N. P. Carter
A. Hussain

Modeling wire delay, area,
power, and performance in
a simulation infrastructure

We present Justice, a set of extensions to the Liberty simulation
infrastructure that model chip area, wire length, and power
consumption. Based on an architectural specification of a
processor, Justice estimates the area and per-access power
consumption of each module in the architecture. It then constructs
a floorplan for the processor and computes the length and delay of
critical communication paths. Finally, Justice modifies the
architectural specification to account for wire delay and generates
an executable simulator for the processor. To illustrate its
capabilities, we simulate a number of very long instruction word
(VLIW) architectures. Our results illustrate how Justice makes it
possible for designers to compare the costs and benefits of different

changes to an architecture and demonstrate the importance of
considering wire delay early in the design process.

Introduction
As fabrication technology advances, it is rapidly
becoming impossible to evaluate the design of a
microprocessor or other integrated circuit without
considering how that circuit will be implemented. Wire
delay has become a major component of overall
performance [1, 2], making it necessary for designers to
understand how the modules in their design communicate
and how the placement of modules affects the
communication delay between other modules. Similarly,
power consumption is becoming a key factor in both
portable and desktop systems, affecting both battery life
and the cost and feasibility of cooling a processor.

Given the impact that these implementation-level
effects have on the suitability of an architecture for a
given implementation, it is critical that designers have
feedback about them early in the design process, when
major changes to the architecture are still possible. In this
paper we present Justice, a set of extensions to the Liberty
[3] simulation infrastructure that model the area, power
consumption, and critical wire lengths of an architecture.
Justice allows designers to consider the tradeoffs among
performance, power, and implementation costs in their
designs and to compare the effectiveness of widely varying
processor architectures.

To simulate a microprocessor in Liberty, a designer
creates an architectural description file (ADF) that
describes the processor. Liberty takes the ADF as an

input and generates an executable simulator for the
architecture. During simulator compilation, Justice
parses the ADF and estimates the area and power
consumption per access of each module in the
architecture. It then creates a processor floorplan and
computes the physical length and wire delay of each
communication channel on the chip.

Justice inserts first-in first-out (FIFO) delay queues
into each communication channel whose wire delay is
greater than the cycle time of the processor. It then adds
activity counters to each module to record how often the
module is accessed during program execution. After the
user simulates the execution of a program on the
simulator generated by Liberty—Justice, Justice executes
a postprocessing pass that generates per-module and
overall power consumption estimates based on the output
of the activity counters.

Our discussion of Justice begins with an overview of
the Liberty simulation environment followed by a
description of Justice and our power, area, and wire
models. To evaluate Justice, we model a variety of very
long instruction word (VLIW) processors, illustrating
the tradeoffs among area, power consumption, and
performance in these architectures. We simulate our
architectures at a wide range of clock rates to illustrate
the impact that wire delay has on performance as clock
rate increases. Finally, we discuss related work and
conclude the paper.

©Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/06/$5.00 © 2006 IBM

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

N. P. CARTER AND A. HUSSAIN

311

312

Liberty overview

The Liberty simulation environment (LSE) [3-5] is a
toolkit that allows architects to develop high-
performance simulators for a wide range of processor
architectures. Unlike many simulators such as
SimpleScalar [6], Liberty does not directly model a
particular style of architecture. Instead, it provides a
framework that generates simulators for computer
architectures based on configurations provided by the
user.

Liberty models an architecture as a set of modules that
represent functional blocks within an architecture. A
module consists of a set of ports that define its interface
and the code that defines module behavior. Modules
communicate through channels that represent
communication paths in the architecture. Channels model
communication at an abstract level, rather than cycle by
cycle, using a request and reply protocol to pass data
structures between modules. Each data structure
represents an event in the simulation and contains enough
context information that changing the delay of a channel
does not affect the results of a simulation.

The LSE provides a set of predefined modules that
model common architectural blocks, such as execution
pipelines and memory arrays. Novel features of an
architecture can be modeled either as a collection of these
predefined modules or by creating custom models that
directly simulate the feature in question. Liberty also
provides a number of emulator modules that simulate the
execution of various common instruction sets. These
emulators significantly reduce the effort required to
implement a simulation of a processor that executes a
conventional instruction set architecture (ISA), because
the user can rely on the emulator to correctly execute
programs and focus their effort on implementing an
accurate performance model of the processor.

Liberty users model architectures by creating ADFs
that instantiate the modules and channels that make up
the architecture. The Liberty simulator constructor,
BuildSim, takes an ADF as its input and generates an
executable program binary that simulates the architecture
it describes. Since a Liberty-generated simulator is a
customized executable (rather than a generic simulator
that interprets a configuration file at runtime to extract
simulation parameters), Liberty achieves very high
simulation speed, increasing the size and number of the
applications that can be used to test an architecture.

Once Liberty has generated a simulator for an
architecture, users simulate programs by executing the
simulator binary with the program to be run on it as an
argument. Basic Liberty simulations determine the
number of clock cycles an architecture requires in order
to simulate a given program. In addition, Liberty users
may define custom event-monitoring routines, known as

N. P. CARTER AND A. HUSSAIN

data collectors. Data collectors defined by a user become
part of the configuration of an architecture and are
invoked whenever the event or events specified in the data
collector occur. Because data collectors are user-defined,
they can be as simple or complex as the user requires.
Liberty was chosen as the basis for Justice because
of its flexibility and explicit representation of
communication paths. Its module-and-channel
representation allows it to model a wide range of
processor architectures, from traditional superscalar and
VLIW to clustered and gridded. This provides much more
flexibility than does a simulator that assumes a particular
style of architecture. Similarly, the use of communication
channels to pass data among modules allows Justice to
identify the important communication paths in an
architecture, simplifying the process of floorplanning and
wire-length calculation. Finally, the semantics of the
channel-based communication model allow Justice to
change the timing of communication paths that represent
long wires without affecting the correctness of the
simulation, which greatly simplifies modeling of wire
delays.

Justice extensions to Liberty

Figure 1 shows how Justice works with Liberty and the
power models provided by TEM?P?EST [7] to generate
power, area, wire-length, and performance estimates for
an architecture. Liberty—Justice uses two input files to
generate a simulator for an architecture: an ADF for the
design, which is unchanged from the base LSE, and a
technology description file (TDF) for the fabrication
process that the simulation should use.

Justice adds two components to BuildSim: a power
constant calculator and a physical approximation
generator (PAG). The power constant calculator is
relatively independent of the remainder of BuildSim. It
parses the ADF and TDF to determine the parameters of
each module and then calls TEM?P?EST to generate
active and idle power consumption estimates for each
module. These estimates are saved with the simulator
generated by BuildSim for use by the postprocessing
power aggregation step.

TEM?P?EST supports both analytical and empirical
power models. Wherever possible, Justice uses the
analytical power models, because they are expected to be
more accurate than the empirical models across a wide
range of fabrication processes. The empirical power
models of TEM?P?EST are used only on modules such
as arithmetic logic units that are difficult to model
analytically. The interface between Justice and
TEM?P?EST is designed to be extremely modular,
allowing architects to substitute other power models if the
TEM?P?EST models are not appropriate for their
application.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

The Justice PAG is integrated into BuildSim and
modifies the architecture defined by the user to account
for wire delays and to track the activity of each module in
the design. The first build phase of BuildSim generates a
netlist of the modules and channels in an architecture,
which the PAG parses to determine the connections
among modules and to generate an area estimate for each
module. Justice models the height, width, and total area
of each module using a combination of analytic and
empirical techniques. Random access memory (RAM)-
based modules—including caches, queues, register files,
and translation lookaside buffers (TLBs)—are modeled
analytically, taking into account both the base area
required for each RAM cell and the area required for
read and write ports. When this model does not apply,
Justice uses empirical area models that were generated by
measuring the area of similar units in existing
microprocessors and scaling to match the simulation
feature size.

Using the area estimates for each module, Justice
generates a floorplan for the architecture, treating each
module as a fixed block whose aspect ratio cannot be
changed, although blocks can be rotated in order to
generate a better floorplan. Justice uses a simulated
annealing algorithm to optimize the floorplan for a
combination of total area and wire length. In future
work, we plan to make this optimization criterion
accessible to the user and to allow the user to designate
certain communication channels as performance-critical
in order to encourage floorplans that minimize the length
of those channels.

Once the floorplan is complete, Justice estimates the
wire length of each communication channel that connects
two or more modules in the architecture as the
Manhattan distance' between the centers of those
modules. Justice then estimates the wire delay along each
channel using the properties of the fabrication process
being modeled and divides this delay by the simulated
cycle time to determine how many cycles of delay each
communication channel will incur, rounding to the
nearest cycle.

Justice next modifies the netlist, adding FIFO queues of
the appropriate depth to each communication channel
whose wire delay is one or more cycles. These queues
model the wire delay along the channel, making the
assumption that long wires are pipelined to allow multiple
data values to be in transit simultaneously. Justice
determines the latency of each communication channel
independently, which may lead to different numbers of
delay cycles being added to different paths through an
architecture. In a hardware implementation of the

! The “Manhattan distance” between two points is the sum of the (absolute)
differences of their coordinates. Informally, it is like measuring distance in a city (e.g.,
Manhattan) in city blocks rather than as the crow flies.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Architectural Technology
description description
file file

. . Simulator Power TEM?P?EST
(First build construction constant [+ power
phase) engine calculator models

Area and Physical
wire-length |<—| approximation
estimates generator
Simulator
(Second build | construction
phase) engine
' '

Program Executable Power
executable simulator aggregation

Performance Power
statistics statistics

Simulation with Liberty and Justice. (The unshaded boxes are
functions performed by tools other than Justice.)

architecture, this would lead to incorrect operation
because the inputs to modules would arrive on different
cycles, and it would be necessary to add extra pipeline
registers to some wires to balance the delays along them.

In a Liberty—Justice simulation, the protocol used by
the communication channels prevents uneven delays from
affecting the correctness of a simulation. Modules do not
generate their outputs until all of their inputs are ready.
Values that arrive early are queued by the simulator until
they are used, and the progress of the simulation is
determined by the longest path through the design,
exactly as it would be if the delays along each path were
balanced, which greatly simplifies the task of the PAG.

After area and wire delay estimation, the PAG adds
data collectors to each module that count the number of
times the module is accessed during simulation. It then
outputs information about the area of the design and
critical wire lengths, and passes the modified netlist to the
second build phase of BuildSim, which generates an
executable simulator for the architecture.

Users run a program on a Liberty—Justice simulation in
the same way they would run a program on a baseline
Liberty simulation: by invoking the simulation executable
with the program as an argument. The modified
simulator executes the program and outputs performance
statistics, such as the number of cycles required for the

N. P. CARTER AND A. HUSSAIN

313

314

simulation, the activity counts generated by the data
collectors inserted by Justice into each module, and the
results of any user-defined data collectors. This output is
passed to the Justice power aggregation code, which uses
the activity counts from each module to determine the
number of active and idle cycles for the module and
multiplies these values by the active and idle module
power estimates to compute the total energy consumed in
the module. The power aggregator then sums the energy
consumed in the modules to generate energy and power
consumption estimates for the entire architecture.

Integrating Justice into the Liberty simulation flow in
this way significantly extends the capability of the LSE
without unduly increasing simulation time and without
restricting the types of architectures that can be modeled
in Liberty. Justice itself takes very little time to execute,
and most of its impact on simulation time comes from the
increase in the number of clock cycles that must be
simulated when wire delays are taken into account. The
modular design of Justice also makes it relatively easy to
modify its power or area models, for example, by
replacing the floorplanner with one based on a different
algorithm or by changing some of the power models. This
allows designers to use Justice effectively, even if they feel
that one or more of the baseline assumptions made by
Justice are not appropriate for their design.

Experimental methodology

To illustrate the capabilities of Justice, we modeled six
VLIW architectures in Liberty—Justice: three
conventional VLIW processors and three clustered VLIW
processors. Our baseline VLIW has eight execution units
that share a 32-entry register file. Each execution unit can
perform both integer and floating-point computations,
and two of the execution units can execute memory
operations. We refer to this architecture as the SW2M
model because it is 8-wide and can perform two memory
operations per cycle. We also model an 8-wide VLIW that
can perform four memory operations per cycle (§W4M)
and a 16-wide VLIW that can perform four memory
operations per cycle (16W4M). For our power, area, and
wire length studies, we assume that all architectures are
fabricated in a 90-nm fabrication process.

Our clustered VLIW architectures divide their
functional units into two independent clusters, each of
which contains half of the functional units and a 16-entry
register file. Operations that execute on a given cluster
may access only its register file, although data can be
transferred between clusters via explicit move operations.
We model three clustered VLIW architectures: an 8-wide
processor that can execute one memory reference per
cycle from each cluster (SW1M1M), an 8-wide processor
that can execute two memory references per cycle from
each cluster (SW2M2M), and a 16-wide processor that

N. P. CARTER AND A. HUSSAIN

can execute two memory references per cycle in each
cluster (16W2M2M). All of our processor models use
128-KB data and instruction caches. We assume that
VLIW instructions are stored in a compressed format,
such as the one described in [8], that reduces the amount
of space required by no-operation (NOP) operations.
We evaluate these processor architectures using a set of
nine benchmark programs taken from the MediaBench suite
[9]. Where possible, we used both the encoder and decoder
portions of each benchmark, although rasta, a speech
recognition application, does not have separate encoder and
decoder applications. The benchmark programs were
compiled for each architecture using the Impact [10]
compiler to generate high-quality optimized code.

Results

As a baseline, Figure 2(a) shows the average number of
instructions per clock cycle (IPC) executed by our
architectures on each benchmark when wire delay and
clock rate are not taken into account. Overall, IPC
numbers are fairly high, as would be expected of highly
optimized media applications, with significant variance
among applications. Increasing the number of memory
instructions allowed per cycle without changing the issue
width of the architecture improves IPC by about 4% for
both the conventional and clustered VLIW architectures,
while increasing issue width from 8 to 16 improves IPC by
8.7% for the conventional VLIW processor, and by 10.5%
for the clustered processor.

When wire delay and clock rate are not considered, the
IPC numbers of clustered and nonclustered processors
with the same number of execution units and memory
ports are very similar. On some applications, the
nonclustered version of an architecture does slightly
better than the clustered version because of intercluster
communication overheads in the clustered version. On
others, the clustered version achieves higher IPC than the
nonclustered version because long-latency operations in
one cluster do not stall computation on the other.

Power consumption

Figure 2(b) shows the Justice estimate of the average
power dissipated by our architectures when executing
each benchmark. These results assume a 90-nm
fabrication process and 1.65-V power supply, with all
architectures running at 250 MHz, well below the
frequency at which wire delays begin to have a significant
effect on performance. On average, the 8-wide
architectures with four memory ports consume 15% more
power than their counterparts with two memory ports,
while increasing issue width from 8 to 16 IPC increases
power consumption by 60%. Clustered architectures
consume slightly less power than their nonclustered
counterparts on almost all applications.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

8
7
6 Architecture
5 @ 8W2M
v, M 8W4M
&
= O 16W4M
3 O 8WIMIM
2 H 8wW2M2M
1 H 16WIMIM
0
(&} O &) o o o o o © 9]
() o j) < jo} < (o) e &0
T O U O T O U O »u 8
o (=228 NI Q N} (SR CT— = © o
v VU DD DD D D O O < %
Q Qo @ (o] a a a A
- - a a © ©
= = © ©
Application
(a)
20
18
16 [J Queues
§ 14 B VLIW F/D
Z 12 [Execution units
E 10 [J Register files
2 8 Il Data caches
2 W Instruction caches
2
0
p> = = = = p>
= = s 5 § ¢
2 % : 3 o:
- = = =
[>e) o] E

Architecture
(©)

25
20 3 Architecture
S @ SW2M
= 19 B 8W4M
s I O 16W4M
2 10 F O SWIMIM
- B SW2M2M
S5F B 16WIMIM

pgpenc
rasta
Average

pgpdec
adpcmdec

O O
1< =
o (&}
oD O
(&} [}
a o
™

adpcmenc

O
<
[}
(V)
o
(5}
=
=

Application
(b)

mpeg2dec

[l Memory queue
[Instruction queue
[] Dispatch

B VLIW F/D

[0 Execution units
[Register files

[Data caches

M Instruction caches

>z z z z Z
: 2 2 : 2 3
- B 2 B
00002

Architecture

(d)

(a) IPC without considering wire length. (b) Power consumption. (¢) Breakdown of power consumption by processor module. (d) Area of

each modeled architecture.

To give more insight into these results, Figure 2(c)
shows the contributions of the major sources of power
consumption in each architecture to overall power
consumption, averaged across all of the benchmarks. The
Queues category includes the power consumed in the
instruction queues, memory queues, and dispatch logic.
Other categories include the VLIW fetch and decode
(F/D) logic, the execution units, register files, instruction
caches, and data caches.

Increasing the number of memory operations that an
architecture can execute per cycle from two to four
increases data cache power consumption by 43%; it also
increases the power consumed in the queues but has
relatively little effect on power consumption in other
units. Because the data cache consumes about 25% of the
power in the base §W2M processor, these changes explain
the overall power differences between architectures with
different numbers of memory ports.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

The power consumed by the instruction cache is the
same for all of the 8-wide architectures and increases by
approximately 50% in the 16-wide architectures because
of the doubling of the instruction word width. Similarly,
power consumption in the execution units varies by only
1% across the different 8-wide architectures but increases
by 55-60% when the issue width is doubled. This
sublinear increase in execution unit power as instruction
width increases is due to the fact that execution units
consume significantly less power when idle than when
executing valid instructions. Because increasing the issue
width yields less-than-linear increases in IPC, it is not
surprising that it also causes sublinear increases in power
consumption.

Area and wire lengths

Figure 2(d) shows the Justice estimates of the total chip
area required to implement each of our architectures in a
90-nm fabrication process and how each of the major

N. P. CARTER AND A. HUSSAIN

315

316

100
90
S 80
z 70
5
S 60
5 50
2 40
=]
£
2 30
&
= 20
10
0
b = = = = =
o~ — < o~ < (o]
= = = = B =
oo — oo N =] [\
= = = 3
e} e} 2
Architecture

Efficiency of the floorplanner.

architectural structures contributes to the total. The
Queues category from Figure 2(c) has been subdivided
into the area required for the memory queues, instruction
queues, and dispatch logic to better illustrate how
changes to the architecture affect the size of each of these
structures. This graph shows the area of each architecture
as the sum of the areas of each of its components, without
any blank space that may be introduced during
floorplanning.

As would be expected, the area taken up by the
execution units grows linearly with the number of
execution units in the architecture, while the instruction
caches of the 16-wide architectures are approximately
20% larger than those of the 8-wide architectures because
of the increase in fetch width in the wider architectures.
Similarly, the instruction queues and dispatch logic of the
16-wide architectures are significantly larger than those of
the 8-wide architectures. The fetch and decode logic takes
up a relatively small fraction of the total area of each of
the architectures, illustrating one of the advantages of
making the compiler responsible for instruction
scheduling.

Because the area of an SRAM bit cell increases
quadratically with the number of ports, the data caches of
the architectures that support four memory accesses per
cycle are approximately three times the size of the data
caches in architectures that support only two accesses per
cycle. Register file size remains constant across the 8-wide
nonclustered architectures but increases when the width
of the processor is increased to 16 because of the need to
support more ports on the register file. The register files of

N. P. CARTER AND A. HUSSAIN

Table 1 Longest wire lengths and delays.

Model Wire length (mm) Wire delay (ns)
SW2M 4.379 0.645
SW4M 4.749 0.759
16W4M 6.685 1.505
SWIMIM 4.169 0.585
SW2M2M 3.928 0.521
16W2M2M 5.276 0.937

the clustered architectures are noticeably smaller than
those of the nonclustered architectures, since two 16-entry
register files are smaller than one 32-entry register file
with twice as many ports.

Figure 3 shows the efficiency of the floorplanner in
placing each of our architectures, measured as the
fraction of the area of the placed chip that is taken up by
active circuitry. Most of the architectures achieve between
80% and 95% efficiency, with architectures that contain
more units generally having higher efficiency. The 8W2M
architecture achieves only 66% placement efficiency
because of an aspect ratio mismatch between its cache
and the remainder of its units. This illustrates one
weakness of our floorplanner that we intend to rectify in
future work—it treats all modules in the architecture as
fixed blocks and is unable to alter the aspect ratios of
units, such as cache memories, that are more flexible in
their design.

On the basis of its floorplans, Justice computed the
length of each wiring channel in our architectures,
generating the data shown in Table 1 for the longest wire
length and wire delay in each architecture. As would be
expected, the 16-wide architectures have significantly
longer wires than their 8-wide counterparts, and the
clustered architectures have noticeably shorter wires than
their nonclustered counterparts. The one surprise in this
data is that the longest wire in the 8W4M architecture is
only about 10% longer than the longest wire in the §W2M
architecture, in spite of the fact that Figure 2(d) shows
the 8W4M architecture requiring significantly more chip
area than the 8W2M architecture. This occurs because the
floorplanner does a poor job placing the modules in the
8W2M architecture, leading to a significant amount of
blank space in the floorplan. This blank space increases
the distance between the centers of the modules in the
design, and thus the length of the longest wires.

Impact of wire delay on performance

To illustrate the ability of Justice to model the effect of
wire delay on performance, we simulated each of our

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

target architectures at clock rates ranging from 250 MHz
to 5 GHz. All architectural parameters other than wire
delay—including fabrication process, pipeline depth, and
memory latencies—were held constant across the clock
frequencies. Figure 4(a) shows the IPC achieved by each
of our architectures as a function of clock frequency,
averaged across all of our benchmarks. The leftmost Ideal
column of the graph shows what IPC each architecture
achieves when all wire delays are zero cycles, as would
occur at extremely low clock frequencies, while the other
columns show IPC at their specified clock rates.

This graph illustrates the importance of considering
wire delay in estimating the performance of processors.
While the 16-wide architectures achieve the highest IPC
when wire delay is neglected, they quickly become some
of the worst performers when wire delay is considered
and the clock rate increased. In general, the IPC of an
architecture decreases monotonically as clock rate
increases, although some artifacts are introduced because
Justice rounds the delay on each wire to the nearest full
cycle.

To illustrate the effect of wire delay on absolute
performance, Figure 4(b) shows the performance of each
of our architectures (measured as the product of IPC and
clock rate) relative to the performance of the §W2M
architecture at 250 MHz, a clock rate at which none of
the architectures see any wire delay effects in our model.
In this graph, we can see that the clustered architectures
achieve significantly better performance than their
unclustered counterparts as clock rates increase, with the
8WIMIM architecture achieving the highest performance
at extremely high clock rates.

These results show how Justice can help designers
understand the impact that implementation effects will
have on their architectures early in the design process.
Simulation tools that ignore wire delays can lead
designers to choose extremely complex architectures that
are difficult to implement at high clock rates, while failing
to estimate power consumption can lead to designs that
require expensive heat sinks, have poor battery life, or
both. By exposing these factors to designers at the start of
the design process, Justice allows them to explore a wide
range of architectures to select the one best suited to their
application.

Related work

Justice builds on the work of a number of efforts that
have studied power modeling and wire effects in
architectural simulators. SimplePower [11], Wattch [12],
and TEM?P’EST [7] are three examples of tools that have
added power modeling to architectural simulations. Each
of these tools uses SimpleScalar [6] as its architectural
performance simulator and augments SimpleScalar with

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

45
40F
35k -=- SW2M
30k - 8W4M
8 25k —-— 16W4M
= o0k - 8WIMIM
15 —— 8W2M2M
Lok - 16WIMIM
0.5F
00 1 1 1 1 1
Ideal 1 2 3 4 5
Clock rate (GHz)
. (a)
S 12
z -=- 8W2M
2 L I0F [o 8W4M
E § sk - 16W4M
52 ~- 8WIMIM
3% of b —— SW2M2M
g JF - 16WIMIM
T
(=¥
sl s L Lo o L Lo L Ly

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0
Clock speed (GHz)

(b)

(a) Impact of wire delay on IPC. (b) Impact of wire delay on per-
formance.

extensions that model the power consumption of different
units within an architecture.

While these three tools are all based on SimpleScalar,
they use very different approaches to estimate the power
consumed by an architecture. SimplePower relies on an
empirically derived table of effective capacitances for each
unit in the processor to calculate the total capacitance
being charged and discharged on each cycle, and thus the
power consumed during the cycle. This approach allows
extremely accurate modeling of the power consumed by a
particular architecture, particularly one for which
accurate layout-based capacitances are available, but the
effort required to generate the capacitance table for each
new architecture limits the portability of SimplePower.

Wattch, on the other hand, uses parameterizable
analytic models to estimate the power consumed by each
unit in an architecture, which makes it extremely flexible.
TEM?PEST takes an intermediate approach to power
modeling, using a combination of analytic power models
and empirical power density estimates to compute the
power consumed by each module in an architecture.
TEM?P?EST models a processor as a collection of
functional blocks and estimates the power consumed in
each block on the basis of activity counts generated

N. P. CARTER AND A. HUSSAIN

317

318

during simulation. Both the Wattch and TEM?P?EST
power models are modular and flexible enough that they
could be applied to Justice. We selected TEM?P?EST
on the basis of our ongoing collaboration with the
TEMZP?EST authors, which provided significant insight
into the tool and how it could be adapted to meet our
needs.

Conclusion

Justice is a set of extensions to the Liberty simulation
environment that allows designers to estimate, for a given
architecture, the power consumption, area, and impact
that wire delays will have on performance. During the
compilation of a simulator for an architecture, Justice
estimates the area of each module in a design and creates
a floorplan for the architecture. Using this floorplan, it
estimates the physical length of the wires represented by
communication channels in the architecture model and
adds FIFO delay queues to each channel to simulate its
wire delay. Justice also adds activity counters to each
module in the architecture and precomputes the amount
of power consumed each time the module is accessed.
After simulation of a program completes, Justice
processes the output of these activity counters to estimate
per-module and overall power consumption.

Simulations using Justice demonstrate the importance
of considering power and wire delay in architectural
simulation. When wire delay was neglected, doubling the
number of execution units in an architecture increased
performance by approximately twice as much as doubling
the number of memory accesses the processor could
perform per cycle. However, doubling the number of
execution units increased overall power consumption by
60%, while doubling the number of memory ports on the
processor increased power consumption by only 15%.

When wire delay and clock rate are taken into account,
the benefits of clustering a VLIW architecture become
clear, as our clustered architectures significantly
outperform their nonclustered counterparts. In addition,
the benefits of widening the architecture are called into
question. At high clock rates, our 16-wide architectures
have lower overall performance than our 8-wide
architectures because of the increase in wire length
between the execution units and centralized control and
memory logic.

While these simulations are somewhat idealized, they
clearly illustrate the importance of modeling technology
effects when evaluating potential changes to a computer
architecture. As wire delay and power consumption
become more and more significant with advances in
fabrication technology, we believe that simulation tools
such as Justice—which enable designers to easily model
technology effects in their simulations—will become
indispensable tools for computer architects.

N. P. CARTER AND A. HUSSAIN

Acknowledgments

This work was supported by the Semiconductor Research
Corporation (SRC) under Contract No. 785. The
material presented here represents the conclusions of the
authors and does not necessarily represent the opinions of
the SRC. The authors thank David August and the
members of the Liberty Research Group at Princeton
University for their help in developing Justice, as well as
the reviewers and others who have commented on earlier
versions of this paper.

References

1. V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger,
“Clock Rate Versus IPC: The End of the Road for
Conventional Microarchitectures,” Proceedings of the 27th
Annual International Symposium on Computer Architecture,
2000, pp. 248-259.

2. R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of
Wires,” Proc. IEEE 89, No. 4, 490-504 (April 2001).

3. M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August, “Microarchitectural Exploration with
Liberty,” Proceedings of the 35th Annual IEEE/ACM
International Symposium on Microarchitecture, 2002,
pp. 271-282.

4. D. 1. August, M. Vachharajani, J. A. Blome, N. Vachharajani,
D. A. Penry, and R. Rangan, “Architectural Exploration with
Liberty,” Tutorial presentation at the 36th Annual
International Symposium on Microarchitecture, 2001; see
http:|[liberty.princeton.edu/News|Tutorials| Micro36/.

5. The Liberty Research Group; see http://liberty.cs.
princeton.edu.

6. D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Technical Report 1342, Computer Science
Department, University of Wisconsin, Madison, WI 53706,
1997.

7. A. Dhodapkar, C. H. Lim, G. Cai, and W. R. Daasch,
“TEM?P?EST: A Thermal Enabled Multi-Model Power/
Performance ESTimator,” Proceedings of the International
Workshop on Power-Aware Computer Systems, 2000,
pp. 112-125.

8. T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and
S. W. Sathaye, “Instruction Fetch Mechanisms for VLIW
Architectures with Compressed Encodings,” Proceedings of the
29th Annual ACM|IEEE International Symposium on
Microarchitecture, 1996, pp. 201-211.

9. C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,” Proceedings of
the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, 1997, pp. 330-335.

10. W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke,
D. M. Lavery, G. E. Haab, J. C. Gyllenhaal, and D. I. August,
“Compiler Technology for Future Microprocessors,” Proc.
IEEE 83, No. 12, 1625-1640 (December 1995).

11. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
“The Design and Use of SimplePower: A Cycle-Accurate
Energy Estimation Tool,” Proceedings of the Asia and South
Pacific Design and Automation Conference, 2000, pp. 340-345.

12. D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,” Proceedings of the 27th Annual International
Symposium on Computer Architecture, 2000, pp. 83-94.

Received June 28, 2005, accepted for publication
July 26, 2005; Internet publication February 23, 2006

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Nicholas P. Carter University of Illinois at Urbana—
Champaign, 1308 W. Main Street, Urbana, Illinois 61801
(npcarter@uiuc.edu). Professor Carter is an Assistant Professor at
the University of Illinois at Urbana—Champaign (UIUC). Prior to
joining the UTUC in 1999, he was a graduate student at the
Massachusetts Institute of Technology, where he was the memory
system architect for William J. Dally’s M-Machine project.
Professor Carter’s research interests focus on computer
architectures that incorporate devices other than silicon transistors
and structures other than conventional microprocessors.

Azmat Hussain Digital Enterprise Group, Intel Corporation,
5200 NE Elam Young Parkway, Hillsboro, Oregon 97124
(azmat.hussain@intel.com). Mr. Hussain received an M.S. degree
in electrical engineering from the University of Illinois at Urbana—
Champaign. He is currently working in the architecture design
group for Intel Corporation.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

N. P. CARTER AND A. HUSSAIN

319

