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By incorporating spin-dependent properties and magnetism in
semiconductor structures, new applications can be considered
which go beyond magnetoresistive effects in metallic systems.
Notwithstanding the prospects for spin/magnetism-enhanced logic
in semiconductors, many important theoretical, experimental, and
materials challenges remain. Here we discuss the challenges for
realizing a particular class of associated applications and our
proposal for bipolar spintronic devices in which carriers of both
polarities (electrons and holes) would contribute to spin-charge
coupling. We formulate the theoretical framework for bipolar spin-
polarized transport and describe several novel effects in two- and
three-terminal structures which arise from the interplay between
nonequilibrium spin and equilibrium magnetization.

Introduction
Magnetoresistive effects in metallic magnetic multilayers

[1–13], such as giant magnetoresistance (GMR) and

tunneling magnetoresistance (TMR), have already been

successfully employed in a variety of device applications.

Well-known examples include magnetic sensors, magnetic

read heads in computer hard drives, and nonvolatile

magnetic random access memory (MRAM); many of

these are discussed in more detail in other papers in

this issue. Much less effort has gone into exploring

the potential use of semiconductors in spintronic

applications. Spintronics, or spin electronics, involves the

study of active control and manipulation of spin degrees

of freedom in solid-state systems [13]. Conventionally, the

term spin designates either the spin of a single electron,

which can be detected by its magnetic moment, or the

average spin of an ensemble of electrons, manifested by

magnetization. The control of spin is then the control

of either the population and the phase of the spin of an

ensemble of particles, or the coherent spin manipulation

of a single- or few-spin system.

The field of semiconductor spintronics [13–23]

continues to grow rapidly, and in this paper it is not

possible to cover it in its entirety. Here we focus on our

proposal for bipolar spintronics [24–27] in semiconductor

systems and briefly recall several challenges that must be

overcome as well as important findings that could make

possible its practical realization. Use of the term bipolar

indicates that carriers of both polarities (electrons and

holes) are important [28]. In contrast to unipolar devices

such as metallic spintronic devices [1, 2], bipolar devices

exhibit large deviations from local charge neutrality

and intrinsic nonlinearities in their current–voltage

characteristics, which are important even at a small

applied bias.

These characteristics, together with the ease of

manipulating the minority charge carriers, make it

possible to design active devices that can amplify signals

as well as provide additional degrees of control not

available in charge-based electronics. Analogous to

bipolar charge transport [29, 30], which is dominated

by the influence of the nonequilibrium carrier density,

nonequilibrium spin density (unequal populations of

‘‘spin-up’’ and ‘‘spin-down’’ carriers) plays an important

role in bipolar spintronics. We discuss here several

implications of nonequilibrium spin density in

semiconductors, such as spin capacitance, spin density

amplification, spin-polarized solar battery, and the spin-

voltaic effect, a spin analog of the photovoltaic effect.

The generation of nonequilibrium spin polarization (of

carriers as well as nuclei) and nonequilibrium spin density

in semiconductors has been known for several decades.

By using methods such as optical orientation or optical

pumping [31], the angular momentum of absorbed
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circularly polarized light is transferred to the medium.

Electron orbital momenta are directly oriented by light

and, through spin-orbit interaction, electron spins

become polarized. In a pioneering work, Lampel [32]

demonstrated that spins in p-doped silicon can be

optically oriented (polarized). Subsequent work also

showed that the optical orientation can be used to

establish electron spin polarization in n-doped GaAs

[33, 34] and to provide a much higher spin polarization in

direct-bandgap semiconductors than in silicon [31]. For

example, electrical spin injection, a method for generating

nonequilibrium spin, had already been realized in 1963 by

Clark and Feher [35], who passed a direct current through

a sample of InSb in the presence of a constant applied

magnetic field. Motivated by this work and by the

principle of optical orientation [31], Aronov and Pikus

[36–38] established several key concepts in electrical spin

injection from ferromagnets into metals, semiconductors,

and superconductors.

At present, bipolar spin-polarized transport in

semiconductors is mostly limited to low temperatures.

Progress toward room-temperature operation will depend

critically on the development of new materials. Moreover,

researchers are currently pursuing two distinct

approaches for operation at room temperature: 1) the use

of hybrid structures that combine metallic ferromagnets

and semiconductors; and 2) the use of all-semiconductor

structures. Each of these approaches has its own

materials issues. In the first, the wide range of metallic

ferromagnetic materials with high Curie temperature

TC provides a possible advantage. Interestingly, this

advantage may not be fully realized in a hybrid device

geometry, since carrier transport is largely determined

by the interface with the semiconductor. For example,

even the spin polarization in a heterostructure (which

determines the magnitude of magnetoresistive effects) is

not uniquely determined by the bulk magnetic material

[13]. Structural properties of the interface are important

as well: Interfacial defects arising from lattice mismatch

between the metal and semiconductor are known to

suppress the efficiency with which spin-polarized carriers

can be injected into a semiconductor [39]. Even more

dramatic changes can result from different choices of the

insulating tunnel barrier between two ferromagnetic

electrodes: In a recent experiment measuring the

tunneling magnetoresistance (TMR) between two CoFe

electrodes, replacement of the Al2O3 barrier by MgO

was shown to increase the room-temperature TMR by

160% (up to 220%) [40], confirming previous theoretical

predictions [41, 42]. The choice of tunnel barrier also

has a strong influence on transport properties. It was

demonstrated that the use of a CoFe/MgO tunnel injector

can provide robust room-temperature spin injection in

semiconductors such as GaAs [43, 44].

In the second approach to device design (using all-

semiconductor structures), a key issue is whether

ferromagnetic semiconductors with sufficiently high TC

can be developed. While ferromagnetic semiconductors

have been known since the studies on CrBr3 in 1960 [45],

a more recent interest in ferromagnetic semiconductors

was spurred by the fabrication of (III, Mn)V compounds.

After the initial work on (In, Mn)As [46–48], most of the

research has focused on (Ga, Mn)As [49–51]. In contrast

to (In, Mn)As and (Ga, Mn)As with high carrier density

(;1020 cm�3), a much lower carrier density in (Zn, Cr)Te

[52] (a II–VI ferromagnetic semiconductor with TC near

room temperature [53]) suggests that transport properties

can be effectively controlled by carrier doping.

On the theoretical front, work by Dietl et al.

[54, 55] using the Zener model for carrier-mediated

ferromagnetism was particularly influential, since it gave

predictions of Curie temperatures in a wide range of

ferromagnetic semiconductors (Figure 1). These findings

have stimulated numerous theoretical studies to

understand ferromagnetism in semiconductors (some

reviewed in [56–61]) and vigorous experimental efforts to

fabricate novel ferromagnetic materials. The development

of new materials would, of course, be aided significantly

by a theoretical understanding of the semiconductor

properties that are most important for determining TC.

At present, this understanding is lacking, even for

Figure 1

Predicted variation of the Curie temperature TC with lattice constant 
a for various Mn-doped semiconductors, as given by the Zener 
model for carrier-mediated ferromagnetism. The curve is a fit to the 
predicted values.  Adapted from Figure 16 and Tables I and II of 
[55], with permission; ©2001 American Physical Society.

4.5 5.0 5.5 6.0 6.5
Lattice constant, a  (Å) 

T C
  (

K
)

GaN

ZnO InN

CdTe

AlP

CdS

CdSe

ZnS

AlAsSi

GaP
GaAs

InP
Ge

ZnTe

1/a3

0

100

200

300

400

500
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idealized homogeneous bulk materials. For example, our

first-principles results using density-functional theory

reveal a variation of magnetic properties across different

materials that cannot be explained by the dominant

models of ferromagnetism in semiconductors [62].

Specifically, we considered a single materials family of 64

different Mn-doped II–IV–V2 chalcopyrites, a ternary

generalization of the binary III–V compounds; several

have already been reported experimentally to be

ferromagnetic [63, 64]. Our results for Mn spin–spin

coupling strength J vs. lattice constant a of the host

chalcopyrite show no support for the approximate scaling

J } a�3 (or, equivalently, TC } a�3) that is predicted by

the Zener model [54, 55].

Another key issue for all-semiconductor device

designs is the external control of TC. Dilute magnetic

semiconductors offer an intriguing possibility: carrier-

mediated ferromagnetism in materials such as (In, Mn)As,

(Ga, Mn)As, and MnGe [65–69], which introduces

the possibility of tuning the strength of the ferromagnetic

interactions and, therefore, of tuning TC. For example,

when the number of carriers is changed, either by shining

light [70, 71] or by applying a gate bias in a field-effect

transistor geometry [72], the material can be switched

between the paramagnetic and ferromagnetic states.

These experiments suggest the prospect of nonvolatile

multifunctional devices with tunable optical, electrical,

and magnetic properties. Furthermore, the

demonstration of optically or electrically controlled

ferromagnetism provides a method for distinguishing

carrier-induced semiconductor ferromagnetism from

ferromagnetism that originates from metallic magnetic

inclusions [73]. Such a distinction is particularly

important in view of the growing number of experimental

reports of room-temperature ferromagnetism in

semiconductors [74]. Indeed, it is difficult to identify

spurious sources of magnetism from magnetometry

alone. For example, early reports of ferromagnetism at

900 K in La-doped CaBa6 [75–77] were later revisited and

attributed to an extrinsic effect [78].

A high TC value alone is not sufficient for successful

integration of ferromagnetic semiconductors in

relevant device structures. It is also important to have

materials which would have a good lattice match with

technologically important nonmagnetic semiconductors.

Lattice mismatch typically leads to low-quality interfaces

with a high density of interfacial defects, which would be

detrimental to spin-polarized transport and effective spin

injection. A potentially desirable situation could be

realized with II–IV–V2 chalcopyrites. It can be seen from

Figure 2 that the predicted ferromagnetic chalcopyrites

span a large lattice constant range. In particular,

ZnSiP should be lattice-matched with Si and therefore

might be useful in demonstrating electrical spin injection

into silicon [27].

Finally, we note that spintronic devices do not

necessarily require the use of ferromagnetic materials

or external magnetic fields. The central physical

phenomenon—lifting of the spin degeneracy—can also

be realized in nonmagnetic materials with the aid of

transport, optical, and resonance methods to generate

nonequilibrium spin polarization [13]. For example,

circularly polarized light provides an effective way

to generate net spin polarization in direct-bandgap

semiconductors. The angular momentum of the absorbed

light is transferred to the medium, leading directly to

orientation of the electron orbital momenta and, through

spin-orbit interaction, to polarization of the electron

spins. In bulk III–V semiconductors such as GaAs,

optical orientation can lead to a 50% level of polarization

of the electrons; this can be further enhanced by using

quantum structures of reduced dimensionality, or by

applying strain.

Next, we formulate drift-diffusion equations for

bipolar spin-polarized transport and illustrate several of

their implications in a nonmagnetic limit, in the absence

of equilibrium magnetization. We then consider the

magnetic p–n junction and an interplay between

equilibrium magnetization and the injected

nonequilibrium spin, leading to strong spin-charge

coupling. In the last section, we review the basics of

Figure 2

Theoretical bandgap vs. theoretical lattice constant for II–IV–V2 
chalcopyrites. Some can be doped with Mn to become ferromag-
netic. The shaded areas indicate hosts that are expected to be (�2%) 
lattice matched to GaN, Si, GaAs, or InAs. The filled symbols 
denote potentially stable host compounds (negative enthalpies of 
formation). Adapted from [62], with permission.
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the bipolar junction transistor and our proposal for its

generalization—the magnetic bipolar transistor.

Because of space limitations, we illustrate our proposal

for bipolar spintronics based only on the above,

inevitably omitting many references to the vast field of

semiconductor spintronics. Many additional findings and

an extensive number of references in semiconductor

spintronics have been reviewed in [13].

Bipolar spin-polarized transport

Spin-polarized drift-diffusion equations

We briefly recall here a case of unipolar spin-polarized

transport in a metallic regime. We label spin-resolved

quantities by k ¼ 1 or " for spin-up and k ¼�1 or # for
spin-down along the chosen quantization axis. For a free

electron, spin angular momentum and magnetic moment

are in opposite directions, and what precisely is denoted

by ‘‘spin-up’’ varies in the literature [79]. Conventionally,

in metallic systems [80], the term refers to carriers with

majority spin. This means that the spin (angular

momentum) of such carriers is anti-parallel to the

magnetization. Some care is needed with the terminology

used for semiconductors, for which the terms majority

and minority refer to the relative population of charge

carriers (electrons or holes). Spin-resolved charge current

(density) in a diffusive regime can be expressed as

jk ¼ rkrlk ; ð1Þ

where rk is conductivity and the chemical potential

(sometimes also referred to as the electrochemical

potential) is

lk ¼ ðqDk=rkÞdnk � /; ð2Þ

with q being the proton charge, Dk the diffusion

coefficient, dnk¼ nk� nk0 the change of electron density

from the equilibrium value for spin k, and / the electric

potential. We use a notation in which a general

quantity X is expressed as the sum of equilibrium and

nonequilibrium parts, X ¼ X0 þ dX. Here we focus on

the case of collinear magnetization. More generally, for

a non-collinear magnetization, jk becomes a second-

rank tensor [81, 82].

In the steady state, the continuity equation is

rjk ¼ kq
dnk

sk�k

�
dn�k

s�kk

� �
; ð3Þ

and skk0 is the average time for flipping a k-spin to a k0-

spin. For a degenerate conductor, the Einstein relation is

rk ¼ q
2
NkDk ; ð4Þ

where r¼r"þr# and N¼N"þN# is the density of states.

By using a detailed balance N"/s"# ¼ N#/s#" [83] together

with Equations (2) and (4), the continuity equation can be

expressed [84, 85] as

rjk ¼ kq
2 N"N#
N" þN#

lk � l�k

s
s

; ð5Þ

where ss ¼ s"#s#"/(s"# þ s#") is the spin relaxation time.

Equation (5) implies the conservation of charge current

j ¼ j" þ j# ¼ constant, while the spin counterpart, the

difference of the spin-polarized currents js ¼ j" � j#, is

position-dependent.

Spin-polarized bipolar transport can be thought of as

a generalization of its unipolar counterpart. Specifically,

spin-polarized unipolar transport, in a metallic regime,

can then be obtained as a limiting case by setting the

electron–hole recombination rate to zero and considering

only one type of carrier (either electrons or holes). In the

absence of any spin polarization, equations that aim to

describe spin-polarized bipolar transport must recover

a description of charge transport. Conventional charge

transport in semiconductors is often accompanied by

large deviations from local charge neutrality (for

example, due to materials inhomogeneities, interfaces,

and surfaces), and Poisson’s equation must be explicitly

included in an analysis of such transport. If we consider

(generally inhomogeneous) doping with a density of Na

ionized acceptors and Nd donors, we can write

r � ð�r/Þ ¼ qðn� pþN
a
�N

d
Þ; ð6Þ

where n and p (electron and hole densities) also depend on

the electrostatic potential / and permittivity �, and can be

spatially dependent. In contrast to the metallic regime,

even equilibrium carrier density can have large spatial

variations that can be routinely tailored by an

appropriate choice of the doping profile [Nd(x)� Na(x)].

Furthermore, charge transport in semiconductors can

display strong nonlinearities, for example, as in the

exponential-like current–voltage dependence of a

diode [30].

Returning to the case of spin-polarized transport in

semiconductors, we formulate a drift-diffusion model

which generalizes the considerations of Equations (1)– (5)

to include both electrons and holes [24, 25, 86]. We recall

from Equations (1) and (2) that spin-resolved current has

a drift part (proportional to the electric field; i.e., } r/)
and a diffusive part (} rnk), which we extend to capture

the effects of band bending, band offsets, various

materials inhomogeneities, and the presence of two

types of charge carriers.

To introduce our notation and terminology, which is

a direct generalization of what is conventionally used

in semiconductor physics [87], we first consider the

expression for quasi-equilibrium carrier densities. For

nondegenerate doping levels (Boltzmann statistics) the

spin-resolved components are

I. ŽUTIĆ ET AL. IBM J. RES. & DEV. VOL. 50 NO. 1 JANUARY 2006

124



nk ¼
N

c

2
e
�½E

ck�l
nk�=kB

T
; pk ¼

N
v

2
e
�½l

pk�Evk�=kB
T
; ð7Þ

where subscripts c and v label quantities which pertain

to the conduction and valence bands. For example,

Nc;v ¼ 2ð2pm�c;vkBT=h
2Þ3=2 represent the effective density

of states with the corresponding effective masses m�c;v; and
kB is the Boltzmann constant. From the total electron

density n ¼ n" þ n# and the spin density s ¼ n" � n#, we

can define the spin polarization of electron density as

P
n
¼ s

n
¼

n" � n#
n" þ n#

: ð8Þ

We consider a general case in which the spin-splitting of

conduction and valence bands, expressed respectively as

2qfc and 2qfv, can be spatially inhomogeneous [25].

Splitting of carrier bands (Zeeman or exchange) can arise

because of doping with magnetic impurities and/or the

presence of an applied magnetic field. The spin-k
conduction band edge (Figure 3),

E
ck ¼ E

c0
� q/� kqf

c
; ð9Þ

differs from the corresponding nonmagnetic bulk value

Ec0 because of the electrostatic potential / and spin-

splitting kqfc. The discontinuity of the conduction band

edge is denoted by DEc. In the nonequilibrium state, the

chemical potential for the k-electrons is lnk and generally

differs from the corresponding quantity for the holes.

While lnk is analogous to the electrochemical potential

in Equations (1) and (2), following the conventional

semiconductor terminology, we refer to it here as the

chemical potential, which is also known as the quasi-

Fermi level. An analogous notation holds for the holes

and the valence band. For example, in Equation (7) pk is

the spin-k density of the holes, with Evk¼Ev0� q/� kqfv.
By assuming drift-diffusion-dominated transport

across the heterojunction, the spin-resolved charge-

current densities can be expressed [27] as

j
nk ¼ l

nknkrEck þ qD
nkNc
rðnk=Nc

Þ ; ð10Þ

j
pk ¼ l

pkpkrEvk � qD
pkNv
rðpk=Nv

Þ ; ð11Þ

where l and D are mobility and diffusion coefficients

(we use the symbol l to distinguish it from the chemical

potential l). In nondegenerate semiconductors, l and D

are related by the Einstein relation

l
n;pk ¼ qD

n;pk=kB
T; ð12Þ

which differs from the metallic (completely degenerate)

case given by Equation (4).

With two types of carriers, the continuity equations

are more complex than those for metallic systems.

After including additional terms for the recombination

of electrons and holes as well as the photoexcitation

of electron–hole pairs, we can write these equations as

�
]nk

]t
þr �

j
nk

q
¼ þ rkðnkpk � nk0

pk0
Þ

þ
nk � n�k � k~s

n

2s
sn

� Gk ; ð13Þ

þ
]pk

]t
þr �

j
pk

q
¼ �rkðnkpk � nk0

pk0
Þ

�
pk � p�k � k~s

p

2s
sp

þ Gk: ð14Þ

The generation and recombination of electrons and

holes of spin k can be characterized by the rate coefficient

rk; the spin relaxation time for electrons and holes is

denoted by ssn,p; and the photoexcitation rateGk represents

the effects of electron–hole pair generation and optical

orientation. Spin relaxation equilibrates carrier spin

while preserving nonequilibrium carrier density; for

nondegenerate semiconductors ~sn ¼ nPn0; where, from

Equation (7), an equilibrium polarization of electron

density Pn0 can be characterized as

P
n0
¼ tanh ðqf

c
=k

B
T Þ: ð15Þ

An analogous expression holds for holes and ~sp:

The system of drift-diffusion equations (Poisson and

continuity equations) can be self-consistently solved

numerically [24, 25, 88], and, under simplifying

assumptions (as in the case of charge transport),

analytically [27, 86, 89]. Heterojunctions, such as the one

Figure 3

Band diagram for hypothetical magnetic heterojunction. In equilib-
rium, the chemical potential   0 is constant. Conductance and 
valence-band edges (Ec and Ev) are spin-split in the magnetic p- 
region, while in the nonmagnetic n-region there is no spin splitting. 
The left and right edges of a space-charge (depletion) region are 
denoted by xL and xR. For a sharp doping profile, at x � w/2, there 
are generally discontinuities in the conduction and valence bands 
(�Ec and �Ev) and in other quantities such as the effective mass, 
permittivity, and diffusion coefficient.
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depicted in Figure 3, can be thought of as building blocks

of bipolar spintronics. To obtain a self-consistent solution

in such a geometry, only the boundary conditions at

x¼ 0 and x¼ w need be specified. On the other hand, to

obtain an analytical solution we also need to specify the

matching conditions at xL and xR, the two edges of the

space-charge region (or depletion region), in which there

is a large deviation from the local charge neutrality,

accompanied by band bending and a strong built-in

electric field.

We next illustrate how the matching conditions for spin

and carrier density can be applied within the small-bias

or low-injection approximation, widely used to obtain

analytical results for charge transport [30, 87]. In this

case, nonequilibrium carrier densities are small compared

with the density of majority carriers in the corresponding

semiconductor region. For materials such as GaAs, a

small bias approximation gives good agreement with

the full self-consistent solution up to approximately

1 V [25, 88].

To simplify our notation, we consider a model for

which only electrons are spin-polarized ( p" ¼ p# ¼ p/2),

while it is straightforward to also include spin-polarized

holes [27, 86]. Outside the depletion charge region,

materials parameters (such as Na, Nd, Nc, Nv, l, and D)

are assumed to be constant. The voltage drop is assumed

to be confined to the depletion region, which is highly

resistive and depleted from carriers. In thermal

equilibrium (lnk¼ lpk ¼ l0), the built-in voltage Vbi

can be simply evaluated from Equation (7) as

V
bi
¼ /

0R
� /

0L
; ð16Þ

while the applied bias V (taken to be positive for forward

bias) can be expressed as

V ¼ �ðd/
R
� d/

L
Þ; ð17Þ

implying that the total junction potential between x ¼ 0

and x¼w is V� Vbi. For the heterojunction of Figure 3,

the width of the depletion (space-charge) region is

x
R
� x

L
}

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V

bi
� V

q
; ð18Þ

where the built-in voltage is represented by

qVbi ¼�DEc þ kBT ln (n0RNcR/n0LNcL). Outside the

depletion region, the system of drift-diffusion equations

reduces to only diffusion equations for spin density

and the density of minority carriers, while the density

of majority carriers is simply given by the density of

donors and acceptors [25, 86].

From Equation (7) we rewrite the electron density by

separating various quantities into equilibrium and

nonequilibrium parts:

nk ¼ nk0
exp ½ðqd/þ dl

nkÞ=kB
T �: ð19Þ

The electron carrier and spin density (for simplicity we

omit the subscript n when writing s ¼ n" � n#) can be

expressed [86] as

n ¼ e
ðd/þdlþÞ=kB

TÞ
n

0
cosh

ql�
k

B
T

� �
þ s

0
sinh

ql�
k

B
T

� �� �
; ð20Þ

s ¼ e
ðd/þdlþÞ=kB

TÞ
n

0
sinh

ql�
k

B
T

� �
þ s

0
cosh

ql�
k

B
T

� �� �
; ð21Þ

where l6 [ (ln" 6 ln#)/2, and the polarization of

electron density is

P
n
¼

tanh ðql�=kB
TÞ þ P

n0

1þ P
n0

tanh ðql�=kB
TÞ : ð22Þ

If we assume that the spin-resolved chemical potentials

are constant for xL � x � xR (i.e., that the depletion

region is sufficiently narrow that the spin relaxation

and carrier recombination can be neglected in the

region), it follows, from Equation (22) and

tanh ðql�=kBTÞ[ constant, that

P
L

n
¼

P
L

n0
½1� ðPR

n0
Þ2� þ dP

R

n
ð1� P

L

n0
P

R

n0
Þ

1� ðPR

n0
Þ2 þ dP

R

n
ðPL

n0
� P

R

n0
Þ

; ð23Þ

where L (left) and R (right) label the edges of the

space-charge (depletion) region of a p–n junction.

Correspondingly, dPR
n represents the nonequilibrium

electron polarization, evaluated at R, arising from a spin

source. For a homogeneous equilibrium magnetization

ðPL
n0 ¼ PR

n0Þ; dPL
n ¼ dPR

n ; the nonequilibrium spin

polarization is the same across the depletion region.

Equation (23) demonstrates that only nonequilibrium

spin, already present in the bulk region, can be

transferred through the depletion region at small

biases [24, 25, 86].

Our assumption of constant spin-resolved chemical

potentials is a generalization of a conventional model for

charge transport in which both ln and lp are assumed

to be constant across the depletion region [87]. From

Equations (17), (20), and (21) we can obtain minority

carrier and spin densities at x ¼ xL:

n
L
¼ n

0L
e
qV=k

B
T

1þ dP
R

n

P
L

n0
� P

R

n0

1� ðPR

n0
Þ2

" #
; ð24Þ

s
L
¼ s

0L
e
qV=k

B
T

1þ
dP

R

n

P
L

n0

1� P
L

n0
P

R

n0

1� ðPR

n0
Þ2

" #
; ð25Þ

which in the absence of nonequilibrium spin ðdPR
n ¼ 0Þ

reduce to the well-known Shockley relation for the

minority carrier density at the depletion region [29],

n
L
¼ n

0L
e
qV=k

B
T
; ð26Þ
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and an analogous formula for the spin,

s
L
¼ s

0L
e
qV=k

B
T
: ð27Þ

Nonmagnetic limit: Spin-polarized p–n junctions

We apply our previous findings to the nonmagnetic limit

of vanishing-equilibrium magnetization or, equivalently,

vanishing-equilibrium spin polarization, since fc¼ fv¼ 0.

We first consider a homogeneously doped semiconductor

in which nonequilibrium spin polarization is created

through optical orientation. Holes are assumed to be

unpolarized, an accurate approximation in materials such

as GaAs; the spin-relaxation time for holes can be several

orders of magnitude shorter than the corresponding time

for electrons [13, 90]. We can simplify Equations (14)

and (15) and consider that holes would recombine with

the electrons of either spin. In the steady state, the

balance between direct electron–hole recombination

and optical pair creation can be obtained from the

sum of Equations (13) and (14) for k¼ " and # as

rðnp� n
0
p

0
Þ ¼ G; ð28Þ

where r ¼ r"/2 ¼ r#/2 is the coefficient of the total

generation–recombination rate and G ¼ G" þ G# is the

total electron–hole photoexcitation rate. Similarly, from

the difference of Equations (13) and (14) for k¼ " and #,
the balance between spin relaxation and spin generation

can be expressed as

rspþ s=s
s
¼ P

n
ðt ¼ 0ÞG; ð29Þ

where Pn (t¼ 0) is the spin polarization at the moment of

photoexcitation, as given by Equation (8). The first term

in Equation (29) describes the disappearance of the spin

density because of carrier recombination, while the

second term describes the intrinsic spin relaxation.

From Equations (28) and (29) we obtain the steady-

state electron polarization [24],

P
n
¼ P

n
ðt ¼ 0Þ

1� n
0
p

0
=np

1þ 1=s
s
rp

: ð30Þ

In a p-doped sample, p ’ p0, n� n0, and Equation (30)

gives

P
n
¼ P

n
ðt ¼ 0Þ=ð1þ s

n
=s

s
Þ; ð31Þ

where sn¼ 1/rp0 is the electron lifetime. After the

illumination is switched off, the electron spin density,

or, equivalently, the nonequilibrium magnetization,

decreases exponentially with the inverse time constant [91]:

1=T
s
¼ 1=s

n
þ 1=s

s
: ð32Þ

The steady-state polarization is independent of the

illumination intensity, being reduced from the initial

spin polarization Pn(t¼ 0). The polarization of the

photoluminescence is Pcirc¼Pn(t¼ 0)Pn [91].

For spin pumping in an n-doped sample, where n ’ n0
and p � p0, Equations (28) and (30) give [92]

P
n
¼ P

n
ðt ¼ 0Þ=ð1þ n

0
=Gs

s
Þ: ð33Þ

In contrast to the previous case, the hole lifetime

sp ¼ 1/rn0 has no effect on Pn. However, Pn depends

on the photoexcitation intensity G, as expected for

a pumping process. The effective carrier lifetime is

sJ ¼ n0/G, where J represents the intensity of the

illuminating light. If it is comparable to or shorter than

ss, spin pumping should be very effective. Spin pumping

should occur because the photoexcited spin-polarized

electrons should not need to recombine with holes. There

would be a sufficient supply of unpolarized electrons in

the conduction band available for recombination. The

spin would thus be pumped into the electron system.

From the previous results for optical illumination

in homogeneously doped p- and n-regions, one can

obtain spin and charge diffusion lengths via the

expression

L ¼
ffiffiffiffiffiffi
Ds
p

; ð34Þ

in which L would provide a characteristic length scale for

the spatial decay of nonequilibrium spin or charge by

substituting for D the appropriate (electron or hole)

diffusion coefficient and for s (spin or charge) the

characteristic time scale. Early experiments using

optical orientation have provided a direct measurement

of the characteristic time scale for the decay of the

nonequilibrium spin [31]. More recent important optical

measurements have shown that such a time scale—the

spin lifetime in GaAs—can be enhanced by an order

of magnitude [93] (.40 ns) or even by two orders

of magnitude [94, 95] (.100 ns). The related issues

of spin relaxation and spin dephasing in GaAs have

been extensively reviewed in [13].

We next discuss our proposal for spin-polarized p–n

junctions, which can be viewed as a generalization

of optical orientation in homogeneously doped

semiconductors, and discuss several novel effects. A

particular realization of a spin-polarized p–n junction,

illustrated in Figure 4(a), would combine two key

ingredients: 1) nonequilibrium spin produced by optical

orientation and 2) a built-in field which separates

electron–hole pairs created by illumination. Our choice

of numerical parameters is based on the assumed use of

a 2-lm-long GaAs sample at room temperature, doped

with Na ¼ 3 3 1015 cm�3 acceptors on the left and with

Nd¼531015 cm�3 donors on the right [the doping profile,

Nd(x)� Na(x), is shown in Figure 4(b)]. The intrinsic

carrier concentration is ni¼ 1.83 106 cm�3. For an

undoped semiconductor, n0¼ p0¼ ni, where ni can be

expressed fromEquation (7) as n2
i ¼ NcNv exp ð�Eg=kBTÞ:

The electron (hole) mobility and diffusion coefficients
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are 4,000 (400) cm2�V�1�s�1 and 103.6 (10.36) cm2�s�1.
The total recombination rate is assumed to be

r¼ (1/3)3 10�5 cm3�s�1, giving an electron lifetime in

the p-region of sn¼ 1/rNa¼ 0.1 ns, and a hole lifetime in

the n-region of sp¼ 1/rNd¼ 0.06 ns. The spin relaxation

time (which is the spin lifetime in the n-region) is

calculated to be ss¼ 0.2 ns. In the p-region, the electron

spin decays on a time scale of [recall Equation (32)]

Ts¼ sssn/(ssþ sn) ’ 0.067 ns. The minority diffusion

lengths are Ln ¼
ffiffiffiffiffiffiffiffiffiffi
Dnsn

p
’ 1 lm for electrons in the

p-region, and Lp ¼
ffiffiffiffiffiffiffiffiffiffi
Dpsp

p
’ 0:25 for holes in the

n-region. The spin decays on the length scale of

Lsp ¼
ffiffiffiffiffiffiffiffiffiffiffi
DnTs

p
’ 0:8 lm in the p-region and

Lsn ¼
ffiffiffiffiffiffiffiffiffiffi
Dnss

p
’ 1:4 lm in the n-region.

Circularly polarized light is assumed to be incident at

the left end (x¼ 0), while ohmic boundary conditions are

imposed at the right end (spin density is set to vanish at

x¼w¼ 2 lm). In a metallic regime, away from the point

of spin injection (at an interface with a magnetic region),

there is usually a monotonic spatial decay of spin density

in the nonmagnetic region [13]. However, the spin density

in Figure 4(b) shows a qualitatively different, non-

monotonic, behavior. Away from the point of spin

injection (x¼ 0), there is an increase of spin density inside

the nonmagnetic region. We refer to this effect as a

(spatial) spin density amplification [24]; it is one of the

predictions for a spin-polarized p–n junction having

inhomogeneous doping. Similar behavior was also

predicted via subsequent calculations [96]. An efficient

transfer of spin across a ZnSe/GaAs heterojunction [97]

suggests that a spatial amplification of spin density could

be realized in more general geometries, and not just in

p–n junctions.

Figure 4(b) and Figure 4(c) indicate that the spin

density and the corresponding spin polarization can vary

strongly with bias. As in the case of conventional p–n

junctions, with an application of forward (positive)

bias, the width of the depletion region decreases [recall

Equation (18)]. Since in all of the cases of Figure 4

illumination is assumed to be at x ¼ 0, Pn
L is reduced

for V . 0. At forward bias, xL (an effective length of

the p-region) increases, and electrons must travel farther

and experience additional spin decay before being swept

(by the built-in field) into the n-region. By analogy

with junction capacitance, we designate this as the spin-

capacitance effect [24], reflecting that an accumulated spin

is bias-dependent (a spin capacitance was also recently

predicted in the rather different geometry of a field-effect

transistor [98]). Another interesting property of a spin-

polarized p–n junction would be that it could be a source

of spin electromotive force (EMF) to generate spin-

polarized currents at no applied bias and to provide an

open circuit voltage [88]. In addition to our proposal for

a p–n junction-based spin-polarized solar battery [88],

a wide range of other structures have recently been

suggested as a source of spin EMF [99–101]; these are

often referred to as spin(-polarized) pumps, cells, or

batteries.

Magnetic p–n junctions

Including spin polarization in p–n junctions could lead

to effects such spin capacitance, spin amplification,

and the generation of spin EMF, as discussed in the

previous section. However, in the absence of equilibrium

magnetization and for the geometry of Figure 4(a), there

should not be strong coupling between spin and charge.

Changing the helicity of the illuminating light implies that

Figure 4

Scheme of a spin-polarized p–n junction and associated spin 
capacitance effect. (a) Schematic representation of the junction, a 
shaded region (between xL and xR) depicts a depletion region with 
the built-in field E. Illumination by circularly polarized light from 
the left (at x � 0) creates electron–hole pairs and orients the spins of 
the electrons, which diffuse toward the depletion region where they 
are swept by the field E to the n-region. (b) and (c) Bias-dependent 
spatial profiles of electron spin density and the corresponding spin 
polarization, showing that the accumulated nonequilibrium spin 
changes as a function of applied bias; we refer to this as the spin 
capacitance effect. Adapted from [24], with permission; ©2001 
American Physical Society.
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Pn!�Pn or s!�s, but the charge properties such as the

charge current or open-circuit voltage would remain the

same. In this section we discuss how the presence of

equilibrium magnetization or, equivalently, equilibrium

spin polarization might lead to strong spin-charge

coupling. In particular, changing an injected

nonequilibrium spin could produce measurable effects

on charge properties.

For potential spintronic applications [13], as well as to

demonstrate novel effects due to spin-polarized bipolar

transport, it is desirable to have large carrier spin-

sub-band splitting (see Figure 3). In the absence of

magnetic field, such a splitting can be achieved by using

ferromagnetic semiconductors, while in the presence of

such a field one could utilize large effective g-factors

due either to magnetic impurities [102] or to spin-orbit

coupling in narrow-bandgap semiconductors. For

example, in (Cd, Mn)Se, jgj ’ 500 at T , 1 K [103];

in n-doped (In, Mn)As, jgj . 100 at 30 K [104]; and

in a narrow-bandgap InSb, jgj ’ 50 even at room

temperature. Selective doping with magnetic impurities

and/or an application of an inhomogeneous magnetic

field could be used to realize a desirable, spatially

inhomogeneous spin-splitting. Inhomogeneous spin-

splitting can also occur in domain walls (see for example

[105]). By solving a system of drift-diffusion and Poisson

equations, one can show that an inhomogeneous spin-

splitting leads to deviations from local charge neutrality

[86].

We discuss several properties of magnetic p–n junctions

that rely on the interplay of the carrier spin-sub-band

splitting (implying that there is a finite equilibrium spin

polarization of carrier density) and the nonequilibrium

spin induced for example by optical or electrical means.

We also focus here on a diffusive regime, while a magnetic

diode in a ballistic regime was recently discussed in [106].

For simplicity, we examine a particular case in which the

band-offsets (see for example Figure 3) are negligible, the

spin polarization of holes can be neglected, and in the

notation for both the carrier spin-splitting 2qf and the

spin density s we can omit the index n. A simple schematic

of such a magnetic p–n junction is shown in Figure 5.

From Equations (7) and (9) we can rewrite the product

of equilibrium densities as

n
0
p

0
¼ n

2

i
cosh ðqf=k

B
TÞ; ð35Þ

where ni is the intrinsic (nonmagnetic) carrier density

[87]. Note that the density of minority carriers in

the p-region should depend on the spin-splitting

n0(f) ¼ n0(f ¼ 0) cosh (qf/kBT). As in the theory of

charge transport in nonmagnetic junctions [29], the total

charge current can be expressed as the sum of minority

carrier currents at the deletion edges j ¼ jnL þ jpR, with

j
nL

} dn
L
; j

pR
} dp

R
; ð36Þ

where dnL is given by Equation (24), with PR
n0 ¼ 0;

dpR¼ p0[exp (qV/kBT )� 1], and V the applied bias

(positive for forward bias). Equation (35) implies that in

the regime of large spin-splitting, qf . kBT, the density

of minority electrons changes exponentially with B (} f)
and could create exponentially large magnetoresistance

[25]. In the absence of an external spin source, a geometry

depicted in Figures 5(a) and 5(b) can also be used to

illustrate the prediction of spin extraction [25], a process

opposite to spin injection. Spin-splitting in the p-region

should provide spin-dependent barriers for electron

transport across the depletion region. With a

large forward-applied bias and the generation of

nonequilibrium carrier density, there could be a

significant spin extraction from the nonmagnetic n-region

into the magnetic p-region, with spin densities having

opposite signs in these two regions (for s0L . 0 there

would be a spin accumulation dsR , 0). These findings,

obtained from a self-consistent numerical solution of

drift-diffusion equations [25], can also be confirmed

analytically within the small bias approximation

[86]. Similar spin extraction was recently observed

Figure 5

Potential magnetic p–n junction. (a) Band-energy diagram with 
spin-polarized electrons (arrows) and unpolarized holes (circles), 
showing the spin-splitting 2q�, the nonequilibrium spin polarization 
at the depletion region edge �Pn (xR), and the region where the spin 
is injected. (b) Junction schematic. Using circularly polarized light 
(photoexcited electron–hole pairs absorb the angular momentum 
carried by the incident photons), nonequilibrium spin is injected 
transversely into the nonmagnetic n-region. The circuit loop for 
obtaining I–V characteristics is indicated. (c) An alternative  scheme 
to electrically inject spin into the n-region. Adapted from [89], with 
permission.
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experimentally in MnAs/GaAs junctions [107], and

theoretical implications due to tunneling from

nonmagnetic semiconductors into metallic ferromagnets

were considered [108].

The interplay between the Pn0 [recall Equation (15)]

in the p-region and the nonequilibrium spin source of

polarization dPn in the n-region, at the edge of the

depletion region, should determine the I–V characteristics

of the diodes. The dependence of the electric current j

on qf and dPn was obtained by both numerical and

analytical methods. Numerical calculations [25] were

performed by self-consistently solving for the system

of drift-diffusion equations, and analytical results

[27, 86, 89] were obtained using a small-bias

approximation [recall Equations (16)–(27)].

To illustrate the I–V characteristics of potential

magnetic p–n junctions, consider the small-bias limit in

the configuration of Figure 5. The electron contribution

to the total electric current can be expressed from

Equations (24) and (36) [25, 87] as

j
nL

; n
0
ðfÞ ½eqV=kB

Tð1þ dP
n
P

n0
Þ � 1�: ð37Þ

Equation (37) generalizes the Silsbee–Johnson spin-

charge coupling [109, 110], originally proposed for

ferromagnet/paramagnet metal interfaces, to the case of

magnetic p–n junctions. An attractive aspect of the spin-

charge coupling in p–n junctions, as opposed to metals or

degenerate systems, is the nonlinear voltage dependence

of the nonequilibrium carrier and spin densities [25, 86],

resulting in the exponential enhancement of the effect

with increasing V. Equation (37) can be understood

qualitatively from Figure 5. In equilibrium (dPn ¼ 0 and

V ¼ 0), no current flows through the depletion region,

since the electron currents from both sides of the junction

balance. The balance is disturbed either by applying bias

or by selectively populating different spin states, making

the flow of one spin species greater than that of the other.

In the latter case, the effective barrier associated with

the crossing of electrons from the n-side to the p-side

is different for spin-up and spin-down electrons (see

Figure 5). Current can flow even at V¼ 0 when dPn 6¼ 0.

This is an example of the spin-voltaic effect (a spin analog

of the photovoltaic effect), in which nonequilibrium spin

causes an EMF [25, 111]. In addition, the direction of the

zero-bias current is controlled by the relative sign of Pn0

and dPn. In the section on magnetic bipolar transistors,

we revisit the implications of spin-voltaic effect in three-

terminal structures.

Magnetic p–n junctions should display an interesting

giant-magnetoresistance (GMR)-like effect, which follows

from Equation (37) [25]. The current should depend

strongly on the relative orientation of the nonequilibrium

spin and the equilibrium magnetization. Figure 6 plots

the current density j, which also includes the contribution

from holes, as a function of 2qf/kBT for both the

unpolarized (dPn ¼ 0) and fully polarized (dPn ¼ 1)

n-regions. In the first case, j is a symmetric function of f,
increasing exponentially with increasing f because of the

increase in the equilibrium minority carrier density n0(f).
In unipolar systems, where transport is due to the

majority carriers, such a modulation of the current is

not likely, since the majority carrier density is fixed by

the density of dopants. A realization of exponential

magnetoresistance was recently demonstrated in a very

different materials system—that of manganite–titanate

heterojunctions [112]—in which an applied magnetic

field affected the width of a depletion layer.

If dPn 6¼ 0, the current should depend on the sign of

Pn0�dPn. For parallel nonequilibrium (in the n-region)

and equilibrium spins (in the p-region), most electrons

should cross the depletion region through the lower

barrier (see Figure 5), increasing the current. In the

opposite case of anti-parallel relative orientation,

electrons should experience a larger barrier, and the

current should be inhibited. This is demonstrated in

Figure 6 by the strong asymmetry in j. The corresponding

GMR ratio, the difference between j for parallel and anti-

parallel orientations, can also be calculated analytically

from Equation (37) as 2jdPnPn0j/(1 � jdPnPn0j) [86].

Figure 6

Calculated giant-magnetoresistance (GMR) effect in magnetic 
diodes. Current/spin-splitting characteristic (I � �) are calculated 
self- consistently at V � 0.8 V for the diode of Figure 5. Spin-
splitting 2q� in the p-region is normalized to kBT. The solid curve 
corresponds to a switched-off spin source. The current is symmetric 
in � . With the spin source on (the extreme case 100% spin polariza-
tion injected into the n-region is shown), the current is a strongly 
asymmetric function of � , displaying large GMR values, as shown 
by the dashed curve. Materials parameters were assumed to be those 
of GaAs. Adapted from [25], with permission; ©2002 American 
Physical Society.
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If, for example, jPn0j ¼ jdPnj ¼ 0.5, the relative change

is calculated to be 66%. The GMR effect should

be useful for measuring the spin relaxation rate of

bulk semiconductors [89], as well as for detecting

nonequilibrium spin in the nonmagnetic region of the

p–n junction.

Although practical room-temperature magnetic p–n

junctions are yet to be fabricated, and the effects discussed

here are currently being experimentally examined1

[113, 114], magnetic p–n junctions have already been

demonstrated. Indeed, Wen et al. [115] were perhaps the

first to show that a ferromagnetic p–n junction, based on

the ferromagnetic semiconductor CdCr2Se4 doped with

Ag acceptors and In donors, could act as a diode.

Also, photovoltaic diodes have been fabricated using a

(Hg, Mn)Te magnetic semiconductor [116]. However,

more extensive work on magnetic p–n junctions began

after the discovery of (III, Mn)V ferromagnetic

semiconductors, discussed in [65]. Heavily doped

p-(Ga, Mn)As/n-GaAs junctions have been fabricated

[117–121] to demonstrate tunneling interband spin

injection. Recently, Tsui et al. [122] have shown that

the current in p-CoMnGe/n-Ge magnetic heterojunction

diodes can indeed be controlled by a magnetic field.

Further studies of magnetic p–n junctions could also be

relevant to a class of bipolar structures known as the spin

light-emitting diodes (spin LEDs), now widely used to

detect electrically injected spin in semiconductors

[123–127]. As in the case of an ordinary LED [30],

electrons and holes recombine (in a quantum well

or a p–n junction) and produce electroluminescence.

However, in a spin LED, as a consequence of radiative

recombination of spin-polarized carriers, the emitted light

should be circularly polarized and could be used to trace

back the degree of polarization of carrier density upon

injection into a semiconductor. The spatial separation

and spin relaxation between the spin injection and the

point of spin detection (in a quantum well) make a fully

quantitative analysis of the injected polarization more

difficult. It would be valuable to perform realistic

calculations of spin-polarized transport and spin injection

which would treat the entire spin LED as a single entity

[13]. An intriguing possibility for a low-power bipolar

spintronic application was recently demonstrated by

Rudolph et al. [128] with the operation of a spin laser.

The laser was a vertical-cavity surface-emitting laser

(VCSEL), optically pumped in the gain medium,

consisting of two InGaAs quantum wells, with 50%

spin-polarized electrons. The electrons recombine with

heavy holes, which are effectively unpolarized, emitting

circularly polarized light. The threshold electrical current

density, extracted from the pump power for the lasing

operation, was found to be 0.5 A/cm2, which is 23%

below the threshold current density of the spin-

unpolarized VCSEL. Furthermore, for a fixed pump

power, the emission power of the laser changed by 400%

when the degree of circular polarization of the pump laser

was changed. The reason for the decrease in threshold

is the selective coupling of spin-polarized electrons to

photons with one helicity. While the experiment was

conducted at 6 K, room-temperature operation and an

electrically pumped counterpart should be viable as well.

Bipolar junction transistor

The proposed magnetic bipolar transistor (MBT) is based

on spin population differences relying on ensemble

spin (magnetization) and can be viewed as having two

magnetic p–n junctions [25, 86] connected in series.

MBT builds on the bipolar junction transistor (BJT),

a conventional device scheme introduced by Shockley

et al. [129] and widely used in signal amplification and

processing as well as in fast logic applications. We first

introduce BJT and its formalism in order to recall some

standard transistor terminology and to make a smooth

transition to the magnetic case.

Conventional bipolar junction transistors comprise two

p–n junctions in series, forming a three-terminal device.

While such an arrangement may sound like a trivial

extension of the p–n junction diode, the new structure has

the remarkable novel functionality of amplifying small

current signals. The structure of an npn BJT is shown in

Figure 7. The emitter is doped with Nde donors, the base

with Nab acceptors, and the collector with Ndc donors.

The donor (acceptor) densities are also the electron (hole)

majority densities in the respective regions. In equilibrium

the minority densities are small. For example, the number

of conduction electrons in the base is n0b ¼ n2
i =Nab; where

ni is the intrinsic carrier density in the semiconductor.

External biases drive the current. In the most useful form

of transistor operation, the forward active mode, in which

the transistor is an amplifier, the emitter–base junction

is forward-biased with a potential Vbe . 0, while the

collector–base junction is reverse-biased with a potential

Vbc , 0. Thus, the built-in potential in the emitter–base

junction is reduced by Vbe, permitting electron injection

from the emitter to the base. The number of minority

electrons in the base close to the junction increases

exponentially to the nonequilibrium density

n
be
¼ n

0b
e
qV

be
=k

B
T
: ð38Þ

As in the section on spin-polarized drift-diffusion

equations, we introduce the nonequilibrium (excess)

density as

dn
be
¼ n

be
� n

0b
¼ n

0b
ðeqVbe

=k
B
T � 1Þ : ð39Þ1H. Munekata, Tokyo Institute of Technology, and G. Karczewski, Polish Academy

of Sciences, Warsaw, private communications, 2003.
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Similarly, the nonequilibrium electron density in the base

at the base–collector junction is

dn
bc
¼ n

bc
� n

0b
¼ n

0b
ðeqVbc

=k
B
T � 1Þ : ð40Þ

In the forward active mode, dnbc is small (and can be

neglected) because Vbc , 0. It becomes important in

other modes. The hole excess densities in the emitter

and collector, close to the depletion region with the

base, are

dp
e
¼ p

0e
ðeqVbe

=k
B
T � 1Þ ; ð41Þ

dp
c
¼ p

0c
ðeqVbc

=k
B
T � 1Þ : ð42Þ

Again, only dpe need be considered in the forward active

mode.

The emitter current je consists of the electron injection

current into the base and the hole injection current into

the emitter. As the injected electrons travel through the

base, some of them recombine with the holes and leave

the base via the valence band. Together with the flow of

holes in the opposite direction, this constitutes the hole

current jb. Most of the electrons manage to reach the

collector junction, where they are swept into the collector

by the large electric field in the depletion region. Unless

recombination occurs inside the depletion region, the

electrons reach the collector, forming the collector current

jc together with the holes injected into the collector from

the base (this is a small contribution in the forward active

mode).

The most interesting characteristic of a transistor is its

current gain, defined by

b ¼
j
c

j
b

: ð43Þ

Typically b ’ 100, indicating that a small current signal

introduced by varying jb is amplified a hundred times in

the collector circuit. In other words, removal of one

electron (per unit time and area) from the base results in

the arrival of a hundred electrons at the collector. If there

were no current drawn from the base, the electrons

recombining there would oppose further injection from

the emitter, stopping the current altogether. The sign

convention for the current is specified in Figure 7. The

base current is

j
b
¼ j

e
� j

c
: ð44Þ

We can calculate b by calculating the currents. A

convenient way to write the currents in a BJT is through

the nonequilibrium densities of the minority carriers

(see for example [130, 131]):

j
e
¼ j

n

gb

dn
be

n
0b

� 1

cosh ðw
b
=L

nb
Þ
dn

bc

n
0b

� �
þ j

p

ge

dp
eb

p
0e

; ð45Þ

j
c
¼ j

n

gb
�

dn
bc

n
0b

þ 1

cosh ðw
b
=L

nb
Þ
dn

be

n
0b

� �
� j

p

gc

dp
cb

p
0c

: ð46Þ

The base current is then calculated using Equation (44).

The generation currents jg reflect the flow of thermally

generated carriers in their majority regions close to the

depletion region. Such carriers are then swept into the

minority sides, regardless of the applied bias. The electron

generation current in the base is

j
n

qb
¼

qD
nb

L
nb

n
0b

coth
w

b

L
nb

� �
: ð47Þ

Here Dnb stands for the electron diffusion coefficient in

the base whose width is wb. As in the case of diodes, the

width of a region is an effective (rather than nominal)

width, excluding the associated depletion region, whose

size depends on the applied bias [recall Equation (18)].

Lnb is the electron diffusion length in the base. The

hole generation currents in the emitter, jp
ge; and

collector, jp
gc; are

Figure 7

Conventional npn bipolar junction transistor biased in the forward 
active mode: (a) Overall structure; (b) conduction and valence 
bands, populated respectively with electrons (filled circles) and 
holes (empty circles). The dashed lines indicate the Fermi levels 
(chemical potentials). The emitter–base junction is forward-biased, 
with potential Vbe 	 0, while the collector–base junction is reverse- 
biased, with potential Vbc < 0. The magnitude of the corresponding 
applied potentials is given by the difference between the Fermi 
levels. The solid arrows indicate carrier flow, while the dashed 
arrows illustrate recombination. For effective operation, the base 
width wb must be less than the electron diffusion length in the 
base Lnb.
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j
p

ge
¼

qD
pe

L
pe

p
0e

coth
w

e

L
pe

 !
; ð48Þ

j
p

gc
¼

qD
pc

L
pc

p
0c

coth
w

c

L
pc

 !
: ð49Þ

The notation is similar to that for the electron case.

Equations (39) – (42) and (45) – (49) fully describe

the electrical characteristics of ideal bipolar junction

transistors. Let us calculate the gain b in the forward

active mode. We generalize this calculation for the

magnetic case in the next section. The amplification

mechanism becomes manifest by introducing three

additional quantities: the transport factor a, the base

transport factor at, and the emitter efficiency ce. They
are related by

a ¼ a
t
c

e
¼

j
c

j
e

; ð50Þ

where

c
e
¼

j
n

e

j
e

; ð51Þ

a
t
¼

j
c

j
n

e

: ð52Þ

The emitter efficiency measures the contribution of

electrons to the emitter current. The higher it is, the more

electrons (and fewer holes) are injected across the base–

emitter junction. The base transport factor at shows how
many of the injected electrons traverse the base to form

the collector current. The current gain is

b ¼ a
1� a

: ð53Þ

Ideally, a is close to 1, so that b is large. For efficient

current amplification, both efficient emitter injection

(ce ’ 1) and base transport are needed.

In the npn BJT, Equations (45) and (46) give for the

emitter efficiency

c
e
¼ 1

1þ j
p

ge
=j

n

gb

; ð54Þ

since dnbc and dpbc can be neglected in the forward active

mode. The base transport factor is

a
t
¼ 1

cosh ðw
b
=L

nb
Þ : ð55Þ

The emitter efficiency is usually increased by heavy emitter

doping and light base doping, since j p
ge=j

n
gb ;Nab=Nde:

The greater the doping, the smaller is the equilibrium

number of the minority carriers and the corresponding

generation current. The base transport factor can be

increased by making the base narrower, so that

wb � Lnb. In this limit, the transistor amplification

factor becomes

b ¼ 1

w
2

b
=2L

2

nb
þ j

p

ge
=j

n

gb

: ð56Þ

In Si transistors, it is usually the emitter efficiency that

determines amplification, since Lnb is rather large in Si

because of relatively slow electron–hole recombination.

In contrast, GaAs transistors have very small Lnb values,

and the amplification is limited by the base transport

factor. To reduce this factor, spatially modulated GaAs

heterostructures are used to create electric drift in the

base (to boost the transport).

Table 1 summarizes different operating modes of both

conventional BJT and potential magnetic transistors

(the latter are discussed in the next section). We have

described the active forward mode, in which a BJT

amplifies small signals. The reverse active mode simply

reverses the biases. In this mode, a BJT can also amplify

signals, but b is much smaller because the emitter

efficiency is small. Usually transistors have a small

Table 1 Operating modes of conventional and potential magnetic bipolar transistors. Forward (reverse) bias corresponds to positive

(negative) voltage V. The terms MA and GMA stand for magneto-amplification and giant magneto-amplification, while ON and OFF are

modes of small and large resistance, respectively; SPSW designates spin switch. The spin-voltaic mode would apply only to the proposed

MBT. From [131], with permission.

Mode Vbe Vbc BJT MBT

Forward active Forward Reverse Amplification MA, GMA

Reverse active Reverse Forward Amplification MA, GMA

Saturation Forward Forward ON ON, GMA, SPSW

Cutoff Reverse Reverse OFF OFF

Spin-voltaic Null Null N/A SPSW
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collector doping in order to have large breakdown

voltage in the reverse mode. In the saturation mode, both

junctions are forward biased. The collector and base

currents are similar in magnitude, and amplification is

inhibited. This mode, used in logic circuits, is denoted as

ON, in contrast to the high-resistance cutoff (OFF) state,

in which both junctions are reverse biased and only small

currents of the magnitudes of the generation current flow.

More discussion can be found in standard textbooks; see

for example [132].

Magnetic bipolar transistor

The magnetic bipolar transistor (MBT) was initially

proposed as a bipolar junction transistor that would

contain magnetic semiconductors as its active elements

[26, 133]. Such a transistor is depicted in Figure 8.

Simplified variations of the MBT, not including the

effects of nonequilibrium spin, were later considered by

Lebedeva and Kuivalainen [134], by Flatté et al. [135],

and by Bandyopadhyay and Cahay [136]. Experimental

realization of GaAs/(Ga, Mn)As-based MBT is currently

in progress.2 The magnetic semiconductors can be

ferromagnetic or they can have giant g factors and be

placed in a magnetic field. Whatever the case, there is a

large (comparable to thermal energy), spin-splitting 2qfb
of the carrier bands. Here we illustrate the predicted

properties of MBTs using electron spin polarization

(assuming that the holes are unpolarized). Only the base

will have equilibrium spin polarization. Exciting new

features appear when we allow for a nonequilibrium spin

to be added (which can viewed as a generalization of a

simplified scheme that considers only the effects of

equilibrium spin [134, 135]. This should be achievable

by optical spin orientation or electrical spin injection.

We assume that there is a nonequilibrium spin of

polarization dPe in the emitter and the equilibrium spin of

polarization P0b in the base. The presence of a magnetic

field can modify P0b by changing qfb, since [recall

Equation (15)] P0b ¼ tanh (qfb/kBT).
The most important new feature of the MBT is the

spin-dependent barrier for electron injection from the

emitter to the base. As indicated in Figure 7, this barrier

favors spin-up electrons. More electrons would thus be

injected into the lower conduction level in the base than

into the upper conduction level. The equilibrium spin

polarization in the base would be preserved. We have

learned in the previous section that emitter efficiency ce is
a limiting factor in amplification. We should be able to

modify ce in the MBT by increasing or decreasing the

spin-up electrons in the emitter so that more (fewer)

electrons would be injected through the lower spin

barrier. It should be possible to achieve this by

introducing nonequilibrium spin dPe. In effect, the emitter

efficiency could thus be controlled by spin-charge

coupling. As for the base transport factor at, there is not

much to be done by either spin or magnetic field. While

this factor is governed by electron diffusion, there is a

possibility that Lnb depends on the applied magnetic field,

leading to small magnetic effects (also observed for

conventional transistors).

The electrical currents through MBTs should also

depend on the nonequilibrium minority carrier

densities and on the applied biases. The expressions

for the currents were given in the previous section

[Equations (45) and (46)]. The difference now is that

the nonequilibrium electron densities would depend

on spin. The spin-charge coupling should lead to the

familiar dPeP0b dependence for the electron densities,

dn
be
¼ n

0b
ðf

b
Þ ½eqVbe

=k
B
Tð1þ dP

e
P

0b
Þ � 1� ; ð57Þ

dn
bc
¼ n

0b
ðf

b
Þ ðeqVbc

=k
B
T � 1Þ : ð58Þ

The influence of the equilibrium spin appears both

in n0b (fb)¼ n0b(0) cosh (qfb/kBT), which reflects the

change of the equilibrium minority density in the

magnetic region, and in the spin-charge coupling factor.

The nonequilibrium spin plays a role only in the latter.

Figure 8

Proposed magnetic npn bipolar transistor in the forward active 
mode: (a) Overall structure; (b) corresponding bands and bandgap. 
The notation is as in Figure 7. Only the base has an equilibrium 
electron spin polarization P0b, illustrated in part (b) by the spin-split 
conduction band. Spin up (down) electrons are shown as dark (light) 
filled circles. Holes are unpolarized. The emitter is assumed to have 
a source of spin polarization, here shown as circularly polarized 
incident light giving rise to nonequilibrium spin polarization �Pe . 
The coupling between the equilibrium and nonequilibrium polariza-
tions is expected to give rise to many new functionalities, as 
described in the text. From [131], with permission.
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2M. Field, Rockwell Scientific, Thousand Oaks, CA, private communication, 2004.
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The expression for dnbc remains Equation (40). The excess

hole densities are given by Equations (41) and (42).

Substituting dnbe from Equation (57) into the formula

for je [Equation (45)], we obtain for the emitter efficiency

c
e
¼ 1þ

j
p

ge

j
n

gb
ðf

b
Þ

1

1þ dP
e
P

0b

" #�1

: ð59Þ

This generalizes Equation (54) to the case of equilibrium

spin polarization in the base and the presence of spin-

charge coupling. We specify that jn
gb depends on fb

through n0b (fb). The base factor at is given by

Equation (55). The gain b is then

b ¼
w

2

b

2L
2

nb

þ
j

p

ge

j
n

gb
ðf

b
Þ

1

1þ dP
e
P

0b

" #�1

; ð60Þ

where we assume the narrow base limit wb � Lnb.

The above formula generalizes Equation (56). The

amplification depends on both the equilibrium and

nonequilibrium spin. The dependence on the equilibrium

spin is through both jn
gbðfbÞ; which is an even function of

fb, and thus also P0b, and through spin-charge coupling.

We designate this dependence as magneto-amplification

(MA), since it allows a control over amplification by

a magnetic field, giving rise to the equilibrium spin

polarization. Magneto-amplification should be present

even without the nonequilibrium spin and should be

useful for detecting a magnetic field or for measuring

the equilibrium spin polarization. In analogy with giant

magnetoresistance, we designate the effect of a relative

change of b upon switching the sign of dPeP0b as

giant magneto-amplification (GMA) [130, 131]. The

corresponding giant magneto-amplification factor

GMA is defined as

GMA ¼ bðparallelÞ � bðanti-parallelÞ
bðparallelÞ ; ð61Þ

where (anti)parallel refers to the relative orientation of

the equilibrium and nonequilibrium spins P0b and dPe.

Spin and magnetic control of current amplification

would be optimized when the emitter efficiency dominates

over base transport, as in Si-like transistors or specially

tailored GaAs heterostructure transistors. In this case, we

can neglect the factor w2
b=2L2

nb in Equation (60) and write

b ¼
j

n

gb
ðf

b
Þ

j
p

ge

ð1þ dP
e
P

0b
Þ : ð62Þ

The relative change of b in a magnetic field or spin

orientation change becomes

GMA ¼ 2
jdP

e
P

0b
j

1þ jdP
e
P

0b
j ; ð63Þ

which, for reasonable values of 50% spin polarizations

would give a giant magneto-amplification of about 40%.

The above analysis of the forward active mode of an

MBT should also apply to the reverse active mode, with

the same proviso that the amplification is usually much

smaller by design. The saturation mode of an MBT differs

from that of a BJT. We have found that an MBT should

be able to amplify signals also in this mode, solely due to

spin-charge coupling, which should significantly enhance

jc over jb [137]. If nonequilibrium spin is assumed to be

added to both the emitter (dPe) and the collector (dPc),

one can show that it should be possible to control the

current amplification by altering the difference of the two

spin polarizations [137]:

b ¼
P

0b
ðP

0e
� P

0c
Þ

w
2

b
=L

2

nb
þ j

p

ge
=j

n

gb
þ j

p

gc
=j

n

gb

: ð64Þ

The current gain would be large because of the

denominator, which contains the ratio of the hole to

electron equilibrium densities. A remarkable aspect is

that it should be possible to make the gain negative by

switching from the emitter to collector spin polarization,

or by changing the sign of the polarization.

It should also be possible to tune the ON and OFF

logic states within this mode by spin-charge coupling. An

MBT in the saturation mode should also act as a spin

switch. In the cutoff mode, the MBT would be in the OFF

state. Spin effects would be inhibited. We also include the

spin-voltaic mode, in which Vbe¼Vbc¼0. A conventional

BJT is in equilibrium, with no currents flowing, but

an MBT would be active because of the presence of

nonequilibrium spin. In this mode, dnbe¼ n0b (fb)dPeP0b,

while the nonequilibrium hole densities should vanish.

All of the activity would be controlled by spin-charge

coupling. The transistor could act as a spin switch,

changing the direction of the currents by changing the

direction of spin. Unfortunately, the currents would be

small, of the order of generation currents. Since only

electrons would flow, ce¼ 1, and amplification in this

mode could be very large, since it is solely due to at.
These five modes are summarized in Table 1.

What is remarkable is that MA and GMA should not

depend on spin relaxation in the base (typically much

faster than the spin relaxation in the nonmagnetic

regions). The controlling factor would be the carrier

injection from the emitter into the base. Only spin

relaxation in the depletion region between the emitter and

base should be able to mask the effect. Fortunately, the

depletion region would be rather small, especially in the

forward bias, and the built-in electric field would cause

fast spin drift. Magnetic bipolar transistors might also be

used for electrical control of magnetism. In high injection

limits (beyond the validity of our analytical theory),

IBM J. RES. & DEV. VOL. 50 NO. 1 JANUARY 2006 I. ŽUTIĆ ET AL.
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where the number of injected electrons from the emitter

to the base is comparable to the base doping density,

the presence of free carriers should be able to induce

ferromagnetism. Similar considerations would apply to

small subregions of the depletion region. With increasing

depletion, for example by reverse biasing, the subregions

might lose their ferromagnetism, being void of free

carriers. Such electrical control of ferromagnetism might

be applicable to magnetic storage.

Concluding remarks

We have reviewed here both a theoretical framework

for bipolar spin-polarized transport in semiconductors

and several proposed device structures in which the

contributions of both electrons and holes play important

roles. By generalizing a concept of a p–n junction (a

nonmagnetic diode) to include the effects of magnetism

and nonequilibrium spin (injected by electrical or optical

means), we have been led to several predictions. Circularly

polarized light illuminating a p–n junction might be

useful as a spin-polarized battery which would create

a spin electromotive force and produce both spin and

charge currents.

In the presence of a magnetic region, a nonequilibrium

spin should lead to a spin-voltaic effect, a spin-analog

of the photovoltaic effect. The direction of the charge

current, which could flow even at no applied bias, could

be switched by reversal of the equilibrium magnetization

or by reversal of the polarization of the injected spin.

Our findings for p–n junctions can also be applied

to more complicated multi-terminal geometries, in

particular, to a magnetic bipolar transistor, which can

be viewed as consisting of two magnetic p–n junctions

connected in series. The spin-voltaic effect would then

imply that by changing either the degree of injected

nonequilibrium spin polarization or the spin-splitting

of bands in one of the three regions (emitter, base, or

collector), one could effectively control the gain or

current amplification in such a device. We also predict the

possibility of giant magneto-amplification, which could

be viewed as a generalization of the spin-valve effect

to semiconductor structures with strong intrinsic

nonlinearities and thus possibly suitable for spin-

enhanced logic applications.
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128. J. Rudolph, D. Hägele, H. M. Gibbs, G. Khitrova, and
M. Oestreich, Appl. Phys. Lett. 82, 4516 (2003).

129. W. Shockley, M. Sparks, and G. K. Teal, Phys. Rev. 83, 151
(1951).
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133. J. Fabian, I. Žutić, and S. Das Sarma, see http://arxiv/org/

abs/cond-mat/0211639 (2002).
134. N. Lebedeva and P. Kuivalainen, J. Appl. Phys. 93, 9845

(2003).
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