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Decomposing the load-
store queue by function
for power reduction
and scalability

Because they are based on large, content-addressable memories,
load—store queues (LSQs) present implementation challenges in
superscalar processors. In this paper, we propose an alternate
LSQ organization that separates the time-critical forwarding
functionality from the process of checking that loads received their
correct values. Two main techniques are exploited: First, the store-
forwarding logic is accessed only by those loads and stores that are

likely to be involved in forwarding, and second, the checking
structure is banked by address. The result of these techniques is
that the LSQ can be implemented by a collection of small, low-
bandwidth structures yielding an estimated three to five times

reduction in LSQ dynamic power.

Introduction

In a dynamically scheduled processor, the load—store unit
is typically implemented by composing a translation-
lookaside buffer, a cache, and a load—store queue (LSQ).
The LSQ typically provides the following four functions:
buffering store addresses and values for in-order
retirement, forwarding in-flight store values to loads,
detection of load and store ordering violations, and
detection of memory consistency violations.

Commonly, the LSQ is implemented as a pair of age-
ordered queues—one each for loads and stores—that can
be associatively searched by address. This organization
presents a scalability challenge to increasing superscalar
width and number of in-flight instructions: Increasing the
number of ports (for increased width) and the number of
entries (for more in-flight instructions) has a significant
impact on the access time and power consumption of the
structure.

The access time of the store queue is particularly
critical because it is a component of the load-to-use
latency. Typically, snooping the store queue (querying it
for conflicts with the current memory instruction) must be
performed in the same amount of time as the L1 data
cache access, which is done in parallel in order to avoid
further complication of the instruction scheduler.

In this work, we propose an LSQ organization that
decouples the performance-critical store-forwarding logic

from the rest of the load—store queue functionality. This
organization is motivated by two insights:

e Store value forwarding is the only time-critical
operation performed by the LSQ. All other functions
merely have to be performed before the instructions
retire.

* Only a small and predictable fraction of loads and
stores take part in store value forwarding.

For store forwarding, we propose using a structure—
the store-forwarding buffer (SFB)—that is much like a
traditional store queue but has fewer entries and fewer
ports, yielding a reduction in access time and a significant
reduction in power consumption. The structure size is
reduced by allocating entries for only those stores
predicted to require forwarding. Similarly, required
bandwidth is reduced by snooping only for those loads
that are predicted to require forwarding. Because these
predictions can be wrong, a mechanism is required to
detect faulty predictions, known as misspeculations.

A second structure, the memory validation queue
(MVQ), detects load—store ordering violations,
consistency violations, and forwarding mispredictions.
This structure must observe all in-flight loads and stores
to identify violations. To efficiently implement this
structure, we bank it by address. Such banking provides
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(a) Traditional monolithic load and store queue design. A
datapath that can support up to two loads and/or two stores per
cycle is shown. (b) Proposed decoupled load and store queue
design. A datapath that can support up to two loads and/or two
stores per cycle is shown, but only one load and one store can
access the SFB. The blue and red lines indicate different memory
functional units. (S = store, L = load.)

scalability and reduced energy consumption at the cost of
a potential imbalance between banks. To tolerate bank
conflicts and enable wider issue of memory instructions,
we decouple processing in the MVQ from instruction
execution by adding a small wait queue. Validation is
tolerant of queuing delay because it merely has to take
place before the associated instructions commit.

The contributions of this work are threefold:

e We describe a load—store queue design that decouples
store forwarding from other LSQ functions,
decomposing the LSQ into a small, low-bandwidth
(and hence fast) SFB and a latency-tolerant MVQ,

L. BAUGH AND C. ZILLES

which can be made efficient and capable of high
throughput by banking.

* We demonstrate that address-based hashing can be
used to partition a processor address stream into four
roughly balanced streams, making banking effective.
Furthermore, we show that bank imbalance, when it
does occur, is caused by repeated loading or storing to
a single address.

* We provide the mechanisms required to achieve
good utilization of banked LSQ structures
while minimizing squashing (restarts due to
misspeculations) and stalling. Specifically, we discuss
how execution throttling can minimize resource
oversubscription and how to deal with potential
deadlocks.

Related work

The work most closely related to ours is that of Roth,
who independently made the observation that not all
loads and stores have to be considered for forwarding [1].
To handle the non-forwarding-related operations of the
LSQ, he proposes to use filtered load re-execution, as was
proposed by Cain and Lipasti [2], which eliminates the
necessity of a load queue at the expense of re-executing a
fraction of loads at retirement. This fraction can be
further reduced by tracking store window vulnerabilities
[3].

Other proposed approaches to filtering include the
work of Park et al. [4], which extends a store set predictor
[5] to predict instructions involved in forwarding, and the
proposal by Sethumadhavan et al. [6] to use a Bloom filter
to filter store queue snoops that can be guaranteed not to
match. Park’s work achieves an equivalent reduction in
snoops, but with a more complex predictor. The Bloom
filter approach has two drawbacks relative to our
proposal. The first drawback is that accessing the Bloom
filter is on the critical path (i.e., it must be done between
generating an address and accessing the store queue). The
second drawback is that the scheduler does not know
whether an instruction will have to snoop, forcing it
either to be conservative or risk overloading the store
queue ports.

Banking by address was previously considered by
Sethumadhavan et al. [6], but they discarded the idea
because they failed to achieve good results. There are
three key differences between their proposal and ours: We
propose banking only the latency-tolerant verification
portion of the LSQ, which can tolerate a buffer to smooth
out bank conflicts; our throttling mechanism can be
viewed as a hybrid of their stalling and squashing
mechanism, which minimizes the number of squashes
required without being overly conservative; and our
primary site of throttling is in the scheduler, rather
than at decode.
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Hierarchy has also been proposed as a solution to
scaling the LSQ. Akkary et al. [7] propose caching recent
instructions in a first-level store queue, with other
instructions residing in a second-level structure. This
approach reduces the size (though not the bandwidth)
of the latency-critical store queue, but reduces latency
predictability. A hybrid of banking and hierarchy is
considered by Torres et al. [8], whose design features
a banked first-level store queue that speculatively
forwards values, backed by a larger, latency-tolerant
second-level store queue that detects and squashes
misspeculations.

LSQ organization

In this section, we describe our proposed LSQ
organization. Because we use a store queue similar to a
traditional LSQ as a building block of our design, we
begin by describing its salient details, and then describe
the two components of our proposed LSQ design.

Age-ordered load and store queues

The most common implementation of an LSQ, as shown
in Figure 1(a), involves a pair of buffers (one for loads
and one for stores) that hold instructions in program
order (i.e., age-ordered). Instructions are allocated entries
in their respective queues before dispatch into the
instruction window; dispatch stalls if entries are not
available. When instructions execute, they write their
address (and value for stores) into their allocated entry.
In parallel, they perform an associative search of the
other queue, comparing addresses. If a store matches

a later (in program order) load, a pipeline squash is
signaled. If a load matches with one or more stores earlier
in program order, the index of the youngest is selected
(using a priority encoder, a process facilitated by age
ordering) and used to drive a random access memory
(RAM) array that holds the store value.

Because all loads and stores are placed in the LSQ,
each queue must be appropriately sized to allow good
utilization of the reorder buffer, even for instruction
mixes rich in loads or stores. In recent processors, the
queues have been sized to hold 25-40% of the maximum
number of in-flight instructions (Alpha 21264: 32 loads/
32 stores, 80 in-flight instructions [9]; Intel Pentium** 4:
48 loads/32 stores, 128 in-flight instructions [10]). To
address the scaling challenges of monolithic LSQ, we
present our decoupled LSQ [Figure 1(b)].

Store-forwarding buffer

As described above, we streamline the performance-
critical store queue by using it only for those instructions
that require it. In Figure 2, the yellow and blue bars
respectively show the fraction of dynamic loads and
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stores that matched" in the LSQ and hence required
forwarding, for a machine with a 256-entry instruction
window. On average, only 7% of dynamic loads and
20% of dynamic stores are involved in forwarding in
our runs.

Because whether or not an instruction is forwarded is a
property of the program, its program counter can be used
to segregate those instructions likely to forward from
those that are not. Specifically, we find that a large
fraction of static instructions are never involved in
forwarding. Thus, a single bit per static instruction is
sufficient to effectively predict the forwarding behavior
of an instruction; all bits are initially cleared and an
instruction bit is set when it is first detected to require
forwarding. This simple predictor is very effective for
loads (filtering out 70% of dynamic loads) and
moderately effective for stores (filtering out 40% of
dynamic stores), as shown in Figure 2. Since there are
generally more loads than stores, it is desirable that more
loads be filtered than stores.

Ideally, this prediction bit is stored in the instruction—
an option when defining a new instruction-set
architecture (ISA) or dynamically translating to an
internal ISA [11-15]—because then the behavior has to
be learned only once. Alternatively, this prediction can
be implemented by associating an extra bit with each
instruction in the instruction cache (I-cache). To handle

! Engaged in either forwarding or an ordering violation.
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programs with large working sets (not a problem for the
SPEC2000** integer benchmarks), it may be beneficial
to “page” (store when evicted from the cache) these
predictions into L2 error correction control (ECC) bits, as
is done in the AMD Opteron** with branch predictor
information [16]. Once these predictions are available, the
operation of the SFB is much like that of a traditional
store queue. Like traditional systems, stores allocate
entries in the age-ordered SFB prior to dispatch into the
instruction window; the only difference is that only those
stores predicted to require bypassing—what we call
marked stores—have to allocate an entry. Since only a
fraction of loads and stores are marked, less SFB
bandwidth can be provided than overall memory
bandwidth with only a modest performance loss (as
shown in the methodology and results section). Thus,
only a subset of load and store units have to be provided
with ports to the SFB. Marked instructions must be
slotted and scheduled to execute only on those functional
units.

Memory validation queue

Of the four LSQ functions numbered above, the SFB
provides only the second: forwarding in-flight store values
to loads. Additional structures are required to provide the
remaining functions. The first function (buffering

store values for in-order retirement) is relatively
straightforward. Two reasonable implementations are
possible: a separate (non-associative) RAM structure to
hold addresses and values, or using such a structure for
unmarked stores in conjunction with the SFB. To handle
the last two functions (detecting load and store ordering
and consistency violations), we provide a structure called
the Memory Validation Queue, or MVQ.

The MVQ has two roles: to mark instructions for
subsequent introduction into the SFB and to ensure that
loads receive their correct value by forcing pipeline
squashes when necessary. In addition to the detection of
load—store ordering and consistency violations required
of traditional load queues, the MVQ must detect
situations in which load—store forwarding should have
been performed on unmarked loads or stores.

While the MVQ acts much like a traditional LSQ, by
virtue of factoring out the performance-critical store-
forwarding logic, the structure becomes latency-tolerant,
enabling an energy-efficient implementation. The primary
technique that we exploit to simplify the implementation
is banking by address, though others (e.g., a lower-
frequency clock domain, high-V/; transistors) are possible.
Banking allows a collection of small, low-bandwidth
structures to be used as a single large high-throughput
structure. The reduction of structure size and number of
ports significantly reduces energy consumption, as we
discuss in the next section.
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Figure 1(b) shows the high-level organization of the
MVQ. The MVQ comprises a set of banks, each
consisting of a pair of circular queues, one to hold loads
and one to hold stores. The entries in these queues
contain the same fields as in the traditional load—store
queue—CAM accesses to the data address, valid bits
(a byte mask for supporting multiple access sizes), and
instruction serial number (INUM) (see the handling loads
section below). Memory instructions are assigned to
banks on the basis of a hash of their memory addresses,
ensuring that communicating instructions will be assigned
to the same bank.

In the remainder of this section, we first describe how
banking the MVQ affects its structure. We then discuss
how stores and loads are handled, explain how entries in
the MVQ are deallocated, and conclude with a discussion
of how deadlock is handled.

Challenges due to banking

The most obvious drawback of banking is the potential
for load-balancing problems, but we have found this to be
a minor problem in practice. By using a hash function
that incorporates many (e.g., 16) address bits, we find that
problems resulting from strided accesses—i.e., accesses
progressing at regular address intervals, such as array
iteration—can be minimized. Figure 3 shows that a
relatively even distribution can be achieved in most
cases (data shown for four banks, interleaving at the
granularity of a 64-bit word and hashing bits 3 to 18

of the address). In general, the address distribution is
remarkably constant over time. In the few cases in which
the distribution is skewed (e.g., the first sample from
bzip?), we can attribute it to the existence of a small
number of “hot” addresses (see the section on the source
of bank imbalance); thus, skewing cannot be avoided by
the selection of a different hash function.

The true challenges resulting from banking arise from
addresses (and hence bank indices) not being available
until execution time. The challenges are the following:
MVQ entries cannot be allocated at dispatch time,
making it difficult to manage the structure in an
age-ordered manner; bank conflicts can arise from
simultaneously issuing multiple instructions destined for
the same bank; and it is difficult to guarantee that one
bank will not be oversubscribed.

We address the first challenge by not using an age-
ordered queue; instead, we assign entries first-in first-out
(FIFO) in execution order, maintaining head and tail
pointers. Age ordering primarily serves two purposes:
simplification of the management of queue resources and
simplification of priority encoding. Because of the simple
FIFO allocation scheme we use, we cannot deallocate
entries as soon as they retire when reordering has
occurred; but, because the degree of reordering is
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generally modest, this has little practical impact. The
execution time allocation does improve utilization,
however, because it avoids tying up resources before they
are needed. Solving the priority-encoding issue is more
involved, but it can be managed (using the INUM:s stored
in the MVQ) because of the MVQ latency tolerance and
the fact that accesses to the same address are rarely
reordered (see the following sections).

The second challenge, that of bank conflicts, is easily
addressed by adding a buffer [Figure 1(b)] to smooth out
instantaneous bank imbalance. The addition of this buffer
increases the latency of an MVQ insertion, but since the
MVQ is used only to signal pipeline squashes and to mark
instructions involved in forwarding, it is latency-
insensitive, and its latency need not be predictable.

The third challenge is the most difficult, because there is
a tension between fully utilizing the MVQ and avoiding
oversubscribing any one bank. Our primary mechanism is
to issue memory instructions only when there is space
available in the buffer. This is done by tracking, at the
scheduler, the number of buffer entries that have been
allocated but not freed. The MVQ buffer is sized to
account for the instruction in flight between schedule
and address-generation pipeline stages.

Handling stores

As a store is written to its MVQ bank store queue, the
entry index (read from the head pointer) is sent to the re-
order buffer (ROB) for use at retirement time. In parallel,
the load queue of the bank is searched (using the CAM
port) for entries with matching store address and valid
bits and later INUM to detect ordering violations. If a
load is found with a matching address, overlapping valid
bits, and a younger INUM, the MVQ pipeline is halted.
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Such a match does not guarantee an ordering violation (a
load may have received a value from a younger store that
executed earlier than the present store), but we have
found that the complexity of detecting such circumstances
cannot be justified because they are relatively infrequent.

When an ordering violation is detected, the offending
load and later instructions are squashed, mark bits are set
for the load and store instructions, and the memory
dependence predictor is trained. For these last two
operations, program counters are retrieved from the ROB
using the load and store INUMs available from the
MVQ.

When multiple matches occur, we need to squash back
to the oldest; also, we choose to add only the oldest to our
memory dependence predictor so as to minimally
synchronize the execution. Because instructions are not
necessarily stored in program order, INUMs must be
compared to identify the oldest. Our solution to this
problem is a low-cost, low-performance one, because
ordering violation squashes (particularly those involving
multiple matches) are rare. When processing a store, the
MVQ load queue sets match bits on all matching entries.
The INUMs of the matching lines are then read out one
per cycle (while the MVQ is otherwise stalled), retaining
the oldest INUM. This approach affects performance by
less than 0.001% in all cases observed.

Handling loads

Loads are similarly entered into the MVQ bank load
queue, with the position being forwarded to the ROB. In
parallel, the load snoops the MVQ bank store queue for
matching (same address, overlapping valid bits, earlier
INUM) stores where forwarding should have occurred. If
the mark bits for either the load or the store are not set, a
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value misspeculation has likely occurred; the pipeline is
squashed and the mark bits are set on both instructions
(again using the stored INUMs to retrieve program
counters from the ROB).

When multiple matches occur, the MVQ must identify
the youngest (the true producer) in order to avoid
conservatively marking all matching stores. In contrast to
an LSQ, the instructions in the MVQ cannot be relied
on to be in program order. Nevertheless, stores to the
same address are very rarely reordered in practice (an
observation also made by Park et al. [4]), so a priority
encoder almost always (more than 99.9% of the time)
returns the correct value. Thus, our implementation
assumes that the store closest to the head is the youngest,
then validates this assumption.

To prevent this process from affecting the throughput
of the MVQ, we pipeline the store queue access over two
cycles. In the first cycle, we identify all matches, setting
the match bits shown in Figure 4. In the second cycle, if
any matches have occurred (when match_1 is pulled
down), we prioritize the matches, select the presumed
youngest (using a priority encoder) and (attempt to)
verify that all other matches are older. The verification
is performed by broadcasting the INUM of the entry
selected by the priority encoder on a second INUM CAM
port to see whether any of the matched entries are
younger. If no entries are younger, the match_2 signal
will be low, and the presumed youngest mark bit, which is
read out while its INUM is being broadcast, is checked. If
there is at least one older entry, we must iterate; the
match bits are updated so that only those matching
entries younger than the presumed youngest are set, and
the process is repeated. If another load was in the first
stage of the pipeline and had a match, it would have to be
replayed on the following cycle, but, as previously noted,
this almost never happens.
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Deallocating entries

Loads and stores are not allowed to retire until they have
been processed by the MVQ. Once an instruction has
been committed, its MVQ entry can be deallocated in the
background. When the tail instruction in an MVQ load
queue has an INUM older than the oldest retired
instruction, the instruction is invalidated and the tail
pointer is incremented. Because instructions are allocated
in the MVQ in execution order, they must also be
deallocated in execution order. Because instruction
reordering in practice is modest, this yields only a

small inefficiency. Similarly, squashed instructions are
invalidated, but the “holes” created in the queues are not
collapsed.

A similar process happens with the store queue, but
stores cannot be deallocated immediately at retirement.
Before a store entry can be deallocated, it must be
snooped by all loads that executed before its retirement
(i.e., before it became available from the cache), and some
of these instructions may still be in the MVQ buffer
waiting for entry into an MVQ queue. By recording, at
the retirement of a store, the number of buffered loads
destined for the same bank and decrementing this
count each time a load is processed, the safe time for
deallocating a store can be determined. If the MVQ buffer
is limited to hold six loads, we need to keep track of,
at most, seven INUMs per bank—an INUM that is
currently safe to retire and INUMs that are safe to retire
after one to six loads are processed. This functionality can
be implemented with a circular buffer without any CAM
logic.

Deadlock avoidance, detection, and resolution

As with any situation in which the resources are limited
and are allocated out of program order, the MVQ has the
potential for deadlock. Deadlock in the MVQ can occur
in two ways. Both cases begin with an instruction being
scheduled later than its program order and becoming
next-to-retire while some set of MVQ banks is full:

¢ If the late instruction issues and enters the MVQ
buffer but cannot enter its bank because the bank is
full, the late instruction can never retire; however,
until it does so, no other instructions can retire.

e If the late instruction becomes the next to retire when
some set of banks in the MVQ is full and the MVQ
buffer is blocked on that set of banks, it can never
issue, since there is no room for it in the MVQ, and
the MVQ will remain full, since none of the
instructions in it can retire until the late instruction
does so.

The latter case requires a full MVQ bank, an MVQ
buffer full of instructions waiting to enter the full bank,
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and a memory instruction, scheduled out-of-order,
bypassed by every instruction in the MVQ. In practice,
for reasonable MVQ sizes, this case is exceedingly rare;
we have never observed it. To detect it, we cause a
timeout to occur if the next-to-retire instruction remains
unissued for long. If it has not yet issued and a timeout
has elapsed, we determine that a deadlock has occurred.
Resolution is easy, if costly: We flush the pipeline back
to the blocked instruction and resume execution.

The former case happens more frequently, but
fortunately it can be avoided. When the MVQ detects
that an instruction in the buffer is the next to retire, it can
allow that instruction to snoop and remove itself from the
MVQ without ever allocating the instruction entry in a
bank. To do this, the MVQ permits the instruction to
snoop its bank as usual, but also requires the instruction
to snoop backward in the buffer, examining all later-
issued instructions for matches. The extra time required
for such an operation is small compared with the pipe
flush otherwise required. This case is not common, but it
does occur, particularly in memory-intensive benchmarks
such as mcf.

To reduce the likelihood of either situation, we limit
the number of loads and stores dispatched into the
instruction window to be slightly less than can be held
in the MVQ proper (anticipating some imbalance). By
throttling the number of memory instructions entering
the window, we reduce the likelihood that an MVQ bank
may fill before a stalled instruction can execute.

Experimental method and results

We evaluated our proposed load—store queue design
using timing simulations of the SPEC2000 integer
benchmarks. Our timing simulator uses the loader and
system call functionality from SimpleScalar [17], but the
pipeline model has been rewritten to perform a true
execution-driven simulation of Alpha binaries.
Parameters for our simulated machine are as follows:

o Scheduler and pipeline: Four-issue, twelve-stage
pipeline, 256-entry instruction window, 4k gshare
predictor with 8 bits of history.

* Memory.: 64-KB two-way associative L1 instruction
and data caches with one-cycle latency, 1-MB eight-
way associative L2 cache with 20-cycle latency, 80-
cycle memory latency.

® Functional units (latency in clock cycles).: Four integer
arithmetic logic units (1), one integer multiply/divide
(3/12), two memory ports (three loads/two stores),
two floating-point arithmetic logic units (2), one
floating-point multiply/divide (4/12).

Benchmarks are compiled with the Alpha compiler at
the highest level of optimization, but without profile
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information. The results presented in this paper are for
200 million instruction runs started after skipping the first
five billion instructions.

In this section, we demonstrate that filtering based
on previous forwarding behavior significantly reduces
the required number of entries and ports on the SFB
compared with a traditional LSQ. We then show that our
throttling mechanisms are sufficiently effective to enable
the performance of an MVQ with four banks and 16
entries per bank to approximate that of an ideal MVQ.
We conclude this section by demonstrating that an SFB
MVQ design enables performance equivalent to that of a
conventional LSQ with a three to five times reduction in
dynamic power.

Varying store queue size and ports
In a system using a conventional LSQ, performance is
closely related to the LSQ parameters. In particular,
reducing the queue capacity or the number of ports
severely limits performance. In Figure 5(a), the LSQ
capacity is varied between eight and 64 entries with both
single-ported and double-read/write-ported queues. With
the conventional LSQ (solid curves), single-ported
performance trails double-ported by 5.8% with a capacity
of 64 elements, and performance begins to drop
drastically when the capacity is reduced below 32
elements, attaining a 13% slowdown by eight elements.
In contrast, we observe systems to be much less
sensitive to the size and bandwidth of an SFB. Figure 5(a)
shows that single-read/write-ported performance differs
from double-read/write-ported by 1.5% at 64 entries, and
the 64-entry queue performs only 1.8% better than the
eight-entry queue. These SFB sensitivity results were
generated with an ideal (i.e., unlimited bandwidth and
capacity) MVQ. We consider practical MVQ
configurations next.

Varying MVQ parameters

We explore two MVQ parameters that potentially affect
performance: the number of banks in the MVQ and the
capacity of both the store queue and the load queue in
each bank. Our results, shown in Figure 5(b), show that
four banks are required to provide sufficient bandwidth
(recall that each bank can process only a single load or
store per cycle), but performance is reasonable with
queues as short as 16 entries. This significantly reduces
power, as we show below.

MvQ power

Our previous results show that our SFB MVQ
combination can achieve performance comparable to that
of a monolithic LSQ, but with a collection of smaller,
low-bandwidth structures. While this modestly reduces
the access time of each structure, it provides a substantial
dynamic power reduction. According to CACTI 3.2 [18],
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Data shown for 48- and 32-entry LSQs with two load and two store ports for each queue. The MVQs have a 16-entry buffer and four banks,
with each bank having 16 entries and one read and one write port.

energy per access for a CAM scales roughly linearly with As a result, using smaller structures and limiting the
both the number of entries and the number of ports queries to them translates into as much as a five times
[Figure 5(c)]. Thus, querying a 48-entry 2-read/2-write- reduction in LSQ power. Accounting for the fact that the
ported CAM takes almost seven times the power of a marked instructions access both the SFB and the MVQ,
query to a 16-entry 1-read/1-write-ported CAM. we computed energy consumption for both the LSQ and

L. BAUGH AND C. ZILLES IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



SFB MVQ organizations. We looked at two performance
points: A 2-ported 48-entry LSQ has roughly the same
performance as a 2-ported 16-entry SFB with a 4 X 24-
entry MVQ, and a 2/2-ported 32-entry LSQ has roughly
the same performance as a 1/1-ported 16-entry SFB with
a 4 X 16-entry MVQ. Figure 6 shows that the SFB/MVQ
achieves roughly a five times and three times reduction of
dynamic power, respectively.

A quick calculation suggests that our design compares
equivalently or favorably with conventional LSQ designs
in terms of static power and area. To analyze both the
static power consumption and area requirements of our
design, we estimated the transistor count of both the
traditional design and the SFB/MVQ. This estimate
suggests that a 48-entry 2/2-ported LSQ architecture uses
roughly the same number of transistors as a 16-entry
2/2-ported SFB together with a 4-banked, 16-entry-per-
queue MVQ. The latter architecture, by virtue of using
structures with fewer ports, uses fewer wires, and the
MVQ could employ slower, lower-leakage, smaller
fabrication transistors without significant performance
penalty. Since the MVQ dominates the transistor count
of our architecture, we expect this to have a favorable
influence on static power and area. Furthermore, since
the SFB and MVQ scale more slowly with instruction
window size than do traditional LSQs [Figure 5(a)], we
expect this trend to continue.

Source of bank imbalance

In this section, we demonstrate that when bank imbalance
occurs in the MVQ, it is due to the repetition of a single
or small set of addresses. We observe this correlation

in a microarchitecture-independent way by breaking

the execution of a program into intervals of 1,024
instructions; for each interval we record two statistics.
First, we count the number of times there was a load from
each address and record the count of the most frequent.
Second, we hash all of the load addresses and record the
amount of imbalance (i.e., we subtract the average bank
occupancy from the maximum bank occupancy). In this
way, each interval provides us with a point in two
dimensions. If we aggregate these points, we can produce
a three-dimensional plot such as that shown in Figure 7.
It can be seen that there is a strong linear correlation
between a value being repeated within the interval
(plotted on the x-axis) and the interval bank imbalance
(plotted on the y-axis).

To understand the reason for this, we analyzed the
assembly and source code of a few regions with frequently
repeating addresses. The cases we observed all resembled
this code from bzip2:

for (j=0; j<Tlimit; j+=1024) {
spec_fd[i].buf[j1=0;
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Correlation between repeated accesses to the same address and
load imbalance within a 1,024-instruction interval. Data shown is
for loads from the benchmark crafty and is representative of
loads and stores across all of SPECint2000**.

This code fragment initializes values in a large array that
is reached through a level of indirection. We imagine that
the Alpha compiler fails to promote spec_fd[i] to a
register because of a perceived potential alias with
spec_fd[i].buf[j]. As a result, this load, which always
loads from the same address, represents 100% of the loads
during its interval.

Conclusion

Scaling traditional LSQ designs presents a pressing
problem for architects because the content-addressable
memories on which such designs are based scale poorly
with regard to access time and complexity. In this paper,
we have proposed an alternative for the traditional LSQ
in which its several functions are decomposed and
distributed, so that critical value forwarding happens

in a fast structure and correctness is removed from the
critical path. We simplify the store-forwarding logic by
restricting the store queue to hold and snoop only those
instructions predicted to be involved in forwarding. We
simplify the checking functionality of the LSQ by
implementing it in a physically distributed structure
called the MVQ. Having demonstrated that hashing data
addresses can effectively partition memory instructions in
the common case, we demonstrate how the MVQ can be
banked, and we propose throttling techniques for dealing
with load imbalance between the banks and a deadlock-
avoidance mechanism to deal with deadlocks caused by
the limited MVQ resources. The end result of this design
is that a traditional monolithic LSQ can be replaced with
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a collection of small, low-bandwidth structures with a
negligible loss in performance. These smaller structures
offer significant savings in power and modest
improvements in access time, making the combination of
the SFB and MVQ a practical alternative for future
processors.
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