SRAM entries

equal to 16. The 16-entry SRAM is used to store the

instruction control information, which ordinarily would

be stored in the ROM of a conventional decoder. Since

the width of an SRAM entry is the same as that of a

Figure 1

Example of a FITS instruction format.

Operate

Branch

Trap

Memory

OP RC RA OPRD

OP DISP

NUMBEROP

OP RA RB IMM

15 12 11 8 7 4 3 0
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ROM entry, each SRAM entry is wide enough to store all

control line signals for one instruction. When the 4-bit

opcode input is inserted, one of 16 outputs is activated,

and the corresponding instruction control signals are

fetched and sent down the pipeline to set the datapath

accordingly.

By making the instruction decoder programmable,

designers can freely select a subset of predefined

microarchitecture functions that are best suited to the

targeted application. These are then mapped to the ISA

of a FITS processor by loading their corresponding

instruction control signals into the programmable

decoder. Specifically, a custom instruction set is defined

and synthesized by the compiler. At start-up, the

programmable decoder is initialized with the synthesized

instruction set. We introduced a MAP instruction and

included it in all synthesized ISA to perform this decoder

initialization. The MAP instruction updates the FITS

decoder with the instruction control information stored in

the original ROM decoder. The decoder initialization

overhead is small. The reading of the ROM decoder and

writing to the FITS decoder can be done in one cycle.

With a 4-bit opcode that specifies up to 16 instructions,

we pay a one-time cost of 16 cycles of start-up to load the

FITS programmable decoder. The ROM decoder is

accessed only during chip initialization, after which there

is no need to access it again, and it is turned off. After

initialization, all instruction decoding is handled directly

by the FITS decoder. Thus, the number of read and write

accesses to the FITS decoder for instruction decoding is

the same as that to a conventional ROM decoder.

Experimental setup
To perform a realistic and accurate cost evaluation on

programmable decoder overhead, memories used for

both the FITS programmable decoder and the regular

ROM decoder were synthesized using the ARMArtisan**

Memory Generator under worst-case process conditions.

The technology used is the Taiwan Semiconductor

Manufacturing Company (TSMC) six-layer metal

0.18-lm CMOS process. Benchmark programs from all

six categories of the MiBench embedded test suite [26] are

compiled into the ARM binary using the GNU compiler

collection tool chain. We ran full simulation on all 21

compatible programs to their completion without

skipping any instructions.

Four different processor configurations were simulated

with Sim-Panalyzer [27]. To clearly demonstrate the

effectiveness of FITS in reducing I-cache power

dissipation, we restrict the experiment to allow only a

single controlled variable: I-cache size. There are two

different I-cache sizes: 16 Kb or 8 Kb (16 Kb is the default

cache size in the SA-1100 core). For simplicity,

simulations of the original ARM code with a 16-Kb and

an 8-Kb I-cache are abbreviated as ARM16 and ARM8,

respectively; similarly, simulations of the FITS-optimized

code with a 16-Kb and an 8-Kb I-cache are abbreviated

as FITS16 and FITS8, respectively. The rest of the

microarchitecture remained the same and was modeled

after that of the Intel SA-1100 StrongARM embedded

microprocessor [28].

Results and analysis
In this section, we first present a comprehensive

evaluation of the costs and benefits of the FITS

programmable decoder in area, access latency, and power

consumption. Following the decoder analysis is a

discussion of the effectiveness of the FITS framework

at the application level using the following metrics:

instruction mapping rate, code size saving, power

reduction, and performance measurement.

FITS programmable decoder evaluation

To understand the cost of incorporating programmable

instruction decoding into a FITS processor, we compared

the area, access latency, and power consumption of fixed

and programmable decoders. To guarantee that the

worst-case performance was satisfactory, all data points

presented were taken from the slow process corner, which

assumes the maximum propagation delay, lowest

operating voltage, and highest junction temperature.

Three lines were plotted: ROM represents the data points

of a regular fixed instruction decoder; FITS represents the

Figure 2

(a) Conventional fixed instruction decoder; (b) FITS programmable 
instruction decoder.

Opcode Control
signals

ROM decoder

Opcode
Control
signals

Initialize with
MAP instructions

ROM decoder

FITS decoder

(a)

(b)
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data points of the FITS programmable instruction

decoder; and overhead represents the overhead associated

with the FITS programmable decoder. We express

overhead in percentage difference and compute it using

the formula

overhead ¼ FITS� ROM

ROM
3 100%:

A positive overhead indicates additional costs for using

the FITS decoder; a negative overhead indicates

achievable savings using the FITS decoder.

Footprint area analysis

Figure 3(a) shows the footprint area, in square

micrometers (lm2), of the fixed decoder and the

programmable FITS decoder. The footprint area shown

includes the core area, power ring, and pin-spacing areas.

The area of the FITS decoder is computed by adding the

area of the 16-entry SRAM and the area of the ROM

used for initialization. A 16 3 32 SRAM is less than

47K lm2 in the TSMC 0.18-lm process. This additional

area is very small compared with the total chip area,

which generally ranges from tens to hundreds of square

millimeters (mm2) under the same process technology.

Moreover, this area overhead is scaling down as the

number of instructions supported increases. As shown

in the figure, the overhead starts out at 98% for 64

instructions and drops to only 23% for 4,096 instructions.

This is because the size of the SRAM can be kept the

same although the size of the ROM decoder must increase

along with the increasing number of instructions.

Access time analysis

Figure 3(b) shows the access time, in nanoseconds (ns), of

the fixed decoder and the programmable FITS decoder.

Access time is defined as the slowest possible input-to-

output transition for accessing a critical path. The access

time overhead for using the FITS programmable decoder

is small: The worst case has less than 10% overhead when

the ROM decoder is small (64 words only). Moreover,

this access time overhead decreases to less than 3% when

the number of instructions reaches 1,024, after which

accessing the FITS programmable decoder becomes

faster than accessing the ROM decoder: 4% faster for

2,048 instruction words and 13% faster for 4,096

instruction words. Most important of all, with the

processor clock frequency targeted at 100 MHz, all read

and write accesses to the FITS programmable decoder

can easily be finished within one cycle, even under the

worst-case scenario.

Comparisons between fixed and programmable decoders: (a) footprint area and (b) access time; (c) dynamic and (d) leakage power 
consumption.

Figure 3
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Power consumption analysis

The dynamic and leakage power consumption, in

milliwatts (mW), of the fixed decoder and the

programmable FITS decoder are shown in Figures 3(c)

and 3(d), respectively. The dynamic ac current assumes

50% read and write operations, where all addresses and

50% of the input and output pins switch. The leakage

power assumes inactive memory cells with all input and

output pins being held stable. The power consumption of

the FITS programmable decoder is less than that of a

regular fixed decoder, as indicated by negative overhead

lines in the figure. As depicted in Figure 3(c), 53% to

66% of dynamic power savings can be achieved by the

FITS decoder as the number of instructions supported

increases from 64 to 4,096. Similarly, a 20% to 90%

leakage power savings can be achieved by the FITS

decoder as the number of instructions supported increases

from 64 to 4,096, as shown in Figure 3(d). These power

savings are due to the fact that the FITS decoder accesses

only the small 16-entry SRAM during program

execution, whereas a regular fixed decoder must access a

much larger ROM that consumes more power to operate.

In the FITS decoder, the ROM is powered off after

initialization, so there is no power overhead associated

with it.

Code size benefits

Figure 4 compares the program code density achieved by

different code generations: ARM, THUMB, and FITS.

(For the purpose of easy assimilation, all test result

figures that follow this section were reduced to show only

the averages.) The FITS bars represent the program code

size after the ARM-to-FITS translation. The ARM and

THUMB bars respectively represent the program code

size compiled in pure 32-bit ARM and 16-bit THUMB.

The ARM–THUMB intermixing result was omitted

because FITS is a pure 16-bit instruction synthesis

technique, and ARM–THUMB intermixing does not

yield better code density than that of THUMB alone. We

normalized everything with respect to ARM in order to

show the code size savings achieved by THUMB and

FITS in terms of percentages. On average, THUMB

reduced approximately 33% of ARM code across the

entire benchmark suite. On the other hand, FITS was

able to reduce the ARM code by almost half—on

average, 47% of the total ARM segment could be

eliminated. THUMB could not achieve the code size

savings of FITS because THUMB is not able to utilize its

16-bit instruction fields as efficiently owing to its general-

purpose nature. Thus, for an application that has several

performance-critical regions, many 32-bit ARM

Code size footprint.

Figure 4
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instructions would still have to remain in the program to

handle the expensive processing.

Like most general-purpose ISAs, THUMB supports a

wide range of instructions in order to be able to specify

many applications. However, this general-purpose

capability requires more opcode space and reduces the

size of the other instruction fields, such as register and

immediate operands. When the register operand width

is reduced, the processor can specify fewer architect

registers, thus increasing the register pressure. Higher

register pressure causes more spillings, thus increasing the

number of memory references in the program. For this

reason, THUMB is not able to achieve the level of code

size savings provided by FITS.

As illustrated by the performance results given later,

the code size saving achieved by FITS does not come at

the expense of lost performance, for two reasons. First

and foremost, FITS aggressively optimized and adopted

the utilization-driven synthesis heuristic, making it very

effective in determining the target instructions for

synthesis without any noticeable performance loss.

Second, the resultant half-sized FITS code effectively

makes the L1 I-cache almost twice as large as before.

Thus, the FITS execution core was able to take advantage

of the higher spatial locality exhibited to greatly raise the

cache hit rate, thus increasing the performance.

Power dissipation benefits

To reduce overall chip power dissipation, we focused on

attacking I-cache power consumption. We show the

breakdown of I-cache power for each of the four

processors under simulation. Next, we present the power

reduction that FITS is able to achieve in each of the

switching, internal, leakage, and peak powers. The

reduction of each component power is then translated

into the total I-cache power reduction. Finally, the

I-cache power saving is mapped into the corresponding

overall chip-wide power saving.

We modeled dynamic, static, and peak power

dissipation. Dynamic power was further broken down

into switching power and internal power to facilitate

monitoring power reduction. Switching power is the

power consumed by the output driver and the output load

capacitance of the I-cache microarchitecture. Internal

power is the dynamic power of the I-cache

microarchitecture itself.

I-cache power breakdown

From the I-cache power breakdown shown in Figure 5(a),

the following power use trends are noticed. First, the total

I-cache power is dominated by the dynamic power (i.e.,

the switching power plus the internal power). This is

expected because the SA-1100 is a relatively low-end

embedded microprocessor built with a less aggressive

fabrication technology of 0.35 lm, so we would not

encounter the same level of current leakage found on

designs fabricated with deeper submicron technology.

Second, as the size of the I-cache increases, the

percentage of switching power goes down, the percentage

of internal power goes up, and the percentage of leakage

power remains approximately the same; this is because a

larger cache comprises more gates and thus more internal

and leakage power. In addition, given the same cache

block size and associativity, a larger cache would yield a

better hit rate, which means fewer gate switches and

reduced switching power.

Figure 5

Power dissipation benefits: (a) I-cache power breakdown; (b) 
I-cache power savings; (c) chip-wide power savings.
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Third, with the I-cache size being equal, FITS uses a

lower percentage of switching power, a higher percentage

of internal power, and approximately the same

percentage of leakage. The percentage of leakage power

remains unchanged because there are equal numbers of

gates in caches of the same size. The percentage of

switching power is reduced because of the increased cache

hit rate of FITS-sized code. The cache size is the same, so

the percentage of internal power is increased because of

the normalization effect after accounting for the

reduction of switching power.

Fourth, if we compare the percentage of switching

power between ARM8 and ARM16 and between ARM8

and FITS8, we find that applying the FITS optimization

reduces more switching percentage than simply doubling

the size of the cache. This speculation is confirmed by the

I-cache power savings analysis that follows.

I-cache power saving

Figure 5(b) shows power reduction by FITS in each power

component. As speculated in the power breakdown

section, FITS-sized codes benefit greatly from the

reduction of switching power. This is the power saving

that clearly distinguishes a FITS-optimized cache from a

normal ARM cache. Both FITS16 and FITS8 save

approximately 50% cache switching power, while ARM8

saves virtually none. The switching power saving of FITS

results from a better cache hit rate due to the better

spatial locality exhibited by FITS-sized codes. On the

other hand, ARM8 consumed as much overall switching

power as the baseline 16-Kb cache, indicating that the

overall gate switching frequencies of the two caches are

essentially the same.

For the internal and leakage powers, the two half-sized

caches, FITS8 and ARM8, demonstrate nontrivial

savings in most applications. This is because both internal

and leakage powers are directly proportional to the

number of gates given the same operational period.

The peak power consumption depends on both the

switching frequency and the number of logic gates;

therefore, we can observe savings from all three cache

schemes: on average, 46% for FITS16, 63% for FITS8,

and 31% for ARM8. Because peak power is sensitive to

factors that affect both the dynamic and the static powers,

the greater peak power savings of FITS16 and FITS8

indicate that FITS is a well-balanced, low-power

technique for I-cache.

This claim is supported by the overall I-cache power

consumption results, which combine all of the component

savings above. FITS8 gives the highest (47%) average

total I-cache power savings, followed by ARM8 and

FITS16, which save 27% and 18%, respectively.

To see how effectively FITS reduces the total chip

power, Figure 5(c) depicts how these I-cache power

savings would be translated into the total chip power

savings. FITS16 and FITS8 respectively save, on average,

approximately 10% and 15% chip-wide switching power,

while ARM8 saves 5%. For the chip-wide internal power

savings, FITS16 and FITS8 respectively save, on average,

approximately 5% and 16%, and ARM8 saves 10%.

FITS16 and FITS8 respectively save, on average,

approximately 5% to 6% of leakage power chip-wide,

while ARM8 saves 2%. Peak power savings can be as high

as 6% for FITS16, 12% for FITS8, and 10% for ARM8.

The total power savings is 15% for FITS8, 8% for ARM8,

and 7% for FITS16.

Performance benefits

To demonstrate that FITS does not save power at the

expense of performance, we present results of both

I-cache miss rates and instructions per cycle (IPC). The

cache miss rate analysis helps to explain why simply

reducing the cache size of the default ARM cache does

not reduce power by much. The IPC analysis shows

overall system-wide performance between FITS and

ARM. Combining both results leads to the conclusion

that FITS is able to reduce power without compromising

performance.

Cache miss rate

Figure 6(a) shows the I-cache miss rates for all four

processor configurations. The miss rate was measured as

misses per one million cache accesses, since most of the

benchmarks are easily cacheable because of their small

code size footprint. FITS surpassed ARM with greatly

improved cache performance: The half-sized FITS8

caches have smaller miss rates than the normal full-sized

ARM16 caches because of the better spatial locality

exhibited by FITS-sized code. Since the instructions are

half the size, the cache lines can be viewed as being twice

the size (this operates much like a next-line prefetch on

cache miss) because twice the number of instructions are

brought into the cache (i.e., fewer compulsory misses and,

for displaced lines, fewer conflict misses to restore the

instructions). Moreover, because embedded applications

are typically stream-based, most branches in MiBench are

easily predictable. Therefore, this instruction ‘‘packing’’

effect makes FITS caches seem virtually twice as large as

their true physical size.

Instruction per cycle (IPC) rate

Figure 6(b) shows the IPC performance measures for

all four processor configurations. Overall, the IPC

performances for all four configurations are satisfactory

because of the easy predictability and cacheability of

MiBench programs. As expected, the IPC performance of

FITS codes is comparable to that of native ARM codes.

It is interesting to observe that an 8-Kb FITS cache could
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achieve roughly the same IPC as a 16-Kb ARM cache.

We expect FITS to be performance-neutral, but we

consistently find a small improvement, and in some

applications, a large improvement. This is due to

increased I-cache locality exhibited from packed FITS

code.

Conclusions
The goal of this research is to argue for a new approach

to the design of a class of embedded processors that saves

power and energy and reduces code size while

maintaining satisfactory performance. This research

shows that waiting until after chip fabrication to map the

instruction set to the microarchitecture makes it possible

to match the dense coding capabilities of ASP while

retaining the fabrication advantages of a single-chip

design. This delayed ISA mapping is achieved by using a

programmable instruction decoder that has minimum

overhead in area and access time while reducing both

dynamic and leakage power consumption. Using the

FITS design methodology enables a cost-effective 16-bit

ISA synthesis solution while reducing design time and

complexity; this is accomplished by decoupling the

microarchitectural enhancements available onchip from

the encoding issues of mapping to the subset of

instructions required by a single application. Our analysis

shows that for a wide range of embedded applications, it

is feasible to utilize a 16-bit instruction format, but each

application may require a different selection of operations

and storage components. By delaying instruction

assignment and register file organization until a program

is loaded, it is possible to aggressively design the

microarchitecture, including operations that are only

occasionally useful, without the code bloat that would

occur on a conventional machine.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of ARM
Ltd., Tensilica, Inc., STMicroelectronics, or ARC International
in the United States, other countries, or both.
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