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Energy efficiency, performance, area, and cost are critical concerns
in designing microprocessors for embedded systems, such as
portable handheld computing and personal telecommunication
devices. This work introduces framework-based instruction set
architecture (ISA) synthesis, which reduces code size and energy
consumption by tailoring the instruction set to the requirement of
a targeted application. This is achieved by replacing the fixed
instruction and register decoding of general-purpose embedded
processors with programmable decoders that can achieve
application-specific processor performance, low energy
consumption, and smaller code size while maintaining the
fabrication advantages of a mass-produced single-chip solution.
Experimental results show that our synthesized instruction set
results in significant power reduction in the LI instruction cache

compared with ARM® instructions.

Introduction

Power consumption is a leading design constraint in
microprocessor designs, especially in the low-end
embedded systems market [1]. In addition to requiring
costly heat removal, excessive power consumption in
embedded devices reduces battery life. Since battery
power density is increasing at a rate of only
approximately 5% per year, extending battery lifetime
must come from improvements in the energy efficiency of
system components. Memory structures are by far the
most predominant source of power dissipation. For
instance, in the Intel StrongARM** processor, caches
consume more than 40% of total chip power, with 27%
being devoted to the instruction cache (I-cache) [2]. We
address this issue by presenting a novel instruction
synthesis technique that can reduce significant I-cache
power loss.

Embedded system applications, such as cell phones,
personal digital assistants, digital cameras, MP3 players,
and mobile personal communicators, require growing
instruction throughput within limits of cost, power
dissipation, and code size. One approach is to move away
from general-purpose processors to application-specific
processors (ASPs) designed to provide only those
capabilities necessary to execute the targeted workload,

thereby achieving higher levels of performance and
efficiency than are attainable with general-purpose
processors [3, 4].

In this paper, we present the framework-based
instruction-set tuning synthesis (FITS) technique, which
enables designers to use a tunable, general-purpose
processor solution to meet code size, energy, and time-to-
market constraints with minimal impact on area. FITS
delays instruction-set synthesis until after processor
fabrication. With a fixed microarchitecture, synthesis is
performed by replacing the fixed instruction and register
access decoder with programmable decoders through
which we can optimize the instruction encoding, address
modes, operand, and immediate bit widths to match the
requirements of a targeted application. FITS is cost-
effective in three ways: It reduces the code size by
synthesizing 16-bit-length instructions with minimal
performance degradation for a full range of embedded
applications that would normally require 32-bit
instruction set architectures (ISAs); it reduces energy
consumption by deactivating those parts of the datapath
not mapped to any instructions of the synthesized
architecture; and it reduces cost and time to market for
new products by utilizing a single processor platform
across a wide range of applications while retaining the
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ability to optimize the instruction set and register
organization for the specific needs of each application.
The datapath of a FITS processor would be similar to
that of a general-purpose embedded processor such as
ARM, containing numerous functions but mapping only
a subset of those to the synthesized instruction set. This
makes it possible to encode all instructions in a short,
16-bit format while retaining all of the special-purpose
operations found in high-end 32-bit embedded
processors.

The contributions of our work are threefold. First,
we provide thorough analyses of the characteristics of
embedded applications showing that a 16-bit instruction
set is sufficient for these high-performance embedded
applications. Second, we present a novel cost-effective
16-bit instruction-set synthesis framework optimized for
modern reduced instruction set computing (RISC)
pipelined architectures. Third, we demonstrate the
effectiveness of this framework of leverage compact,
energy-efficient, high-performance designs comparable to
an ASP with substantially less engineering cost.

Related work
Kadri et al. [5] observed that energy consumption and
program execution time are very sensitive to the L1
I-cache size. One way to address this issue is to compress
the code, which can decrease the number of cache misses
because a smaller footprint of instructions is being
accessed. The IBM CodePack technique [6], included in
its PowerPC* processors [7], used Huffman tables to
compress cache blocks. Xie et al. [8] proposed a code-
compression algorithm based on arithmetic coding in
combination with a precalculated Markov model.
Because these code-compression schemes compress all
of the instructions in the program, the decompression
overhead occurs at every instruction fetch. Benini et al. [9]
and Lekatsas et al. [10] propose a dictionary-based code-
compression algorithm to compress only instructions that
appear frequently. These code-compression approaches
have the disadvantage of complicating instruction fetch
and decode logic, because instructions can differ in size.
Instruction reuse is another popular approach to
reduce code size. Procedural abstraction [11] is a compiler
optimization that identifies common code sequences and
abstracts them into procedures. The original sites of each
code sequence are replaced with function calls. A
hardware extension of this technique is to use echo
instructions [12], which indicate where the abstracted
code sequence is located and the number of instructions
to be executed. Unlike conventional procedure calls, echo
instructions do not call returns at the end of the
abstracted sequence. An advantage of this approach is
that abstracted sequences can overlap to further facilitate
code reuse. The main disadvantage of both procedural
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abstraction and echo instruction is that the overhead of
executing calls and returns for each abstracted code
sequence usually slows down program execution. Spatial
locality may also be reduced, which may decrease cache
performance.

Configurable architecture is a recent trend to improve
program encoding efficiency. Configurable processors,
such as the Tensilica Xtensa™* [13] and Lx [14], consist of
a basic instruction set that exists in all implementations
extended by configurable resources. Designers have the
ability to choose from optional functional units, memory
interfaces, and peripherals. Customizations are made
through user-defined instructions. The advantage is that
common code sequences may be replaced with one or a
few user-defined instructions to save code size. However,
it is extremely difficult to design a general-purpose
configurable datapath that is well balanced with respect
to speed, area, and energy.

Dual-instruction-set processors—such as the ARM
Thumb** [15] and Thumb-2 [16], MIPS Technologies
MIPS16 [17], STMicroelectronics ST100** [18], and the
ARC International ARCtangent™* [19]—have been
proposed to improve memory use and power dissipation
by improving the code density. They support 16-bit and
32-bit instruction sets. The 16-bit instruction set provides
a subset of the 32-bit instruction set functionality to trade
off the execution time for smaller memory footprint and
better energy consumption. Some of the functionality
of the native 32-bit instructions must be abandoned
to obtain a more compact 16-bit encoding version.
Nevertheless, the 16-bit instructions alone cannot give the
performance desired, so the 32-bit instructions are still
needed. Instruction coalescing [20] extends the Thumb
architecture with augmenting instructions that allow the
execution of two 16-bit Thumb instructions as a single
32-bit ARM instruction. This avoids some of the
performance penalty in replacing 32-bit code with
16-bit code in a dual-width ISA.

More recently, Hines et al. [21] proposed an
instruction-packing technique to reduce code size.
Instruction packing removes instruction-fetch cost by
placing frequently occurring instructions in special
registers. The advantage is that code size is reduced
without the use of large dictionaries. The difference
between this technique and FITS is at instruction decode;
FITS uses a programmable instruction decoder to achieve
application-specific customization by allowing a subset of
instructions implemented in the microarchitecture to be
mapped to the ISA for each different application. The
advantage is that instructions are half-sized (16 bits long)
and native; there is no need to decompress or unpack an
instruction before its corresponding control signal can be
fetched from the decoder and passed down to the
pipeline.
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FITS framework

The basic philosophy of FITS is that high performance
and high code density can both be achieved if we can
match the instruction set to the requirements of a targeted
application. FITS improves code density by adopting a
16-bit instruction set instead of the conventional 32-bit
one. Because the instruction width is reduced by half, the
total code size can be reduced by half as long as what was
originally done in a single 32-bit instruction can also be
done in a single 16-bit instruction. In a later section, we
show that FITS can achieve a code size reduction close to
50%. Through application-specific customization, FITS
can achieve high performance using only 16-bit-wide
instructions. To best utilize the half-sized instruction
width, the instruction space is allocated to only those
operations that are necessary and useful to the given
application.

Methodology

A FITS processor consists of a fairly large set of
functional units, including standard arithmetic logic unit
(ALU) operations and other useful instructions (multiply/
accumulate, looping instructions, etc.). Limitations on the
functions provided are due to chip area goals, not
instruction-set size limits. This can greatly increase the
number of similar operations, such as saturating add,
because the additional circuitry to add saturation to an
add operation is minimal. Since instruction space
encoding is decoupled, it is possible to add many
instructions that may be useful to only a small subset of
applications. With a programmable decoder, FITS can
tune an ISA to include only those operations necessary
for a single application. Moreover, FITS is extremely
flexible in terms of the range of underlying
microarchitectures with which it can work—from
general-purpose digital signal processors and embedded
processors, such as ARM, to application-specific
customized datapaths. FITS provides the same level of
customization as many ASPs, trading somewhat greater
chip area requirements for elimination of the need to
synthesize a new chip for each application.

To tune a FITS processor, a FITS-aware compiler
analyzes the instruction and register requirements of an
application before instruction selection and register
allocation. We currently use profile information, but
we are exploring new optimization heuristics using
static dataflow information to perform the code
transformation. Once code generation is complete, the
compiler can specify the register organization and
instruction decoding to perform for the application. This
configuration information is then downloaded to a
nonvolatile state in a FITS processor. At this point, the
processor instruction set and register file organization is
complete. If the application is later upgraded with
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increased functionality, FITS can reconfigure the
decoders to match the new requirements. In general,
FITS can transform any general-purpose machine

into an application-specific processor platform with
overprovisioned resources that can be dynamically
configured to adapt to the needs of different applications.

System design flow

The system design flow of FITS consists of five stages:
profile, synthesize, compile, configure, and execute. The
targeted application is first analyzed by the FITS profiler
to extract its characteristics. The output of the profile
stage is a list of extensive requirements analyses related to
each element that makes up an instruction set, such as
opcode field, operand field, immediate field, and register
pressure.

FITS then uses this information as a guideline to
synthesize an appropriate instruction set. Instruction
selection and encoding take place at this stage.
Instructions are selected on the basis of their referenced
frequencies. When the instruction synthesis finishes, the
definition of a complete ISA is formed. The FITS
compiler then uses the instruction-set definition to
compile the given application into a 16-bit FITS binary.
Any unused portions of the datapath are turned off to
reduce power consumption [22]. Until this point, when
the instruction synthesis is completed, everything is
performed offline. During chip initialization, the
programmable decoder is configured using the instruction
decoding and register organization specified by the
compiler. The overhead of this one-time configuration is
minimal. More details on the initialization are given in
the programmable decoder section. Once everything
completes successfully, the compact FITS code is
executed without performance degradation.

Instruction synthesis
The compiler must make tradeoffs in the instruction-
selection phase of optimization. This may include
software emulation of rarely used instructions. In almost
all cases, the instruction-set mapping includes a base
instruction set (BIS) and a supplemental instruction set
(SIS). A BIS includes instructions found across all
applications (e.g., branch, compare, add). A SIS includes
instructions required to make the instruction set Turing-
complete [23, 24]. The BIS and SIS together contain
enough functionality to simulate any instructions not
mapped for an application. BIS and SIS are generated
differently and separately during the instruction-selection
phase. For the purpose of clarity, they are separated into
two different instruction sets, and we include both of
them in all applications.

FITS also includes an application-specific instruction
set (AIS), taken from the set of functional units in the
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15 12 11 87 43 0
Operate opP RC RA OPRD
Memory | OP RA RB IMM
Branch OP DISP
Trap OP NUMBER

Example of a FITS instruction format.

microarchitecture that are necessary for the application to
meet its performance goals. The AIS is determined by
evaluating the performance of various 16-bit encoding
methods. Register allocation is also designed to trade off
the register file size and encoding with register spill
frequency.

To improve the operand space utilization, FITS uses
the two-operand version of an instruction (e.g., add)
when the instruction can be used almost all of the time
with two operands without requiring an additional move,
provided there is a register space, and three operands
otherwise. FITS can mix and match these two address
modes so that some instructions have two operands and
some have three, as long as any two-operand definition
that has a three-operand use is in the part of the register
file that can be read by the three-operand instructions.
Since there is only one address mode for each instruction,
there is no need for an extra opcode bit to indicate a mode
switch.

The space requirements for different categories of
immediate operands demonstrate distinctive trends; thus,
it makes sense to partition the immediate synthesis
problem into three subcategories and perform a category-
based synthesis accordingly. FITS adopts a utilization-
based technique to encode the immediate-operand space.
It identifies the most frequently accessed immediate
operands and places them in programmable, nonvolatile
memory storage, replacing the immediate operand of the
instruction with an index into the immediate storage. This
is similar to the dictionary compression method in [25],
except that FITS can dynamically reconfigure the total
immediate field width and adjust widths of other
instruction fields accordingly to best reflect the
application requirements, and FITS targets only the
immediate fields rather than a whole instruction.

Instruction formats

FITS instructions are all 16 bits in various different
instruction formats specifying zero, one, two, or three
register fields. Generally speaking, all FITS ISAs have
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four basic instruction categories: operate, memory,
branch, and trap. The details of the instruction format
may vary depending on the application. Figure 1 is an
example instruction format used for the CRC32 program
from the MiBench telecommunication benchmark group.

Operate instructions such as arithmetic, compare, and
logical are used for data processing. They use a source
register RA and a source operand OPRD and write the
result register RC. For three-operand instructions, the
OPRD field can be either a register specifier or an
immediate value, depending on the addressing mode.
For two-operand instructions, the OPRD field can be
combined with RA to specify an 8-bit zero-extended
literal. The memory instructions move data between
register RA and memory, using RB plus a displacement
indicated by the IMM field as the memory address. The
branch instructions change the program control flow to
the target specified by the sum of 12-bit DISP offset and
the program counter. Subroutine calls place the return
address in the register specified by the first four bits of the
DISP field. The trap instructions perform interrupts,
exceptions, task switching, and other complex operations
that must be done atomically.

FITS programmable decoder

In almost all modern processors, datapath control lines
for an instruction are hardwired and regulate the
behavior (e.g., reads or writes) of different parts of the
processor datapath, such as changes to the program
counter, register files, ALU selection, memories, and
other processor states. A nonvolatile read-only memory
(ROM) is usually used to store control lines associated
with each instruction. This conventional instruction
decoder scheme is illustrated in Figure 2(a). When an
instruction is decoded, its opcode is used to select the
corresponding row of control line patterns to set the
control on different parts of the processor datapath.

In contrast to this conventional hardwired fixed
decoding scheme, the instruction decoding of a FITS
processor is programmable [Figure 2(b)]. The FITS
instruction decoder consists of a standard n-to-2" binary
row decoder and a 2"-entry SRAM, where 7 is the opcode
width and 2" is the number of instructions specified by the
ISA. (Although DRAM has a higher density that may use
only one transistor per bit, a periodic refresh operation is
required to keep its memory contents from disappearing.
Thus, SRAM was chosen for its better performance.) For
all of the embedded applications we studied, 4-bit-wide
opcode was large enough to meet the execution
requirements, which makes the number of SRAM entries
equal to 16. The 16-entry SRAM is used to store the
instruction control information, which ordinarily would
be stored in the ROM of a conventional decoder. Since
the width of an SRAM entry is the same as that of a
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ROM entry, each SRAM entry is wide enough to store all
control line signals for one instruction. When the 4-bit
opcode input is inserted, one of 16 outputs is activated,
and the corresponding instruction control signals are
fetched and sent down the pipeline to set the datapath
accordingly.

By making the instruction decoder programmable,
designers can freely select a subset of predefined
microarchitecture functions that are best suited to the
targeted application. These are then mapped to the ISA
of a FITS processor by loading their corresponding
instruction control signals into the programmable
decoder. Specifically, a custom instruction set is defined
and synthesized by the compiler. At start-up, the
programmable decoder is initialized with the synthesized
instruction set. We introduced a MAP instruction and
included it in all synthesized ISA to perform this decoder
initialization. The MAP instruction updates the FITS
decoder with the instruction control information stored in
the original ROM decoder. The decoder initialization
overhead is small. The reading of the ROM decoder and
writing to the FITS decoder can be done in one cycle.
With a 4-bit opcode that specifies up to 16 instructions,
we pay a one-time cost of 16 cycles of start-up to load the
FITS programmable decoder. The ROM decoder is
accessed only during chip initialization, after which there
is no need to access it again, and it is turned off. After
initialization, all instruction decoding is handled directly
by the FITS decoder. Thus, the number of read and write
accesses to the FITS decoder for instruction decoding is
the same as that to a conventional ROM decoder.

Experimental setup

To perform a realistic and accurate cost evaluation on
programmable decoder overhead, memories used for
both the FITS programmable decoder and the regular
ROM decoder were synthesized using the ARM Artisan™*
Memory Generator under worst-case process conditions.
The technology used is the Taiwan Semiconductor
Manufacturing Company (TSMC) six-layer metal
0.18-um CMOS process. Benchmark programs from all
six categories of the MiBench embedded test suite [26] are
compiled into the ARM binary using the GNU compiler
collection tool chain. We ran full simulation on all 21
compatible programs to their completion without
skipping any instructions.

Four different processor configurations were simulated
with Sim-Panalyzer [27]. To clearly demonstrate the
effectiveness of FITS in reducing I-cache power
dissipation, we restrict the experiment to allow only a
single controlled variable: I-cache size. There are two
different I-cache sizes: 16 Kb or 8 Kb (16 Kb is the default
cache size in the SA-1100 core). For simplicity,
simulations of the original ARM code with a 16-Kb and
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(2)
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<" Initialize with
. i’ MAP instructions
Oncods sl > Control
pcode FITS decoder T signals

(b)

(a) Conventional fixed instruction decoder; (b) FITS programmable
instruction decoder.

an 8-Kb I-cache are abbreviated as ARM16 and ARMS,
respectively; similarly, simulations of the FITS-optimized
code with a 16-Kb and an 8-Kb I-cache are abbreviated
as FITS16 and FITSS, respectively. The rest of the
microarchitecture remained the same and was modeled
after that of the Intel SA-1100 StrongARM embedded
microprocessor [28].

Results and analysis

In this section, we first present a comprehensive
evaluation of the costs and benefits of the FITS
programmable decoder in area, access latency, and power
consumption. Following the decoder analysis is a
discussion of the effectiveness of the FITS framework

at the application level using the following metrics:
instruction mapping rate, code size saving, power
reduction, and performance measurement.

FITS programmable decoder evaluation

To understand the cost of incorporating programmable
instruction decoding into a FITS processor, we compared
the area, access latency, and power consumption of fixed
and programmable decoders. To guarantee that the
worst-case performance was satisfactory, all data points
presented were taken from the slow process corner, which
assumes the maximum propagation delay, lowest
operating voltage, and highest junction temperature.
Three lines were plotted: ROM represents the data points
of a regular fixed instruction decoder; FITS represents the
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data points of the FITS programmable instruction
decoder; and overhead represents the overhead associated
with the FITS programmable decoder. We express
overhead in percentage difference and compute it using
the formula

FITS — ROM

X .
ROM 100%

overhead =

A positive overhead indicates additional costs for using
the FITS decoder; a negative overhead indicates
achievable savings using the FITS decoder.

Footprint area analysis

Figure 3(a) shows the footprint area, in square
micrometers (um?), of the fixed decoder and the
programmable FITS decoder. The footprint area shown
includes the core area, power ring, and pin-spacing areas.
The area of the FITS decoder is computed by adding the
area of the 16-entry SRAM and the area of the ROM
used for initialization. A 16 X 32 SRAM is less than
47K um? in the TSMC 0.18-um process. This additional
area is very small compared with the total chip area,
which generally ranges from tens to hundreds of square
millimeters (mm?) under the same process technology.
Moreover, this area overhead is scaling down as the
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number of instructions supported increases. As shown
in the figure, the overhead starts out at 98% for 64
instructions and drops to only 23% for 4,096 instructions.
This is because the size of the SRAM can be kept the
same although the size of the ROM decoder must increase
along with the increasing number of instructions.

Access time analysis

Figure 3(b) shows the access time, in nanoseconds (ns), of
the fixed decoder and the programmable FITS decoder.
Access time is defined as the slowest possible input-to-
output transition for accessing a critical path. The access
time overhead for using the FITS programmable decoder
is small: The worst case has less than 10% overhead when
the ROM decoder is small (64 words only). Moreover,
this access time overhead decreases to less than 3% when
the number of instructions reaches 1,024, after which
accessing the FITS programmable decoder becomes
faster than accessing the ROM decoder: 4% faster for
2,048 instruction words and 13% faster for 4,096
instruction words. Most important of all, with the
processor clock frequency targeted at 100 MHz, all read
and write accesses to the FITS programmable decoder
can easily be finished within one cycle, even under the
worst-case scenario.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



O ARM ] THUMB [ FITS

09
0.8 M

0.6 [
05
041

Normalized code size

03
02
0.1

bitcount
quicksort
susan.corners
susan.edges
susan.smoothing
jpeg.decode
jpeg.encode
typeset

Auto Consumer network Office

Code size footprint.

Power consumption analysis

The dynamic and leakage power consumption, in
milliwatts (mW), of the fixed decoder and the
programmable FITS decoder are shown in Figures 3(c)
and 3(d), respectively. The dynamic ac current assumes
50% read and write operations, where all addresses and
50% of the input and output pins switch. The leakage
power assumes inactive memory cells with all input and
output pins being held stable. The power consumption of
the FITS programmable decoder is less than that of a
regular fixed decoder, as indicated by negative overhead
lines in the figure. As depicted in Figure 3(c), 53% to
66% of dynamic power savings can be achieved by the
FITS decoder as the number of instructions supported
increases from 64 to 4,096. Similarly, a 20% to 90%
leakage power savings can be achieved by the FITS
decoder as the number of instructions supported increases
from 64 to 4,096, as shown in Figure 3(d). These power
savings are due to the fact that the FITS decoder accesses
only the small 16-entry SRAM during program
execution, whereas a regular fixed decoder must access a
much larger ROM that consumes more power to operate.
In the FITS decoder, the ROM is powered off after
initialization, so there is no power overhead associated
with it.
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Code size benefits

Figure 4 compares the program code density achieved by
different code generations: ARM, THUMB, and FITS.
(For the purpose of easy assimilation, all test result
figures that follow this section were reduced to show only
the averages.) The FITS bars represent the program code
size after the ARM-to-FITS translation. The ARM and
THUMB bars respectively represent the program code
size compiled in pure 32-bit ARM and 16-bit THUMB.
The ARM-THUMB intermixing result was omitted
because FITS is a pure 16-bit instruction synthesis
technique, and ARM-THUMB intermixing does not
yield better code density than that of THUMB alone. We
normalized everything with respect to ARM in order to
show the code size savings achieved by THUMB and
FITS in terms of percentages. On average, THUMB
reduced approximately 33% of ARM code across the
entire benchmark suite. On the other hand, FITS was
able to reduce the ARM code by almost half—on
average, 47% of the total ARM segment could be
eliminated. THUMB could not achieve the code size
savings of FITS because THUMB is not able to utilize its
16-bit instruction fields as efficiently owing to its general-
purpose nature. Thus, for an application that has several
performance-critical regions, many 32-bit ARM
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Power dissipation benefits: (a) I-cache power breakdown; (b)
I-cache power savings; (c) chip-wide power savings.

instructions would still have to remain in the program to
handle the expensive processing.

Like most general-purpose ISAs, THUMB supports a
wide range of instructions in order to be able to specify
many applications. However, this general-purpose
capability requires more opcode space and reduces the
size of the other instruction fields, such as register and
immediate operands. When the register operand width
is reduced, the processor can specify fewer architect
registers, thus increasing the register pressure. Higher
register pressure causes more spillings, thus increasing the
number of memory references in the program. For this
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reason, THUMB is not able to achieve the level of code
size savings provided by FITS.

As illustrated by the performance results given later,
the code size saving achieved by FITS does not come at
the expense of lost performance, for two reasons. First
and foremost, FITS aggressively optimized and adopted
the utilization-driven synthesis heuristic, making it very
effective in determining the target instructions for
synthesis without any noticeable performance loss.
Second, the resultant half-sized FITS code effectively
makes the L1 I-cache almost twice as large as before.
Thus, the FITS execution core was able to take advantage
of the higher spatial locality exhibited to greatly raise the
cache hit rate, thus increasing the performance.

Power dissipation benefits

To reduce overall chip power dissipation, we focused on
attacking I-cache power consumption. We show the
breakdown of I-cache power for each of the four
processors under simulation. Next, we present the power
reduction that FITS is able to achieve in each of the
switching, internal, leakage, and peak powers. The
reduction of each component power is then translated
into the total I-cache power reduction. Finally, the
I-cache power saving is mapped into the corresponding
overall chip-wide power saving.

We modeled dynamic, static, and peak power
dissipation. Dynamic power was further broken down
into switching power and internal power to facilitate
monitoring power reduction. Switching power is the
power consumed by the output driver and the output load
capacitance of the I-cache microarchitecture. Internal
power is the dynamic power of the I-cache
microarchitecture itself.

I-cache power breakdown
From the I-cache power breakdown shown in Figure 5(a),
the following power use trends are noticed. First, the total
I-cache power is dominated by the dynamic power (i.e.,
the switching power plus the internal power). This is
expected because the SA-1100 is a relatively low-end
embedded microprocessor built with a less aggressive
fabrication technology of 0.35 um, so we would not
encounter the same level of current leakage found on
designs fabricated with deeper submicron technology.
Second, as the size of the I-cache increases, the
percentage of switching power goes down, the percentage
of internal power goes up, and the percentage of leakage
power remains approximately the same; this is because a
larger cache comprises more gates and thus more internal
and leakage power. In addition, given the same cache
block size and associativity, a larger cache would yield a
better hit rate, which means fewer gate switches and
reduced switching power.
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Third, with the I-cache size being equal, FITS uses a
lower percentage of switching power, a higher percentage
of internal power, and approximately the same
percentage of leakage. The percentage of leakage power
remains unchanged because there are equal numbers of
gates in caches of the same size. The percentage of
switching power is reduced because of the increased cache
hit rate of FITS-sized code. The cache size is the same, so
the percentage of internal power is increased because of
the normalization effect after accounting for the
reduction of switching power.

Fourth, if we compare the percentage of switching
power between ARMS8 and ARM16 and between ARMS
and FITSS, we find that applying the FITS optimization
reduces more switching percentage than simply doubling
the size of the cache. This speculation is confirmed by the
I-cache power savings analysis that follows.

I-cache power saving

Figure 5(b) shows power reduction by FITS in each power
component. As speculated in the power breakdown
section, FITS-sized codes benefit greatly from the
reduction of switching power. This is the power saving
that clearly distinguishes a FITS-optimized cache from a
normal ARM cache. Both FITS16 and FITS8 save
approximately 50% cache switching power, while ARMS
saves virtually none. The switching power saving of FITS
results from a better cache hit rate due to the better
spatial locality exhibited by FITS-sized codes. On the
other hand, ARMS consumed as much overall switching
power as the baseline 16-Kb cache, indicating that the
overall gate switching frequencies of the two caches are
essentially the same.

For the internal and leakage powers, the two half-sized
caches, FITS8 and ARMS, demonstrate nontrivial
savings in most applications. This is because both internal
and leakage powers are directly proportional to the
number of gates given the same operational period.

The peak power consumption depends on both the
switching frequency and the number of logic gates;
therefore, we can observe savings from all three cache
schemes: on average, 46% for FITS16, 63% for FITSS,
and 31% for ARMS. Because peak power is sensitive to
factors that affect both the dynamic and the static powers,
the greater peak power savings of FITS16 and FITSS8
indicate that FITS is a well-balanced, low-power
technique for I-cache.

This claim is supported by the overall I-cache power
consumption results, which combine all of the component
savings above. FITS8 gives the highest (47%) average
total I-cache power savings, followed by ARMS and
FITS16, which save 27% and 18%, respectively.

To see how effectively FITS reduces the total chip
power, Figure 5(c) depicts how these I-cache power
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savings would be translated into the total chip power
savings. FITS16 and FITS8 respectively save, on average,
approximately 10% and 15% chip-wide switching power,
while ARMS saves 5%. For the chip-wide internal power
savings, FITS16 and FITS8 respectively save, on average,
approximately 5% and 16%, and ARMS saves 10%.
FITS16 and FITSS respectively save, on average,
approximately 5% to 6% of leakage power chip-wide,
while ARMS saves 2%. Peak power savings can be as high
as 6% for FITS16, 12% for FITSS, and 10% for ARMS.
The total power savings is 15% for FITSS8, 8% for ARMS,
and 7% for FITSI16.

Performance benefits

To demonstrate that FITS does not save power at the
expense of performance, we present results of both
I-cache miss rates and instructions per cycle (IPC). The
cache miss rate analysis helps to explain why simply
reducing the cache size of the default ARM cache does
not reduce power by much. The IPC analysis shows
overall system-wide performance between FITS and
ARM. Combining both results leads to the conclusion
that FITS is able to reduce power without compromising
performance.

Cache miss rate

Figure 6(a) shows the I-cache miss rates for all four
processor configurations. The miss rate was measured as
misses per one million cache accesses, since most of the
benchmarks are easily cacheable because of their small
code size footprint. FITS surpassed ARM with greatly
improved cache performance: The half-sized FITS8
caches have smaller miss rates than the normal full-sized
ARM16 caches because of the better spatial locality
exhibited by FITS-sized code. Since the instructions are
half the size, the cache lines can be viewed as being twice
the size (this operates much like a next-line prefetch on
cache miss) because twice the number of instructions are
brought into the cache (i.e., fewer compulsory misses and,
for displaced lines, fewer conflict misses to restore the
instructions). Moreover, because embedded applications
are typically stream-based, most branches in MiBench are
easily predictable. Therefore, this instruction “packing”
effect makes FITS caches seem virtually twice as large as
their true physical size.

Instruction per cycle (IPC) rate

Figure 6(b) shows the IPC performance measures for

all four processor configurations. Overall, the IPC
performances for all four configurations are satisfactory
because of the easy predictability and cacheability of
MiBench programs. As expected, the IPC performance of
FITS codes is comparable to that of native ARM codes.
It is interesting to observe that an 8-Kb FITS cache could
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achieve roughly the same IPC as a 16-Kb ARM cache.
We expect FITS to be performance-neutral, but we
consistently find a small improvement, and in some
applications, a large improvement. This is due to
increased I-cache locality exhibited from packed FITS
code.

Conclusions

The goal of this research is to argue for a new approach
to the design of a class of embedded processors that saves
power and energy and reduces code size while
maintaining satisfactory performance. This research
shows that waiting until after chip fabrication to map the
instruction set to the microarchitecture makes it possible
to match the dense coding capabilities of ASP while
retaining the fabrication advantages of a single-chip
design. This delayed ISA mapping is achieved by using a
programmable instruction decoder that has minimum
overhead in area and access time while reducing both
dynamic and leakage power consumption. Using the
FITS design methodology enables a cost-effective 16-bit
ISA synthesis solution while reducing design time and
complexity; this is accomplished by decoupling the
microarchitectural enhancements available onchip from
the encoding issues of mapping to the subset of
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instructions required by a single application. Our analysis
shows that for a wide range of embedded applications, it
is feasible to utilize a 16-bit instruction format, but each
application may require a different selection of operations
and storage components. By delaying instruction
assignment and register file organization until a program
is loaded, it is possible to aggressively design the
microarchitecture, including operations that are only
occasionally useful, without the code bloat that would
occur on a conventional machine.

*Trademark, service mark, or registered trademark of
International Business Machines Corporation.

**Trademark, service mark, or registered trademark of ARM
Ltd., Tensilica, Inc., STMicroelectronics, or ARC International
in the United States, other countries, or both.
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