
Systems research
challenges: A scale-out
perspective

T. Agerwala
M. Gupta

A scale-out system is a collection of interconnected, modular, low-
cost computers that work as a single entity to cooperatively provide
applications, systems resources, and data to users. The dominant
programming model for such systems consists of message passing
at the systems level and multithreading at the element level. Scale-
out computers have traditionally been developed and deployed to
provide levels of performance (throughput and parallel processing)
beyond what was achievable by large shared-memory computers
that utilized the fastest processors and the most expensive memory
systems. Today, exploiting scale-out at all levels in systems is
becoming imperative in order to overcome a fundamental
discontinuity in the development of microprocessor technology
caused by power dissipation. The pervasive use of greater levels
of scale-out, on the other hand, creates its own challenges in
architecture, programming, systems management, and reliability.
This position paper identifies some of the important research
problems that must be addressed in order to deal with the
technology disruption and fully realize the opportunity offered
by scale-out. Our examples are based on parallelism, but the
challenges we identify apply to scale-out more generally.

Introduction
Computer system designs have been driven by emerging

applications and the ever-growing demands of these

applications. The computational and storage needs of

workloads in several areas such as scientific and technical

computing, games, digital media, and data analytics are

growing exponentially. Some examples of system

demands in various domains are the following:

� Life sciences: A simulation of ten microseconds of

protein-folding for a single 92,224-atom system (the

protein ApoA1) consumes about 4.6 3 1019 floating-

point operations, requiring 53 days on a

supercomputer delivering 10-teraflop/s sustained

performance on the application. Studying the

mechanisms of folding of such a protein requires

conducting several of these simulations [1, 2].
� Climate modeling: Studying future climate change as a

result of human activity using the Community

Climate System Model (CCSM2) will require, for a

multi-century integration at a target resolution of

20 km in the atmosphere and 10 km in the ocean,

about 25 years of computation on a system sustaining

10-teraflop/s performance. Again, multiple ensemble

simulations are needed for a meaningful study.
� Digital entertainment: Performing ray tracing in a

game scene at a resolution of 1,024 3 1,024 pixels, at

50 frames per second, with a realistic requirement of

10 rays per pixel, requires greater than 2-teraflop/s

performance, which is more than two orders of

magnitude higher than the performance achievable

with modern personal computers and is also beyond

the announced capabilities of the new generation of

game consoles being introduced into the market.
� Data analytics: Billions of documents are accessible

from the Internet, occupying several petabytes of

storage, with millions of new documents being added

daily. Performing analytics to find patterns, trends,

and relationships over all of that data requires

capabilities beyond the reach of even the most

powerful supercomputers today. For example, the

Web Fountain project [3] at IBM Research involves

adding a series of annotations to about five billion

documents (representing the relevant part of the web-

�Copyright 2006 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 T. AGERWALA AND M. GUPTA

173

0018-8646/06/$5.00 ª 2006 IBM

accessible data of interest), requiring an estimated

4 3 1018 operations in aggregate which should be

completed within a day in order to be useful.

Systems-level performance must meet the demands of

applications, even though power dissipation is creating a

fundamental discontinuity in the development of

microprocessor technology. While technology scaling has

allowed us to continue to increase the number of

transistors on a chip, power densities have grown with

every CMOS generation as designers have pursued higher

operating frequencies. Given the lack of any other low-

power and high-volume technology than CMOS, in the

future, the frequency of microprocessors must grow at a

much lower rate than in the past decade. Even with

advances in base silicon, on-chip interconnects, and

cooling technologies, microprocessor performance

growth rates have slowed substantially. However, chip-

level performance growth can still be sustained at historic

levels through higher levels of on-chip functional

integration. The fundamental reason for this is the

nonlinear relationship between power and performance.

It may be possible, for example, to decrease the power of

a system tenfold with only a threefold reduction in

performance. Higher performance at the chip level would

then be obtained through higher levels of on-chip

functional integration.

We believe that the disruption caused by power

dissipation will affect all forms of computing systems.

Scale-out systems represent a natural initial target for

exploring solutions to this problem, given the high

computational needs and the use of parallelism in their

workloads. Systems management, reliability, and

Amdahl’s law1 are challenges for scale-out systems. We

require a holistic approach that considers all aspects of

system design such as architecture, operating systems,

compilers, and runtime systems, as well as workload

characteristics and programming methodologies, in order

to develop breakthrough solutions.

This paper presents some of the challenges, indicated

throughout the text in italics, that must be addressed in

order to realize the full benefit of scale-out. Many of these

issues have long been recognized as research problems.

The discontinuity in the development of microprocessor

technology requires us to address these problems with a

sense of urgency and in a holistic manner by considering

all aspects of systems design.

Research challenges

Architecture

For certain workloads, we can exploit the power/

performance tradeoff at the systems level, leading, in the

limit, to massively scalable computers. The Blue

Gene*/L (BG/L) project [4] represents a research

experiment that pushed the limits of scale-out computing

for a significant class of scientific computations. The BG/L

system design was driven, at every level, with an almost

maniacal focus on power efficiency. A design decision was

made to use low-power embedded processors in the

system. Furthermore, BG/L uses system-on-a-chip

technology to integrate, along with two processor cores,

powerful interconnection networks with special support

for collective communications, a prefetch buffer (L2

cache), and embedded DRAM serving as the L3 cache in

the compute node chip. A single rack of BG/L, which is

air-cooled, contains 2,048 processors, with an aggregated

peak performance of 5.7 teraflop/s. The target set at the

beginning of the project was to develop a 65,536-node

system, with a peak performance of 367 teraflop/s. [This

system was successfully delivered to Lawrence Livermore

National Laboratory (LLNL) in September 2005.]

BG/L employs a novel, hierarchical software

architecture to support high levels of scalability and is an

excellent example of the use of chip-level functional

integration and massive parallelism to obtain an order of

magnitude improvement in performance (as well as in

performance per watt and performance per square foot of

floor space) at the high end of supercomputing.

The building blocks of scale-out systems must also

address rising power dissipation and the memory wall

problem.2 These considerations are driving us toward

accelerators, multiple cores on a chip, and

multithreading.3 All of these architectural approaches

require greater exploitation of parallelism in applications.

Well-designed accelerators and offload engines can

provide significantly improved power-efficient computing

on certain classes of applications such as graphics, game

physics, and network protocol processing, to name just a

few. The Cell Broadband Engine** Processor [5] is a great

example of a power-efficient programmable accelerator.

Multiple on-chip power-efficient cores can provide similar

advantages for multithreaded applications. We foresee, at

least in the near future, much more diversity in chips and

systems as system designers experiment with ways to

satisfy the workload demands.

Architectural research must be driven by application

needs in different domains. We must systematically identify

the pertinent characteristics, especially the amount of

inherent parallelism and data access patterns, for a wide

range of emerging applications. The goal is to design

1Amdahl’s law states that the performance benefits to scale-out are limited by the
percentage of code that is sequential.

2By Little’s law, the amount of concurrency needed to hide the latency of memory
accesses will continue to increase as the gap between memory and processor speed
grows. Since the memory latency is improving at a rate of only roughly 6% each year,
the gap is projected to continue growing even as the increase in processor speed
decreases from the historic rate of about 60% each year to about 20% each year.
3We are discussing a chip with multiple processors, supporting a shared-memory
model, as a building block of a scale-out platform, although such a chip would
normally be associated with scale-up computing.

T. AGERWALA AND M. GUPTA IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

174

‘‘balanced’’ systems consisting of modular, cost-effective

building blocks and interconnects and to identify chip

architectures that are ‘‘optimal’’ with respect to the number

and type of accelerators, the number of cores on a chip, the

degree of multithreading, and the organization and amount

of on-chip cache.

Scale-out systems in which the elements are chips that

consist of multiple, possibly heterogeneous cores and

accelerators, with standard interconnects, can allow

designs to be customized to different classes of workloads,

keeping development and test costs manageable while

improving time to market. To realize this benefit, the

design automation research community must develop

languages and tools that allow us to quickly design and

build high-performance systems following an approach

similar to that used today for System-on-a-Chip (SoC)

designs.

Improving the single-thread performance of workloads

has become a significant challenge, given the technology

discontinuity and diminishing returns from using

additional transistors in complex processors. Architects

must focus more on innovative uses of multiple cores, such

as architectural support for speculative parallelization or

multithreading, with appropriate compiler assistance, to

improve the performance of codes that have not been

explicitly parallelized.

Programming

For an arbitrary program written in a serial manner using

a language such as C, Cþþ, or even Fortran, it is hard for

a compiler to automatically extract parallelism, although

years of research in parallelizing compiler technology

have led to limited success in some application domains

[6]. This has led to informal standards such as

OpenMP**, through which a programmer can provide

directives for parallelization [7]. Most of the popular

languages also allow concurrency to be expressed directly,

either using libraries (e.g., using POSIX** threads with C)

or as part of the core language (e.g., multithreading in

Java**) [8]. However, managing concurrency explicitly

is a difficult and error-prone task, and it is hard for

programmers to reason about too many different

concurrent threads of execution. Those factors often lead

to artificial constraints on the degree of parallelism

expressed in many applications. In other cases, issues

such as serial steps in the computation, true data-sharing

patterns, and synchronization costs limit the amount of

parallelism that can be exploited.

Data parallelism is a popular form of parallelism

exploited by many applications. Variants of this

programming style include single program multiple data

(SPMD), vectorization, and use of single instruction

multiple data (SIMD) instruction sets; the parallelism

may be expressed directly at the language level or via

libraries, such as message passing interface (MPI) [9].

Communication costs and load imbalances can limit the

degree of scale-out that can be exploited. Another

problem relates to the fact that most scale-out platforms

support multiple forms of parallelism, message-passing

parallelism across nodes, and shared-memory parallelism

(and possibly SIMD, in addition) within a node. The

programming task is complicated by multiple levels of

problem decomposition [10].

It is widely accepted that the difficulty of programming

high-performance computing systems is a significant

barrier to widespread adoption of supercomputers.

Several emerging languages and programming

environments provide higher levels of abstraction to the

programmer, especially support for global address space.

Examples include Global Arrays [11], UPC [12], Co-

Array Fortran [13], and recently proposed languages such

as Chapel and X10. Achieving both high productivity

and high performance with the same language and

programming style remains a significant challenge. There

is a need for new languages and programming environments

that support high programmer productivity and effective

exploitation of scale-out systems.

In recent years, there has been a dramatic growth in

the popularity of high-productivity environments (in a

desktop setting) such as MATLAB** [14], which are often

used for prototyping solutions in specific domains such as

signal processing or financial modeling. However, the

performance of programs in such environments is often

orders of magnitude lower than that obtainable with

mainstream programming models such as Cþþ and MPI.

This forces the end users to translate those programs into

conventional languages for use in production, leading to

a loss of productivity. We must support such domain-

specific high-productivity programming environments with

higher performance on parallel systems.

Tools to debug parallel programs and to help in

understanding the performance of parallel programs are

not very mature [10]. Often they do not scale to large

systems, for example, because the volume of data being

collected or displayed becomes too large. It is particularly

difficult for debuggers to reproduce bugs that are not

deterministic. A significant challenge involving

performance tools is to support monitoring at the right

level of granularity, and to relate the monitoring

information with the original program source code.

Another challenge is to provide more assistance to the

end user in diagnosing performance problems, based on

the automated analysis of collected data. We need better

tools, which combine ease of use, effectiveness in helping to

find problems, and scalability, to allow programmers to use

large scale-out systems more productively.

Compilers and runtimes

Compilers and runtime systems must help bridge the gap

between higher-level programming models and the

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 T. AGERWALA AND M. GUPTA

175

growing complexity of underlying hardware. The efficient

use of heterogeneous cores and/or accelerators to leverage

their inherent power efficiency requires effective support

from compilers and optimized libraries.

An important research area is language and compiler co-

design to identify ways in which a programmer can convey

relevant information at a high level (such as parallelism and

identification of high-cost operations) and enable the

compiler to generate efficient code for the accelerators or

additional cores with suitable runtime system support.

Given the trend toward late binding of programming

components, e.g., using dynamically linked libraries with

static languages or using dynamic languages such as Java,

there is a clear opportunity for further optimization at

deployment time or runtime. For example, it may be

possible to replace a heavyweight protocol, such as SOAP

(simple object access protocol), in a web services

application with a lighter-weight protocol such as RMI

(remote method invocation) or direct method call, by

exploiting the relationship between the target platforms

on which the clients and server for that application are

deployed. Another powerful optimization technique is

to perform a search over the optimization space at

deployment time; this has been used for successful

deployment of libraries such as ATLAS [15] and FFT-W

[16], and holds great promise if applied more broadly to

software components. The research challenge in dynamic

compilation is to keep the overhead of compilation low.

A number of techniques, such as using higher levels of

optimization only for hot sections of the code [17] or

utilizing history information from prior runs [18], have

been developed to help reduce these overheads.

Operating systems

The operating system provides the services for ensuring

secure execution and good utilization of resources in

the presence of failures, dynamic changes in workload

demands, and potential security attacks. The ability to

virtualize resources and dynamically add and remove

resources is a powerful technique for dealing with both

changing workload demands and failures [19]. True

virtualization of all resources in a scale-out system,

including processor, memory, network, and storage, at

acceptable performance overheads remains a challenge.

Automatically identifying when to move resources, either

proactively or in a responsive manner, to meet the

quality-of-service goals (with possibly differentiated

service) for dynamically changing workloads, and

transparent recovery from failures are associated system

management challenges. The operating system policies

related to virtual memory management, scheduling

of processes and threads, and file I/O can have a

considerable impact on application performance;

examples include selection of a suitable page size for

memory regions corresponding to different data

structures and the use of a suitable caching and

prefetching mechanism to support efficient file I/O

operations. The policies may have to be adapted for

different kinds of workloads. For example, parallel

scientific workloads usually require a greater emphasis on

reducing the jitters caused by scheduling of daemons on

different nodes [20]. A multithreaded workload with high

memory access costs requires greater emphasis on

preserving data locality while scheduling threads [21]. We

need to develop autonomic features for operating systems

that enable dynamic policy adaptation and choice of

algorithmic parameters on the basis of monitoring of the

runtime behavior of the workload and a suitable cost model.

System management

The total cost of ownership of server systems is

increasingly dominated by system management [22, 23]

and the problem is worse for scale-out systems. Some of

the activities that account for a significant part of these

costs include software installation and configuration,

system upgrades and change management, security

management, and dealing with failures. The lack of a

good repository of system information and inefficiencies

in operations such as booting, mounting of file systems,

and detection and isolation of failures can contribute

further to the above costs. If the management costs grow

linearly with the number of nodes, large scale-out systems

become unattractive.

For BG/L, the team set a goal to simplify management

and ensure that an order-of-magnitude increase in the

number of nodes (over other high-end supercomputers)

did not require a corresponding increase in the number of

system administrators. The traditional firmware in BG/L

has been replaced by software residing on the service

node, which manipulates, via standard Internet Protocol

(IP) network packets, remote translators (built using

field-programmable gate arrays) to perform the control

operations. The system management software uses

scalable collective operations to broadcast common

information across nodes (such as kernels and program

executables) and to send node-specific ‘‘personality’’

information. Booting an entire 65,536-node system is

completed in less than seven minutes (and has been

further accelerated significantly with new prototype

software), and parallel job launch on the full system is

completed in less than 20 seconds. The computational

core of BG/L is kept stateless to simplify system

management, and software needed on the compute nodes

for a job is ‘‘deployed’’ as part of the job launch. All

system state [including machine configuration and

historical information on jobs, environmental

parameters, and RAS (reliability, availability, and

serviceability) events] is stored in a database on the

T. AGERWALA AND M. GUPTA IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

176

service node, allowing a system administrator to access a

tremendous amount of information relevant to the health

of the machine using SQL queries.

Heterogeneous scale-out systems amplify the above

system management problems. Management of scale-out

systems must be simplified so that management costs do not

scale linearly (or even close to linearly) as the number of

nodes increases. This will require a systems management

architecture that supports scalability of management

operations and systems that are self-configuring and self-

healing.

Most server workloads of interest involve complex

interactions between different subsystems, both

‘‘vertically’’ (e.g., across a software stack comprising an

application, J2EE** container, Java Virtual Machine, and

operating system) [24] and ‘‘horizontally’’ (e.g., across

different tiers of an e-business workload—web server,

application server, and database server) [25, 26]. Modular

scale-out architectures enable application-optimized

subsystems, including accelerators, to be deployed as

‘‘appliances’’ in these tiers. Effective workload

management is needed to provide quality-of-service

guarantees for the overall service requests based on end-to-

end performance monitoring, analysis across the different

tiers, and dynamic movement of resources.

As software components have become increasingly

complex, there has been a tendency to design them with

many configuration ‘‘knobs’’ to enable customization.

The interaction of several components in an overall

system can lead to a combinatorial explosion in the

number of possible configuration parameters. Erroneous

settings of configuration parameters can lead to failures

and performance problems. Designing components with

built-in autonomic features and integrating them in such a

manner that the configuration parameters can be set

automatically will greatly enhance productivity and

simplify system management.

As the number of nodes in a system increases, the mean

time between failures (MTBF) decreases. Both hardware

and software failures account for this decrease in

reliability. On modern systems, software failures are often

dominant. If system software fails once a year on a node,

and the failures on different nodes of a system are

independent, a node would be expected to fail once

roughly every two hours in a 4,096-node system and once

every eight minutes in a 65,536-node system. There is

relatively little business incentive to reduce the error rate

(after correction) in commodity hardware below a level of

once in a few years [10]. Hence, even though commodity

hardware is becoming increasingly powerful, large

systems built with it can have significant reliability

problems unless special features are added to enhance

reliability.

In mission-critical scale-out systems, it is important to

ensure that single failures do not bring down the entire

system. This requires research on end-to-end systems design

(including storage, servers, and networks), novel

techniques for capturing state, error detection, dynamic

system reconfiguration, and rapid checkpoint restart.

Algorithms and software scaling

Successful utilization of large scale-out systems requires

innovations in algorithms and software. To illustrate, we

describe some of the challenges the BG/L team faced in

scaling applications to tens of thousands of processors

and finally to more than a hundred thousand processors.4

Note that BG/L was designed, from the beginning, to

support scalability of applications, with features such as

a hierarchical system software environment with low

computational noise and simple, reliable software on

compute nodes, balanced networks, special hardware

and software support for collective communication

operations, and low-latency communication for short

messages.

Memory on the BG/L compute node is limited for

several reasons (cost and power/performance). The

resulting reduced memory/compute ratio is one of the

major constraints in the porting of applications to BG/L.

Given that BG/L systems have significant aggregate

memory (currently, 512 GB in a rack), in many cases

memory constraints on a single node were indicators of

an underlying scalability problem with the application.

The presence of a serial component in the application is

clearly an inhibitor to scalability, as shown by Amdahl’s

law. In the original version of UMT2K, a photon-

transport code on an unstructured mesh, the mesh was

partitioned in a serial step using the Metis library [27].

This partitioning method used a table dimensioned by the

number of partitions squared. The table grew too large to

fit into the memory of a BG/L node when the number of

partitions exceeded approximately 4,000. This limitation

was overcome by modifying the code to use a parallel

implementation of Metis, and the code was successfully

run on larger configurations, including the full 65,536-

node system.

Some of the codes encountered the well-known

problems of load imbalance and communication

overhead. Some examples are given in the following

paragraphs.

ParaDiS (Parallel Dislocation Simulator) is a code

developed at LLNL for direct computation of the plastic

strength of materials by tracking the simultaneous motion

of millions of dislocation lines. Strong scaling runs

4Previous results on scaling of MPI applications on other platforms had necessarily
been limited (by hardware existence) to fewer than ten thousand processors.
Furthermore, many previous studies had shown problems with the scaling of
applications to thousands of processors due to factors such as computational
noise [20].

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 T. AGERWALA AND M. GUPTA

177

showed a speedup of 1.8 times when doubling the

processor count from 4,096 to 8,192, and a speedup of 2.8

times in quadrupling the processor count to 16,384 [28].

Further analysis showed that these results (which still

represented compute capability more than two orders of

magnitude higher than previously achieved for the code)

were limited by dynamic load imbalances in the code,

which are now being addressed.

The Miranda code (a high-order hydrodynamics code)

from LLNL initially had disappointing speedups from

scaling to 16,384 nodes. However, tuning the

performance of the MPI_Alltoallv collective

communication operation (which now achieves more

than 97% of the torus network bandwidth) led to

excellent scaling [28]. The Qbox quantum molecular

dynamics code from LLNL and HOMME climate

modeling code from the National Center for Atmospheric

Research (NCAR) had some scaling problems at counts

of 16,384 and 32,768 nodes, which were resolved by

mapping the processes better to the 3D torus topology of

BG/L [28, 29]. On certain kinds of problems, the Raptor

code (an Eulerian adaptive mesh refinement code) [28]

had severe scaling problems at the 16,384-node level

because of the overloading of networks. These issues were

resolved by introducing a pacing capability in the MPI

implementation on BG/L.

Some of the relatively new codes that were attempted

on BG/L were designed for scaling to thousands of nodes;

they incorporated algorithmic improvements such as

hierarchical organization that allowed a single global all-

to-all communication to be replaced with several all-to-all

communications over smaller domains in parallel, and the

use of multidimensional data distribution. Examples of

such codes, which have worked well on BG/L, include

Qbox (derived from older codes called Jeep and GP),

CPMD, and ddcMD [28, 29]. These codes have been

successfully scaled to 131,072 processors, representing

scaling about two orders of magnitude higher than that

previously achieved on any other platform. In particular,

ddcMD and CPMD became the first set of codes to break

the barrier of 100-teraflop/s sustained performance for a

real application on any platform, respectively achieving

101 and 110 teraflop/s in production on different

problems. Qbox has achieved a performance of more than

60 teraflop/s. For these applications, the crucial scaling

step typically involved going beyond two thousand

processors, since most inherent scaling limitations in

the code showed up at that level. Overall, we found

that several codes scaled successfully on BG/L to

unprecedented levels of parallelism, ranging from tens of

thousands to more than a hundred thousand processors,

although in some cases the applications and system

software had to be modified to eliminate specific

bottlenecks. To leverage the benefits of scale-out,

researchers must develop innovative algorithms, libraries,

and system software to systematically remove the Amdahl

bottlenecks.

Conclusions
We face a technology discontinuity due to power

dissipation which is manifested by slowing growth

in microprocessor frequency while the performance

requirements of applications continue to grow at a faster

rate. This creates an exciting challenge and opportunity

for system designers to play an increasing role in

delivering performance growth. We must accelerate

the pace of innovation in architecture, programming

languages, operating systems, compilers, and runtime

systems. Furthermore, we must develop holistic

approaches that consider the interactions among all

of these components to arrive at true breakthrough

solutions.

A key foundation for many of these innovations will be

the exploitation of greater degrees of scale-out at multiple

levels. There is a clear need for system designers to

work with application developers to ensure that the

applications exhibit high degrees of parallelism and to

systematically remove barriers to scaling—performance,

reliability, and availability, and ease of system

management.

Acknowledgments
We wish to thank Bruce D’Amora, Jose Castanos, John

Field, Alan Gara, Robert Germain, Daniel Gruhl, Eric

Kronstadt, Jaime Moreno, and Bob Walkup for valuable

discussions. We also thank the entire Blue Gene team for

their technical direction and results, some of which were

presented in this paper. The Blue Gene/L project has

been supported and partially funded by the Lawrence

Livermore National Laboratory on behalf of the United

States Department of Energy under Lawrence Livermore

National Laboratory Subcontract No. B517522.

*Trademark, service mark, or registered trademark of Interna-
tional Business Machines Corporation.

**Trademark, service mark, or registered trademark of Sony
Computer Entertainment Inc., OpenMP Architecture Review
Board, The Institute of Electrical and Electronics Engineers, Inc.
(IEEE), Sun Microsystems, Inc., or The MathWorks, Inc. in the
United States, other countries, or both.

References
1. J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale, ‘‘NAMD:

Biomolecular Simulation on Thousands of Processors,’’
Proceedings of SC’2002: High Performance Networking and
Computing, Baltimore, 2002; see http://sc-2002.org/
program_tech.html.

2. B. G. Fitch, R. S. Germain, M. Mendell, J. Pitera, M. Pitman,
A. Rayshubskiy, Y. Sham, F. Suits, W. Swope, T. J. C. Ward,
Y. Zhestkov, and R. Zhou, ‘‘Blue Matter, an Application

T. AGERWALA AND M. GUPTA IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

178

Framework for Molecular Simulation on Blue Gene,’’ J.
Parallel & Distr. Computing 63, No. 7–8, 759–773 (2003).

3. D. Gruhl, L. Chavet, D. Gibson, J. Meyer, P. Pattanayak, A.
Tomkins, and J. Zien, ‘‘How to Build a WebFountain: An
Architecture for Very Large-Scale Text Analytics,’’ IBM Syst.
J. 43, No. 1, 64–77 (2004).

4. Special issue on Blue Gene, IBM J. Res. & Dev. 49, No. 2/3
(2005).

5. H. P. Hofstee, ‘‘Power Efficient Processor Architecture and the
Cell Processor,’’ Proceedings of the 11th International
Symposium on High Performance Computer Architecture,
IEEE Computer Society, San Francisco, 2005, pp. 258–262;
see http://doi.ieeecomputersociety.org/10.1109/HPCA.2005.26.

6. R. Eigenmann, J. Hoeflinger, and D. Padua, ‘‘On the
Automatic Parallelization of the Perfect Benchmarks,’’ IEEE
Trans. Parallel & Distr. Syst. 9, No. 1, 5–23 (1998).

7. OpenMP: Simple, Portable, Scalable SMP Programming; see
http://www.openmp.org.

8. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Javae

Language Specification, Third Edition, Addison-Wesley
Professional, Indianapolis, June 2005.

9. M. Snir, S. Otto, S. H. Lederman, D. Walker, and J.
Dongarra, MPI: The Complete Reference, Vol. 1, MIT Press,
Cambridge, MA, 1996.

10. S. L. Graham, M. Snir, and C. A. Patterson, Eds., Getting Up
to Speed: The Future of Supercomputing, National Academies
Press, Washington, DC, 2004.

11. J. Nieplocha, R. J. Harrison, and R. J. Littlefield, ‘‘Global
Arrays: A Portable Shared Memory Model for Distributed
Memory Computers,’’ Proceedings of the 1994 IEEE
Supercomputing Conference, 1994, pp. 340–349.

12. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks,
and K. Warren, ‘‘Introduction to UPC and Language
Specification,’’ Technical Report CCS-TR-99-157, IDA
(Institute for Defense Analysis) Center for Computing
Sciences, Alexandria, VA, 1999.

13. R. Numrich and J. Reid, ‘‘Co-Array Fortran for Parallel
Programming,’’ ACM Fortran Forum 17, No. 2, 1–31 (1998).

14. C. Moler, ‘‘Numerical Computing with MATLAB’’; see
http://www.mathworks.com/moler.

15. R. C. Whaley and J. Dongarra, ‘‘Automatically Tuned Linear
Algebra Software,’’ Proceedings of the ACM/IEEE SC 1998
Conference (SC’98): High Performance Networking and
Computing, 1998, p. 38.

16. M. Frigo, ‘‘A Fast Fourier Transform Compiler,’’ Proceedings
of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’99), Atlanta,
May 1999, pp. 169–180; see http://www.fftw.org/pldi99.pdf.

17. M. Arnold, S. Fink, D. Grove, M. Hind, and P. Sweeney,
‘‘Adaptive Optimization in the Jalapeño JVM,’’ ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’00),
Minneapolis, October 2000, pp. 47–65.

18. M. Serrano, R. Bordawekar, S. Midkiff, and M. Gupta,
‘‘Quasi-Static Compilation for Java,’’ ACM SIGPLAN
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’00), Minneapolis,
October 2000, pp. 66–82.

19. J. Jann, L. M. Browning, and R. S. Burugula, ‘‘Dynamic
Reconfiguration: Basic Building Blocks for Autonomic
Computing on IBM pSeries Servers,’’ IBM Syst. J. 42, No. 1,
29–37 (2003).

20. F. Petrini, D. Kerbyson, and S. Pakin, ‘‘The Case of the
Missing Supercomputer Performance: Achieving Optimal
Performance on the 8,192 Processors of ASCI Q,’’ Proceedings
of the 2003 ACM/IEEE Conference on Supercomputing,
Phoenix, November 2003, p. 55.

21. M. S. Squillante and E. D. Lazowska, ‘‘Using ProcessorCache
Affinity Information in Shared-Memory Multiprocessor
Scheduling,’’ IEEE Trans. Parallel & Distr. Syst. 4, No. 2,
131–143 (1993).

22. P. Horn, ‘‘Autonomic Computing: IBM’s Perspective on the
State of Information Technology,’’ October 15, 2001; see
http://www.research.ibm.com/autonomic/manifesto/.

23. J. Kephart and D. Chess, ‘‘The Vision of Autonomic
Computing,’’ Computer 36, No. 1, 41–50 (2003).

24. C. R. Attanasio, J.-D. Choi, N. Dubey, K. Ekanadham,
M. Gupta, T. Inagaki, K. Ishizaki, J. Jann, R. D. Johnson,
T. Nakatani, I. Park, P. Pattnaik, M. Serrano, S. E. Smith,
I. Steiner, and Y. Shuf, ‘‘Whole-Stack Analysis and
Optimization of Commercial Workloads on Server Systems,’’
Proceedings of the Network and Parallel Computing: IFIP
International Conference, Wuhan, China, October 2004;
Lecture Notes in Computer Science 3222, 5–8 (2004).

25. J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D.
Dillenberger, ‘‘Adaptive Algorithms for Managing a
Distributed Data Processing Workload,’’ IBM Syst. J.
36, No. 2, 242–283 (1997).

26. A. Dan, H. Ludwig, and G. Pacifici, ‘‘Web Services
Differentiation with Service Level Agreements’’ IBM
developerWorks, May 2003; see http://www.ibm.com/
developerworks/library/ws-slafram/.

27. Metis home page; see http://glaros.dtc.umn.edu/gkhome/views/
metis/.

28. G. Almasi, G. Bhanot, A. Gara, M. Gupta, J. Sexton, B.
Walkup, V. V. Bulatov, A. W. Cook, B. R. de Supinski, J. N.
Glosli, J. A. Greenough, F. Gygi, A. Kubota, S. Louis, T. E.
Spelce, F. H. Streitz, P. L. Williams, R. K. Yates, C. Archer, J.
Moreira, and C. Rendleman, ‘‘Scaling Physics and Material
Science Applications on a Massively Parallel Blue Gene/L
System,’’ Proceedings of the 19th International Conference on
Supercomputing, Cambridge, MA, June 2005, pp. 246–252.

29. G. Almasi, G. Bhanot, D. Chen, M. Eleftheriou, B. Fitch, A.
Gara, R. Germain, J. Gunnels, M. Gupta, P. Heidelberg, M.
Pitman, A. Rayshubskiy, J. Sexton, F. Suits, P. Vranas, B.
Walkup, C. Ward, Y. Zhestkov, A. Curioni, W. Andreoni, C.
Archer, J. Moreira, R. Loft, H. Tufo, T. Voran, and K. Riley,
‘‘Early Experience with Scientific Applications on the Blue
Gene/L Supercomputer,’’ Proceedings of the Euro-Par 2005
Parallel Processing: 11th International Euro-Par Conference
Lisboa, Portugal, 2005; Lecture Notes in Computer Science
3648, 560–570 (2005).

Received November 2, 2005; accepted for publication
November 21,

IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006 T. AGERWALA AND M. GUPTA

179

2005; Internet publication February 22, 2006

Tilak Agerwala IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (tilak@us.ibm.com). Dr. Agerwala is vice president,
systems, at IBM Research. His primary area of research is high-
performance computing systems. Dr. Agerwala is responsible
for all IBM advanced systems research programs in servers
and supercomputers. He received his Ph.D. degree in electrical
engineering from The Johns Hopkins University. Dr. Agerwala is a
Fellow of the Institute of Electrical and Electronics Engineers and
a member of the Association for Computing Machinery.

Manish Gupta IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mgupta@us.ibm.com). Dr. Gupta is a Research Staff
Member and Senior Manager of the Emerging System Software
Department at the IBM Thomas J. Watson Research Center. His
group has developed system software for the Blue Gene/L machine
and conducts research on software issues for high-performance
server systems. Since 1992, when he received a Ph.D. degree in
computer science from the University of Illinois at Urbana–
Champaign, he has worked in the IBM Research Division.
Dr. Gupta has coauthored several papers in the areas of high-
performance compilers, parallel computing, and high-performance
Java Virtual Machines.

T. AGERWALA AND M. GUPTA IBM J. RES. & DEV. VOL. 50 NO. 2/3 MARCH/MAY 2006

180

