Braids and fibers:
Language constructs
with architectural support
for adaptive responses
to memory latencies

As processor speeds continue to increase at a much higher rate than
memory speeds, memory latencies may soon approach a thousand
processor cycles. As a result, the flat memory model that was made
practical by deeply pipelined superscalar processors with multilevel
caches will no longer be tenable. The most common approach to
this problem is multithreading; however, multithreading requires
either abundant independent applications or well-parallelized
monolithic applications, and neither is easy to come by. We present
high-level programming constructs called braids and fibers. The
programming constructs facilitate the creation of programs that
are partially ordered, in which the partial orders can be used to
support adaptive responses to memory access latencies. Braiding
is simpler than parallelizing, while yielding many of the same
benefits. We show how the programming constructs can be
effectively supported with simple instruction set architecture
extensions and microarchitectural enhancements. We have
developed braided versions of a number of important algorithms.
The braided code is easy to understand at the source level and can
be translated into highly efficient instructions using our

D. F. Bacon
X. Shen

architecture extensions.

Introduction
High-performance microprocessors have, for many years,
been designed to present a flat memory abstraction to the
programmer. This greatly simplifies the programming
model and works well as long as caches are able to hide
memory access latencies. However, this abstraction is
beginning to break down because the current trend of
memory hierarchy is becoming ever deeper while the
relative speed of communications between the processor
and memory continues to increase. Latencies for DRAM
accesses may soon approach a thousand processor cycles.
The term memory wall was coined to refer to the
increasing gap between CPU and memory speeds [1].
Although optimization techniques, such as prefetching,
have been used successfully to hide significant numbers of
memory latencies, they usually work well only for highly
predictable programs. Ultimately, as the performance of
the memory system becomes more and more nonuniform,

such techniques for tolerating memory latencies will no
longer function.

If there is a line at a restaurant, patrons are given an
estimate of the length of time they will have to wait.
Similarly, if callers to a company’s customer service line
are put on hold, they are updated on how long they will
remain there. In these real-world scenarios, it seems
obvious that information about the length of a delay
should be provided. We argue that what is obvious in the
restaurant business should be obvious in the computer
business.

In this paper, we present a high-level programming
model that enables programs to respond to long memory
latencies by performing other work while high-latency
memory operations are in progress. The fundamental
approach is to divide the program into fibers—sections of
sequential code that can be interleaved in a partial order.
Although fibers are partially ordered with respect to one

©Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/06/$5.00 © 2006 IBM

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

D. F. BACON AND X. SHEN

209



210

another, they execute sequentially. This greatly reduces
the semantic complexity of the programming model
because the programmer does not have to worry about
locking or arbitrary interleaving of parallel threads.
Instead, the interleaving occurs at intuitive points that are
specified and controlled by the programmer.

A braid is a collection of fibers with the same scope of
execution. We present high-level abstractions based on
braids and fibers and show an exemplary histogram
computation algorithm that uses them. Braids are object-
like abstractions, and fibers are method-like abstractions.
We show instruction set architecture (ISA) and
microarchitecture extensions that are required to support
braided code. The fundamental architecture abstractions
are memory inquiry operations that provide latency
prediction information about potentially lengthy memory
operations instead of blocking and waiting for results of
the memory operations. This allows the program to
respond adaptively and perform other work while waiting
for the memory operations to complete (for instance,
loading data from the memory into a cache or computing
an address translation). To allow efficient interaction
between software and hardware resources, the hardware
associates memory transaction identifiers with in-flight
memory operations. The software can then poll for
completion, typically when some other memory operation
is deferred.

Programming constructs

A program that is able to adapt to memory latencies
generally has to defer some portion of its work while
requested data is being fetched. This implies that the
program should be able to operate on a partial order. As
a result, the programmer must give up explicit control of
the ordering of some operations in exchange for higher
performance.

In this section, we begin by describing a set of high-
level language constructs for expressing latency-adaptive
programs. In subsequent sections, we describe the
necessary ISA and microarchitecture enhancements to
support these constructs and show how the language
constructs can be efficiently compiled to the extended
ISA.

Programming with explicit memory inquiry
operations

The fundamental primitive notion that allows
programmers to express latency-adaptive partial orders is
that the program can inquire whether an object is in local
memory before committing to perform some work on
that object. The exact definition of local memory can be
implementation-dependent, but the difference between
local memory latency and nonlocal memory latency is
generally large. For instance, local can mean on-chip

D. F. BACON AND X. SHEN

SRAM cache, while nonlocal can mean off-chip DRAM
memory.

There are two memory inquiry operators, readnow and
updatenow. The readnow operator takes an expression as
a memory address and returns frue if data with the
memory address can be read now with low memory
latency. Similarly, updatenow takes an expression as a
memory address and returns frue if data with the memory
address can be updated now with low memory latency.

In the event that the accessed data cannot be read or
updated with low memory latency (e.g., the data is not
local), the program can choose to defer the memory
operation to a later time. This is often accompanied by
a prefetch operation so that when the memory access
operation is retried, the data can be accessed with low
memory latency. The operator readprefetch prefetches
data for read, and the operator updateprefetch
prefetches data for write.

We use a simple histogram calculation example to
demonstrate how the memory inquiry operators
can be used to explicitly program latency-adaptive
computations. As shown in Figure 1(a), the histogram
calculation function iterates over an array of values, and
for each value it increments an associated bucket in the
histogram array. The iteration over the array of values is
sequential, and the updates to the histogram array can be
completely random. If the histogram array is too large for
the cache, the program will suffer a cache miss on a very
high percentage of the histogram updates. If the penalty
for a miss is large, the slowdown can be dramatic.

Figure 1(b) shows how cache misses can be avoided
using explicitly programmed memory inquiry operations.
Before updating the histogram array, the function uses
updatenow to check whether the target location can be
updated with small memory access latency. If so, the
update is performed as usual; otherwise, the target index
is stored in a deferral queue and updateprefetch is used
to retrieve the target array element. When the queue is
full, it must be drained before the iteration continues.

With appropriate tuning of the queue size, most
accesses will hit in the cache. However, tuning the queue
size is tricky; if it is too small, the function will try to
update the queued histogram elements before they have
been prefetched. If it is too large, the prefetched elements
may already have been evicted from the cache by the time
they are processed.

Programming with braids and fibers

While explicit use of memory inquiry operations can be a
practical solution, the necessity for the user to tune the
deferral queue size indicates a potential weakness of

the approach. It is generally desirable for the memory
system to automatically manage the deferral queue of
outstanding prefetches. This requires that the program be

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



broken up into computation units that can be executed
out of order. Such computation units are referred to as
fibers, since they behave somewhat like very fine-grained
threads. A braid is a collection of fibers with the same
scope of execution. Intuitively, one can think of the fibers
as being attached at the beginning and at the end of the
braid, but freely intertwined between the two ends.

A major difference between braiding and other fine-
grained multithreading program abstractions is that
braiding ensures, at execution time, a well-defined total
order of high-level operations. Programmers therefore do
not need to concern themselves with the complexities
of concurrency and synchronization, but only with
specifying a relaxed ordering in which the high-level
functions of the program can occur. Furthermore,
because all component fibers of a braid must terminate in
order for the braid to terminate, the construct of braids
provides an abstraction over concurrency: Two successive
braids can be viewed as completely sequential at the
macro level, and any internal concurrency in either braid
will never have an effect on the other braid.

A braid is declared as a special type of class and defines
a set of braid instance variables. The only variables
accessible inside a braid are the braid instance variables,
local variables, and formal parameters of methods. The
braid class may define static variables, but they must be
constants (for instance, pointers to mutable objects are
not allowed). Instance variables of a braid are not
accessible outside the braid, including other braids of the
same class. Therefore, the instance variables are even
more restricted than private fields in the sense of the term
used in the Java™* language.

The braid statement creates a braid object and
executes the associated fibers within the braid. Braids may
not be created with the new operator that is normally used
for allocating objects. The braid statement terminates
when the main control fiber and all deferred fibers of that
braid have terminated. Braid objects can be passed as
parameters and stored in other objects, but once the braid
statement is terminated, any attempt to invoke a braid
method will raise a BraidTerminated exception.

A fiber is declared as a special type of method. Fibers
of a braid are co-routine-scheduled: A fiber can run
immediately if all of the data with memory addresses
specified by its readnow and updatenow parameters can
be accessed with low memory latencies, or the fiber is
deferred. If a fiber is deferred, another previously deferred
fiber can run. Any fiber within the braid may run at any
fiber call point, or at the end of the braid, but nowhere
else. Furthermore, a fiber executes atomically (that is, it is
not interrupted by other fibers) until it terminates or until
it makes another fiber call. Semantically, each fiber runs
with its own stack. Elimination of a separate stack, the
store of the return address, and inlining are all

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

void histogram(int vals[], int hist[]) {
for (int i = 0; i < vals.length; i++) {
int d = vals[i] % hist.length;
histl[d]++;
}
}

(@)

void histogram(int vals[], int hist[]) {
IntQ g = new IntQ(32);
int i = 0;

while (i < vals.length) {
for (; i < vals.length && ! q.full(); i++) {
int d = vals[i] % hist.length;
if (updatenow hist[d])
histl[d]++;
else {
updateprefetch hist[d];
q.put(d);
}
}

while (! g.empty()) {
int d = q.get();
histld]++;
}
}
}

(b)

computeHistogram(int vals[], int buckets) {
int hist[] = new int[buckets];
braid Histogram(vals, hist);
displayHistogram(hist);

}

braid class Histogram {
final int vals[];
final int hist[];

public Histogram(int v[], int h[]) {
vals = v;
hist = h;

for each (int i =0 : vals.length-1) {
int d = vals[i] % hist.length;
BUCKETADD(hist[d]);
}
}

void fiber BUCKETADD(updatenow int bucket) f{
bucket++;
}
}

©

Histogram calculations: (a) sequential; (b) with explicit memory
inquiries; (c) with braids and fibers.

D. F. BACON AND X. SHEN

211



212

optimizations of the baseline model. These optimizations
are shown in the exemplary assembly code for braid
constructs section below.

Braids may be nested; that is, a fiber in a braid may
itself create a braid whose internal fibers are interleaved.
However, when a fiber of the nested braid is deferred,
only other fibers of that braid are eligible to run, not the
fibers of the enclosing braid.

A braid object can be referred to within the braid using
the reference this. A break braid statement can be used,
if needed, to terminate the current braid block and abort
any pending fibers. Note that because fibers execute
sequentially, there is no danger of a break statement
asynchronously interrupting a running fiber; the only
fiber that it interrupts is the one that issues the break
braid statement.

Figure 1(c) shows the histogram calculation that is
encapsulated in a braid class. The braid class Histogram
has a constructor, which takes a value array and a
histogram array as parameters. The braid statement in
the computeHistogram creates a braid scope, instantiates
the braid object within that scope, and executes its
constructor. The Histogram object is not bound to any
variable, since there is no meaningful operation that can
be performed on it once it terminates. The fiber method
BUCKETADD takes an integer bucket value to update as an
updatenow parameter, signifying that the method will be
invoked when that memory location can be updated
with low memory latency. It is worth noting that the
parameter is passed by reference, in contrast to the
conventional Java by-value parameter passing.

Generally, to optimize fiber methods, as few
parameters as possible should be employed. Values that
are constant throughout the execution of the braid should
be stored in final braid instance variables. Multiple
objects should be consolidated if they involve no extra
computation on the nondeferring execution path. Using
such techniques, a program can often be optimized to run
with a few words of stored state for each deferred fiber.
For instance, consider a trivial hash table insertion
program as follows:

int i =hash (key);
INSERT (table [1], key, value);

void fiber INSERT (updatenowNod head, Key key, Valval)
{

Nod n=new Nod (key, val);

n.nxt =head;

head=n;

Rather than passing three parameters to the INSERT
method, it is generally more efficient to pass a single Nod
object that contains both the key and value pointers,

D. F. BACON AND X. SHEN

because this operation is performed anyway if the method
is executed immediately:

int i =hash (key);
Nod n=new Nod (key, val);
INSERT (table [i], n);

void fiber INSERT (updatenow Nod head, Nod node) {
n.nxt =head;
head=n;

Instruction set extensions

In this section, we describe the ISA extensions required to
support braids and fibers. Without losing generality, we
present the ISA extensions in the context of the IBM
Power Architecture® [2], although the same technique can
be applied to other modern microprocessor architectures.
Figure 2 shows the ISA extensions and their semantics.
The ISA extensions include memory inquiry operations
and split-phase memory prepare operations.

As with normal memory access instructions, the issue
of which addressing modes to support is also an issue
with our new memory instructions. There could be as few
as a single addressing mode or as many as are supported
by the normal memory load and store instructions. To
avoid unnecessary details, we simply use a memory
address addr to represent a memory address generated by
some memory addressing mode.

Memory inquiry operations

A memory inquiry operation can be used to determine
whether a given memory address can be accessed in a
timely fashion, before the memory address is actually
accessed. This is in contrast to the informing memory
operation, which informs the program of the length of
time a memory access operation has taken once it has
completed [3]. A memory inquiry operation is able to
provide appropriate latency information that can
subsequently be used for conditional execution of
memory access operations.

The Power Architecture comprises prefetch
instructions for memory load and store operations,
referred to respectively as Data Cache Block Touch
(dcbt) and Data Cache Block Touch for Store (dcbtst).
A prefetch instruction speculatively accesses a cache line
that contains data for the corresponding effective address.
The prefetch operation is speculative in the sense that
no exception is generated if, for example, the effective
address is illegal or accessing the effective address would
cause a page fault. We present our ISA extensions as
additional “data cache block™ operations.

In keeping with Power Architecture conventions, a
condition register (CR7) is assigned to hold the outcome

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



of memory inquiry operations. An alternative would be to
use a dedicated set of memory inquiry registers. Because
the condition register is 4 bits wide, we assign the
following meanings to the condition register fields:

* Available (EQ). This bit indicates that requested data
of the memory address is available for memory load
or store, while the exact meaning of “available” can
be implementation-dependent. In general, the data is
considered available if it can be accessed by the
processor with low memory access latency. Although
the most common cause of unavailability is a cache
miss, any source of memory latency can be
considered—for instance, an address translation delay
due to a translation lookaside buffer (TLB) miss.

e Timel, Time2 (LT, GT). These bits provide a 2-bit
encoding as an estimate for the memory access
latency. The interpretation of the four possible values
can be implementation-dependent. For example, the
latency estimates can encode an L1 hit (00), L2 hit
(01), L3 hit (10), and main memory access (11).

e Overflow (S0). This bit indicates that no split-phase
memory prepare operations can be initiated because
of resource constraint.

The memory inquiry instruction determines whether
requested data of a memory address is available. There
are two variants: one for reading and one for writing. The
latter is primarily for multiprocessor systems, in which
necessary cache coherence operations may cause delay to
a write operation, although the data is found in a local
cache. In the simplest form of memory inquiry
operations, the ISA is extended with two new
instructions, Data Cache Block Query (dcbq) and Data
Cache Block Query for Store (dcbgst). The semantics of
these instructions are given in Figure 2(a).

More sophisticated forms of memory inquiry
instructions can be supported. For example, a composite
memory inquiry load instruction can—in addition to the
memory inquiry operation—perform a memory load
operation if the data is available or, if the data is
unavailable, a memory prefetch operation.

Split-phase memory prepare operations
Split-phase memory prepare operations allow software to
initiate a memory access operation in case of a cache miss
and be notified semi-asynchronously when the requested
data becomes accessible with low memory access latency.
The notification is semi-asynchronous in the sense that
hardware asynchronously sets a flag when the data is
available, and software must poll the flag to be notified.
To support split-phase memory prepare operations, a
64-bit Memory Transaction Register (MTR) is defined

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

dcbqg addr
CR7[S0] <- 0
CR7[LT,GT] <- Latency(addr)
if Local(addr)

CR7CEQ] <- 1
else
CR7LEQ] <- 0O

dcbgst addr
CR7[S0] <- 0
CR7[LT,GT] <- Latency(addr)
if Local(addr) and CachedExclusive(addr)

CR7CEQ] <- 1
else
CR7LEQ] <- 0O

(a)

dcbp Rn, addr
CR7[LT,GT] <- Latency(addr)
if Local(addr)

CR7CEQ] <- 1
CR7[S0] <- 0
else if TransactionIDAvailable(MTR)
CR7[EQ] <- O
CR7[S0] <- 0

Rn <- GetTransactionID(MTR)
Initiateload(addr)
(On completion, MTR[Rn] <- 1)

else
CR7[EQ] <- O
CR7LS0] <- 1

dcbpst Rn, addr
CR7[LT,GT] <- Writelatency(addr)
if Local(addr) and CachedExclusive(addr)

CR7LEQ] <- 1
CR7[S0] <- 0
else if TransactionIDAvailable(MTR)
CR7[EQ] <- 0
CR7[SO0] <- 0

Rn <- GetTransactionID(MTR)
InitiateLoadExclusive(addr)
(On completion, MTR[Rn] <- 1)

else
CR7LEQ] <- 0O
CR7[S0] <- 1
(b)
mfmtr Rn
Rn <- [MTR]
mtrfree Rn

FreeTransactionID(MTR[Rn])

mtrclir
FreeTransactionID(MTR[O0..631)

©

Instruction set architecture extensions: (a) Data Cache Block Query;
(b) Data Cache Block Prepare; (c) MTR Move, Free, and Clear.

D. F. BACON AND X. SHEN

213



214

State transitions for memory transaction identifiers.

at the architecture level. Each bit in the MTR may be
associated with a split-phase memory prepare operation;
if so associated, it indicates whether data of the memory
operation is available (1) or not available (0).

The MTR can be examined by the program but cannot
be directly modified by it. When executing a split-phase
memory prepare operation, if the requested data cannot
be accessed with low memory access latency, the system
associates the memory prepare operation with a memory
transaction identifier. The memory transaction identifier
can be returned to the program via a General Purpose
Register (GPR). When the data becomes available, the
system sets the corresponding MTR bit that is indexed by
the memory transaction identifier. The program must free
the memory transaction identifier once the data is
accessed so that the memory transaction identifier can be
used for other split-phase memory prepare operations.
Note that if a memory transaction identifier is freed while
the corresponding memory transaction is still in progress,
the system may not make the memory transaction
identifier usable until the memory transaction completes.

Figure 3 shows state transitions for memory
transaction identifiers. Each memory transaction
identifier corresponds to an MTR bit. The typical state
transaction sequence for a memory transaction identifier
is FREE-WAITING-READY, where the term FREE
indicates that the memory transaction identifier is not
associated with any memory operation, WAITING
indicates that the memory transaction identifier is
associated with an outstanding memory operation, and
READY indicates that the memory transaction identifier
is associated with a memory operation that has been
completed. Note that the memory transaction identifier
may enter the HELD state in the event that the memory
transaction identifier is freed before the associated
memory operation completes.

D. F. BACON AND X. SHEN

Data cache block prepare instructions

The Data Cache Block Prepare (dcbp) instruction
initiates a split-phase memory operation. If the requested
data is already available, it behaves as a memory inquiry
operation. However, if the data is not available, the
system allocates a memory transaction identifier. The
memory transaction identifier is an MTR index that
specifies an MTR bit that will eventually be set to 1 when
the requested data becomes available. The program can
therefore maintain a small amount of state comprising the
memory transaction identifier and periodically poll for
the completion of the outstanding memory transaction.
When the memory transaction completes, the program
can branch to an appropriate handler that uses the saved
state to perform a deferred operation.

The Data Cache Block Prepare for Store (dcbpst)
instruction is almost identical, except that it prepares the
data for a store operation. This causes the cache line to be
obtained in an exclusive cache coherence state. The use of
the dcbpst instruction should generally be limited for
read—modify—write operation sequences on a memory
address. The write-buffer mechanism present in modern
computer architectures is usually effective to hide the
memory access latency of a store operation without a
preceding read of the same memory address. The
semantics of the dcbp and dcbpst instructions are shown
in Figure 2(b).

MTR management instructions

Some other MTR-related instructions are shown in
Figure 2(c). The Move from MTR (mfmtr) instruction
loads the current state of the MTR into a GPR.

Once a split-phase memory prepare operation has been
completed, the associated memory transaction identifier
should be freed for reuse by future split-phase memory
prepare operations. The MTR Free (mtrfree) instruction
releases a memory transaction identifier referred to by a
GPR. The MTR Clear (mtrclr) instruction releases all
memory transaction identifiers and may be used at
context switch times when software is not prepared to
handle memory transaction identifiers generated by other
contexts.

When multiple methods, threads, or processes are
simultaneously issuing split-phase memory prepare
operations, it may be helpful for the program to
determine the number of split-phase memory prepare
operations that can be issued before there are no more
available memory transaction identifiers. If this is the
case, the number of available memory transaction
identifiers can be obtained by loading the MTR into a
GPR and then counting the number of zeros in the GPR.

For programming convenience at the assembly level,
adequate opcode mnemonics can be provided for branch
operations based on the content of the Condition

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



Register (CR7). The Condition Register can be set by
memory inquiry and prepare instructions. Exemplary
branch mnemonics are shown in Figure 2(d).

Microarchitecture support

We now discuss the microarchitecture support of the ISA
extensions for memory inquiry operations and split-phase
memory prepare operations. Without losing generality,
we show simple implementations in the context of the
IBM POWER4* microprocessor because it represents
an aggressive microarchitecture implementation with
publicly available documentation [4].

At the microarchitectural level, the memory inquiry
instructions (dcbq and dcbgst) and split-phase memory
prepare instructions (dcbp and dcbpst) interact primarily
with the Load Miss Queue (LMQ). In general, the system
can take advantage of the fact that these instructions are
intended to improve performance, so a certain amount of
imprecision may be tolerated (although this should not
be abused, as it will otherwise negate the effect of the
optimizations). Thus, the memory inquiry operations that
set the memory available bit and the memory latency bits
in the Condition Register (CR7) are, to some extent, free
to return prediction results without causing correctness
issues. It is usually less harmful to report that some local
data is nonlocal, which leads to a spurious delay of work,
than to report that some nonlocal data is local, which
leads to a processor stall.

Memory inquiry operation support

To support memory inquiry operations, the directory of a
cache can be placed closer to the accessing CPU than the
data array of the cache. This allows directory information
to be accessed more rapidly to reduce the overhead of
memory inquiry operations. For example, the processor
chip may contain the directory of an L3 cache, but not the
data array of the L3 cache.

In addition, it is generally unnecessary to distinguish
cache access latencies if the difference between the
latencies is small. Consider a computer system that
employs on-chip L1 and L2 caches and an off-chip L3
cache. Because the difference between on-chip and off-
chip access latencies is far greater than the difference
between on-chip access latencies, we can treat L1 and L2
caches in the same way when a memory inquiry operation
is performed. In particular, the system may report data as
“available” (E£Q) if the data is in either the L1 or the L2
cache.

The cache state can be used to determine or predict
latencies of memory access operations. For example, the
latency of a memory store operation can be predicted
according to whether and where the address is cached and
the state in which the data is cached. If the cache state
shows that the address is cached with the exclusive

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

ownership, a memory store operation can be executed on
the cache with low cache coherence overhead. In contrast,
if the cache state shows that the address is cached without
the exclusive ownership, a memory store operation may
not be executed before other cache copies, if they exist,
are invalidated. The latency of a memory store operation
is generally more important for strict memory models,
such as sequential consistency, than for relaxed memory
models, such as the PowerPC memory model.

For a memory inquiry operation, if requested data is
in the L1 cache, it is immediately reported as available
(EQ = 1) with a latency of “very short” (LT, GT = 00).

A memory inquiry operation completes as soon as the
L2 directory lookup has been performed. If the data is
found in the L2 cache, a prefetch to the L1 cache is
initiated, the requested data is reported as available, and
the latency is reported as “short” (LT, GT =01); otherwise,
a prefetch is not initiated, and the latency is reported as
either “long” or “very long” (LT, GT =10 or 11).

Alternatively, the computer system can comprise a
built-in prediction mechanism that can be used to predict
whether data of a memory address can be found in a
cache or set of caches. The prediction mechanism is often
based on a prediction table that is smaller than the cache
directory and can therefore be accessed more rapidly than
the cache directory. For example, the prediction table
could be a summary of the cache directory that contains
only a subset of the address bits or a hashed value from
the address bits. When an address is loaded into the
cache, a corresponding entry is created in the prediction
table. The prediction table can be a set-associative table
that uses a least-recently-used (LRU) replacement
algorithm. For a memory inquiry operation, if the
address is found in the prediction table, the memory
access latency is predicted to be the cache hit latency;
otherwise, the memory access latency is predicted to be
the cache miss latency.

Split-phase memory prepare operation support

The split-phase memory prepare instructions (dcbp and
dcbpst) are implemented similarly to the memory inquiry
instructions, but with additional functionality. A split-
phase memory prepare operation always causes the cache
line containing the corresponding memory address to be
fetched into the L1 cache.

If the cache line is not available, a split-phase memory
operation is initiated, and the system searches for an
available memory transaction identifier. This is done by
searching a 64-bit Memory Transaction Reservation
Register (MTRR) that records reserved memory
transaction identifiers (MTIDs). Each bit in the MTRR
indicates whether the corresponding memory transaction
identifier is reserved (1) or not reserved (0). If the MTRR
indicates that no memory transaction identifier is

D. F. BACON AND X. SHEN

215



216

available, the SO bit in the Condition Register (CR7) is set
to 1 to indicate an MTR overflow, and the memory
prepare instruction completes.

If the MTRR indicates that there is a memory
transaction identifier available, the corresponding
memory transaction identifier is returned in a general
register specified by the memory prepare instruction and
is associated with the outstanding memory operation. As
a result, the corresponding MTR bit is set to 0, indicating
that the outstanding memory operation is not yet
completed. Meanwhile, the corresponding MTRR bit is
set to 1, indicating that the memory transaction identifier
is reserved for use.

When an outstanding memory operation completes,
if the outstanding memory operation is associated
with a memory transaction identifier, it means that the
outstanding memory operation is part of a split-phase
memory prepare operation. Consequently, the
corresponding MTR bit is set to 1 to indicate that the
requested data can be accessed with small memory access
latency. Note that the update of the MTR bit may be
performed asynchronously without particular timing
constraint.

Exemplary assembly code for braid constructs
We have presented the braids and fibers high-level
programming constructs and the ISA and
microarchitecture extensions needed to support them. We
now show how they work together by describing the
assembly code that implements the braided histogram
computation shown in Figure 1(c).

The assembly code shown in Figure 4 demonstrates
results that are achievable via a high-quality optimizing
compiler in conjunction with the strong isolation
properties of braids, which are designed to increase
opportunities for such optimizations. In particular, the
isolation properties minimize the amount of state
information that corresponds to an iteration of the
for each loop. It is important to minimize the state
information that must be saved when a for each iteration
is deferred.

Figure 4(a) shows the translation of the for each loop
of the histogram computation code in Figure 1(c). The
translation is essentially the same as that for an
equivalent for loop, except that we have quasi-inlined the
code of BUCKETADD by passing all parameters in registers
and performing global register allocation across the
functions. As a result, registers are not reused (except for
the scratch register R2). A smaller set of registers could be
used, but we use unique registers to make the code easier
to understand.

The loop loads vals[i] and hashes it to produce the
resulting histogram index d, which is then converted into
an array offset in RO. It then makes a call to the fiber

D. F. BACON AND X. SHEN

code for BUCKETADD. The fiber method has been quasi-
inlined; however, as we will see, it is necessary to use a call
(branch-and-link) in order to accommodate the complex
control flow that can result if a desired memory location
is not available.

Beginning with the fiber code in Figure 4(b), a split-
phase memory operation is initiated on the memory
location hist[d]. If the memory location is available, the
code falls through to the instruction labeled hit, and the
operation of the BUCKETADD method is executed as it
would be in the absence of fibers; i.e., the array element is
loaded, incremented, and stored, and control is returned
to the call in Figure 4(a). Otherwise, we branch to miss
and verify that a valid transaction identifier for the split-
phase operation was indeed obtained, and then store the
state of the loop iteration (which, in this case, is the single
register containing the array offset) in a table.

An attempt is then made to substitute a deferred value
from a previous iteration. This substitution idiom is the
key to obtaining high performance in the translation of
braided code, since it results in a simple control flow and
minimizes special-case code. The tag vector is checked for
a completed operation. If none is available, we return to
the calling loop in Figure 4(a), which can then continue
with the work of subsequent iterations that might also be
deferred.

If a deferred iteration has completed, the associated
transaction identifier is released so that it may be reused,
the state of the deferred iteration is loaded into RO, and
the program then branches back to hit to perform the
method body on the deferred operation. Control is then
returned to the loop body in order to perform the next
iteration—next meaning after the iteration that was just
deferred, not next after the iteration that was just
completed. This is the key to the iteration substitution
idiom.

In the event that there are no more resources available
for split-phase memory operations, control passes to
notags, where it saves the return address and the state of
the loop iteration and then tries to drain the split-phase
operations by calling (via branch-and-link) the dodefer
code. The use of a call here is necessary so that when the
deferred work is completed, control returns to the notags
handler, which can retry the iteration that failed owing to
a lack of transaction resources.

Exemplary braided algorithms

In this section, we present two exemplary braided
algorithms: the mark phase for garbage collection and
a sparse matrix-vector multiply algorithm.

As shown in Figure 5, the mark phase for garbage
collection traverses the object graph to mark all objects
that it encounters as live. It is generally memory-intensive
and comprises unpredictable memory accesses.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



BEGIN: ; on entry R6: array pointer vals[], R9: array pointer hist[]
Twz R10, length(R9) ; R10: array length of hist[]
Twz R7, length(R6) ; get array length of vals[]
cmpwi R7, 0 ; empty array?
b END ; skip the whole mess
slwi R7, R7, 2 ; convert length to word index
1i R31, 0 ; R31: deferred Toad mask
1i R8, 0 ; R8: index variable i
Toop: Twzx R2, R6, R8 ; R2: vals[il]
divwu RO, R2, R10 ; compute d by taking
mullw RO, RO, R10 8 vals[i]
subf RO, RO, R2 3 modulo hist.length
slwi RO, RO, 2 ; convert index to offset
b1 fiber ; perform body of fiber method
addi R8, R8, 4 s i+t
cmpw R8, R7 ; at end of array?
b1t Toop ; no, do next piece of work
finish: bl dodefer ; try to do deferred work
cmpwi R31, 0 ; any outstanding loads?
bne finish ; yup, keep draining
END:
(a)
fiber: DCBPST. R1, R9(RO) ; prepare for Toad of hist[d]
BMNA miss ; if memory not available, handle
hit: Twz R2, R9(RO) ; load histogram entry (won't block)
addi R2, R2, 1 ; add 1 to histogram entry
stw R2, R9(RO) ; store updated histogram entry
blr ; return
miss: BMTNA notags ; handle tag unavailable
bitset R31, R31, Rl ; add new deferred load to mask
slwi R1, R1, 2 ; convert tag to word offset
stw RO, deftb1(R1) ; place offset of d in deferred table
dodefer:MFMTR R3 ; get tag vector
and R3, R3, R31 ; mask out other deferred Toads
cntlzw R1, R3 ; get index of first available value
cmpwi CR3, R1, 32 ; none found?
beqlr CR3 ; then done; return
mtrfree R1 ; got one. free memory tag
bitclr R31, R31, R1 ; remove from mask of deferred Toads
slwi R1, R1, 2 ; convert tag index to word offset
Twz RO, deftb1(R1) ; get saved offset of d from table
b hit ; go back and do the work
notags: mflr R2 ; get return address
stw R2, ntret ; save the return address
stw RO, ntoff ; save element offset
work: b1 dodefer ; now try to do deferred work
bne CR3, work ; more? then keep doing it
Twz R2, ntret ; load saved return address
mtir R2 ; restore return address
Twz RO, ntoff ; restore element offset
b fiber ; retry original load

Optimized code for braid implementation: (a) assembly code implementing the for each loop in Figure 1(c); (b) assembly code

implementing the fiber method BUCKETADD in Figure 1(c).

(b)

IBM J. RES. & DEV. VOL. 50 NO.

2/3 MARCH/MAY 2006

D. F. BACON AND X. SHEN

217



218

class MarkStack
private final ObjectStack stack;

MarkStack(Object[] roots) {
stack = ObjectStack.create(roots);
}

void mark() f
while (! stack.empty()) {
Object X = stack.pop();
markObject(X);
}
}

void markObject(X) {
if (I X.mark) {
X.mark = true;
offsets = X.class.offsets();

for (int i = 0; i < offsets.length; i++)
pointer = Peek (ADDRESS(X)+offsets[i]1);
if (pointer != null)

stack.push(pointer);

(@)

void mark() {
Queue deferredQ = new Queue(QUEUESIZE);

while (! stack.empty()) {
while (! stack.empty()) {
X = stack.pop();

if (Updatenow(* X))
markObject(X);
else {
UpdatePrefetch * X;
deferredQ.add(X);
if (deferredQ.full())
markDeferred(deferredQ);
}

}
markDeferred(deferredQ);
}

void markDeferred(Queue Q) f
while (! Q.empty()) {
Object X = Q.remove();
markObject(X);
}
}

(b)

braid class GCMark {
final ObjectStack stack;

GCMark(0bject[] roots) {
stack = ObjectStack.create(roots);

while each (! markStack.empty()) {
Object X = markStack.pop();
MARK(* X);
}
}

void fiber MARK(updatenow Object o) {
markObject(o);
}
}

©

Mark phase of garbage collection: (a) sequential; (b) with explicit
memory inquiries; (c) with braids and fibers.

D. F. BACON AND X. SHEN

Figure 5(a) shows a standard formulation of the mark
phase for garbage collection [5, 6]. The algorithm
recursively traverses the object graph, marking each new
object it encounters and backtracking when it encounters
a marked object.

Figure 5(b) shows the mark phase using explicit
memory inquiry operations, in which mark0Object is
invoked only if the object can be marked with low
memory access latency. If the object is not in a cache with
low memory access latency, the object marking is deferred
while the object is prefetched to a deferral queue called
deferredQ. When the deferral queue fills up, its elements
are processed with markDeferred, which marks objects
without further deferring any object marking. Figure 5(c)
shows the braided version for the mark phase of the
garbage collector.

Figure 6 shows how braids and fibers can be used to
implement a sparse matrix-vector multiply calculation.
Each product operation is executed in a fiber, so that if a
memory operation would stall, another row would be
consulted for concurrent work.

Related work

Horowitz et al. describe informing memory operations
[3]. While similar in spirit to the memory inquiry
operations, informing memory operations usually
provide feedback about memory access operations to
the program after the memory access operations are
performed. The technique is therefore useful for profile-
based approaches, but it lacks the ability to adapt
dynamically in the manner of the memory inquiry
operations. It also lacks a mechanism for associating
outstanding memory operations with memory transaction
identifiers.

Mowry and Ramkissoon describe how informing
memory operations may be used for compiler-controlled
multithreading on a processor core with simultaneous
multithreading [7]. However, the programming model is
complicated because the programmer must be prepared
to deal with arbitrary interleaving. The major advantage
of braiding over multithreading is that the points at which
fibers are interleaved are limited, well-defined, and
obvious to the programmer.

Morris and Hunt describe a computer system with
instructions that allow registers to be probed to determine
whether an attempt to use them would stall [8]. This
approach is significantly less flexible than techniques
based on the split-phase memory prepare operations, as
the ability to schedule arbitrary code at arbitrary times is
greatly restricted by the required use of fixed registers.
The ability of our system to allocate and free memory
transaction identifiers gives software more degrees of
freedom.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



braid class SparseMatMuller {
final SparseMatrix m;
final doublel] v;
final doublel[] d;

m = mx;
Vo= VX;
d = dx;

for each (int i = 0 :
}

return melem * velem;
}
}

class SparseMatrix {
int rows, cols;

int[] rowpos;
SparseElem[] data;
}

value SparseElem {
double value;
int index;

SparsekElem(double v, int 1) {
value = v;
index = 1;

}

SparseElem() {
SparseElem(0.0, 0);
}
}

public SparseMatMuller(SparseMatrix mx, double[] vx, double[] dx) {

m.rows-1)
for (int j = m.rowpos[il; j < m.rowpos[i+1]1; j++)
d[i] += PRODUCT(m.datal[jl.value, v[m.datalj].index]1);

double fiber PRODUCT(readnow double & melem, readnow double & velem) {

Braided version of sparse matrix-vector multiply calculation.

Split-C provides split-phase memory operations in a
parallel, single-program multiple-data programming
language [9]. However, because the split-phase memory
operations are assumed to have high overhead and there
is no automatic notification of completion, the
programmer must explicitly synchronize at various
points, waiting for all outstanding split-phase memory
operations to complete. Our architecture support makes
split-phase memory operations very lightweight (having
low overhead), and this in turn allows synchronization at
the level of individual split-phase memory operations.

The I-structures introduced by Arvind et al. [10]
provide a split-phase functional abstraction in the form of
an array of write-once elements. With I-structures, a
memory read operation blocks until the corresponding

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

memory write operation has occurred on the array
element. This is fundamentally different from our
approach in that the execution of the memory read
operation is based on the availability of the data
rather than the latency of the memory access
operation.

The transactional coherence and consistency model
provides a shared-memory model in which atomic
transactions are always the basic units of parallel
programming and memory consistency [11]. Supporting
atomic transactions architecturally often requires
expensive hardware and software enhancements, such
as large on-chip buffers for atomic transactions and
software-managed memory regions for on-chip buffer
overflows.

D. F. BACON AND X. SHEN

219



220

Conclusions
We have presented braids and fibers—high-level
programming constructs that facilitate the creation of
programs that are partially ordered, in which the partial
orders can be used to support adaptive responses to
memory access latencies. Although fibers within a braid
are partially ordered with respect to one another, they are
executed sequentially. This greatly reduces the semantic
complexity of the programming model because the
programmer need not worry about locking or arbitrary
interleaving of parallel computations. Instead, the
interleaving occurs at intuitive points that are specified
and controlled by the programmer.

We have demonstrated how braids and fibers can
be effectively supported at the ISA level and at the
microarchitecture level. The fundamental architecture
abstractions are memory inquiry operations, which
provide latency prediction information about potentially
lengthy memory operations instead of waiting for the
memory operations to complete. The memory inquiry
operations allow the program to respond adaptively and
perform other work while waiting for outstanding
memory operations to complete. To further allow
effective interaction between software and hardware, the
system can associate memory transaction identifiers with
in-flight memory operations so that software can poll for
their completion if needed. We have presented exemplary
assembly code that makes use of our ISA extensions and
several exemplary braided algorithms.

Acknowledgments

This material is partially based upon work supported
by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCH3039004. We thank
Marc Auslander for helpful discussions.

*Trademark, service mark, or registered trademark of International
Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sun
Microsystems, Inc. in the United States, other countries, or both.

References

1. W. A. Wulf and S. A. Mckee, “Hitting the Memory Wall:
Implications of the Obvious,” Computer Arch. News 23, No. 1,
20-24 (March 1995).

2. C. May, E. Silha, R. Simpson, and H. Warren, Eds., The
PowerPC Architecture: A Specification for a New Family of
RISC Processors, Second Edition, Morgan Kaufmann, San
Francisco, 1994.

3. M. Horowitz, M. Martonosi, T. C. Mowry, and M. D. Smith,
“Informing Memory Operations: Memory Performance
Feedback Mechanisms and Their Applications,” ACM Trans.
Computer Syst. 16, No. 2, 170-205 (May 1998).

4. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and
B. Sinharoy, “POWER4 System Microarchitecture,” IBM J.
Res. & Dev. 46, No. 1, 5-25 (January 2002).

5. J. McCarthy, “Recursive Functions of Symbolic Expressions
and Their Computation by Machine,” Commun. ACM 3,
No. 4, 184-195 (April 1960).

D. F. BACON AND X. SHEN

6. R. Jones and R. Lins, Garbage Collection, John Wiley and
Sons, Ltd., Chichester, England, 1996.

7. T. C. Mowry and S. R. Ramkissoon, “Software-Controlled
Multithreading Using Informing Memory Operations,”
Proceedings of the 6th International Symposium on High-
Performance Computer Architecture, 2000, pp. 121-132.

8. D. C. Morris and D. B. Hunt, “Computer System Having an
Instruction for Probing Memory Latency,” U.S. Patent No.
6,308,261, October 2001.

9. D. E. Culler, A. C. Arpaci-Dusseau, S. C. Goldstein, A.
Krishnamurthy, S. Lumetta, T. von Eicken, and K. A. Yelick,
“Parallel Programming in Split-C,” Proceedings of the
International Conference on Supercomputing, November 1993,
pp. 262-273.

10. Arvind, R. S. Nikhil, and K. K. Pingali, “I-Structures:

Data Structures for Parallel Computing,” ACM Trans.
Programming Lang. & Syst. 11, No. 4, 598-632 (October
1989).

11. L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun, “Transactional Memory Coherence and
Consistency,” Proceedings of the 31st International Symposium
on Computer Architecture, June 2004, p. 102.

Received June 29, 2005, accepted for publication
August 8, 2005; Internet publication March 7, 2006

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006



David F. Bacon [IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bacon@us.ibm.com). Dr. Bacon is a Research Staff
Member at the Thomas J. Watson Research Center. He leads

the Metronome project, which produced the first hard real-time
garbage collection system. His algorithms are included in most
compilers and runtime systems for modern object-oriented
languages, and his work on thin locks was selected as one

of the most influential contributions in the twenty years of the
Programming Language Design and Implementation Conference.
Dr. Bacon received his A.B. degree from Columbia University and
his Ph.D. degree in computer science from the University of
California at Berkeley. His recent work focuses on high-level real-
time programming, embedded systems, programming language
design, and computer architecture. He holds six patents. Dr. Bacon
is a member of the IEEE and the ACM, for which he is on the
governing boards of the ACM Special Interest Group for
Programming Languages (SIGPLAN) and the ACM Special
Interest Group on Embedded Systems (SIGBED).

Xiaowei Shen [BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (xwshen@us.ibm.com). Dr. Shen is a Research Staff Member
at the Thomas J. Watson Research Center, where he manages the
Scalable Server Network and Memory Systems Department. He
received his B.S. and M.S. degrees in computer science from the
University of Science and Technology of China, and his M.S. and
Ph.D. degrees in electrical engineering and computer science from
the Massachusetts Institute of Technology. His research interests
include computer architectures, compilers, networks, software—
hardware co-design, and many aspects of parallel and distributed
computing. His recent work focuses on commercially viable high-
productivity computing systems, symmetric multiprocessing
systems, and clusters of low-end servers. Dr. Shen has two issued
patents and 15 pending patents in computer architecture and
systems.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

D. F. BACON AND X. SHEN

221



