Systems research T. Agerwala
M. Gupta

challenges: A scale-out

perspective

A scale-out system is a collection of interconnected, modular, low-
cost computers that work as a single entity to cooperatively provide
applications, systems resources, and data to users. The dominant
programming model for such systems consists of message passing
at the systems level and multithreading at the element level. Scale-
out computers have traditionally been developed and deployed to

provide levels of performance (throughput and parallel processing)
beyond what was achievable by large shared-memory computers

that utilized the fastest processors and the most expensive memory

systems. Today, exploiting scale-out at all levels in systems is
becoming imperative in order to overcome a fundamental
discontinuity in the development of microprocessor technology
caused by power dissipation. The pervasive use of greater levels
of scale-out, on the other hand, creates its own challenges in
architecture, programming, systems management, and reliability.
This position paper identifies some of the important research
problems that must be addressed in order to deal with the
technology disruption and fully realize the opportunity offered
by scale-out. Our examples are based on parallelism, but the
challenges we identify apply to scale-out more generally.

Introduction

Computer system designs have been driven by emerging
applications and the ever-growing demands of these
applications. The computational and storage needs of
workloads in several areas such as scientific and technical
computing, games, digital media, and data analytics are
growing exponentially. Some examples of system
demands in various domains are the following:

e Life sciences: A simulation of ten microseconds of
protein-folding for a single 92,224-atom system (the
protein ApoAl) consumes about 4.6 X 10" floating-
point operations, requiring 53 days on a
supercomputer delivering 10-teraflop/s sustained
performance on the application. Studying the
mechanisms of folding of such a protein requires
conducting several of these simulations [1, 2].

® Climate modeling: Studying future climate change as a
result of human activity using the Community
Climate System Model (CCSM2) will require, for a
multi-century integration at a target resolution of
20 km in the atmosphere and 10 km in the ocean,

about 25 years of computation on a system sustaining
10-teraflop/s performance. Again, multiple ensemble
simulations are needed for a meaningful study.
Digital entertainment. Performing ray tracing in a
game scene at a resolution of 1,024 X 1,024 pixels, at
50 frames per second, with a realistic requirement of
10 rays per pixel, requires greater than 2-teraflop/s
performance, which is more than two orders of
magnitude higher than the performance achievable
with modern personal computers and is also beyond
the announced capabilities of the new generation of
game consoles being introduced into the market.
Data analytics.: Billions of documents are accessible
from the Internet, occupying several petabytes of
storage, with millions of new documents being added
daily. Performing analytics to find patterns, trends,
and relationships over all of that data requires
capabilities beyond the reach of even the most
powerful supercomputers today. For example, the
Web Fountain project [3] at IBM Research involves
adding a series of annotations to about five billion
documents (representing the relevant part of the web-

©Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/06/$5.00 © 2006 IBM

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

T. AGERWALA AND M. GUPTA

173

174

accessible data of interest), requiring an estimated
4 X 10" operations in aggregate which should be
completed within a day in order to be useful.

Systems-level performance must meet the demands of
applications, even though power dissipation is creating a
fundamental discontinuity in the development of
microprocessor technology. While technology scaling has
allowed us to continue to increase the number of
transistors on a chip, power densities have grown with
every CMOS generation as designers have pursued higher
operating frequencies. Given the lack of any other low-
power and high-volume technology than CMOS, in the
future, the frequency of microprocessors must grow at a
much lower rate than in the past decade. Even with
advances in base silicon, on-chip interconnects, and
cooling technologies, microprocessor performance
growth rates have slowed substantially. However, chip-
level performance growth can still be sustained at historic
levels through higher levels of on-chip functional
integration. The fundamental reason for this is the
nonlinear relationship between power and performance.
It may be possible, for example, to decrease the power of
a system tenfold with only a threefold reduction in
performance. Higher performance at the chip level would
then be obtained through higher levels of on-chip
functional integration.

We believe that the disruption caused by power
dissipation will affect all forms of computing systems.
Scale-out systems represent a natural initial target for
exploring solutions to this problem, given the high
computational needs and the use of parallelism in their
workloads. Systems management, reliability, and
Amdahl’s law' are challenges for scale-out systems. We
require a holistic approach that considers all aspects of
system design such as architecture, operating systems,
compilers, and runtime systems, as well as workload
characteristics and programming methodologies, in order
to develop breakthrough solutions.

This paper presents some of the challenges, indicated
throughout the text in italics, that must be addressed in
order to realize the full benefit of scale-out. Many of these
issues have long been recognized as research problems.
The discontinuity in the development of microprocessor
technology requires us to address these problems with a
sense of urgency and in a holistic manner by considering
all aspects of systems design.

Research challenges

Architecture
For certain workloads, we can exploit the power/
performance tradeoff at the systems level, leading, in the

'Amdahl’s law states that the performance benefits to scale-out are limited by the
percentage of code that is sequential.

T. AGERWALA AND M. GUPTA

limit, to massively scalable computers. The Blue
Gene*/L (BG/L) project [4] represents a research
experiment that pushed the limits of scale-out computing
for a significant class of scientific computations. The BG/L
system design was driven, at every level, with an almost
maniacal focus on power efficiency. A design decision was
made to use low-power embedded processors in the
system. Furthermore, BG/L uses system-on-a-chip
technology to integrate, along with two processor cores,
powerful interconnection networks with special support
for collective communications, a prefetch buffer (L2
cache), and embedded DRAM serving as the L3 cache in
the compute node chip. A single rack of BG/L, which is
air-cooled, contains 2,048 processors, with an aggregated
peak performance of 5.7 teraflop/s. The target set at the
beginning of the project was to develop a 65,536-node
system, with a peak performance of 367 teraflop/s. [This
system was successfully delivered to Lawrence Livermore
National Laboratory (LLNL) in September 2005.]

BG/L employs a novel, hierarchical software
architecture to support high levels of scalability and is an
excellent example of the use of chip-level functional
integration and massive parallelism to obtain an order of
magnitude improvement in performance (as well as in
performance per watt and performance per square foot of
floor space) at the high end of supercomputing.

The building blocks of scale-out systems must also
address rising power dissipation and the memory wall
problem.”? These considerations are driving us toward
accelerators, multiple cores on a chip, and
multithreading.® All of these architectural approaches
require greater exploitation of parallelism in applications.
Well-designed accelerators and offload engines can
provide significantly improved power-efficient computing
on certain classes of applications such as graphics, game
physics, and network protocol processing, to name just a
few. The Cell Broadband Engine** Processor [5] is a great
example of a power-efficient programmable accelerator.
Multiple on-chip power-efficient cores can provide similar
advantages for multithreaded applications. We foresee, at
least in the near future, much more diversity in chips and
systems as system designers experiment with ways to
satisfy the workload demands.

Architectural research must be driven by application
needs in different domains. We must systematically identify
the pertinent characteristics, especially the amount of
inherent parallelism and data access patterns, for a wide
range of emerging applications. The goal is to design

By Little’s law, the amount of concurrency needed to hide the latency of memory
accesses will continue to increase as the gap between memory and processor speed
grows. Since the memory latency is improving at a rate of only roughly 6% each year,
the gap is projected to continue growing even as the increase in processor speed
decreases from the historic rate of about 60% each year to about 20% each year.
3We are discussing a chip with multiple processors, supporting a shared-memory
model, as a building block of a scale-out platform, although such a chip would
normally be associated with scale-up computing.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

“balanced” systems consisting of modular, cost-effective
building blocks and interconnects and to identify chip
architectures that are “optimal” with respect to the number
and type of accelerators, the number of cores on a chip, the
degree of multithreading, and the organization and amount
of on-chip cache.

Scale-out systems in which the elements are chips that
consist of multiple, possibly heterogeneous cores and
accelerators, with standard interconnects, can allow
designs to be customized to different classes of workloads,
keeping development and test costs manageable while
improving time to market. 7o realize this benefit, the
design automation research community must develop
languages and tools that allow us to quickly design and
build high-performance systems following an approach
similar to that used today for System-on-a-Chip (SoC)
designs.

Improving the single-thread performance of workloads
has become a significant challenge, given the technology
discontinuity and diminishing returns from using
additional transistors in complex processors. Architects
must focus more on innovative uses of multiple cores, such
as architectural support for speculative parallelization or
multithreading, with appropriate compiler assistance, to
improve the performance of codes that have not been
explicitly parallelized.

Programming

For an arbitrary program written in a serial manner using
a language such as C, C++, or even Fortran, it is hard for
a compiler to automatically extract parallelism, although
years of research in parallelizing compiler technology
have led to limited success in some application domains
[6]. This has led to informal standards such as
OpenMP**, through which a programmer can provide
directives for parallelization [7]. Most of the popular
languages also allow concurrency to be expressed directly,
either using libraries (e.g., using POSIX** threads with C)
or as part of the core language (e.g., multithreading in
Java*™*) [8]. However, managing concurrency explicitly
is a difficult and error-prone task, and it is hard for
programmers to reason about too many different
concurrent threads of execution. Those factors often lead
to artificial constraints on the degree of parallelism
expressed in many applications. In other cases, issues
such as serial steps in the computation, true data-sharing
patterns, and synchronization costs limit the amount of
parallelism that can be exploited.

Data parallelism is a popular form of parallelism
exploited by many applications. Variants of this
programming style include single program multiple data
(SPMD), vectorization, and use of single instruction
multiple data (SIMD) instruction sets; the parallelism
may be expressed directly at the language level or via
libraries, such as message passing interface (MPI) [9].

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

Communication costs and load imbalances can limit the
degree of scale-out that can be exploited. Another
problem relates to the fact that most scale-out platforms
support multiple forms of parallelism, message-passing
parallelism across nodes, and shared-memory parallelism
(and possibly SIMD, in addition) within a node. The
programming task is complicated by multiple levels of
problem decomposition [10].

It is widely accepted that the difficulty of programming
high-performance computing systems is a significant
barrier to widespread adoption of supercomputers.
Several emerging languages and programming
environments provide higher levels of abstraction to the
programmer, especially support for global address space.
Examples include Global Arrays [11], UPC [12], Co-
Array Fortran [13], and recently proposed languages such
as Chapel and X10. Achieving both high productivity
and high performance with the same language and
programming style remains a significant challenge. There
is a need for new languages and programming environments
that support high programmer productivity and effective
exploitation of scale-out systems.

In recent years, there has been a dramatic growth in
the popularity of high-productivity environments (in a
desktop setting) such as MATLAB** [14], which are often
used for prototyping solutions in specific domains such as
signal processing or financial modeling. However, the
performance of programs in such environments is often
orders of magnitude lower than that obtainable with
mainstream programming models such as C++ and MPI.
This forces the end users to translate those programs into
conventional languages for use in production, leading to
a loss of productivity. We must support such domain-
specific high-productivity programming environments with
higher performance on parallel systems.

Tools to debug parallel programs and to help in
understanding the performance of parallel programs are
not very mature [10]. Often they do not scale to large
systems, for example, because the volume of data being
collected or displayed becomes too large. It is particularly
difficult for debuggers to reproduce bugs that are not
deterministic. A significant challenge involving
performance tools is to support monitoring at the right
level of granularity, and to relate the monitoring
information with the original program source code.
Another challenge is to provide more assistance to the
end user in diagnosing performance problems, based on
the automated analysis of collected data. We need better
tools, which combine ease of use, effectiveness in helping to

find problems, and scalability, to allow programmers to use

large scale-out systems more productively.
Compilers and runtimes

Compilers and runtime systems must help bridge the gap
between higher-level programming models and the

T. AGERWALA AND M. GUPTA

175

176

growing complexity of underlying hardware. The efficient
use of heterogeneous cores and/or accelerators to leverage
their inherent power efficiency requires effective support
from compilers and optimized libraries.

An important research area is language and compiler co-
design to identify ways in which a programmer can convey
relevant information at a high level (such as parallelism and
identification of high-cost operations) and enable the
compiler to generate efficient code for the accelerators or
additional cores with suitable runtime system support.

Given the trend toward late binding of programming
components, e.g., using dynamically linked libraries with
static languages or using dynamic languages such as Java,
there is a clear opportunity for further optimization at
deployment time or runtime. For example, it may be
possible to replace a heavyweight protocol, such as SOAP
(simple object access protocol), in a web services
application with a lighter-weight protocol such as RMI
(remote method invocation) or direct method call, by
exploiting the relationship between the target platforms
on which the clients and server for that application are
deployed. Another powerful optimization technique is
to perform a search over the optimization space at
deployment time; this has been used for successful
deployment of libraries such as ATLAS [15] and FFT-W
[16], and holds great promise if applied more broadly to
software components. The research challenge in dynamic
compilation is to keep the overhead of compilation low.
A number of techniques, such as using higher levels of
optimization only for hot sections of the code [17] or
utilizing history information from prior runs [18], have
been developed to help reduce these overheads.

Operating systems

The operating system provides the services for ensuring
secure execution and good utilization of resources in
the presence of failures, dynamic changes in workload
demands, and potential security attacks. The ability to
virtualize resources and dynamically add and remove
resources is a powerful technique for dealing with both
changing workload demands and failures [19]. True
virtualization of all resources in a scale-out system,
including processor, memory, network, and storage, at
acceptable performance overheads remains a challenge.
Automatically identifying when to move resources, either
proactively or in a responsive manner, to meet the
quality-of-service goals (with possibly differentiated
service) for dynamically changing workloads, and
transparent recovery from failures are associated system
management challenges. The operating system policies
related to virtual memory management, scheduling

of processes and threads, and file I/O can have a
considerable impact on application performance;
examples include selection of a suitable page size for

T. AGERWALA AND M. GUPTA

memory regions corresponding to different data
structures and the use of a suitable caching and
prefetching mechanism to support efficient file I/O
operations. The policies may have to be adapted for
different kinds of workloads. For example, parallel
scientific workloads usually require a greater emphasis on
reducing the jitters caused by scheduling of daemons on
different nodes [20]. A multithreaded workload with high
memory access costs requires greater emphasis on
preserving data locality while scheduling threads [21]. We
need to develop autonomic features for operating systems
that enable dynamic policy adaptation and choice of
algorithmic parameters on the basis of monitoring of the
runtime behavior of the workload and a suitable cost model.

System management

The total cost of ownership of server systems is
increasingly dominated by system management [22, 23]
and the problem is worse for scale-out systems. Some of
the activities that account for a significant part of these
costs include software installation and configuration,
system upgrades and change management, security
management, and dealing with failures. The lack of a
good repository of system information and inefficiencies
in operations such as booting, mounting of file systems,
and detection and isolation of failures can contribute
further to the above costs. If the management costs grow
linearly with the number of nodes, large scale-out systems
become unattractive.

For BG/L, the team set a goal to simplify management
and ensure that an order-of-magnitude increase in the
number of nodes (over other high-end supercomputers)
did not require a corresponding increase in the number of
system administrators. The traditional firmware in BG/L
has been replaced by software residing on the service
node, which manipulates, via standard Internet Protocol
(IP) network packets, remote translators (built using
field-programmable gate arrays) to perform the control
operations. The system management software uses
scalable collective operations to broadcast common
information across nodes (such as kernels and program
executables) and to send node-specific “personality”
information. Booting an entire 65,536-node system is
completed in less than seven minutes (and has been
further accelerated significantly with new prototype
software), and parallel job launch on the full system is
completed in less than 20 seconds. The computational
core of BG/L is kept stateless to simplify system
management, and software needed on the compute nodes
for a job is “deployed” as part of the job launch. All
system state [including machine configuration and
historical information on jobs, environmental
parameters, and RAS (reliability, availability, and
serviceability) events] is stored in a database on the

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

service node, allowing a system administrator to access a
tremendous amount of information relevant to the health
of the machine using SQL queries.

Heterogeneous scale-out systems amplify the above
system management problems. Management of scale-out
systems must be simplified so that management costs do not
scale linearly (or even close to linearly) as the number of
nodes increases. This will require a systems management
architecture that supports scalability of management
operations and systems that are self-configuring and self-
healing.

Most server workloads of interest involve complex
interactions between different subsystems, both
“vertically” (e.g., across a software stack comprising an
application, J2EE** container, Java Virtual Machine, and
operating system) [24] and “horizontally” (e.g., across
different tiers of an e-business workload—web server,
application server, and database server) [25, 26]. Modular
scale-out architectures enable application-optimized
subsystems, including accelerators, to be deployed as
“appliances” in these tiers. Effective workload
management is needed to provide quality-of-service
guarantees for the overall service requests based on end-to-
end performance monitoring, analysis across the different
tiers, and dynamic movement of resources.

As software components have become increasingly
complex, there has been a tendency to design them with
many configuration “knobs” to enable customization.
The interaction of several components in an overall
system can lead to a combinatorial explosion in the
number of possible configuration parameters. Erroneous
settings of configuration parameters can lead to failures
and performance problems. Designing components with
built-in autonomic features and integrating them in such a
manner that the configuration parameters can be set
automatically will greatly enhance productivity and
simplify system management.

As the number of nodes in a system increases, the mean
time between failures (MTBF) decreases. Both hardware
and software failures account for this decrease in
reliability. On modern systems, software failures are often
dominant. If system software fails once a year on a node,
and the failures on different nodes of a system are
independent, a node would be expected to fail once
roughly every two hours in a 4,096-node system and once
every eight minutes in a 65,536-node system. There is
relatively little business incentive to reduce the error rate
(after correction) in commodity hardware below a level of
once in a few years [10]. Hence, even though commodity
hardware is becoming increasingly powerful, large
systems built with it can have significant reliability
problems unless special features are added to enhance
reliability.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

In mission-critical scale-out systems, it is important to
ensure that single failures do not bring down the entire
system. This requires research on end-to-end systems design
(including storage, servers, and networks), novel
techniques for capturing state, error detection, dynamic
system reconfiguration, and rapid checkpoint restart.

Algorithms and software scaling

Successful utilization of large scale-out systems requires
innovations in algorithms and software. To illustrate, we
describe some of the challenges the BG/L team faced in
scaling applications to tens of thousands of processors
and finally to more than a hundred thousand processors.*
Note that BG/L was designed, from the beginning, to
support scalability of applications, with features such as
a hierarchical system software environment with low
computational noise and simple, reliable software on
compute nodes, balanced networks, special hardware
and software support for collective communication
operations, and low-latency communication for short
messages.

Memory on the BG/L compute node is limited for
several reasons (cost and power/performance). The
resulting reduced memory/compute ratio is one of the
major constraints in the porting of applications to BG/L.
Given that BG/L systems have significant aggregate
memory (currently, 512 GB in a rack), in many cases
memory constraints on a single node were indicators of
an underlying scalability problem with the application.

The presence of a serial component in the application is
clearly an inhibitor to scalability, as shown by Amdahl’s
law. In the original version of UMT2K, a photon-
transport code on an unstructured mesh, the mesh was
partitioned in a serial step using the Metis library [27].
This partitioning method used a table dimensioned by the
number of partitions squared. The table grew too large to
fit into the memory of a BG/L node when the number of
partitions exceeded approximately 4,000. This limitation
was overcome by modifying the code to use a parallel
implementation of Metis, and the code was successfully
run on larger configurations, including the full 65,536-
node system.

Some of the codes encountered the well-known
problems of load imbalance and communication
overhead. Some examples are given in the following
paragraphs.

ParaDiS (Parallel Dislocation Simulator) is a code
developed at LLNL for direct computation of the plastic
strength of materials by tracking the simultaneous motion
of millions of dislocation lines. Strong scaling runs

“Previous results on scaling of MPI applications on other platforms had necessarily
been limited (by hardware existence) to fewer than ten thousand processors.
Furthermore, many previous studies had shown problems with the scaling of
applications to thousands of processors due to factors such as computational

noise [20].

T. AGERWALA AND M. GUPTA

177

178

showed a speedup of 1.8 times when doubling the
processor count from 4,096 to 8,192, and a speedup of 2.8
times in quadrupling the processor count to 16,384 [28].
Further analysis showed that these results (which still
represented compute capability more than two orders of
magnitude higher than previously achieved for the code)
were limited by dynamic load imbalances in the code,
which are now being addressed.

The Miranda code (a high-order hydrodynamics code)
from LLNL initially had disappointing speedups from
scaling to 16,384 nodes. However, tuning the
performance of the MPI_A11toallv collective
communication operation (which now achieves more
than 97% of the torus network bandwidth) led to
excellent scaling [28]. The Qbox quantum molecular
dynamics code from LLNL and HOMME climate
modeling code from the National Center for Atmospheric
Research (NCAR) had some scaling problems at counts
of 16,384 and 32,768 nodes, which were resolved by
mapping the processes better to the 3D torus topology of
BG/L [28, 29]. On certain kinds of problems, the Raptor
code (an Eulerian adaptive mesh refinement code) [28]
had severe scaling problems at the 16,384-node level
because of the overloading of networks. These issues were
resolved by introducing a pacing capability in the MPI
implementation on BG/L.

Some of the relatively new codes that were attempted
on BG/L were designed for scaling to thousands of nodes;
they incorporated algorithmic improvements such as
hierarchical organization that allowed a single global all-
to-all communication to be replaced with several all-to-all
communications over smaller domains in parallel, and the
use of multidimensional data distribution. Examples of
such codes, which have worked well on BG/L, include
Qbox (derived from older codes called Jeep and GP),
CPMD, and ddcMD [28, 29]. These codes have been
successfully scaled to 131,072 processors, representing
scaling about two orders of magnitude higher than that
previously achieved on any other platform. In particular,
ddeMD and CPMD became the first set of codes to break
the barrier of 100-teraflop/s sustained performance for a
real application on any platform, respectively achieving
101 and 110 teraflop/s in production on different
problems. Qbox has achieved a performance of more than
60 teraflop/s. For these applications, the crucial scaling
step typically involved going beyond two thousand
processors, since most inherent scaling limitations in
the code showed up at that level. Overall, we found
that several codes scaled successfully on BG/L to
unprecedented levels of parallelism, ranging from tens of
thousands to more than a hundred thousand processors,
although in some cases the applications and system
software had to be modified to eliminate specific
bottlenecks. To leverage the benefits of scale-out,

T. AGERWALA AND M. GUPTA

researchers must develop innovative algorithms, libraries,
and system software to systematically remove the Amdahl
bottlenecks.

Conclusions

We face a technology discontinuity due to power
dissipation which is manifested by slowing growth

in microprocessor frequency while the performance
requirements of applications continue to grow at a faster
rate. This creates an exciting challenge and opportunity
for system designers to play an increasing role in
delivering performance growth. We must accelerate

the pace of innovation in architecture, programming
languages, operating systems, compilers, and runtime
systems. Furthermore, we must develop holistic
approaches that consider the interactions among all

of these components to arrive at true breakthrough
solutions.

A key foundation for many of these innovations will be
the exploitation of greater degrees of scale-out at multiple
levels. There is a clear need for system designers to
work with application developers to ensure that the
applications exhibit high degrees of parallelism and to
systematically remove barriers to scaling—performance,
reliability, and availability, and ease of system
management.

Acknowledgments

We wish to thank Bruce D’Amora, Jose Castanos, John
Field, Alan Gara, Robert Germain, Daniel Gruhl, Eric
Kronstadt, Jaime Moreno, and Bob Walkup for valuable
discussions. We also thank the entire Blue Gene team for
their technical direction and results, some of which were
presented in this paper. The Blue Gene/L project has
been supported and partially funded by the Lawrence
Livermore National Laboratory on behalf of the United
States Department of Energy under Lawrence Livermore
National Laboratory Subcontract No. B517522.

*Trademark, service mark, or registered trademark of Interna-
tional Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sony
Computer Entertainment Inc., OpenMP Architecture Review
Board, The Institute of Electrical and Electronics Engineers, Inc.
(IEEE), Sun Microsystems, Inc., or The MathWorks, Inc. in the
United States, other countries, or both.

References

1. J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale, “NAMD:
Biomolecular Simulation on Thousands of Processors,”
Proceedings of SC’2002: High Performance Networking and
Computing, Baltimore, 2002; see http://sc-2002.0rg/|
program_tech.html.

2. B. G. Fitch, R. S. Germain, M. Mendell, J. Pitera, M. Pitman,
A. Rayshubskiy, Y. Sham, F. Suits, W. Swope, T. J. C. Ward,
Y. Zhestkov, and R. Zhou, “Blue Matter, an Application

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

12.

13.

15.

16.

18.

20.

21.

Framework for Molecular Simulation on Blue Gene,” J.
Parallel & Distr. Computing 63, No. 7-8, 759-773 (2003).

. D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A.

Tomkins, and J. Zien, “How to Build a WebFountain: An
Architecture for Very Large-Scale Text Analytics,” /BM Syst.
J. 43, No. 1, 64-77 (2004).

. Special issue on Blue Gene, IBM J. Res. & Dev. 49, No. 2/3

(2005).

. H. P. Hofstee, “Power Efficient Processor Architecture and the

Cell Processor,” Proceedings of the 11th International
Symposium on High Performance Computer Architecture,
IEEE Computer Society, San Francisco, 2005, pp. 258-262;
see http:|/doi.ieeecomputersociety.org/10.1109/HPCA.2005.26.

. R. Eigenmann, J. Hoeflinger, and D. Padua, “On the

Automatic Parallelization of the Perfect Benchmarks,” IEEE
Trans. Parallel & Distr. Syst. 9, No. 1, 5-23 (1998).

. OpenMP: Simple, Portable, Scalable SMP Programming; see

http:/lwww.openmp.org.

. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java™

Language Specification, Third Edition, Addison-Wesley
Professional, Indianapolis, June 2005.

. M. Snir, S. Otto, S. H. Lederman, D. Walker, and J.

Dongarra, MPI: The Complete Reference, Vol. 1, MIT Press,
Cambridge, MA, 1996.

. S. L. Graham, M. Snir, and C. A. Patterson, Eds., Getting Up

to Speed: The Future of Supercomputing, National Academies
Press, Washington, DC, 2004.

. J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global

Arrays: A Portable Shared Memory Model for Distributed
Memory Computers,” Proceedings of the 1994 IEEE
Supercomputing Conference, 1994, pp. 340-349.

W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks,
and K. Warren, “Introduction to UPC and Language
Specification,” Technical Report CCS-TR-99-157, IDA
(Institute for Defense Analysis) Center for Computing
Sciences, Alexandria, VA, 1999.

R. Numrich and J. Reid, “Co-Array Fortran for Parallel
Programming,” ACM Fortran Forum 17, No. 2, 1-31 (1998).
C. Moler, “Numerical Computing with MATLAB”; see
http:|/www.mathworks.com/moler.

R. C. Whaley and J. Dongarra, “Automatically Tuned Linear
Algebra Software,” Proceedings of the ACM|IEEE SC 1998
Conference (SC'98): High Performance Networking and
Computing, 1998, p. 38.

M. Frigo, “A Fast Fourier Transform Compiler,” Proceedings
of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI'99), Atlanta,
May 1999, pp. 169-180; see http://www.fftw.org/pldi99.pdf.

. M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney,

“Adaptive Optimization in the Jalapefio JVM,” ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA00),
Minneapolis, October 2000, pp. 47-65.

M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta,
“Quasi-Static Compilation for Java,” ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’00), Minneapolis,
October 2000, pp. 66-82.

. J. Jann, L. M. Browning, and R. S. Burugula, “Dynamic

Reconfiguration: Basic Building Blocks for Autonomic
Computing on IBM pSeries Servers,” IBM Syst. J. 42, No. 1,
29-37 (2003).

F. Petrini, D. Kerbyson, and S. Pakin, “The Case of the
Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q,” Proceedings
of the 2003 ACM|IEEE Conference on Supercomputing,
Phoenix, November 2003, p. 55.

M. S. Squillante and E. D. Lazowska, “Using ProcessorCache
Affinity Information in Shared-Memory Multiprocessor
Scheduling,” IEEE Trans. Parallel & Distr. Syst. 4, No. 2,
131-143 (1993).

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

22.

23.

24.

25.

26.

27.

28.

29.

P. Horn, “Autonomic Computing: IBM’s Perspective on the
State of Information Technology,” October 15, 2001; see
http:|lwww.research.ibm.com/autonomic/manifesto).

J. Kephart and D. Chess, “The Vision of Autonomic
Computing,” Computer 36, No. 1, 41-50 (2003).

C. R. Attanasio, J.-D. Choi, N. Dubey, K. Ekanadham,

M. Gupta, T. Inagaki, K. Ishizaki, J. Jann, R. D. Johnson,
T. Nakatani, 1. Park, P. Pattnaik, M. Serrano, S. E. Smith,
I. Steiner, and Y. Shuf, “Whole-Stack Analysis and
Optimization of Commercial Workloads on Server Systems,”
Proceedings of the Network and Parallel Computing: IFIP
International Conference, Wuhan, China, October 2004;
Lecture Notes in Computer Science 3222, 5-8 (2004).

J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D.
Dillenberger, “Adaptive Algorithms for Managing a
Distributed Data Processing Workload,” IBM Syst. J.

36, No. 2, 242-283 (1997).

A. Dan, H. Ludwig, and G. Pacifici, “Web Services
Differentiation with Service Level Agreements” IBM
developerWorks, May 2003; see http.//www.ibm.com/
developerworks|library|ws-slafram).

Metis home page; see http://glaros.dtc.umn.edu/gkhome/views/
metis/.

G. Almasi, G. Bhanot, A. Gara, M. Gupta, J. Sexton, B.
Walkup, V. V. Bulatov, A. W. Cook, B. R. de Supinski, J. N.
Glosli, J. A. Greenough, F. Gygi, A. Kubota, S. Louis, T. E.
Spelce, F. H. Streitz, P. L. Williams, R. K. Yates, C. Archer, J.
Moreira, and C. Rendleman, “Scaling Physics and Material
Science Applications on a Massively Parallel Blue Gene/L
System,” Proceedings of the 19th International Conference on
Supercomputing, Cambridge, MA, June 2005, pp. 246-252.
G. Almasi, G. Bhanot, D. Chen, M. Eleftheriou, B. Fitch, A.
Gara, R. Germain, J. Gunnels, M. Gupta, P. Heidelberg, M.
Pitman, A. Rayshubskiy, J. Sexton, F. Suits, P. Vranas, B.
Walkup, C. Ward, Y. Zhestkov, A. Curioni, W. Andreoni, C.
Archer, J. Moreira, R. Loft, H. Tufo, T. Voran, and K. Riley,
“Early Experience with Scientific Applications on the Blue
Gene/L Supercomputer,” Proceedings of the Euro-Par 2005
Parallel Processing: 11th International Euro-Par Conference
Lisboa, Portugal, 2005; Lecture Notes in Computer Science
3648, 560570 (2005).

Received November 2, 2005; accepted for publication
November 21, 2005; Internet publication February 22, 2006

T. AGERWALA AND M. GUPTA

179

180

Tilak Agerwala IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (tilak@us.ibm.com). Dr. Agerwala is vice president,
systems, at IBM Research. His primary area of research is high-
performance computing systems. Dr. Agerwala is responsible

for all IBM advanced systems research programs in servers

and supercomputers. He received his Ph.D. degree in electrical
engineering from The Johns Hopkins University. Dr. Agerwala is a
Fellow of the Institute of Electrical and Electronics Engineers and
a member of the Association for Computing Machinery.

Manish Gupta [BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mgupta@us.ibm.com). Dr. Gupta is a Research Staff
Member and Senior Manager of the Emerging System Software
Department at the IBM Thomas J. Watson Research Center. His
group has developed system software for the Blue Gene/L machine
and conducts research on software issues for high-performance
server systems. Since 1992, when he received a Ph.D. degree in
computer science from the University of Illinois at Urbana—
Champaign, he has worked in the IBM Research Division.

Dr. Gupta has coauthored several papers in the areas of high-
performance compilers, parallel computing, and high-performance
Java Virtual Machines.

T. AGERWALA AND M. GUPTA

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

