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Because they are based on large, content-addressable memories,
load–store queues (LSQs) present implementation challenges in
superscalar processors. In this paper, we propose an alternate
LSQ organization that separates the time-critical forwarding
functionality from the process of checking that loads received their
correct values. Two main techniques are exploited: First, the store-
forwarding logic is accessed only by those loads and stores that are
likely to be involved in forwarding, and second, the checking
structure is banked by address. The result of these techniques is
that the LSQ can be implemented by a collection of small, low-
bandwidth structures yielding an estimated three to five times
reduction in LSQ dynamic power.

Introduction

In a dynamically scheduled processor, the load–store unit

is typically implemented by composing a translation-

lookaside buffer, a cache, and a load–store queue (LSQ).

The LSQ typically provides the following four functions:

buffering store addresses and values for in-order

retirement, forwarding in-flight store values to loads,

detection of load and store ordering violations, and

detection of memory consistency violations.

Commonly, the LSQ is implemented as a pair of age-

ordered queues—one each for loads and stores—that can

be associatively searched by address. This organization

presents a scalability challenge to increasing superscalar

width and number of in-flight instructions: Increasing the

number of ports (for increased width) and the number of

entries (for more in-flight instructions) has a significant

impact on the access time and power consumption of the

structure.

The access time of the store queue is particularly

critical because it is a component of the load-to-use

latency. Typically, snooping the store queue (querying it

for conflicts with the current memory instruction) must be

performed in the same amount of time as the L1 data

cache access, which is done in parallel in order to avoid

further complication of the instruction scheduler.

In this work, we propose an LSQ organization that

decouples the performance-critical store-forwarding logic

from the rest of the load–store queue functionality. This

organization is motivated by two insights:

� Store value forwarding is the only time-critical

operation performed by the LSQ. All other functions

merely have to be performed before the instructions

retire.
� Only a small and predictable fraction of loads and

stores take part in store value forwarding.

For store forwarding, we propose using a structure—

the store-forwarding buffer (SFB)—that is much like a

traditional store queue but has fewer entries and fewer

ports, yielding a reduction in access time and a significant

reduction in power consumption. The structure size is

reduced by allocating entries for only those stores

predicted to require forwarding. Similarly, required

bandwidth is reduced by snooping only for those loads

that are predicted to require forwarding. Because these

predictions can be wrong, a mechanism is required to

detect faulty predictions, known as misspeculations.

A second structure, the memory validation queue

(MVQ), detects load–store ordering violations,

consistency violations, and forwarding mispredictions.

This structure must observe all in-flight loads and stores

to identify violations. To efficiently implement this

structure, we bank it by address. Such banking provides
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scalability and reduced energy consumption at the cost of

a potential imbalance between banks. To tolerate bank

conflicts and enable wider issue of memory instructions,

we decouple processing in the MVQ from instruction

execution by adding a small wait queue. Validation is

tolerant of queuing delay because it merely has to take

place before the associated instructions commit.

The contributions of this work are threefold:

� We describe a load–store queue design that decouples

store forwarding from other LSQ functions,

decomposing the LSQ into a small, low-bandwidth

(and hence fast) SFB and a latency-tolerant MVQ,

which can be made efficient and capable of high

throughput by banking.
� We demonstrate that address-based hashing can be

used to partition a processor address stream into four

roughly balanced streams, making banking effective.

Furthermore, we show that bank imbalance, when it

does occur, is caused by repeated loading or storing to

a single address.
� We provide the mechanisms required to achieve

good utilization of banked LSQ structures

while minimizing squashing (restarts due to

misspeculations) and stalling. Specifically, we discuss

how execution throttling can minimize resource

oversubscription and how to deal with potential

deadlocks.

Related work
The work most closely related to ours is that of Roth,

who independently made the observation that not all

loads and stores have to be considered for forwarding [1].

To handle the non-forwarding-related operations of the

LSQ, he proposes to use filtered load re-execution, as was

proposed by Cain and Lipasti [2], which eliminates the

necessity of a load queue at the expense of re-executing a

fraction of loads at retirement. This fraction can be

further reduced by tracking store window vulnerabilities

[3].

Other proposed approaches to filtering include the

work of Park et al. [4], which extends a store set predictor

[5] to predict instructions involved in forwarding, and the

proposal by Sethumadhavan et al. [6] to use a Bloom filter

to filter store queue snoops that can be guaranteed not to

match. Park’s work achieves an equivalent reduction in

snoops, but with a more complex predictor. The Bloom

filter approach has two drawbacks relative to our

proposal. The first drawback is that accessing the Bloom

filter is on the critical path (i.e., it must be done between

generating an address and accessing the store queue). The

second drawback is that the scheduler does not know

whether an instruction will have to snoop, forcing it

either to be conservative or risk overloading the store

queue ports.

Banking by address was previously considered by

Sethumadhavan et al. [6], but they discarded the idea

because they failed to achieve good results. There are

three key differences between their proposal and ours: We

propose banking only the latency-tolerant verification

portion of the LSQ, which can tolerate a buffer to smooth

out bank conflicts; our throttling mechanism can be

viewed as a hybrid of their stalling and squashing

mechanism, which minimizes the number of squashes

required without being overly conservative; and our

primary site of throttling is in the scheduler, rather

than at decode.

Figure 1

(a) Traditional monolithic load and store queue design. A 
datapath that can support up to two loads and/or two stores per 
cycle is shown. (b) Proposed decoupled load and store queue 
design. A datapath that can support up to two loads and/or two 
stores per cycle is shown, but only one load and one store can 
access the SFB. The blue and red lines indicate different memory 
functional units. (S � store, L � load.)
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Hierarchy has also been proposed as a solution to

scaling the LSQ. Akkary et al. [7] propose caching recent

instructions in a first-level store queue, with other

instructions residing in a second-level structure. This

approach reduces the size (though not the bandwidth)

of the latency-critical store queue, but reduces latency

predictability. A hybrid of banking and hierarchy is

considered by Torres et al. [8], whose design features

a banked first-level store queue that speculatively

forwards values, backed by a larger, latency-tolerant

second-level store queue that detects and squashes

misspeculations.

LSQ organization

In this section, we describe our proposed LSQ

organization. Because we use a store queue similar to a

traditional LSQ as a building block of our design, we

begin by describing its salient details, and then describe

the two components of our proposed LSQ design.

Age-ordered load and store queues

The most common implementation of an LSQ, as shown

in Figure 1(a), involves a pair of buffers (one for loads

and one for stores) that hold instructions in program

order (i.e., age-ordered). Instructions are allocated entries

in their respective queues before dispatch into the

instruction window; dispatch stalls if entries are not

available. When instructions execute, they write their

address (and value for stores) into their allocated entry.

In parallel, they perform an associative search of the

other queue, comparing addresses. If a store matches

a later (in program order) load, a pipeline squash is

signaled. If a load matches with one or more stores earlier

in program order, the index of the youngest is selected

(using a priority encoder, a process facilitated by age

ordering) and used to drive a random access memory

(RAM) array that holds the store value.

Because all loads and stores are placed in the LSQ,

each queue must be appropriately sized to allow good

utilization of the reorder buffer, even for instruction

mixes rich in loads or stores. In recent processors, the

queues have been sized to hold 25–40% of the maximum

number of in-flight instructions (Alpha 21264: 32 loads/

32 stores, 80 in-flight instructions [9]; Intel Pentium** 4:

48 loads/32 stores, 128 in-flight instructions [10]). To

address the scaling challenges of monolithic LSQ, we

present our decoupled LSQ [Figure 1(b)].

Store-forwarding buffer

As described above, we streamline the performance-

critical store queue by using it only for those instructions

that require it. In Figure 2, the yellow and blue bars

respectively show the fraction of dynamic loads and

stores that matched 1 in the LSQ and hence required

forwarding, for a machine with a 256-entry instruction

window. On average, only 7% of dynamic loads and

20% of dynamic stores are involved in forwarding in

our runs.

Because whether or not an instruction is forwarded is a

property of the program, its program counter can be used

to segregate those instructions likely to forward from

those that are not. Specifically, we find that a large

fraction of static instructions are never involved in

forwarding. Thus, a single bit per static instruction is

sufficient to effectively predict the forwarding behavior

of an instruction; all bits are initially cleared and an

instruction bit is set when it is first detected to require

forwarding. This simple predictor is very effective for

loads (filtering out 70% of dynamic loads) and

moderately effective for stores (filtering out 40% of

dynamic stores), as shown in Figure 2. Since there are

generally more loads than stores, it is desirable that more

loads be filtered than stores.

Ideally, this prediction bit is stored in the instruction—

an option when defining a new instruction-set

architecture (ISA) or dynamically translating to an

internal ISA [11–15]—because then the behavior has to

be learned only once. Alternatively, this prediction can

be implemented by associating an extra bit with each

instruction in the instruction cache (I-cache). To handle

Figure 2

Proportion of dynamic instructions marked and matched for 
SPEC2000 integer benchmarks.
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programs with large working sets (not a problem for the

SPEC2000** integer benchmarks), it may be beneficial

to ‘‘page’’ (store when evicted from the cache) these

predictions into L2 error correction control (ECC) bits, as

is done in the AMD Opteron** with branch predictor

information [16]. Once these predictions are available, the

operation of the SFB is much like that of a traditional

store queue. Like traditional systems, stores allocate

entries in the age-ordered SFB prior to dispatch into the

instruction window; the only difference is that only those

stores predicted to require bypassing—what we call

marked stores—have to allocate an entry. Since only a

fraction of loads and stores are marked, less SFB

bandwidth can be provided than overall memory

bandwidth with only a modest performance loss (as

shown in the methodology and results section). Thus,

only a subset of load and store units have to be provided

with ports to the SFB. Marked instructions must be

slotted and scheduled to execute only on those functional

units.

Memory validation queue

Of the four LSQ functions numbered above, the SFB

provides only the second: forwarding in-flight store values

to loads. Additional structures are required to provide the

remaining functions. The first function (buffering

store values for in-order retirement) is relatively

straightforward. Two reasonable implementations are

possible: a separate (non-associative) RAM structure to

hold addresses and values, or using such a structure for

unmarked stores in conjunction with the SFB. To handle

the last two functions (detecting load and store ordering

and consistency violations), we provide a structure called

the Memory Validation Queue, or MVQ.

The MVQ has two roles: to mark instructions for

subsequent introduction into the SFB and to ensure that

loads receive their correct value by forcing pipeline

squashes when necessary. In addition to the detection of

load–store ordering and consistency violations required

of traditional load queues, the MVQ must detect

situations in which load–store forwarding should have

been performed on unmarked loads or stores.

While the MVQ acts much like a traditional LSQ, by

virtue of factoring out the performance-critical store-

forwarding logic, the structure becomes latency-tolerant,

enabling an energy-efficient implementation. The primary

technique that we exploit to simplify the implementation

is banking by address, though others (e.g., a lower-

frequency clock domain, high-Vt transistors) are possible.

Banking allows a collection of small, low-bandwidth

structures to be used as a single large high-throughput

structure. The reduction of structure size and number of

ports significantly reduces energy consumption, as we

discuss in the next section.

Figure 1(b) shows the high-level organization of the

MVQ. The MVQ comprises a set of banks, each

consisting of a pair of circular queues, one to hold loads

and one to hold stores. The entries in these queues

contain the same fields as in the traditional load–store

queue—CAM accesses to the data address, valid bits

(a byte mask for supporting multiple access sizes), and

instruction serial number (INUM) (see the handling loads

section below). Memory instructions are assigned to

banks on the basis of a hash of their memory addresses,

ensuring that communicating instructions will be assigned

to the same bank.

In the remainder of this section, we first describe how

banking the MVQ affects its structure. We then discuss

how stores and loads are handled, explain how entries in

the MVQ are deallocated, and conclude with a discussion

of how deadlock is handled.

Challenges due to banking

The most obvious drawback of banking is the potential

for load-balancing problems, but we have found this to be

a minor problem in practice. By using a hash function

that incorporates many (e.g., 16) address bits, we find that

problems resulting from strided accesses—i.e., accesses

progressing at regular address intervals, such as array

iteration—can be minimized. Figure 3 shows that a

relatively even distribution can be achieved in most

cases (data shown for four banks, interleaving at the

granularity of a 64-bit word and hashing bits 3 to 18

of the address). In general, the address distribution is

remarkably constant over time. In the few cases in which

the distribution is skewed (e.g., the first sample from

bzip2), we can attribute it to the existence of a small

number of ‘‘hot’’ addresses (see the section on the source

of bank imbalance); thus, skewing cannot be avoided by

the selection of a different hash function.

The true challenges resulting from banking arise from

addresses (and hence bank indices) not being available

until execution time. The challenges are the following:

MVQ entries cannot be allocated at dispatch time,

making it difficult to manage the structure in an

age-ordered manner; bank conflicts can arise from

simultaneously issuing multiple instructions destined for

the same bank; and it is difficult to guarantee that one

bank will not be oversubscribed.

We address the first challenge by not using an age-

ordered queue; instead, we assign entries first-in first-out

(FIFO) in execution order, maintaining head and tail

pointers. Age ordering primarily serves two purposes:

simplification of the management of queue resources and

simplification of priority encoding. Because of the simple

FIFO allocation scheme we use, we cannot deallocate

entries as soon as they retire when reordering has

occurred; but, because the degree of reordering is
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generally modest, this has little practical impact. The

execution time allocation does improve utilization,

however, because it avoids tying up resources before they

are needed. Solving the priority-encoding issue is more

involved, but it can be managed (using the INUMs stored

in the MVQ) because of the MVQ latency tolerance and

the fact that accesses to the same address are rarely

reordered (see the following sections).

The second challenge, that of bank conflicts, is easily

addressed by adding a buffer [Figure 1(b)] to smooth out

instantaneous bank imbalance. The addition of this buffer

increases the latency of an MVQ insertion, but since the

MVQ is used only to signal pipeline squashes and to mark

instructions involved in forwarding, it is latency-

insensitive, and its latency need not be predictable.

The third challenge is the most difficult, because there is

a tension between fully utilizing the MVQ and avoiding

oversubscribing any one bank. Our primary mechanism is

to issue memory instructions only when there is space

available in the buffer. This is done by tracking, at the

scheduler, the number of buffer entries that have been

allocated but not freed. The MVQ buffer is sized to

account for the instruction in flight between schedule

and address-generation pipeline stages.

Handling stores

As a store is written to its MVQ bank store queue, the

entry index (read from the head pointer) is sent to the re-

order buffer (ROB) for use at retirement time. In parallel,

the load queue of the bank is searched (using the CAM

port) for entries with matching store address and valid

bits and later INUM to detect ordering violations. If a

load is found with a matching address, overlapping valid

bits, and a younger INUM, the MVQ pipeline is halted.

Such a match does not guarantee an ordering violation (a

load may have received a value from a younger store that

executed earlier than the present store), but we have

found that the complexity of detecting such circumstances

cannot be justified because they are relatively infrequent.

When an ordering violation is detected, the offending

load and later instructions are squashed, mark bits are set

for the load and store instructions, and the memory

dependence predictor is trained. For these last two

operations, program counters are retrieved from the ROB

using the load and store INUMs available from the

MVQ.

When multiple matches occur, we need to squash back

to the oldest; also, we choose to add only the oldest to our

memory dependence predictor so as to minimally

synchronize the execution. Because instructions are not

necessarily stored in program order, INUMs must be

compared to identify the oldest. Our solution to this

problem is a low-cost, low-performance one, because

ordering violation squashes (particularly those involving

multiple matches) are rare. When processing a store, the

MVQ load queue sets match bits on all matching entries.

The INUMs of the matching lines are then read out one

per cycle (while the MVQ is otherwise stalled), retaining

the oldest INUM. This approach affects performance by

less than 0.001% in all cases observed.

Handling loads

Loads are similarly entered into the MVQ bank load

queue, with the position being forwarded to the ROB. In

parallel, the load snoops the MVQ bank store queue for

matching (same address, overlapping valid bits, earlier

INUM) stores where forwarding should have occurred. If

the mark bits for either the load or the store are not set, a

Address-based hashing used to partition dynamic memory instructions into roughly equal groups. For each benchmark, each column represents 
occupancy of four different hash bins over a 100-million-instruction interval—from left to right, starting at 0 billion, 3 billion, 5 billion, and 
8 billion instructions into the execution. Within each column, fractions of occupancy are sorted from largest to smallest, bottom to top.
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value misspeculation has likely occurred; the pipeline is

squashed and the mark bits are set on both instructions

(again using the stored INUMs to retrieve program

counters from the ROB).

When multiple matches occur, the MVQ must identify

the youngest (the true producer) in order to avoid

conservatively marking all matching stores. In contrast to

an LSQ, the instructions in the MVQ cannot be relied

on to be in program order. Nevertheless, stores to the

same address are very rarely reordered in practice (an

observation also made by Park et al. [4]), so a priority

encoder almost always (more than 99.9% of the time)

returns the correct value. Thus, our implementation

assumes that the store closest to the head is the youngest,

then validates this assumption.

To prevent this process from affecting the throughput

of the MVQ, we pipeline the store queue access over two

cycles. In the first cycle, we identify all matches, setting

the match bits shown in Figure 4. In the second cycle, if

any matches have occurred (when match_1 is pulled

down), we prioritize the matches, select the presumed

youngest (using a priority encoder) and (attempt to)

verify that all other matches are older. The verification

is performed by broadcasting the INUM of the entry

selected by the priority encoder on a second INUM CAM

port to see whether any of the matched entries are

younger. If no entries are younger, the match_2 signal

will be low, and the presumed youngest mark bit, which is

read out while its INUM is being broadcast, is checked. If

there is at least one older entry, we must iterate; the

match bits are updated so that only those matching

entries younger than the presumed youngest are set, and

the process is repeated. If another load was in the first

stage of the pipeline and had a match, it would have to be

replayed on the following cycle, but, as previously noted,

this almost never happens.

Deallocating entries

Loads and stores are not allowed to retire until they have

been processed by the MVQ. Once an instruction has

been committed, its MVQ entry can be deallocated in the

background. When the tail instruction in an MVQ load

queue has an INUM older than the oldest retired

instruction, the instruction is invalidated and the tail

pointer is incremented. Because instructions are allocated

in the MVQ in execution order, they must also be

deallocated in execution order. Because instruction

reordering in practice is modest, this yields only a

small inefficiency. Similarly, squashed instructions are

invalidated, but the ‘‘holes’’ created in the queues are not

collapsed.

A similar process happens with the store queue, but

stores cannot be deallocated immediately at retirement.

Before a store entry can be deallocated, it must be

snooped by all loads that executed before its retirement

(i.e., before it became available from the cache), and some

of these instructions may still be in the MVQ buffer

waiting for entry into an MVQ queue. By recording, at

the retirement of a store, the number of buffered loads

destined for the same bank and decrementing this

count each time a load is processed, the safe time for

deallocating a store can be determined. If the MVQ buffer

is limited to hold six loads, we need to keep track of,

at most, seven INUMs per bank—an INUM that is

currently safe to retire and INUMs that are safe to retire

after one to six loads are processed. This functionality can

be implemented with a circular buffer without any CAM

logic.

Deadlock avoidance, detection, and resolution

As with any situation in which the resources are limited

and are allocated out of program order, the MVQ has the

potential for deadlock. Deadlock in the MVQ can occur

in two ways. Both cases begin with an instruction being

scheduled later than its program order and becoming

next-to-retire while some set of MVQ banks is full:

� If the late instruction issues and enters the MVQ

buffer but cannot enter its bank because the bank is

full, the late instruction can never retire; however,

until it does so, no other instructions can retire.
� If the late instruction becomes the next to retire when

some set of banks in the MVQ is full and the MVQ

buffer is blocked on that set of banks, it can never

issue, since there is no room for it in the MVQ, and

the MVQ will remain full, since none of the

instructions in it can retire until the late instruction

does so.

The latter case requires a full MVQ bank, an MVQ

buffer full of instructions waiting to enter the full bank,

Figure 4

Closeup of an entry of the MVQ store queue. 
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and a memory instruction, scheduled out-of-order,

bypassed by every instruction in the MVQ. In practice,

for reasonable MVQ sizes, this case is exceedingly rare;

we have never observed it. To detect it, we cause a

timeout to occur if the next-to-retire instruction remains

unissued for long. If it has not yet issued and a timeout

has elapsed, we determine that a deadlock has occurred.

Resolution is easy, if costly: We flush the pipeline back

to the blocked instruction and resume execution.

The former case happens more frequently, but

fortunately it can be avoided. When the MVQ detects

that an instruction in the buffer is the next to retire, it can

allow that instruction to snoop and remove itself from the

MVQ without ever allocating the instruction entry in a

bank. To do this, the MVQ permits the instruction to

snoop its bank as usual, but also requires the instruction

to snoop backward in the buffer, examining all later-

issued instructions for matches. The extra time required

for such an operation is small compared with the pipe

flush otherwise required. This case is not common, but it

does occur, particularly in memory-intensive benchmarks

such as mcf.

To reduce the likelihood of either situation, we limit

the number of loads and stores dispatched into the

instruction window to be slightly less than can be held

in the MVQ proper (anticipating some imbalance). By

throttling the number of memory instructions entering

the window, we reduce the likelihood that an MVQ bank

may fill before a stalled instruction can execute.

Experimental method and results
We evaluated our proposed load–store queue design

using timing simulations of the SPEC2000 integer

benchmarks. Our timing simulator uses the loader and

system call functionality from SimpleScalar [17], but the

pipeline model has been rewritten to perform a true

execution-driven simulation of Alpha binaries.

Parameters for our simulated machine are as follows:

� Scheduler and pipeline: Four-issue, twelve-stage

pipeline, 256-entry instruction window, 4k gshare

predictor with 8 bits of history.
� Memory: 64-KB two-way associative L1 instruction

and data caches with one-cycle latency, 1-MB eight-

way associative L2 cache with 20-cycle latency, 80-

cycle memory latency.
� Functional units (latency in clock cycles): Four integer

arithmetic logic units (1), one integer multiply/divide

(3/12), two memory ports (three loads/two stores),

two floating-point arithmetic logic units (2), one

floating-point multiply/divide (4/12).

Benchmarks are compiled with the Alpha compiler at

the highest level of optimization, but without profile

information. The results presented in this paper are for

200 million instruction runs started after skipping the first

five billion instructions.

In this section, we demonstrate that filtering based

on previous forwarding behavior significantly reduces

the required number of entries and ports on the SFB

compared with a traditional LSQ. We then show that our

throttling mechanisms are sufficiently effective to enable

the performance of an MVQ with four banks and 16

entries per bank to approximate that of an ideal MVQ.

We conclude this section by demonstrating that an SFB

MVQ design enables performance equivalent to that of a

conventional LSQ with a three to five times reduction in

dynamic power.

Varying store queue size and ports

In a system using a conventional LSQ, performance is

closely related to the LSQ parameters. In particular,

reducing the queue capacity or the number of ports

severely limits performance. In Figure 5(a), the LSQ

capacity is varied between eight and 64 entries with both

single-ported and double-read/write-ported queues. With

the conventional LSQ (solid curves), single-ported

performance trails double-ported by 5.8% with a capacity

of 64 elements, and performance begins to drop

drastically when the capacity is reduced below 32

elements, attaining a 13% slowdown by eight elements.

In contrast, we observe systems to be much less

sensitive to the size and bandwidth of an SFB. Figure 5(a)

shows that single-read/write-ported performance differs

from double-read/write-ported by 1.5% at 64 entries, and

the 64-entry queue performs only 1.8% better than the

eight-entry queue. These SFB sensitivity results were

generated with an ideal (i.e., unlimited bandwidth and

capacity) MVQ. We consider practical MVQ

configurations next.

Varying MVQ parameters

We explore two MVQ parameters that potentially affect

performance: the number of banks in the MVQ and the

capacity of both the store queue and the load queue in

each bank. Our results, shown in Figure 5(b), show that

four banks are required to provide sufficient bandwidth

(recall that each bank can process only a single load or

store per cycle), but performance is reasonable with

queues as short as 16 entries. This significantly reduces

power, as we show below.

MVQ power

Our previous results show that our SFB MVQ

combination can achieve performance comparable to that

of a monolithic LSQ, but with a collection of smaller,

low-bandwidth structures. While this modestly reduces

the access time of each structure, it provides a substantial

dynamic power reduction. According to CACTI 3.2 [18],
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energy per access for a CAM scales roughly linearly with

both the number of entries and the number of ports

[Figure 5(c)]. Thus, querying a 48-entry 2-read/2-write-

ported CAM takes almost seven times the power of a

query to a 16-entry 1-read/1-write-ported CAM.

As a result, using smaller structures and limiting the

queries to them translates into as much as a five times

reduction in LSQ power. Accounting for the fact that the

marked instructions access both the SFB and the MVQ,

we computed energy consumption for both the LSQ and

(a) Data averaged across samples of the SPEC2000 integer benchmarks, normalized to a 64-entry 2/2-ported LSQ. A conventional system is 
sensitive to its store queue parameters; an MVQ-equipped system is relatively insensitive. (b) Data averaged across the SPEC2000 integer 
benchmarks, normalized to the case with a perfect MVQ. (c) Query power in CAMs varies with the number of ports and the number of 
elements. All simulations were of 0.09-   m technology. (Data produced by CACTI 3.2.)

Figure 5

64 48 32 16 8 

LSQ  size
(a)

1.0

1.1

N
or

m
al

iz
ed

 r
un

tim
e

1/1-ported LSQ
1/1-ported SFB/
perfect MVQ
2/2-ported LSQ
2/2-ported SFB/
perfect MVQ

8 16 24 32 

MVQ queue size
(b)

1.00

1.02

1.04

N
or

m
al

iz
ed

 r
un

tim
e 2-banked MVQ

4-banked MVQ
8-banked MVQ

8 16 24 32 48 64 96 128 

CAM entries
(c)

0.0

0.1

0.2

E
ne

rg
y 

pe
r 

ac
ce

ss
  (

nJ
)

2/2-ported CAM
1/1-ported CAM

�

Data shown for 48- and 32-entry LSQs with two load and two store ports for each queue. The MVQs have a 16-entry buffer and four banks, 
with each bank having 16 entries and one read and one write port.

Figure 6

Po
w

er
 (

no
rm

al
iz

ed
 to

 L
SQ

) SQ (48 entries, 2/2 ports)

LQ (48 entries, 2/2 ports)

SQ (32 entries, 2/2 ports)

LQ (32 entries, 2/2 ports)

MVQ (16 entries, 1/1 ports)

SFB (16 entries, 2/2 ports)

SFB (16 entries, 1/1 ports)       

R
un

tim
e

LSQ (48 entries, 2/2 ports)

LSQ (32 entries, 2/2 ports)

MVQ/SFB (16 entries, 2/2 ports)

MVQ/SFB (16 entries, 1/1 ports)    

b
z
i
p
2

c
r
a
f
t
y

e
o
n

g
a
p

g
c
c

g
z
i
p

m
c
f

p
a
r
s
e
r

p
e
r
l

t
w
o
l
f

v
o
r
t
e
x

A
ve

ra
ge

v
p
r

b
z
i
p
2

c
r
a
f
t
y

e
o
n

g
a
p

g
c
c

g
z
i
p

m
c
f

p
a
r
s
e
r

p
e
r
l

t
w
o
l
f

v
o
r
t
e
x

A
ve

ra
ge

v
p
r

0.0

0.2

0.4

0.6

0.8

1.0

0.98

1.00

1.02

1.04

L. BAUGH AND C. ZILLES IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

294



SFB MVQ organizations. We looked at two performance

points: A 2-ported 48-entry LSQ has roughly the same

performance as a 2-ported 16-entry SFB with a 4 3 24-

entry MVQ, and a 2/2-ported 32-entry LSQ has roughly

the same performance as a 1/1-ported 16-entry SFB with

a 4 3 16-entry MVQ. Figure 6 shows that the SFB/MVQ

achieves roughly a five times and three times reduction of

dynamic power, respectively.

A quick calculation suggests that our design compares

equivalently or favorably with conventional LSQ designs

in terms of static power and area. To analyze both the

static power consumption and area requirements of our

design, we estimated the transistor count of both the

traditional design and the SFB/MVQ. This estimate

suggests that a 48-entry 2/2-ported LSQ architecture uses

roughly the same number of transistors as a 16-entry

2/2-ported SFB together with a 4-banked, 16-entry-per-

queue MVQ. The latter architecture, by virtue of using

structures with fewer ports, uses fewer wires, and the

MVQ could employ slower, lower-leakage, smaller

fabrication transistors without significant performance

penalty. Since the MVQ dominates the transistor count

of our architecture, we expect this to have a favorable

influence on static power and area. Furthermore, since

the SFB and MVQ scale more slowly with instruction

window size than do traditional LSQs [Figure 5(a)], we

expect this trend to continue.

Source of bank imbalance
In this section, we demonstrate that when bank imbalance

occurs in the MVQ, it is due to the repetition of a single

or small set of addresses. We observe this correlation

in a microarchitecture-independent way by breaking

the execution of a program into intervals of 1,024

instructions; for each interval we record two statistics.

First, we count the number of times there was a load from

each address and record the count of the most frequent.

Second, we hash all of the load addresses and record the

amount of imbalance (i.e., we subtract the average bank

occupancy from the maximum bank occupancy). In this

way, each interval provides us with a point in two

dimensions. If we aggregate these points, we can produce

a three-dimensional plot such as that shown in Figure 7.

It can be seen that there is a strong linear correlation

between a value being repeated within the interval

(plotted on the x-axis) and the interval bank imbalance

(plotted on the y-axis).

To understand the reason for this, we analyzed the

assembly and source code of a few regions with frequently

repeating addresses. The cases we observed all resembled

this code from bzip2:

for (j ¼ 0; j , limit; jþ¼1024) f
spec_fd[i].buf[j] ¼ 0;

g

This code fragment initializes values in a large array that

is reached through a level of indirection. We imagine that

the Alpha compiler fails to promote spec_fd[i] to a

register because of a perceived potential alias with

spec_fd[i].buf[j]. As a result, this load, which always

loads from the same address, represents 100% of the loads

during its interval.

Conclusion

Scaling traditional LSQ designs presents a pressing

problem for architects because the content-addressable

memories on which such designs are based scale poorly

with regard to access time and complexity. In this paper,

we have proposed an alternative for the traditional LSQ

in which its several functions are decomposed and

distributed, so that critical value forwarding happens

in a fast structure and correctness is removed from the

critical path. We simplify the store-forwarding logic by

restricting the store queue to hold and snoop only those

instructions predicted to be involved in forwarding. We

simplify the checking functionality of the LSQ by

implementing it in a physically distributed structure

called the MVQ. Having demonstrated that hashing data

addresses can effectively partition memory instructions in

the common case, we demonstrate how the MVQ can be

banked, and we propose throttling techniques for dealing

with load imbalance between the banks and a deadlock-

avoidance mechanism to deal with deadlocks caused by

the limited MVQ resources. The end result of this design

is that a traditional monolithic LSQ can be replaced with

Figure 7

Correlation between repeated accesses to the same address and 
load imbalance within a 1,024-instruction interval. Data shown is 
for loads from the benchmark crafty and is representative of 
loads and stores across all of SPECint2000**.
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a collection of small, low-bandwidth structures with a

negligible loss in performance. These smaller structures

offer significant savings in power and modest

improvements in access time, making the combination of

the SFB and MVQ a practical alternative for future

processors.
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