
Braids and fibers:
Language constructs
with architectural support
for adaptive responses
to memory latencies

D. F. Bacon
X. Shen

As processor speeds continue to increase at a much higher rate than
memory speeds, memory latencies may soon approach a thousand
processor cycles. As a result, the flat memory model that was made
practical by deeply pipelined superscalar processors with multilevel
caches will no longer be tenable. The most common approach to
this problem is multithreading; however, multithreading requires
either abundant independent applications or well-parallelized
monolithic applications, and neither is easy to come by. We present
high-level programming constructs called braids and fibers. The
programming constructs facilitate the creation of programs that
are partially ordered, in which the partial orders can be used to
support adaptive responses to memory access latencies. Braiding
is simpler than parallelizing, while yielding many of the same
benefits. We show how the programming constructs can be
effectively supported with simple instruction set architecture
extensions and microarchitectural enhancements. We have
developed braided versions of a number of important algorithms.
The braided code is easy to understand at the source level and can
be translated into highly efficient instructions using our
architecture extensions.

Introduction

High-performance microprocessors have, for many years,

been designed to present a flat memory abstraction to the

programmer. This greatly simplifies the programming

model and works well as long as caches are able to hide

memory access latencies. However, this abstraction is

beginning to break down because the current trend of

memory hierarchy is becoming ever deeper while the

relative speed of communications between the processor

and memory continues to increase. Latencies for DRAM

accesses may soon approach a thousand processor cycles.

The term memory wall was coined to refer to the

increasing gap between CPU and memory speeds [1].

Although optimization techniques, such as prefetching,

have been used successfully to hide significant numbers of

memory latencies, they usually work well only for highly

predictable programs. Ultimately, as the performance of

the memory system becomes more and more nonuniform,

such techniques for tolerating memory latencies will no

longer function.

If there is a line at a restaurant, patrons are given an

estimate of the length of time they will have to wait.

Similarly, if callers to a company’s customer service line

are put on hold, they are updated on how long they will

remain there. In these real-world scenarios, it seems

obvious that information about the length of a delay

should be provided. We argue that what is obvious in the

restaurant business should be obvious in the computer

business.

In this paper, we present a high-level programming

model that enables programs to respond to long memory

latencies by performing other work while high-latency

memory operations are in progress. The fundamental

approach is to divide the program into fibers—sections of

sequential code that can be interleaved in a partial order.

Although fibers are partially ordered with respect to one

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 D. F. BACON AND X. SHEN

209

0018-8646/06/$5.00 ª 2006 IBM

another, they execute sequentially. This greatly reduces

the semantic complexity of the programming model

because the programmer does not have to worry about

locking or arbitrary interleaving of parallel threads.

Instead, the interleaving occurs at intuitive points that are

specified and controlled by the programmer.

A braid is a collection of fibers with the same scope of

execution. We present high-level abstractions based on

braids and fibers and show an exemplary histogram

computation algorithm that uses them. Braids are object-

like abstractions, and fibers are method-like abstractions.

We show instruction set architecture (ISA) and

microarchitecture extensions that are required to support

braided code. The fundamental architecture abstractions

are memory inquiry operations that provide latency

prediction information about potentially lengthy memory

operations instead of blocking and waiting for results of

the memory operations. This allows the program to

respond adaptively and perform other work while waiting

for the memory operations to complete (for instance,

loading data from the memory into a cache or computing

an address translation). To allow efficient interaction

between software and hardware resources, the hardware

associates memory transaction identifiers with in-flight

memory operations. The software can then poll for

completion, typically when some other memory operation

is deferred.

Programming constructs
A program that is able to adapt to memory latencies

generally has to defer some portion of its work while

requested data is being fetched. This implies that the

program should be able to operate on a partial order. As

a result, the programmer must give up explicit control of

the ordering of some operations in exchange for higher

performance.

In this section, we begin by describing a set of high-

level language constructs for expressing latency-adaptive

programs. In subsequent sections, we describe the

necessary ISA and microarchitecture enhancements to

support these constructs and show how the language

constructs can be efficiently compiled to the extended

ISA.

Programming with explicit memory inquiry

operations

The fundamental primitive notion that allows

programmers to express latency-adaptive partial orders is

that the program can inquire whether an object is in local

memory before committing to perform some work on

that object. The exact definition of local memory can be

implementation-dependent, but the difference between

local memory latency and nonlocal memory latency is

generally large. For instance, local can mean on-chip

SRAM cache, while nonlocal can mean off-chip DRAM

memory.

There are two memory inquiry operators, readnow and

updatenow. The readnow operator takes an expression as

a memory address and returns true if data with the

memory address can be read now with low memory

latency. Similarly, updatenow takes an expression as a

memory address and returns true if data with the memory

address can be updated now with low memory latency.

In the event that the accessed data cannot be read or

updated with low memory latency (e.g., the data is not

local), the program can choose to defer the memory

operation to a later time. This is often accompanied by

a prefetch operation so that when the memory access

operation is retried, the data can be accessed with low

memory latency. The operator readprefetch prefetches

data for read, and the operator updateprefetch

prefetches data for write.

We use a simple histogram calculation example to

demonstrate how the memory inquiry operators

can be used to explicitly program latency-adaptive

computations. As shown in Figure 1(a), the histogram

calculation function iterates over an array of values, and

for each value it increments an associated bucket in the

histogram array. The iteration over the array of values is

sequential, and the updates to the histogram array can be

completely random. If the histogram array is too large for

the cache, the program will suffer a cache miss on a very

high percentage of the histogram updates. If the penalty

for a miss is large, the slowdown can be dramatic.

Figure 1(b) shows how cache misses can be avoided

using explicitly programmed memory inquiry operations.

Before updating the histogram array, the function uses

updatenow to check whether the target location can be

updated with small memory access latency. If so, the

update is performed as usual; otherwise, the target index

is stored in a deferral queue and updateprefetch is used

to retrieve the target array element. When the queue is

full, it must be drained before the iteration continues.

With appropriate tuning of the queue size, most

accesses will hit in the cache. However, tuning the queue

size is tricky; if it is too small, the function will try to

update the queued histogram elements before they have

been prefetched. If it is too large, the prefetched elements

may already have been evicted from the cache by the time

they are processed.

Programming with braids and fibers

While explicit use of memory inquiry operations can be a

practical solution, the necessity for the user to tune the

deferral queue size indicates a potential weakness of

the approach. It is generally desirable for the memory

system to automatically manage the deferral queue of

outstanding prefetches. This requires that the program be

D. F. BACON AND X. SHEN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

210

broken up into computation units that can be executed

out of order. Such computation units are referred to as

fibers, since they behave somewhat like very fine-grained

threads. A braid is a collection of fibers with the same

scope of execution. Intuitively, one can think of the fibers

as being attached at the beginning and at the end of the

braid, but freely intertwined between the two ends.

A major difference between braiding and other fine-

grained multithreading program abstractions is that

braiding ensures, at execution time, a well-defined total

order of high-level operations. Programmers therefore do

not need to concern themselves with the complexities

of concurrency and synchronization, but only with

specifying a relaxed ordering in which the high-level

functions of the program can occur. Furthermore,

because all component fibers of a braid must terminate in

order for the braid to terminate, the construct of braids

provides an abstraction over concurrency: Two successive

braids can be viewed as completely sequential at the

macro level, and any internal concurrency in either braid

will never have an effect on the other braid.

A braid is declared as a special type of class and defines

a set of braid instance variables. The only variables

accessible inside a braid are the braid instance variables,

local variables, and formal parameters of methods. The

braid class may define static variables, but they must be

constants (for instance, pointers to mutable objects are

not allowed). Instance variables of a braid are not

accessible outside the braid, including other braids of the

same class. Therefore, the instance variables are even

more restricted than private fields in the sense of the term

used in the Java** language.

The braid statement creates a braid object and

executes the associated fibers within the braid. Braids may

not be created with the new operator that is normally used

for allocating objects. The braid statement terminates

when the main control fiber and all deferred fibers of that

braid have terminated. Braid objects can be passed as

parameters and stored in other objects, but once the braid

statement is terminated, any attempt to invoke a braid

method will raise a BraidTerminated exception.

A fiber is declared as a special type of method. Fibers

of a braid are co-routine-scheduled: A fiber can run

immediately if all of the data with memory addresses

specified by its readnow and updatenow parameters can

be accessed with low memory latencies, or the fiber is

deferred. If a fiber is deferred, another previously deferred

fiber can run. Any fiber within the braid may run at any

fiber call point, or at the end of the braid, but nowhere

else. Furthermore, a fiber executes atomically (that is, it is

not interrupted by other fibers) until it terminates or until

it makes another fiber call. Semantically, each fiber runs

with its own stack. Elimination of a separate stack, the

store of the return address, and inlining are all

Figure 1

Histogram calculations: (a) sequential; (b) with explicit memory
inquiries; (c) with braids and fibers.

void histogram(int vals[], int hist[]) {
 for (int i = 0; i < vals.length; i++) {
 int d = vals[i] % hist.length;
 hist[d]++;
 }
}

(a)

void histogram(int vals[], int hist[]) {
 IntQ q = new IntQ(32);
 int i = 0;

 while (i < vals.length) {
 for (; i < vals.length && ! q.full(); i++) {
 int d = vals[i] % hist.length;
 if (updatenow hist[d])
 hist[d]++;
 else {
 updateprefetch hist[d];
 q.put(d);
 }
 }

 while (! q.empty()) {
 int d = q.get();
 hist[d]++;
 }
 }
}

(b)

computeHistogram(int vals[], int buckets) {
 int hist[] = new int[buckets];
 braid Histogram(vals, hist);
 displayHistogram(hist);
}

braid class Histogram {
 final int vals[];
 final int hist[];

 public Histogram(int v[], int h[]) {
 vals = v;
 hist = h;

 for each (int i = 0 : vals.length-1) {
 int d = vals[i] % hist.length;
 BUCKETADD(hist[d]);
 }
 }

 void fiber BUCKETADD(updatenow int bucket) {
 bucket++;
 }
}

(c)

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 D. F. BACON AND X. SHEN

211

optimizations of the baseline model. These optimizations

are shown in the exemplary assembly code for braid

constructs section below.

Braids may be nested; that is, a fiber in a braid may

itself create a braid whose internal fibers are interleaved.

However, when a fiber of the nested braid is deferred,

only other fibers of that braid are eligible to run, not the

fibers of the enclosing braid.

A braid object can be referred to within the braid using

the reference this. A break braid statement can be used,

if needed, to terminate the current braid block and abort

any pending fibers. Note that because fibers execute

sequentially, there is no danger of a break statement

asynchronously interrupting a running fiber; the only

fiber that it interrupts is the one that issues the break

braid statement.

Figure 1(c) shows the histogram calculation that is

encapsulated in a braid class. The braid class Histogram

has a constructor, which takes a value array and a

histogram array as parameters. The braid statement in

the computeHistogram creates a braid scope, instantiates

the braid object within that scope, and executes its

constructor. The Histogram object is not bound to any

variable, since there is no meaningful operation that can

be performed on it once it terminates. The fiber method

BUCKETADD takes an integer bucket value to update as an

updatenow parameter, signifying that the method will be

invoked when that memory location can be updated

with low memory latency. It is worth noting that the

parameter is passed by reference, in contrast to the

conventional Java by-value parameter passing.

Generally, to optimize fiber methods, as few

parameters as possible should be employed. Values that

are constant throughout the execution of the braid should

be stored in final braid instance variables. Multiple

objects should be consolidated if they involve no extra

computation on the nondeferring execution path. Using

such techniques, a program can often be optimized to run

with a few words of stored state for each deferred fiber.

For instance, consider a trivial hash table insertion

program as follows:

int i ¼ hash (key);

INSERT (table [i], key, value);

. . .

void fiberINSERT(updatenowNodhead,Keykey,Valval)

f
Nod n¼ new Nod (key, val);

n.nxt¼ head;
head¼ n;

g

Rather than passing three parameters to the INSERT

method, it is generally more efficient to pass a single Nod

object that contains both the key and value pointers,

because this operation is performed anyway if the method

is executed immediately:

int i ¼ hash (key);

Nod n ¼ new Nod (key, val);

INSERT (table [i], n);

. . .

void fiber INSERT (updatenow Nod head, Nod node) f
n.nxt ¼ head;
head ¼ n;

g

Instruction set extensions
In this section, we describe the ISA extensions required to

support braids and fibers. Without losing generality, we

present the ISA extensions in the context of the IBM

Power Architecture* [2], although the same technique can

be applied to other modern microprocessor architectures.

Figure 2 shows the ISA extensions and their semantics.

The ISA extensions include memory inquiry operations

and split-phase memory prepare operations.

As with normal memory access instructions, the issue

of which addressing modes to support is also an issue

with our new memory instructions. There could be as few

as a single addressing mode or as many as are supported

by the normal memory load and store instructions. To

avoid unnecessary details, we simply use a memory

address addr to represent a memory address generated by

some memory addressing mode.

Memory inquiry operations

A memory inquiry operation can be used to determine

whether a given memory address can be accessed in a

timely fashion, before the memory address is actually

accessed. This is in contrast to the informing memory

operation, which informs the program of the length of

time a memory access operation has taken once it has

completed [3]. A memory inquiry operation is able to

provide appropriate latency information that can

subsequently be used for conditional execution of

memory access operations.

The Power Architecture comprises prefetch

instructions for memory load and store operations,

referred to respectively as Data Cache Block Touch

(dcbt) and Data Cache Block Touch for Store (dcbtst).

A prefetch instruction speculatively accesses a cache line

that contains data for the corresponding effective address.

The prefetch operation is speculative in the sense that

no exception is generated if, for example, the effective

address is illegal or accessing the effective address would

cause a page fault. We present our ISA extensions as

additional ‘‘data cache block’’ operations.

In keeping with Power Architecture conventions, a

condition register (CR7) is assigned to hold the outcome

D. F. BACON AND X. SHEN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

212

of memory inquiry operations. An alternative would be to

use a dedicated set of memory inquiry registers. Because

the condition register is 4 bits wide, we assign the

following meanings to the condition register fields:

� Available (EQ). This bit indicates that requested data

of the memory address is available for memory load

or store, while the exact meaning of ‘‘available’’ can

be implementation-dependent. In general, the data is

considered available if it can be accessed by the

processor with low memory access latency. Although

the most common cause of unavailability is a cache

miss, any source of memory latency can be

considered—for instance, an address translation delay

due to a translation lookaside buffer (TLB) miss.
� Time1, Time2 (LT, GT). These bits provide a 2-bit

encoding as an estimate for the memory access

latency. The interpretation of the four possible values

can be implementation-dependent. For example, the

latency estimates can encode an L1 hit (00), L2 hit

(01), L3 hit (10), and main memory access (11).
� Overflow (SO). This bit indicates that no split-phase

memory prepare operations can be initiated because

of resource constraint.

The memory inquiry instruction determines whether

requested data of a memory address is available. There

are two variants: one for reading and one for writing. The

latter is primarily for multiprocessor systems, in which

necessary cache coherence operations may cause delay to

a write operation, although the data is found in a local

cache. In the simplest form of memory inquiry

operations, the ISA is extended with two new

instructions, Data Cache Block Query (dcbq) and Data

Cache Block Query for Store (dcbqst). The semantics of

these instructions are given in Figure 2(a).

More sophisticated forms of memory inquiry

instructions can be supported. For example, a composite

memory inquiry load instruction can—in addition to the

memory inquiry operation—perform a memory load

operation if the data is available or, if the data is

unavailable, a memory prefetch operation.

Split-phase memory prepare operations

Split-phase memory prepare operations allow software to

initiate a memory access operation in case of a cache miss

and be notified semi-asynchronously when the requested

data becomes accessible with low memory access latency.

The notification is semi-asynchronous in the sense that

hardware asynchronously sets a flag when the data is

available, and software must poll the flag to be notified.

To support split-phase memory prepare operations, a

64-bit Memory Transaction Register (MTR) is defined

Figure 2

Instruction set architecture extensions: (a) Data Cache Block Query;
(b) Data Cache Block Prepare; (c) MTR Move, Free, and Clear.

dcbq addr
 CR7[SO] <- 0
 CR7[LT,GT] <- Latency(addr)
 if Local(addr)
 CR7[EQ] <- 1
 else
 CR7[EQ] <- 0

dcbqst addr
 CR7[SO] <- 0
 CR7[LT,GT] <- Latency(addr)
 if Local(addr) and CachedExclusive(addr)
 CR7[EQ] <- 1
 else
 CR7[EQ] <- 0

(a)

dcbp Rn, addr
 CR7[LT,GT] <- Latency(addr)
 if Local(addr)
 CR7[EQ] <- 1
 CR7[SO] <- 0
 else if TransactionIDAvailable(MTR)
 CR7[EQ] <- 0
 CR7[SO] <- 0
 Rn <- GetTransactionID(MTR)
 InitiateLoad(addr)
 (On completion, MTR[Rn] <- 1)
 else
 CR7[EQ] <- 0
 CR7[SO] <- 1

dcbpst Rn, addr
 CR7[LT,GT] <- WriteLatency(addr)
 if Local(addr) and CachedExclusive(addr)
 CR7[EQ] <- 1
 CR7[SO] <- 0
 else if TransactionIDAvailable(MTR)
 CR7[EQ] <- 0
 CR7[SO] <- 0
 Rn <- GetTransactionID(MTR)
 InitiateLoadExclusive(addr)
 (On completion, MTR[Rn] <- 1)
 else
 CR7[EQ] <- 0
 CR7[SO] <- 1

(b)

mfmtr Rn
 Rn <- [MTR]

mtrfree Rn
 FreeTransactionID(MTR[Rn])

mtrclr
 FreeTransactionID(MTR[0..63])

(c)

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 D. F. BACON AND X. SHEN

213

at the architecture level. Each bit in the MTR may be

associated with a split-phase memory prepare operation;

if so associated, it indicates whether data of the memory

operation is available (1) or not available (0).

The MTR can be examined by the program but cannot

be directly modified by it. When executing a split-phase

memory prepare operation, if the requested data cannot

be accessed with low memory access latency, the system

associates the memory prepare operation with a memory

transaction identifier. The memory transaction identifier

can be returned to the program via a General Purpose

Register (GPR). When the data becomes available, the

system sets the corresponding MTR bit that is indexed by

the memory transaction identifier. The program must free

the memory transaction identifier once the data is

accessed so that the memory transaction identifier can be

used for other split-phase memory prepare operations.

Note that if a memory transaction identifier is freed while

the corresponding memory transaction is still in progress,

the system may not make the memory transaction

identifier usable until the memory transaction completes.

Figure 3 shows state transitions for memory

transaction identifiers. Each memory transaction

identifier corresponds to an MTR bit. The typical state

transaction sequence for a memory transaction identifier

is FREE–WAITING–READY, where the term FREE

indicates that the memory transaction identifier is not

associated with any memory operation, WAITING

indicates that the memory transaction identifier is

associated with an outstanding memory operation, and

READY indicates that the memory transaction identifier

is associated with a memory operation that has been

completed. Note that the memory transaction identifier

may enter the HELD state in the event that the memory

transaction identifier is freed before the associated

memory operation completes.

Data cache block prepare instructions

The Data Cache Block Prepare (dcbp) instruction

initiates a split-phase memory operation. If the requested

data is already available, it behaves as a memory inquiry

operation. However, if the data is not available, the

system allocates a memory transaction identifier. The

memory transaction identifier is an MTR index that

specifies an MTR bit that will eventually be set to 1 when

the requested data becomes available. The program can

therefore maintain a small amount of state comprising the

memory transaction identifier and periodically poll for

the completion of the outstanding memory transaction.

When the memory transaction completes, the program

can branch to an appropriate handler that uses the saved

state to perform a deferred operation.

The Data Cache Block Prepare for Store (dcbpst)

instruction is almost identical, except that it prepares the

data for a store operation. This causes the cache line to be

obtained in an exclusive cache coherence state. The use of

the dcbpst instruction should generally be limited for

read–modify–write operation sequences on a memory

address. The write-buffer mechanism present in modern

computer architectures is usually effective to hide the

memory access latency of a store operation without a

preceding read of the same memory address. The

semantics of the dcbp and dcbpst instructions are shown

in Figure 2(b).

MTR management instructions

Some other MTR-related instructions are shown in

Figure 2(c). The Move from MTR (mfmtr) instruction

loads the current state of the MTR into a GPR.

Once a split-phase memory prepare operation has been

completed, the associated memory transaction identifier

should be freed for reuse by future split-phase memory

prepare operations. The MTR Free (mtrfree) instruction

releases a memory transaction identifier referred to by a

GPR. The MTR Clear (mtrclr) instruction releases all

memory transaction identifiers and may be used at

context switch times when software is not prepared to

handle memory transaction identifiers generated by other

contexts.

When multiple methods, threads, or processes are

simultaneously issuing split-phase memory prepare

operations, it may be helpful for the program to

determine the number of split-phase memory prepare

operations that can be issued before there are no more

available memory transaction identifiers. If this is the

case, the number of available memory transaction

identifiers can be obtained by loading the MTR into a

GPR and then counting the number of zeros in the GPR.

For programming convenience at the assembly level,

adequate opcode mnemonics can be provided for branch

operations based on the content of the Condition

Figure 3

State transitions for memory transaction identifiers.

WAITING
0

FREE

HELDREADY
1

dcbp or
dcbpst

Data
 av

aila
ble

Data
 av

ail
able

mtrfree

mtrfree

D. F. BACON AND X. SHEN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

214

Register (CR7). The Condition Register can be set by

memory inquiry and prepare instructions. Exemplary

branch mnemonics are shown in Figure 2(d).

Microarchitecture support
We now discuss the microarchitecture support of the ISA

extensions for memory inquiry operations and split-phase

memory prepare operations. Without losing generality,

we show simple implementations in the context of the

IBM POWER4* microprocessor because it represents

an aggressive microarchitecture implementation with

publicly available documentation [4].

At the microarchitectural level, the memory inquiry

instructions (dcbq and dcbqst) and split-phase memory

prepare instructions (dcbp and dcbpst) interact primarily

with the Load Miss Queue (LMQ). In general, the system

can take advantage of the fact that these instructions are

intended to improve performance, so a certain amount of

imprecision may be tolerated (although this should not

be abused, as it will otherwise negate the effect of the

optimizations). Thus, the memory inquiry operations that

set the memory available bit and the memory latency bits

in the Condition Register (CR7) are, to some extent, free

to return prediction results without causing correctness

issues. It is usually less harmful to report that some local

data is nonlocal, which leads to a spurious delay of work,

than to report that some nonlocal data is local, which

leads to a processor stall.

Memory inquiry operation support

To support memory inquiry operations, the directory of a

cache can be placed closer to the accessing CPU than the

data array of the cache. This allows directory information

to be accessed more rapidly to reduce the overhead of

memory inquiry operations. For example, the processor

chip may contain the directory of an L3 cache, but not the

data array of the L3 cache.

In addition, it is generally unnecessary to distinguish

cache access latencies if the difference between the

latencies is small. Consider a computer system that

employs on-chip L1 and L2 caches and an off-chip L3

cache. Because the difference between on-chip and off-

chip access latencies is far greater than the difference

between on-chip access latencies, we can treat L1 and L2

caches in the same way when a memory inquiry operation

is performed. In particular, the system may report data as

‘‘available’’ (EQ) if the data is in either the L1 or the L2

cache.

The cache state can be used to determine or predict

latencies of memory access operations. For example, the

latency of a memory store operation can be predicted

according to whether and where the address is cached and

the state in which the data is cached. If the cache state

shows that the address is cached with the exclusive

ownership, a memory store operation can be executed on

the cache with low cache coherence overhead. In contrast,

if the cache state shows that the address is cached without

the exclusive ownership, a memory store operation may

not be executed before other cache copies, if they exist,

are invalidated. The latency of a memory store operation

is generally more important for strict memory models,

such as sequential consistency, than for relaxed memory

models, such as the PowerPC memory model.

For a memory inquiry operation, if requested data is

in the L1 cache, it is immediately reported as available

(EQ ¼ 1) with a latency of ‘‘very short’’ (LT, GT ¼ 00).

A memory inquiry operation completes as soon as the

L2 directory lookup has been performed. If the data is

found in the L2 cache, a prefetch to the L1 cache is

initiated, the requested data is reported as available, and

the latency is reported as ‘‘short’’ (LT, GT¼ 01); otherwise,

a prefetch is not initiated, and the latency is reported as

either ‘‘long’’ or ‘‘very long’’ (LT, GT ¼ 10 or 11).

Alternatively, the computer system can comprise a

built-in prediction mechanism that can be used to predict

whether data of a memory address can be found in a

cache or set of caches. The prediction mechanism is often

based on a prediction table that is smaller than the cache

directory and can therefore be accessed more rapidly than

the cache directory. For example, the prediction table

could be a summary of the cache directory that contains

only a subset of the address bits or a hashed value from

the address bits. When an address is loaded into the

cache, a corresponding entry is created in the prediction

table. The prediction table can be a set-associative table

that uses a least-recently-used (LRU) replacement

algorithm. For a memory inquiry operation, if the

address is found in the prediction table, the memory

access latency is predicted to be the cache hit latency;

otherwise, the memory access latency is predicted to be

the cache miss latency.

Split-phase memory prepare operation support

The split-phase memory prepare instructions (dcbp and

dcbpst) are implemented similarly to the memory inquiry

instructions, but with additional functionality. A split-

phase memory prepare operation always causes the cache

line containing the corresponding memory address to be

fetched into the L1 cache.

If the cache line is not available, a split-phase memory

operation is initiated, and the system searches for an

available memory transaction identifier. This is done by

searching a 64-bit Memory Transaction Reservation

Register (MTRR) that records reserved memory

transaction identifiers (MTIDs). Each bit in the MTRR

indicates whether the corresponding memory transaction

identifier is reserved (1) or not reserved (0). If the MTRR

indicates that no memory transaction identifier is

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 D. F. BACON AND X. SHEN

215

available, the SO bit in the Condition Register (CR7) is set

to 1 to indicate an MTR overflow, and the memory

prepare instruction completes.

If the MTRR indicates that there is a memory

transaction identifier available, the corresponding

memory transaction identifier is returned in a general

register specified by the memory prepare instruction and

is associated with the outstanding memory operation. As

a result, the corresponding MTR bit is set to 0, indicating

that the outstanding memory operation is not yet

completed. Meanwhile, the corresponding MTRR bit is

set to 1, indicating that the memory transaction identifier

is reserved for use.

When an outstanding memory operation completes,

if the outstanding memory operation is associated

with a memory transaction identifier, it means that the

outstanding memory operation is part of a split-phase

memory prepare operation. Consequently, the

corresponding MTR bit is set to 1 to indicate that the

requested data can be accessed with small memory access

latency. Note that the update of the MTR bit may be

performed asynchronously without particular timing

constraint.

Exemplary assembly code for braid constructs
We have presented the braids and fibers high-level

programming constructs and the ISA and

microarchitecture extensions needed to support them. We

now show how they work together by describing the

assembly code that implements the braided histogram

computation shown in Figure 1(c).

The assembly code shown in Figure 4 demonstrates

results that are achievable via a high-quality optimizing

compiler in conjunction with the strong isolation

properties of braids, which are designed to increase

opportunities for such optimizations. In particular, the

isolation properties minimize the amount of state

information that corresponds to an iteration of the

for each loop. It is important to minimize the state

information that must be saved when a for each iteration

is deferred.

Figure 4(a) shows the translation of the for each loop

of the histogram computation code in Figure 1(c). The

translation is essentially the same as that for an

equivalent for loop, except that we have quasi-inlined the

code of BUCKETADD by passing all parameters in registers

and performing global register allocation across the

functions. As a result, registers are not reused (except for

the scratch register R2). A smaller set of registers could be

used, but we use unique registers to make the code easier

to understand.

The loop loads vals[i] and hashes it to produce the

resulting histogram index d, which is then converted into

an array offset in R0. It then makes a call to the fiber

code for BUCKETADD. The fiber method has been quasi-

inlined; however, as we will see, it is necessary to use a call

(branch-and-link) in order to accommodate the complex

control flow that can result if a desired memory location

is not available.

Beginning with the fiber code in Figure 4(b), a split-

phase memory operation is initiated on the memory

location hist[d]. If the memory location is available, the

code falls through to the instruction labeled hit, and the

operation of the BUCKETADD method is executed as it

would be in the absence of fibers; i.e., the array element is

loaded, incremented, and stored, and control is returned

to the call in Figure 4(a). Otherwise, we branch to miss

and verify that a valid transaction identifier for the split-

phase operation was indeed obtained, and then store the

state of the loop iteration (which, in this case, is the single

register containing the array offset) in a table.

An attempt is then made to substitute a deferred value

from a previous iteration. This substitution idiom is the

key to obtaining high performance in the translation of

braided code, since it results in a simple control flow and

minimizes special-case code. The tag vector is checked for

a completed operation. If none is available, we return to

the calling loop in Figure 4(a), which can then continue

with the work of subsequent iterations that might also be

deferred.

If a deferred iteration has completed, the associated

transaction identifier is released so that it may be reused,

the state of the deferred iteration is loaded into R0, and

the program then branches back to hit to perform the

method body on the deferred operation. Control is then

returned to the loop body in order to perform the next

iteration—next meaning after the iteration that was just

deferred, not next after the iteration that was just

completed. This is the key to the iteration substitution

idiom.

In the event that there are no more resources available

for split-phase memory operations, control passes to

notags, where it saves the return address and the state of

the loop iteration and then tries to drain the split-phase

operations by calling (via branch-and-link) the dodefer

code. The use of a call here is necessary so that when the

deferred work is completed, control returns to the notags

handler, which can retry the iteration that failed owing to

a lack of transaction resources.

Exemplary braided algorithms
In this section, we present two exemplary braided

algorithms: the mark phase for garbage collection and

a sparse matrix-vector multiply algorithm.

As shown in Figure 5, the mark phase for garbage

collection traverses the object graph to mark all objects

that it encounters as live. It is generally memory-intensive

and comprises unpredictable memory accesses.

D. F. BACON AND X. SHEN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

216

Optimized code for braid implementation: (a) assembly code implementing the for each loop in Figure 1(c); (b) assembly code
implementing the fiber method BUCKETADD in Figure 1(c).

Figure 4

BEGIN: ; on entry R6: array pointer vals[], R9: array pointer hist[]
 lwz R10, length(R9) ; R10: array length of hist[]
 lwz R7, length(R6) ; get array length of vals[]
 cmpwi R7, 0 ; empty array?
 b END ; skip the whole mess
 slwi R7, R7, 2 ; convert length to word index
 li R31, 0 ; R31: deferred load mask
 li R8, 0 ; R8: index variable i

loop: lwzx R2, R6, R8 ; R2: vals[i]
 divwu R0, R2, R10 ; compute d by taking
 mullw R0, R0, R10 ; vals[i]
 subf R0, R0, R2 ; modulo hist.length
 slwi R0, R0, 2 ; convert index to offset
 bl fiber ; perform body of fiber method
 addi R8, R8, 4 ; i++
 cmpw R8, R7 ; at end of array?
 blt loop ; no, do next piece of work

finish: bl dodefer ; try to do deferred work
 cmpwi R31, 0 ; any outstanding loads?
 bne finish ; yup, keep draining
END:

(a)

fiber: DCBPST. R1, R9(R0) ; prepare for load of hist[d]
 BMNA miss ; if memory not available, handle
hit: lwz R2, R9(R0) ; load histogram entry (won't block)
 addi R2, R2, 1 ; add 1 to histogram entry
 stw R2, R9(R0) ; store updated histogram entry
 blr ; return

miss: BMTNA notags ; handle tag unavailable
 bitset R31, R31, R1 ; add new deferred load to mask
 slwi R1, R1, 2 ; convert tag to word offset
 stw R0, deftbl(R1) ; place offset of d in deferred table

dodefer:MFMTR R3 ; get tag vector
 and R3, R3, R31 ; mask out other deferred loads
 cntlzw R1, R3 ; get index of first available value
 cmpwi CR3, R1, 32 ; none found?
 beqlr CR3 ; then done; return
 mtrfree R1 ; got one. free memory tag
 bitclr R31, R31, R1 ; remove from mask of deferred loads
 slwi R1, R1, 2 ; convert tag index to word offset
 lwz R0, deftbl(R1) ; get saved offset of d from table
 b hit ; go back and do the work

notags: mflr R2 ; get return address
 stw R2, ntret ; save the return address
 stw R0, ntoff ; save element offset

work: bl dodefer ; now try to do deferred work
 bne CR3, work ; more? then keep doing it
 lwz R2, ntret ; load saved return address
 mtlr R2 ; restore return address
 lwz R0, ntoff ; restore element offset
 b fiber ; retry original load

(b)

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 D. F. BACON AND X. SHEN

217

Figure 5(a) shows a standard formulation of the mark

phase for garbage collection [5, 6]. The algorithm

recursively traverses the object graph, marking each new

object it encounters and backtracking when it encounters

a marked object.

Figure 5(b) shows the mark phase using explicit

memory inquiry operations, in which markObject is

invoked only if the object can be marked with low

memory access latency. If the object is not in a cache with

low memory access latency, the object marking is deferred

while the object is prefetched to a deferral queue called

deferredQ. When the deferral queue fills up, its elements

are processed with markDeferred, which marks objects

without further deferring any object marking. Figure 5(c)

shows the braided version for the mark phase of the

garbage collector.

Figure 6 shows how braids and fibers can be used to

implement a sparse matrix-vector multiply calculation.

Each product operation is executed in a fiber, so that if a

memory operation would stall, another row would be

consulted for concurrent work.

Related work
Horowitz et al. describe informing memory operations

[3]. While similar in spirit to the memory inquiry

operations, informing memory operations usually

provide feedback about memory access operations to

the program after the memory access operations are

performed. The technique is therefore useful for profile-

based approaches, but it lacks the ability to adapt

dynamically in the manner of the memory inquiry

operations. It also lacks a mechanism for associating

outstanding memory operations with memory transaction

identifiers.

Mowry and Ramkissoon describe how informing

memory operations may be used for compiler-controlled

multithreading on a processor core with simultaneous

multithreading [7]. However, the programming model is

complicated because the programmer must be prepared

to deal with arbitrary interleaving. The major advantage

of braiding over multithreading is that the points at which

fibers are interleaved are limited, well-defined, and

obvious to the programmer.

Morris and Hunt describe a computer system with

instructions that allow registers to be probed to determine

whether an attempt to use them would stall [8]. This

approach is significantly less flexible than techniques

based on the split-phase memory prepare operations, as

the ability to schedule arbitrary code at arbitrary times is

greatly restricted by the required use of fixed registers.

The ability of our system to allocate and free memory

transaction identifiers gives software more degrees of

freedom.

Figure 5

Mark phase of garbage collection: (a) sequential; (b) with explicit
memory inquiries; (c) with braids and fibers.

class MarkStack {
 private final ObjectStack stack;

 MarkStack(Object[] roots) {
 stack � ObjectStack.create(roots);
 }

 void mark() {
 while (! stack.empty()) {
 Object X � stack.pop();
 markObject(X);
 }
 }

 void markObject(X) {
 if (! X.mark) {
 X.mark � true;
 offsets � X.class.offsets();
 for (int i � 0; i < offsets.length; i++) {
 pointer � Peek (ADDRESS(X)+offsets[i]);
 if (pointer !� null)
 stack.push(pointer);
 }
 }
 }
}

(a)

void mark() {
 Queue deferredQ � new Queue(QUEUESIZE);

 while (! stack.empty()) {
 while (! stack.empty()) {
 X � stack.pop();

 if (Updatenow(* X))
 markObject(X);
 else {
 UpdatePrefetch * X;
 deferredQ.add(X);
 if (deferredQ.full())
 markDeferred(deferredQ);
 }
 }
 markDeferred(deferredQ);
 }
}

void markDeferred(Queue Q) {
 while (! Q.empty()) {
 Object X � Q.remove();
 markObject(X);
 }
}

(b)

braid class GCMark {
 final ObjectStack stack;

 GCMark(Object[] roots) {
 stack � ObjectStack.create(roots);

 while each (! markStack.empty()) {
 Object X � markStack.pop();
 MARK(* X);
 }
 }

 void fiber MARK(updatenow Object o) {
 markObject(o);
 }
}

(c)

D. F. BACON AND X. SHEN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

218

Split-C provides split-phase memory operations in a

parallel, single-program multiple-data programming

language [9]. However, because the split-phase memory

operations are assumed to have high overhead and there

is no automatic notification of completion, the

programmer must explicitly synchronize at various

points, waiting for all outstanding split-phase memory

operations to complete. Our architecture support makes

split-phase memory operations very lightweight (having

low overhead), and this in turn allows synchronization at

the level of individual split-phase memory operations.

The I-structures introduced by Arvind et al. [10]

provide a split-phase functional abstraction in the form of

an array of write-once elements. With I-structures, a

memory read operation blocks until the corresponding

memory write operation has occurred on the array

element. This is fundamentally different from our

approach in that the execution of the memory read

operation is based on the availability of the data

rather than the latency of the memory access

operation.

The transactional coherence and consistency model

provides a shared-memory model in which atomic

transactions are always the basic units of parallel

programming and memory consistency [11]. Supporting

atomic transactions architecturally often requires

expensive hardware and software enhancements, such

as large on-chip buffers for atomic transactions and

software-managed memory regions for on-chip buffer

overflows.

Braided version of sparse matrix-vector multiply calculation.

Figure 6

braid class SparseMatMuller {
 final SparseMatrix m;
 final double[] v;
 final double[] d;

 public SparseMatMuller(SparseMatrix mx, double[] vx, double[] dx) {
 m � mx;
 v � vx;
 d � dx;

 for each (int i � 0 : m.rows-1)
 for (int j � m.rowpos[i]; j < m.rowpos[i�1]; j��)
 d[i] �� PRODUCT(m.data[j].value, v[m.data[j].index]);
 }

 double fiber PRODUCT(readnow double & melem, readnow double & velem) {
 return melem * velem;
 }
}

class SparseMatrix {
 int rows, cols;

 int[] rowpos;
 SparseElem[] data;
}

value SparseElem {
 double value;
 int index;

 SparseElem(double v, int i) {
 value � v;
 index � i;
 }

 SparseElem() {
 SparseElem(0.0, 0);
 }
}

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 D. F. BACON AND X. SHEN

219

Conclusions
We have presented braids and fibers—high-level

programming constructs that facilitate the creation of

programs that are partially ordered, in which the partial

orders can be used to support adaptive responses to

memory access latencies. Although fibers within a braid

are partially ordered with respect to one another, they are

executed sequentially. This greatly reduces the semantic

complexity of the programming model because the

programmer need not worry about locking or arbitrary

interleaving of parallel computations. Instead, the

interleaving occurs at intuitive points that are specified

and controlled by the programmer.

We have demonstrated how braids and fibers can

be effectively supported at the ISA level and at the

microarchitecture level. The fundamental architecture

abstractions are memory inquiry operations, which

provide latency prediction information about potentially

lengthy memory operations instead of waiting for the

memory operations to complete. The memory inquiry

operations allow the program to respond adaptively and

perform other work while waiting for outstanding

memory operations to complete. To further allow

effective interaction between software and hardware, the

system can associate memory transaction identifiers with

in-flight memory operations so that software can poll for

their completion if needed. We have presented exemplary

assembly code that makes use of our ISA extensions and

several exemplary braided algorithms.

Acknowledgments
This material is partially based upon work supported

by the Defense Advanced Research Projects Agency

(DARPA) under Contract No. NBCH3039004. We thank

Marc Auslander for helpful discussions.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. in the United States, other countries, or both.

References
1. W. A. Wulf and S. A. Mckee, ‘‘Hitting the Memory Wall:

Implications of the Obvious,’’ Computer Arch. News 23, No. 1,
20–24 (March 1995).

2. C. May, E. Silha, R. Simpson, and H. Warren, Eds., The
PowerPC Architecture: A Specification for a New Family of
RISC Processors, Second Edition, Morgan Kaufmann, San
Francisco, 1994.

3. M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith,
‘‘Informing Memory Operations: Memory Performance
Feedback Mechanisms and Their Applications,’’ ACM Trans.
Computer Syst. 16, No. 2, 170–205 (May 1998).

4. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and
B. Sinharoy, ‘‘POWER4 System Microarchitecture,’’ IBM J.
Res. & Dev. 46, No. 1, 5–25 (January 2002).

5. J. McCarthy, ‘‘Recursive Functions of Symbolic Expressions
and Their Computation by Machine,’’ Commun. ACM 3,
No. 4, 184–195 (April 1960).

6. R. Jones and R. Lins, Garbage Collection, John Wiley and
Sons, Ltd., Chichester, England, 1996.

7. T. C. Mowry and S. R. Ramkissoon, ‘‘Software-Controlled
Multithreading Using Informing Memory Operations,’’
Proceedings of the 6th International Symposium on High-
Performance Computer Architecture, 2000, pp. 121–132.

8. D. C. Morris and D. B. Hunt, ‘‘Computer System Having an
Instruction for Probing Memory Latency,’’ U.S. Patent No.
6,308,261, October 2001.

9. D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A.
Krishnamurthy, S. Lumetta, T. von Eicken, and K. A. Yelick,
‘‘Parallel Programming in Split-C,’’ Proceedings of the
International Conference on Supercomputing, November 1993,
pp. 262–273.

10. Arvind, R. S. Nikhil, and K. K. Pingali, ‘‘I-Structures:
Data Structures for Parallel Computing,’’ ACM Trans.
Programming Lang. & Syst. 11, No. 4, 598–632 (October
1989).

11. L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun, ‘‘Transactional Memory Coherence and
Consistency,’’ Proceedings of the 31st International Symposium
on Computer Architecture, June 2004, p. 102.

Received June 29, 2005; accepted for publication
August 8,

D. F. BACON AND X. SHEN IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

220

2005; Internet publication March 7, 2006

David F. Bacon IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bacon@us.ibm.com). Dr. Bacon is a Research Staff
Member at the Thomas J. Watson Research Center. He leads
the Metronome project, which produced the first hard real-time
garbage collection system. His algorithms are included in most
compilers and runtime systems for modern object-oriented
languages, and his work on thin locks was selected as one
of the most influential contributions in the twenty years of the
Programming Language Design and Implementation Conference.
Dr. Bacon received his A.B. degree from Columbia University and
his Ph.D. degree in computer science from the University of
California at Berkeley. His recent work focuses on high-level real-
time programming, embedded systems, programming language
design, and computer architecture. He holds six patents. Dr. Bacon
is a member of the IEEE and the ACM, for which he is on the
governing boards of the ACM Special Interest Group for
Programming Languages (SIGPLAN) and the ACM Special
Interest Group on Embedded Systems (SIGBED).

Xiaowei Shen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (xwshen@us.ibm.com). Dr. Shen is a Research Staff Member
at the Thomas J. Watson Research Center, where he manages the
Scalable Server Network and Memory Systems Department. He
received his B.S. and M.S. degrees in computer science from the
University of Science and Technology of China, and his M.S. and
Ph.D. degrees in electrical engineering and computer science from
the Massachusetts Institute of Technology. His research interests
include computer architectures, compilers, networks, software–
hardware co-design, and many aspects of parallel and distributed
computing. His recent work focuses on commercially viable high-
productivity computing systems, symmetric multiprocessing
systems, and clusters of low-end servers. Dr. Shen has two issued
patents and 15 pending patents in computer architecture and
systems.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 D. F. BACON AND X. SHEN

221

