
Modeling wire delay, area,
power, and performance in
a simulation infrastructure

N. P. Carter
A. Hussain

We present Justice, a set of extensions to the Liberty simulation
infrastructure that model chip area, wire length, and power
consumption. Based on an architectural specification of a
processor, Justice estimates the area and per-access power
consumption of each module in the architecture. It then constructs
a floorplan for the processor and computes the length and delay of
critical communication paths. Finally, Justice modifies the
architectural specification to account for wire delay and generates
an executable simulator for the processor. To illustrate its
capabilities, we simulate a number of very long instruction word
(VLIW) architectures. Our results illustrate how Justice makes it
possible for designers to compare the costs and benefits of different
changes to an architecture and demonstrate the importance of
considering wire delay early in the design process.

Introduction
As fabrication technology advances, it is rapidly

becoming impossible to evaluate the design of a

microprocessor or other integrated circuit without

considering how that circuit will be implemented. Wire

delay has become a major component of overall

performance [1, 2], making it necessary for designers to

understand how the modules in their design communicate

and how the placement of modules affects the

communication delay between other modules. Similarly,

power consumption is becoming a key factor in both

portable and desktop systems, affecting both battery life

and the cost and feasibility of cooling a processor.

Given the impact that these implementation-level

effects have on the suitability of an architecture for a

given implementation, it is critical that designers have

feedback about them early in the design process, when

major changes to the architecture are still possible. In this

paper we present Justice, a set of extensions to the Liberty

[3] simulation infrastructure that model the area, power

consumption, and critical wire lengths of an architecture.

Justice allows designers to consider the tradeoffs among

performance, power, and implementation costs in their

designs and to compare the effectiveness of widely varying

processor architectures.

To simulate a microprocessor in Liberty, a designer

creates an architectural description file (ADF) that

describes the processor. Liberty takes the ADF as an

input and generates an executable simulator for the

architecture. During simulator compilation, Justice

parses the ADF and estimates the area and power

consumption per access of each module in the

architecture. It then creates a processor floorplan and

computes the physical length and wire delay of each

communication channel on the chip.

Justice inserts first-in first-out (FIFO) delay queues

into each communication channel whose wire delay is

greater than the cycle time of the processor. It then adds

activity counters to each module to record how often the

module is accessed during program execution. After the

user simulates the execution of a program on the

simulator generated by Liberty–Justice, Justice executes

a postprocessing pass that generates per-module and

overall power consumption estimates based on the output

of the activity counters.

Our discussion of Justice begins with an overview of

the Liberty simulation environment followed by a

description of Justice and our power, area, and wire

models. To evaluate Justice, we model a variety of very

long instruction word (VLIW) processors, illustrating

the tradeoffs among area, power consumption, and

performance in these architectures. We simulate our

architectures at a wide range of clock rates to illustrate

the impact that wire delay has on performance as clock

rate increases. Finally, we discuss related work and

conclude the paper.

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 N. P. CARTER AND A. HUSSAIN

311

0018-8646/06/$5.00 ª 2006 IBM

Liberty overview
The Liberty simulation environment (LSE) [3–5] is a

toolkit that allows architects to develop high-

performance simulators for a wide range of processor

architectures. Unlike many simulators such as

SimpleScalar [6], Liberty does not directly model a

particular style of architecture. Instead, it provides a

framework that generates simulators for computer

architectures based on configurations provided by the

user.

Liberty models an architecture as a set of modules that

represent functional blocks within an architecture. A

module consists of a set of ports that define its interface

and the code that defines module behavior. Modules

communicate through channels that represent

communication paths in the architecture. Channels model

communication at an abstract level, rather than cycle by

cycle, using a request and reply protocol to pass data

structures between modules. Each data structure

represents an event in the simulation and contains enough

context information that changing the delay of a channel

does not affect the results of a simulation.

The LSE provides a set of predefined modules that

model common architectural blocks, such as execution

pipelines and memory arrays. Novel features of an

architecture can be modeled either as a collection of these

predefined modules or by creating custom models that

directly simulate the feature in question. Liberty also

provides a number of emulator modules that simulate the

execution of various common instruction sets. These

emulators significantly reduce the effort required to

implement a simulation of a processor that executes a

conventional instruction set architecture (ISA), because

the user can rely on the emulator to correctly execute

programs and focus their effort on implementing an

accurate performance model of the processor.

Liberty users model architectures by creating ADFs

that instantiate the modules and channels that make up

the architecture. The Liberty simulator constructor,

BuildSim, takes an ADF as its input and generates an

executable program binary that simulates the architecture

it describes. Since a Liberty-generated simulator is a

customized executable (rather than a generic simulator

that interprets a configuration file at runtime to extract

simulation parameters), Liberty achieves very high

simulation speed, increasing the size and number of the

applications that can be used to test an architecture.

Once Liberty has generated a simulator for an

architecture, users simulate programs by executing the

simulator binary with the program to be run on it as an

argument. Basic Liberty simulations determine the

number of clock cycles an architecture requires in order

to simulate a given program. In addition, Liberty users

may define custom event-monitoring routines, known as

data collectors. Data collectors defined by a user become

part of the configuration of an architecture and are

invoked whenever the event or events specified in the data

collector occur. Because data collectors are user-defined,

they can be as simple or complex as the user requires.

Liberty was chosen as the basis for Justice because

of its flexibility and explicit representation of

communication paths. Its module-and-channel

representation allows it to model a wide range of

processor architectures, from traditional superscalar and

VLIW to clustered and gridded. This provides much more

flexibility than does a simulator that assumes a particular

style of architecture. Similarly, the use of communication

channels to pass data among modules allows Justice to

identify the important communication paths in an

architecture, simplifying the process of floorplanning and

wire-length calculation. Finally, the semantics of the

channel-based communication model allow Justice to

change the timing of communication paths that represent

long wires without affecting the correctness of the

simulation, which greatly simplifies modeling of wire

delays.

Justice extensions to Liberty
Figure 1 shows how Justice works with Liberty and the

power models provided by TEM2P2EST [7] to generate

power, area, wire-length, and performance estimates for

an architecture. Liberty–Justice uses two input files to

generate a simulator for an architecture: an ADF for the

design, which is unchanged from the base LSE, and a

technology description file (TDF) for the fabrication

process that the simulation should use.

Justice adds two components to BuildSim: a power

constant calculator and a physical approximation

generator (PAG). The power constant calculator is

relatively independent of the remainder of BuildSim. It

parses the ADF and TDF to determine the parameters of

each module and then calls TEM2P2EST to generate

active and idle power consumption estimates for each

module. These estimates are saved with the simulator

generated by BuildSim for use by the postprocessing

power aggregation step.

TEM2P2EST supports both analytical and empirical

power models. Wherever possible, Justice uses the

analytical power models, because they are expected to be

more accurate than the empirical models across a wide

range of fabrication processes. The empirical power

models of TEM2P2EST are used only on modules such

as arithmetic logic units that are difficult to model

analytically. The interface between Justice and

TEM2P2EST is designed to be extremely modular,

allowing architects to substitute other power models if the

TEM2P2EST models are not appropriate for their

application.

N. P. CARTER AND A. HUSSAIN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

312

The Justice PAG is integrated into BuildSim and

modifies the architecture defined by the user to account

for wire delays and to track the activity of each module in

the design. The first build phase of BuildSim generates a

netlist of the modules and channels in an architecture,

which the PAG parses to determine the connections

among modules and to generate an area estimate for each

module. Justice models the height, width, and total area

of each module using a combination of analytic and

empirical techniques. Random access memory (RAM)-

based modules—including caches, queues, register files,

and translation lookaside buffers (TLBs)—are modeled

analytically, taking into account both the base area

required for each RAM cell and the area required for

read and write ports. When this model does not apply,

Justice uses empirical area models that were generated by

measuring the area of similar units in existing

microprocessors and scaling to match the simulation

feature size.

Using the area estimates for each module, Justice

generates a floorplan for the architecture, treating each

module as a fixed block whose aspect ratio cannot be

changed, although blocks can be rotated in order to

generate a better floorplan. Justice uses a simulated

annealing algorithm to optimize the floorplan for a

combination of total area and wire length. In future

work, we plan to make this optimization criterion

accessible to the user and to allow the user to designate

certain communication channels as performance-critical

in order to encourage floorplans that minimize the length

of those channels.

Once the floorplan is complete, Justice estimates the

wire length of each communication channel that connects

two or more modules in the architecture as the

Manhattan distance1 between the centers of those

modules. Justice then estimates the wire delay along each

channel using the properties of the fabrication process

being modeled and divides this delay by the simulated

cycle time to determine how many cycles of delay each

communication channel will incur, rounding to the

nearest cycle.

Justice next modifies the netlist, adding FIFO queues of

the appropriate depth to each communication channel

whose wire delay is one or more cycles. These queues

model the wire delay along the channel, making the

assumption that long wires are pipelined to allow multiple

data values to be in transit simultaneously. Justice

determines the latency of each communication channel

independently, which may lead to different numbers of

delay cycles being added to different paths through an

architecture. In a hardware implementation of the

architecture, this would lead to incorrect operation

because the inputs to modules would arrive on different

cycles, and it would be necessary to add extra pipeline

registers to some wires to balance the delays along them.

In a Liberty–Justice simulation, the protocol used by

the communication channels prevents uneven delays from

affecting the correctness of a simulation. Modules do not

generate their outputs until all of their inputs are ready.

Values that arrive early are queued by the simulator until

they are used, and the progress of the simulation is

determined by the longest path through the design,

exactly as it would be if the delays along each path were

balanced, which greatly simplifies the task of the PAG.

After area and wire delay estimation, the PAG adds

data collectors to each module that count the number of

times the module is accessed during simulation. It then

outputs information about the area of the design and

critical wire lengths, and passes the modified netlist to the

second build phase of BuildSim, which generates an

executable simulator for the architecture.

Users run a program on a Liberty–Justice simulation in

the same way they would run a program on a baseline

Liberty simulation: by invoking the simulation executable

with the program as an argument. The modified

simulator executes the program and outputs performance

statistics, such as the number of cycles required for the

Figure 1

Simulation with Liberty and Justice. (The unshaded boxes are
functions performed by tools other than Justice.)

Architectural
description

file

Technology
description

file

Program
executable

Performance
statistics

Power
statistics

Simulator
construction

engine

Power
constant

calculator

Physical
approximation

generator

(First build
phase)

TEM2P2EST
power
models

Simulator
construction

engine

Executable
simulator

(Second build
phase)

Power
aggregation

Area and
wire-length
estimates

1 The ‘‘Manhattan distance’’ between two points is the sum of the (absolute)
differences of their coordinates. Informally, it is like measuring distance in a city (e.g.,
Manhattan) in city blocks rather than as the crow flies.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 N. P. CARTER AND A. HUSSAIN

313

simulation, the activity counts generated by the data

collectors inserted by Justice into each module, and the

results of any user-defined data collectors. This output is

passed to the Justice power aggregation code, which uses

the activity counts from each module to determine the

number of active and idle cycles for the module and

multiplies these values by the active and idle module

power estimates to compute the total energy consumed in

the module. The power aggregator then sums the energy

consumed in the modules to generate energy and power

consumption estimates for the entire architecture.

Integrating Justice into the Liberty simulation flow in

this way significantly extends the capability of the LSE

without unduly increasing simulation time and without

restricting the types of architectures that can be modeled

in Liberty. Justice itself takes very little time to execute,

and most of its impact on simulation time comes from the

increase in the number of clock cycles that must be

simulated when wire delays are taken into account. The

modular design of Justice also makes it relatively easy to

modify its power or area models, for example, by

replacing the floorplanner with one based on a different

algorithm or by changing some of the power models. This

allows designers to use Justice effectively, even if they feel

that one or more of the baseline assumptions made by

Justice are not appropriate for their design.

Experimental methodology
To illustrate the capabilities of Justice, we modeled six

VLIW architectures in Liberty–Justice: three

conventional VLIW processors and three clustered VLIW

processors. Our baseline VLIW has eight execution units

that share a 32-entry register file. Each execution unit can

perform both integer and floating-point computations,

and two of the execution units can execute memory

operations. We refer to this architecture as the 8W2M

model because it is 8-wide and can perform two memory

operations per cycle. We also model an 8-wide VLIW that

can perform four memory operations per cycle (8W4M)

and a 16-wide VLIW that can perform four memory

operations per cycle (16W4M). For our power, area, and

wire length studies, we assume that all architectures are

fabricated in a 90-nm fabrication process.

Our clustered VLIW architectures divide their

functional units into two independent clusters, each of

which contains half of the functional units and a 16-entry

register file. Operations that execute on a given cluster

may access only its register file, although data can be

transferred between clusters via explicit move operations.

We model three clustered VLIW architectures: an 8-wide

processor that can execute one memory reference per

cycle from each cluster (8W1M1M), an 8-wide processor

that can execute two memory references per cycle from

each cluster (8W2M2M), and a 16-wide processor that

can execute two memory references per cycle in each

cluster (16W2M2M). All of our processor models use

128-KB data and instruction caches. We assume that

VLIW instructions are stored in a compressed format,

such as the one described in [8], that reduces the amount

of space required by no-operation (NOP) operations.

We evaluate these processor architectures using a set of

nine benchmarkprograms taken from theMediaBench suite

[9]. Where possible, we used both the encoder and decoder

portions of each benchmark, although rasta, a speech

recognition application, does not have separate encoder and

decoder applications. The benchmark programs were

compiled for each architecture using the Impact [10]

compiler to generate high-quality optimized code.

Results
As a baseline, Figure 2(a) shows the average number of

instructions per clock cycle (IPC) executed by our

architectures on each benchmark when wire delay and

clock rate are not taken into account. Overall, IPC

numbers are fairly high, as would be expected of highly

optimized media applications, with significant variance

among applications. Increasing the number of memory

instructions allowed per cycle without changing the issue

width of the architecture improves IPC by about 4% for

both the conventional and clustered VLIW architectures,

while increasing issue width from 8 to 16 improves IPC by

8.7% for the conventional VLIW processor, and by 10.5%

for the clustered processor.

When wire delay and clock rate are not considered, the

IPC numbers of clustered and nonclustered processors

with the same number of execution units and memory

ports are very similar. On some applications, the

nonclustered version of an architecture does slightly

better than the clustered version because of intercluster

communication overheads in the clustered version. On

others, the clustered version achieves higher IPC than the

nonclustered version because long-latency operations in

one cluster do not stall computation on the other.

Power consumption

Figure 2(b) shows the Justice estimate of the average

power dissipated by our architectures when executing

each benchmark. These results assume a 90-nm

fabrication process and 1.65-V power supply, with all

architectures running at 250 MHz, well below the

frequency at which wire delays begin to have a significant

effect on performance. On average, the 8-wide

architectures with four memory ports consume 15% more

power than their counterparts with two memory ports,

while increasing issue width from 8 to 16 IPC increases

power consumption by 60%. Clustered architectures

consume slightly less power than their nonclustered

counterparts on almost all applications.

N. P. CARTER AND A. HUSSAIN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

314

To give more insight into these results, Figure 2(c)

shows the contributions of the major sources of power

consumption in each architecture to overall power

consumption, averaged across all of the benchmarks. The

Queues category includes the power consumed in the

instruction queues, memory queues, and dispatch logic.

Other categories include the VLIW fetch and decode

(F/D) logic, the execution units, register files, instruction

caches, and data caches.

Increasing the number of memory operations that an

architecture can execute per cycle from two to four

increases data cache power consumption by 43%; it also

increases the power consumed in the queues but has

relatively little effect on power consumption in other

units. Because the data cache consumes about 25% of the

power in the base 8W2M processor, these changes explain

the overall power differences between architectures with

different numbers of memory ports.

The power consumed by the instruction cache is the

same for all of the 8-wide architectures and increases by

approximately 50% in the 16-wide architectures because

of the doubling of the instruction word width. Similarly,

power consumption in the execution units varies by only

1% across the different 8-wide architectures but increases

by 55–60% when the issue width is doubled. This

sublinear increase in execution unit power as instruction

width increases is due to the fact that execution units

consume significantly less power when idle than when

executing valid instructions. Because increasing the issue

width yields less-than-linear increases in IPC, it is not

surprising that it also causes sublinear increases in power

consumption.

Area and wire lengths

Figure 2(d) shows the Justice estimates of the total chip

area required to implement each of our architectures in a

90-nm fabrication process and how each of the major

(a) IPC without considering wire length. (b) Power consumption. (c) Breakdown of power consumption by processor module. (d) Area of
each modeled architecture.

Figure 2

Architecture

Queues
VLIW F/D
Execution units
Register files
Data caches
Instruction caches

A
re

a
 (

m
m

2)

Memory queue
Instruction queue
Dispatch
VLIW F/D
Execution units
Register files
Data caches
Instruction caches

25

20

15

10

5

0

jp
eg
de
c

jp
eg
en
c

mp
eg
2d
ec

mp
eg
2e
nc

pg
pd
ec

pg
pe
nc

ad
pc
md
ec

ad
pc
me
nc

ra
st
a

A
ve

ra
ge

jp
eg
de
c

jp
eg
en
c

mp
eg
2d
ec

mp
eg
2e
nc

pg
pd
ec

pg
pe
nc

ad
pc
md
ec

ad
pc
me
nc

ra
st
a

A
ve

ra
ge

8W
2M

8W
4M

16
W

4M

8W
1M

1M

8W
2M

2M

16
W

2M
2M

8W
2M

8W
4M

16
W

4M

8W
1M

1M

8W
2M

2M

16
W

2M
2M

160

120

80

40

0

140

100

60

20

Po
w

er
 (

W
)

Architecture
(c)

Architecture
(d)

Application
(a)

Application
(b)

Po
w

er
 (

W
)

IP
C

8W2M
8W4M
16W4M
8W1M1M
8W2M2M
16W1M1M

Architecture
8W2M
8W4M
16W4M
8W1M1M
8W2M2M
16W1M1M

8

7

6

5

4

3

2

1

0

20

16

12

8

4

0

18

14

10

6

2

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 N. P. CARTER AND A. HUSSAIN

315

architectural structures contributes to the total. The

Queues category from Figure 2(c) has been subdivided

into the area required for the memory queues, instruction

queues, and dispatch logic to better illustrate how

changes to the architecture affect the size of each of these

structures. This graph shows the area of each architecture

as the sum of the areas of each of its components, without

any blank space that may be introduced during

floorplanning.

As would be expected, the area taken up by the

execution units grows linearly with the number of

execution units in the architecture, while the instruction

caches of the 16-wide architectures are approximately

20% larger than those of the 8-wide architectures because

of the increase in fetch width in the wider architectures.

Similarly, the instruction queues and dispatch logic of the

16-wide architectures are significantly larger than those of

the 8-wide architectures. The fetch and decode logic takes

up a relatively small fraction of the total area of each of

the architectures, illustrating one of the advantages of

making the compiler responsible for instruction

scheduling.

Because the area of an SRAM bit cell increases

quadratically with the number of ports, the data caches of

the architectures that support four memory accesses per

cycle are approximately three times the size of the data

caches in architectures that support only two accesses per

cycle. Register file size remains constant across the 8-wide

nonclustered architectures but increases when the width

of the processor is increased to 16 because of the need to

support more ports on the register file. The register files of

the clustered architectures are noticeably smaller than

those of the nonclustered architectures, since two 16-entry

register files are smaller than one 32-entry register file

with twice as many ports.

Figure 3 shows the efficiency of the floorplanner in

placing each of our architectures, measured as the

fraction of the area of the placed chip that is taken up by

active circuitry. Most of the architectures achieve between

80% and 95% efficiency, with architectures that contain

more units generally having higher efficiency. The 8W2M

architecture achieves only 66% placement efficiency

because of an aspect ratio mismatch between its cache

and the remainder of its units. This illustrates one

weakness of our floorplanner that we intend to rectify in

future work—it treats all modules in the architecture as

fixed blocks and is unable to alter the aspect ratios of

units, such as cache memories, that are more flexible in

their design.

On the basis of its floorplans, Justice computed the

length of each wiring channel in our architectures,

generating the data shown in Table 1 for the longest wire

length and wire delay in each architecture. As would be

expected, the 16-wide architectures have significantly

longer wires than their 8-wide counterparts, and the

clustered architectures have noticeably shorter wires than

their nonclustered counterparts. The one surprise in this

data is that the longest wire in the 8W4M architecture is

only about 10% longer than the longest wire in the 8W2M

architecture, in spite of the fact that Figure 2(d) shows

the 8W4M architecture requiring significantly more chip

area than the 8W2M architecture. This occurs because the

floorplanner does a poor job placing the modules in the

8W2M architecture, leading to a significant amount of

blank space in the floorplan. This blank space increases

the distance between the centers of the modules in the

design, and thus the length of the longest wires.

Impact of wire delay on performance

To illustrate the ability of Justice to model the effect of

wire delay on performance, we simulated each of our

Figure 3

Efficiency of the floorplanner.

Architecture

Fl
oo

rp
la

nn
er

 e
ff

ic
ie

nc
y

 (
%

)

8W
2M

8W
4M

16
W

4M

8W
1M

1M

8W
2M

2M

16
W

2M
2M

100

90

80

70

60

50

40

30

20

10

0

Table 1 Longest wire lengths and delays.

Model Wire length (mm) Wire delay (ns)

8W2M 4.379 0.645

8W4M 4.749 0.759

16W4M 6.685 1.505

8W1M1M 4.169 0.585

8W2M2M 3.928 0.521

16W2M2M 5.276 0.937

N. P. CARTER AND A. HUSSAIN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

316

target architectures at clock rates ranging from 250 MHz

to 5 GHz. All architectural parameters other than wire

delay—including fabrication process, pipeline depth, and

memory latencies—were held constant across the clock

frequencies. Figure 4(a) shows the IPC achieved by each

of our architectures as a function of clock frequency,

averaged across all of our benchmarks. The leftmost Ideal

column of the graph shows what IPC each architecture

achieves when all wire delays are zero cycles, as would

occur at extremely low clock frequencies, while the other

columns show IPC at their specified clock rates.

This graph illustrates the importance of considering

wire delay in estimating the performance of processors.

While the 16-wide architectures achieve the highest IPC

when wire delay is neglected, they quickly become some

of the worst performers when wire delay is considered

and the clock rate increased. In general, the IPC of an

architecture decreases monotonically as clock rate

increases, although some artifacts are introduced because

Justice rounds the delay on each wire to the nearest full

cycle.

To illustrate the effect of wire delay on absolute

performance, Figure 4(b) shows the performance of each

of our architectures (measured as the product of IPC and

clock rate) relative to the performance of the 8W2M

architecture at 250 MHz, a clock rate at which none of

the architectures see any wire delay effects in our model.

In this graph, we can see that the clustered architectures

achieve significantly better performance than their

unclustered counterparts as clock rates increase, with the

8W1M1M architecture achieving the highest performance

at extremely high clock rates.

These results show how Justice can help designers

understand the impact that implementation effects will

have on their architectures early in the design process.

Simulation tools that ignore wire delays can lead

designers to choose extremely complex architectures that

are difficult to implement at high clock rates, while failing

to estimate power consumption can lead to designs that

require expensive heat sinks, have poor battery life, or

both. By exposing these factors to designers at the start of

the design process, Justice allows them to explore a wide

range of architectures to select the one best suited to their

application.

Related work

Justice builds on the work of a number of efforts that

have studied power modeling and wire effects in

architectural simulators. SimplePower [11], Wattch [12],

and TEM2P2EST [7] are three examples of tools that have

added power modeling to architectural simulations. Each

of these tools uses SimpleScalar [6] as its architectural

performance simulator and augments SimpleScalar with

extensions that model the power consumption of different

units within an architecture.

While these three tools are all based on SimpleScalar,

they use very different approaches to estimate the power

consumed by an architecture. SimplePower relies on an

empirically derived table of effective capacitances for each

unit in the processor to calculate the total capacitance

being charged and discharged on each cycle, and thus the

power consumed during the cycle. This approach allows

extremely accurate modeling of the power consumed by a

particular architecture, particularly one for which

accurate layout-based capacitances are available, but the

effort required to generate the capacitance table for each

new architecture limits the portability of SimplePower.

Wattch, on the other hand, uses parameterizable

analytic models to estimate the power consumed by each

unit in an architecture, which makes it extremely flexible.

TEM2P2EST takes an intermediate approach to power

modeling, using a combination of analytic power models

and empirical power density estimates to compute the

power consumed by each module in an architecture.

TEM2P2EST models a processor as a collection of

functional blocks and estimates the power consumed in

each block on the basis of activity counts generated

Figure 4

(a) Impact of wire delay on IPC. (b) Impact of wire delay on per-
formance.

8W2M
8W4M
16W4M
8W1M1M
8W2M2M
16W1M1M

8W2M
8W4M
16W4M
8W1M1M
8W2M2M
16W1M1M

Ideal 1 2 3 4 5
Clock rate (GHz)

(a)

Clock speed (GHz)
(b)

0.0
0.5
1.0
1.5
2.0

IP
C

Pe
rf

or
m

an
ce

 r
el

at
iv

e
to

 8
W

2M

at
 2

50
 M

H
z

2.5
3.0

0

2

4

6

8

10

12

3.5
4.0
4.5

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 N. P. CARTER AND A. HUSSAIN

317

during simulation. Both the Wattch and TEM2P2EST

power models are modular and flexible enough that they

could be applied to Justice. We selected TEM2P2EST

on the basis of our ongoing collaboration with the

TEM2P2EST authors, which provided significant insight

into the tool and how it could be adapted to meet our

needs.

Conclusion
Justice is a set of extensions to the Liberty simulation

environment that allows designers to estimate, for a given

architecture, the power consumption, area, and impact

that wire delays will have on performance. During the

compilation of a simulator for an architecture, Justice

estimates the area of each module in a design and creates

a floorplan for the architecture. Using this floorplan, it

estimates the physical length of the wires represented by

communication channels in the architecture model and

adds FIFO delay queues to each channel to simulate its

wire delay. Justice also adds activity counters to each

module in the architecture and precomputes the amount

of power consumed each time the module is accessed.

After simulation of a program completes, Justice

processes the output of these activity counters to estimate

per-module and overall power consumption.

Simulations using Justice demonstrate the importance

of considering power and wire delay in architectural

simulation. When wire delay was neglected, doubling the

number of execution units in an architecture increased

performance by approximately twice as much as doubling

the number of memory accesses the processor could

perform per cycle. However, doubling the number of

execution units increased overall power consumption by

60%, while doubling the number of memory ports on the

processor increased power consumption by only 15%.

When wire delay and clock rate are taken into account,

the benefits of clustering a VLIW architecture become

clear, as our clustered architectures significantly

outperform their nonclustered counterparts. In addition,

the benefits of widening the architecture are called into

question. At high clock rates, our 16-wide architectures

have lower overall performance than our 8-wide

architectures because of the increase in wire length

between the execution units and centralized control and

memory logic.

While these simulations are somewhat idealized, they

clearly illustrate the importance of modeling technology

effects when evaluating potential changes to a computer

architecture. As wire delay and power consumption

become more and more significant with advances in

fabrication technology, we believe that simulation tools

such as Justice—which enable designers to easily model

technology effects in their simulations—will become

indispensable tools for computer architects.

Acknowledgments
This work was supported by the Semiconductor Research

Corporation (SRC) under Contract No. 785. The

material presented here represents the conclusions of the

authors and does not necessarily represent the opinions of

the SRC. The authors thank David August and the

members of the Liberty Research Group at Princeton

University for their help in developing Justice, as well as

the reviewers and others who have commented on earlier

versions of this paper.

References
1. V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger,

‘‘Clock Rate Versus IPC: The End of the Road for
Conventional Microarchitectures,’’ Proceedings of the 27th
Annual International Symposium on Computer Architecture,
2000, pp. 248–259.

2. R. Ho, K. W. Mai, and M. A. Horowitz, ‘‘The Future of
Wires,’’ Proc. IEEE 89, No. 4, 490–504 (April 2001).

3. M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome,
and D. I. August, ‘‘Microarchitectural Exploration with
Liberty,’’ Proceedings of the 35th Annual IEEE/ACM
International Symposium on Microarchitecture, 2002,
pp. 271–282.

4. D. I. August, M. Vachharajani, J. A. Blome, N. Vachharajani,
D. A. Penry, and R. Rangan, ‘‘Architectural Exploration with
Liberty,’’ Tutorial presentation at the 36th Annual
International Symposium on Microarchitecture, 2001; see
http://liberty.princeton.edu/News/Tutorials/Micro36/.

5. The Liberty Research Group; see http://liberty.cs.
princeton.edu/.

6. D. Burger and T. M. Austin, ‘‘The SimpleScalar Tool Set,
Version 2.0,’’ Technical Report 1342, Computer Science
Department, University of Wisconsin, Madison, WI 53706,
1997.

7. A. Dhodapkar, C. H. Lim, G. Cai, and W. R. Daasch,
‘‘TEM2P2EST: A Thermal Enabled Multi-Model Power/
Performance ESTimator,’’ Proceedings of the International
Workshop on Power-Aware Computer Systems, 2000,
pp. 112–125.

8. T. M. Conte, S. Banerjia, S. Y. Larin, K. N. Menezes, and
S. W. Sathaye, ‘‘Instruction Fetch Mechanisms for VLIW
Architectures with Compressed Encodings,’’ Proceedings of the
29th Annual ACM/IEEE International Symposium on
Microarchitecture, 1996, pp. 201–211.

9. C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
‘‘MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems,’’ Proceedings of
the 30th Annual IEEE/ACM International Symposium on
Microarchitecture, 1997, pp. 330–335.

10. W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke,
D. M. Lavery, G. E. Haab, J. C. Gyllenhaal, and D. I. August,
‘‘Compiler Technology for Future Microprocessors,’’ Proc.
IEEE 83, No. 12, 1625–1640 (December 1995).

11. W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin,
‘‘The Design and Use of SimplePower: A Cycle-Accurate
Energy Estimation Tool,’’ Proceedings of the Asia and South
Pacific Design and Automation Conference, 2000, pp. 340–345.

12. D. Brooks, V. Tiwari, and M. Martonosi, ‘‘Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,’’ Proceedings of the 27th Annual International
Symposium on Computer Architecture, 2000, pp. 83–94.

Received June 28, 2005; accepted for publication
July 26,

N. P. CARTER AND A. HUSSAIN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

318 2005; Internet publication February 23, 2006

Nicholas P. Carter University of Illinois at Urbana–
Champaign, 1308 W. Main Street, Urbana, Illinois 61801
(npcarter@uiuc.edu). Professor Carter is an Assistant Professor at
the University of Illinois at Urbana–Champaign (UIUC). Prior to
joining the UIUC in 1999, he was a graduate student at the
Massachusetts Institute of Technology, where he was the memory
system architect for William J. Dally’s M-Machine project.
Professor Carter’s research interests focus on computer
architectures that incorporate devices other than silicon transistors
and structures other than conventional microprocessors.

Azmat Hussain Digital Enterprise Group, Intel Corporation,
5200 NE Elam Young Parkway, Hillsboro, Oregon 97124
(azmat.hussain@intel.com). Mr. Hussain received an M.S. degree
in electrical engineering from the University of Illinois at Urbana–
Champaign. He is currently working in the architecture design
group for Intel Corporation.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 N. P. CARTER AND A. HUSSAIN

319

