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By incorporating spin-dependent properties and magnetism in
semiconductor structures, new applications can be considered
which go beyond magnetoresistive effects in metallic systems.
Notwithstanding the prospects for spin/magnetism-enhanced logic
in semiconductors, many important theoretical, experimental, and
materials challenges remain. Here we discuss the challenges for
realizing a particular class of associated applications and our
proposal for bipolar spintronic devices in which carriers of both
polarities (electrons and holes) would contribute to spin-charge
coupling. We formulate the theoretical framework for bipolar spin-
polarized transport and describe several novel effects in two- and
three-terminal structures which arise from the interplay between
nonequilibrium spin and equilibrium magnetization.

Introduction

Magnetoresistive effects in metallic magnetic multilayers
[1-13], such as giant magnetoresistance (GMR) and
tunneling magnetoresistance (TMR), have already been
successfully employed in a variety of device applications.
Well-known examples include magnetic sensors, magnetic
read heads in computer hard drives, and nonvolatile
magnetic random access memory (MRAM); many of
these are discussed in more detail in other papers in

this issue. Much less effort has gone into exploring

the potential use of semiconductors in spintronic
applications. Spintronics, or spin electronics, involves the
study of active control and manipulation of spin degrees
of freedom in solid-state systems [13]. Conventionally, the
term spin designates either the spin of a single electron,
which can be detected by its magnetic moment, or the
average spin of an ensemble of electrons, manifested by
magnetization. The control of spin is then the control
of either the population and the phase of the spin of an
ensemble of particles, or the coherent spin manipulation
of a single- or few-spin system.

The field of semiconductor spintronics [13-23]
continues to grow rapidly, and in this paper it is not
possible to cover it in its entirety. Here we focus on our
proposal for bipolar spintronics [24-27] in semiconductor
systems and briefly recall several challenges that must be
overcome as well as important findings that could make

possible its practical realization. Use of the term bipolar
indicates that carriers of both polarities (electrons and
holes) are important [28]. In contrast to unipolar devices
such as metallic spintronic devices [1, 2], bipolar devices
exhibit large deviations from local charge neutrality

and intrinsic nonlinearities in their current—voltage
characteristics, which are important even at a small
applied bias.

These characteristics, together with the ease of
manipulating the minority charge carriers, make it
possible to design active devices that can amplify signals
as well as provide additional degrees of control not
available in charge-based electronics. Analogous to
bipolar charge transport [29, 30], which is dominated
by the influence of the nonequilibrium carrier density,
nonequilibrium spin density (unequal populations of
“spin-up” and “spin-down” carriers) plays an important
role in bipolar spintronics. We discuss here several
implications of nonequilibrium spin density in
semiconductors, such as spin capacitance, spin density
amplification, spin-polarized solar battery, and the spin-
voltaic effect, a spin analog of the photovoltaic effect.

The generation of nonequilibrium spin polarization (of
carriers as well as nuclei) and nonequilibrium spin density
in semiconductors has been known for several decades.
By using methods such as optical orientation or optical
pumping [31], the angular momentum of absorbed
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Predicted variation of the Curie temperature 7, with lattice constant
a for various Mn-doped semiconductors, as given by the Zener
model for carrier-mediated ferromagnetism. The curve is a fit to the
predicted values. Adapted from Figure 16 and Tables I and II of
[55], with permission; ©2001 American Physical Society.

circularly polarized light is transferred to the medium.
Electron orbital momenta are directly oriented by light
and, through spin-orbit interaction, electron spins
become polarized. In a pioneering work, Lampel [32]
demonstrated that spins in p-doped silicon can be
optically oriented (polarized). Subsequent work also
showed that the optical orientation can be used to
establish electron spin polarization in n-doped GaAs
[33, 34] and to provide a much higher spin polarization in
direct-bandgap semiconductors than in silicon [31]. For
example, electrical spin injection, a method for generating
nonequilibrium spin, had already been realized in 1963 by
Clark and Feher [35], who passed a direct current through
a sample of InSb in the presence of a constant applied
magnetic field. Motivated by this work and by the
principle of optical orientation [31], Aronov and Pikus
[36-38] established several key concepts in electrical spin
injection from ferromagnets into metals, semiconductors,
and superconductors.

At present, bipolar spin-polarized transport in
semiconductors is mostly limited to low temperatures.
Progress toward room-temperature operation will depend
critically on the development of new materials. Moreover,
researchers are currently pursuing two distinct
approaches for operation at room temperature: 1) the use
of hybrid structures that combine metallic ferromagnets
and semiconductors; and 2) the use of all-semiconductor
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structures. Each of these approaches has its own
materials issues. In the first, the wide range of metallic
ferromagnetic materials with high Curie temperature

Tc provides a possible advantage. Interestingly, this
advantage may not be fully realized in a hybrid device
geometry, since carrier transport is largely determined
by the interface with the semiconductor. For example,
even the spin polarization in a heterostructure (which
determines the magnitude of magnetoresistive effects) is
not uniquely determined by the bulk magnetic material
[13]. Structural properties of the interface are important
as well: Interfacial defects arising from lattice mismatch
between the metal and semiconductor are known to
suppress the efficiency with which spin-polarized carriers
can be injected into a semiconductor [39]. Even more
dramatic changes can result from different choices of the
insulating tunnel barrier between two ferromagnetic
electrodes: In a recent experiment measuring the
tunneling magnetoresistance (TMR) between two CoFe
electrodes, replacement of the Al,Oz barrier by MgO
was shown to increase the room-temperature TMR by
160% (up to 220%) [40], confirming previous theoretical
predictions [41, 42]. The choice of tunnel barrier also
has a strong influence on transport properties. It was
demonstrated that the use of a CoFe/MgO tunnel injector
can provide robust room-temperature spin injection in
semiconductors such as GaAs [43, 44].

In the second approach to device design (using all-
semiconductor structures), a key issue is whether
ferromagnetic semiconductors with sufficiently high 7T
can be developed. While ferromagnetic semiconductors
have been known since the studies on CrBr; in 1960 [45],
a more recent interest in ferromagnetic semiconductors
was spurred by the fabrication of (III, Mn)V compounds.
After the initial work on (In, Mn)As [46-48], most of the
research has focused on (Ga, Mn)As [49-51]. In contrast
to (In, Mn)As and (Ga, Mn)As with high carrier density
(~10* cm™?), a much lower carrier density in (Zn, Cr)Te
[52] (a II-VI ferromagnetic semiconductor with 7T near
room temperature [53]) suggests that transport properties
can be effectively controlled by carrier doping.

On the theoretical front, work by Dietl et al.

[54, 55] using the Zener model for carrier-mediated
ferromagnetism was particularly influential, since it gave
predictions of Curie temperatures in a wide range of
ferromagnetic semiconductors (Figure 1). These findings
have stimulated numerous theoretical studies to
understand ferromagnetism in semiconductors (some
reviewed in [56-61]) and vigorous experimental efforts to
fabricate novel ferromagnetic materials. The development
of new materials would, of course, be aided significantly
by a theoretical understanding of the semiconductor
properties that are most important for determining 7c.
At present, this understanding is lacking, even for
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idealized homogeneous bulk materials. For example, our
first-principles results using density-functional theory
reveal a variation of magnetic properties across different
materials that cannot be explained by the dominant
models of ferromagnetism in semiconductors [62].
Specifically, we considered a single materials family of 64
different Mn-doped II-IV-V, chalcopyrites, a ternary
generalization of the binary I1I-V compounds; several
have already been reported experimentally to be
ferromagnetic [63, 64]. Our results for Mn spin—spin
coupling strength J vs. lattice constant a of the host
chalcopyrite show no support for the approximate scaling
J o a3 (or, equivalently, T o ¢ °) that is predicted by
the Zener model [54, 55].

Another key issue for all-semiconductor device
designs is the external control of Tc. Dilute magnetic
semiconductors offer an intriguing possibility: carrier-
mediated ferromagnetism in materials such as (In, Mn)As,
(Ga, Mn)As, and MnGe [65-69], which introduces
the possibility of tuning the strength of the ferromagnetic
interactions and, therefore, of tuning 7. For example,
when the number of carriers is changed, either by shining
light [70, 71] or by applying a gate bias in a field-effect
transistor geometry [72], the material can be switched
between the paramagnetic and ferromagnetic states.
These experiments suggest the prospect of nonvolatile
multifunctional devices with tunable optical, electrical,
and magnetic properties. Furthermore, the
demonstration of optically or electrically controlled
ferromagnetism provides a method for distinguishing
carrier-induced semiconductor ferromagnetism from
ferromagnetism that originates from metallic magnetic
inclusions [73]. Such a distinction is particularly
important in view of the growing number of experimental
reports of room-temperature ferromagnetism in
semiconductors [74]. Indeed, it is difficult to identify
spurious sources of magnetism from magnetometry
alone. For example, early reports of ferromagnetism at
900 K in La-doped CaBag [75-77] were later revisited and
attributed to an extrinsic effect [78].

A high T¢ value alone is not sufficient for successful
integration of ferromagnetic semiconductors in
relevant device structures. It is also important to have
materials which would have a good lattice match with
technologically important nonmagnetic semiconductors.
Lattice mismatch typically leads to low-quality interfaces
with a high density of interfacial defects, which would be
detrimental to spin-polarized transport and effective spin
injection. A potentially desirable situation could be
realized with II-IV-V, chalcopyrites. It can be seen from
Figure 2 that the predicted ferromagnetic chalcopyrites
span a large lattice constant range. In particular,

ZnSiP should be lattice-matched with Si and therefore
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formation). Adapted from [62], with permission.

might be useful in demonstrating electrical spin injection
into silicon [27].

Finally, we note that spintronic devices do not
necessarily require the use of ferromagnetic materials
or external magnetic fields. The central physical
phenomenon—Iifting of the spin degeneracy—can also
be realized in nonmagnetic materials with the aid of
transport, optical, and resonance methods to generate
nonequilibrium spin polarization [13]. For example,
circularly polarized light provides an effective way
to generate net spin polarization in direct-bandgap
semiconductors. The angular momentum of the absorbed
light is transferred to the medium, leading directly to
orientation of the electron orbital momenta and, through
spin-orbit interaction, to polarization of the electron
spins. In bulk III-V semiconductors such as GaAs,
optical orientation can lead to a 50% level of polarization
of the electrons; this can be further enhanced by using
quantum structures of reduced dimensionality, or by
applying strain.

Next, we formulate drift-diffusion equations for
bipolar spin-polarized transport and illustrate several of
their implications in a nonmagnetic limit, in the absence
of equilibrium magnetization. We then consider the
magnetic p—n junction and an interplay between
equilibrium magnetization and the injected
nonequilibrium spin, leading to strong spin-charge
coupling. In the last section, we review the basics of
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the bipolar junction transistor and our proposal for its
generalization—the magnetic bipolar transistor.

Because of space limitations, we illustrate our proposal
for bipolar spintronics based only on the above,
inevitably omitting many references to the vast field of
semiconductor spintronics. Many additional findings and
an extensive number of references in semiconductor
spintronics have been reviewed in [13].

Bipolar spin-polarized transport

Spin-polarized drift-diffusion equations

We briefly recall here a case of unipolar spin-polarized
transport in a metallic regime. We label spin-resolved
quantities by A =1 or T for spin-up and A =—1 or | for
spin-down along the chosen quantization axis. For a free
electron, spin angular momentum and magnetic moment
are in opposite directions, and what precisely is denoted
by “spin-up” varies in the literature [79]. Conventionally,
in metallic systems [80], the term refers to carriers with
majority spin. This means that the spin (angular
momentum) of such carriers is anti-parallel to the
magnetization. Some care is needed with the terminology
used for semiconductors, for which the terms majority
and minority refer to the relative population of charge
carriers (electrons or holes). Spin-resolved charge current
(density) in a diffusive regime can be expressed as

j;LZO'/'LV,U;L, (])

where o is conductivity and the chemical potential
(sometimes also referred to as the electrochemical
potential) is

n, = (C[D;L/J;L)Sl’l/l - ¢7 (2)

with ¢ being the proton charge, D, the diffusion
coefficient, on, = n; — n;q the change of electron density
from the equilibrium value for spin A, and ¢ the electric
potential. We use a notation in which a general
quantity X is expressed as the sum of equilibrium and
nonequilibrium parts, X = X, + 6X. Here we focus on
the case of collinear magnetization. More generally, for
a non-collinear magnetization, j; becomes a second-
rank tensor [81, 82].

In the steady state, the continuity equation is

) , [on, on_,
Vj, = AqL —?} ;

i—i T

3)

and 71, is the average time for flipping a A-spin to a A’-
spin. For a degenerate conductor, the Einstein relation is

2
g, =q¢N,D,, 4)

where 0 =0+ ¢, and N= N, + N| is the density of states.
By using a detailed balance N/t = N /7|1 [83] together
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with Equations (2) and (4), the continuity equation can be
expressed [84, 85] as

v 2 iy '“A"_H—),’

- 5
', AqNT—’—NL . (5)

S
where 1, = 74,7)1/(t1) + 7|¢) is the spin relaxation time.
Equation (5) implies the conservation of charge current
Jj=J; + Jj, = constant, while the spin counterpart, the
difference of the spin-polarized currents js =j; — j|, is
position-dependent.

Spin-polarized bipolar transport can be thought of as
a generalization of its unipolar counterpart. Specifically,
spin-polarized unipolar transport, in a metallic regime,
can then be obtained as a limiting case by setting the
electron—hole recombination rate to zero and considering
only one type of carrier (either electrons or holes). In the
absence of any spin polarization, equations that aim to
describe spin-polarized bipolar transport must recover
a description of charge transport. Conventional charge
transport in semiconductors is often accompanied by
large deviations from local charge neutrality (for
example, due to materials inhomogeneities, interfaces,
and surfaces), and Poisson’s equation must be explicitly
included in an analysis of such transport. If we consider
(generally inhomogeneous) doping with a density of N,
ionized acceptors and N4 donors, we can write

V~(6V¢):q(n—p+Na—Nd), (6)

where n and p (electron and hole densities) also depend on
the electrostatic potential ¢ and permittivity e, and can be
spatially dependent. In contrast to the metallic regime,
even equilibrium carrier density can have large spatial
variations that can be routinely tailored by an
appropriate choice of the doping profile [Ng(x) — Na(x)].
Furthermore, charge transport in semiconductors can
display strong nonlinearities, for example, as in the
exponential-like current-voltage dependence of a

diode [30].

Returning to the case of spin-polarized transport in
semiconductors, we formulate a drift-diffusion model
which generalizes the considerations of Equations (1)—(5)
to include both electrons and holes [24, 25, 86]. We recall
from Equations (1) and (2) that spin-resolved current has
a drift part (proportional to the electric field; i.e., = V¢)
and a diffusive part (« Vn;), which we extend to capture
the effects of band bending, band offsets, various
materials inhomogeneities, and the presence of two
types of charge carriers.

To introduce our notation and terminology, which is
a direct generalization of what is conventionally used
in semiconductor physics [87], we first consider the
expression for quasi-equilibrium carrier densities. For
nondegenerate doping levels (Boltzmann statistics) the
spin-resolved components are
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11)':706’ ol Fp T pizj\,e R (7)
where subscripts ¢ and v label quantities which pertain
to the conduction and valence bands. For example,

Ney = 2(2nmjvk3 T /h2)3/ 2 represent the effective density
of states with the corresponding effective masses m, and
kg is the Boltzmann constant. From the total electron
density n = n; 4+ n| and the spin density s =n; — n|, we
can define the spin polarization of electron density as

K n,—n

p=-="1_1 (8)
n nT+}’ll

We consider a general case in which the spin-splitting of
conduction and valence bands, expressed respectively as
2¢(. and 2¢(,, can be spatially inhomogeneous [25].
Splitting of carrier bands (Zeeman or exchange) can arise
because of doping with magnetic impurities and/or the
presence of an applied magnetic field. The spin-/4
conduction band edge (Figure 3),

Eci = ECO - qu - )»C]Cc ’ (9)

differs from the corresponding nonmagnetic bulk value
E.o because of the electrostatic potential ¢ and spin-
splitting A¢g{.. The discontinuity of the conduction band
edge is denoted by AE.. In the nonequilibrium state, the
chemical potential for the A-electrons is u,; and generally
differs from the corresponding quantity for the holes.
While u,, is analogous to the electrochemical potential
in Equations (1) and (2), following the conventional
semiconductor terminology, we refer to it here as the
chemical potential, which is also known as the quasi-
Fermi level. An analogous notation holds for the holes
and the valence band. For example, in Equation (7) p; is
the spin-Z density of the holes, with E,, = E,g — q¢ — A¢{,.
By assuming drift-diffusion-dominated transport
across the heterojunction, the spin-resolved charge-
current densities can be expressed [27] as
g, =1, VE,, +gD NNV (n,/N_), (10)

ni A

jp,l = ﬁp/lp/'LVEV). - quiva(PA/Nv) ) (11)

where 7 and D are mobility and diffusion coefficients
(we use the symbol 7 to distinguish it from the chemical
potential x). In nondegenerate semiconductors, @ and D
are related by the Einstein relation

=qD, ;/kgT, (12)

'un,p/l n,p/

which differs from the metallic (completely degenerate)
case given by Equation (4).

With two types of carriers, the continuity equations
are more complex than those for metallic systems.
After including additional terms for the recombination
of electrons and holes as well as the photoexcitation
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are generally discontinuities in the conduction and valence bands
(AE, and AE) and in other quantities such as the effective mass,
permittivity, and diffusion coefficient.

of electron—hole pairs, we can write these equations as

an, Jns
ETR v i +r;(np; —n0p50)
n,—n_,— A,
4=t n_ @G 13
- 5 (13)
r')p~ jp)_
+a_; +V 7 =—r,(mp; —nyp,)
P, =P, =45,
-+ G,. 14
2t T (14)

s
The generation and recombination of electrons and
holes of spin /4 can be characterized by the rate coefficient

r;; the spin relaxation time for electrons and holes is
denoted by 7y, ,; and the photoexcitation rate G, represents
the effects of electron—hole pair generation and optical
orientation. Spin relaxation equilibrates carrier spin
while preserving nonequilibrium carrier density; for
nondegenerate semiconductors §, = nP,y, where, from
Equation (7), an equilibrium polarization of electron
density P,o can be characterized as

P , = tanh (¢C./k,T). (15)

An analogous expression holds for holes and 5.

The system of drift-diffusion equations (Poisson and
continuity equations) can be self-consistently solved
numerically [24, 25, 88], and, under simplifying
assumptions (as in the case of charge transport),
analytically [27, 86, 89]. Heterojunctions, such as the one
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depicted in Figure 3, can be thought of as building blocks
of bipolar spintronics. To obtain a self-consistent solution
in such a geometry, only the boundary conditions at

x =0 and x = w need be specified. On the other hand, to
obtain an analytical solution we also need to specify the
matching conditions at x; and xg, the two edges of the
space-charge region (or depletion region), in which there
is a large deviation from the local charge neutrality,
accompanied by band bending and a strong built-in
electric field.

We next illustrate how the matching conditions for spin
and carrier density can be applied within the small-bias
or low-injection approximation, widely used to obtain
analytical results for charge transport [30, 87]. In this
case, nonequilibrium carrier densities are small compared
with the density of majority carriers in the corresponding
semiconductor region. For materials such as GaAs, a
small bias approximation gives good agreement with
the full self-consistent solution up to approximately
1V [25, 88].

To simplify our notation, we consider a model for
which only electrons are spin-polarized (p; = p| = p/2),
while it is straightforward to also include spin-polarized
holes [27, 86]. Outside the depletion charge region,
materials parameters (such as N,, Ny, N., Ny, @i, and D)
are assumed to be constant. The voltage drop is assumed
to be confined to the depletion region, which is highly
resistive and depleted from carriers. In thermal
equilibrium (un, = pp; = Ho), the built-in voltage V7,
can be simply evaluated from Equation (7) as

Vi = $or — Pov > (16)

while the applied bias V" (taken to be positive for forward
bias) can be expressed as

V= 7(5(1)1{76(7)]‘)7 (17)
implying that the total junction potential between x =0
and x =w is V' — V4. For the heterojunction of Figure 3,
the width of the depletion (space-charge) region is

—_ oC
Y = X%/ Vi

-V, (18)

where the built-in voltage is represented by
qVei =—AE.+ kgT In (ngr Ncr/norNer). Outside the
depletion region, the system of drift-diffusion equations
reduces to only diffusion equations for spin density
and the density of minority carriers, while the density
of majority carriers is simply given by the density of
donors and acceptors [25, 86].

From Equation (7) we rewrite the electron density by
separating various quantities into equilibrium and
nonequilibrium parts:

n, = n, exp [(qop +du ;) / kg T]. (19)
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The electron carrier and spin density (for simplicity we
omit the subscript n when writing s = n; — 1)) can be
expressed [86] as

_ e(5¢+5u+)/k3 7) {”0 cosh (Z:_T> + s,sinh <ZBLT>} . (20

o b)) {”o sinh (%) +s,cosh (ZBL” ., (1)

where pi = (uny £ un))/2, and the polarization of
electron density is

_ tanh(qu_/kyT) + P,
" 14 P tanh(qu [kyT) "

If we assume that the spin-resolved chemical potentials
are constant for x; < x < xg (i.e., that the depletion
region is sufficiently narrow that the spin relaxation
and carrier recombination can be neglected in the
region), it follows, from Equation (22) and
tanh (¢,_/kgT) = constant, that

(22)

L R |2 R L R
L PnO[1 7 (PnO) ] + 6Pn (1 B PnOPno)
P = R .2 R, L R ) (23)
1 - (PnO) + 5Pn (PnO - PnO)

where L (left) and R (right) label the edges of the
space-charge (depletion) region of a p—n junction.
Correspondingly, PR represents the nonequilibrium
electron polarization, evaluated at R, arising from a spin
source. For a homogeneous equilibrium magnetization
(PLy = PR)), 6PL = 5PR; the nonequilibrium spin
polarization is the same across the depletion region.
Equation (23) demonstrates that only nonequilibrium
spin, already present in the bulk region, can be
transferred through the depletion region at small
biases [24, 25, 86].

Our assumption of constant spin-resolved chemical
potentials is a generalization of a conventional model for
charge transport in which both u, and p, are assumed
to be constant across the depletion region [87]. From
Equations (17), (20), and (21) we can obtain minority
carrier and spin densities at x = x:

L R
aV/k, T rRP ,—P
= ny e 1+5Pn% ) (24)
_( no)
R L R
V/k,T 0P 1—P P
SL= OLeq A OR 20 ) (25)
PnO - (Pn())

which in the absence of nonequilibrium spin (PR = 0)
reduce to the well-known Shockley relation for the
minority carrier density at the depletion region [29],

_ qV/kBT
g =nge )

(26)
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and an analogous formula for the spin,

o qV/ky T
SL = SOLe .

(27)
Nonmagnetic limit: Spin-polarized p—n junctions
We apply our previous findings to the nonmagnetic limit
of vanishing-equilibrium magnetization or, equivalently,
vanishing-equilibrium spin polarization, since (. = {, =0.
We first consider a homogeneously doped semiconductor
in which nonequilibrium spin polarization is created
through optical orientation. Holes are assumed to be
unpolarized, an accurate approximation in materials such
as GaAs; the spin-relaxation time for holes can be several
orders of magnitude shorter than the corresponding time
for electrons [13, 90]. We can simplify Equations (14)
and (15) and consider that holes would recombine with
the electrons of either spin. In the steady state, the
balance between direct electron—hole recombination

and optical pair creation can be obtained from the

sum of Equations (13) and (14) for A=17 and | as

r(np —nyp,) = G, (28)

where r =r;/2 =r /2 is the coefficient of the total
generation—recombination rate and G = G; + G| is the
total electron—hole photoexcitation rate. Similarly, from
the difference of Equations (13) and (14) for =1 and |,
the balance between spin relaxation and spin generation
can be expressed as

rsp+s/t, = P (t = 0)G, (29)

where P, (=0) is the spin polarization at the moment of
photoexcitation, as given by Equation (8). The first term
in Equation (29) describes the disappearance of the spin
density because of carrier recombination, while the
second term describes the intrinsic spin relaxation.

From Equations (28) and (29) we obtain the steady-
state electron polarization [24],

L —nyp,/np

5 1e.rp (30)

P =P (1=0)
In a p-doped sample, p =~ pg, n > ny, and Equation (30)
gives

P =P (t=0)/(1+7,/7), (31)

where t, = 1/rpy is the electron lifetime. After the
illumination is switched off, the electron spin density,
or, equivalently, the nonequilibrium magnetization,
decreases exponentially with the inverse time constant [91]:

/T, =1/t +1/t,. (32)

The steady-state polarization is independent of the
illumination intensity, being reduced from the initial
spin polarization P,(t=0). The polarization of the
photoluminescence is P, = P,(t=0)P, [91].
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For spin pumping in an n-doped sample, where n ~ n
and p > po, Equations (28) and (30) give [92]

P =P (1=0)/(1+n/Gt,). (33)

In contrast to the previous case, the hole lifetime

7, = 1/rng has no effect on P,. However, P, depends

on the photoexcitation intensity G, as expected for

a pumping process. The effective carrier lifetime is

T3 = no/G, where J represents the intensity of the

illuminating light. If it is comparable to or shorter than

75, spin pumping should be very effective. Spin pumping

should occur because the photoexcited spin-polarized

electrons should not need to recombine with holes. There

would be a sufficient supply of unpolarized electrons in

the conduction band available for recombination. The

spin would thus be pumped into the electron system.
From the previous results for optical illumination

in homogeneously doped p- and n-regions, one can

obtain spin and charge diffusion lengths via the

expression

L =+Dr, (34)

in which L would provide a characteristic length scale for
the spatial decay of nonequilibrium spin or charge by
substituting for D the appropriate (electron or hole)
diffusion coefficient and for 7 (spin or charge) the
characteristic time scale. Early experiments using
optical orientation have provided a direct measurement
of the characteristic time scale for the decay of the
nonequilibrium spin [31]. More recent important optical
measurements have shown that such a time scale—the
spin lifetime in GaAs—can be enhanced by an order
of magnitude [93] (>40 ns) or even by two orders
of magnitude [94, 95] (>100 ns). The related issues
of spin relaxation and spin dephasing in GaAs have
been extensively reviewed in [13].

We next discuss our proposal for spin-polarized p—n
junctions, which can be viewed as a generalization
of optical orientation in homogeneously doped
semiconductors, and discuss several novel effects. A
particular realization of a spin-polarized p—n junction,
illustrated in Figure 4(a), would combine two key
ingredients: 1) nonequilibrium spin produced by optical
orientation and 2) a built-in field which separates
electron—hole pairs created by illumination. Our choice
of numerical parameters is based on the assumed use of
a 2-um-long GaAs sample at room temperature, doped
with N, = 3 X 10" em™* acceptors on the left and with
Ng=5X% 10" cm ™ donors on the right [the doping profile,
Ng(x) — Nu(x), is shown in Figure 4(b)]. The intrinsic
carrier concentration is 7; = 1.8 X 10® em™>. For an
undoped semiconductor, ny = py = n;, where n; can be
expressed from Equation (7) as n? = N.Ny exp (—Ey /kg T).
The electron (hole) mobility and diffusion coefficients
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Scheme of a spin-polarized p—n junction and associated spin
capacitance effect. (a) Schematic representation of the junction, a
shaded region (between x; and x;) depicts a depletion region with
the built-in field E. [llumination by circularly polarized light from
the left (at x = 0) creates electron—hole pairs and orients the spins of
the electrons, which diffuse toward the depletion region where they
are swept by the field E to the n-region. (b) and (c) Bias-dependent
spatial profiles of electron spin density and the corresponding spin
polarization, showing that the accumulated nonequilibrium spin
changes as a function of applied bias; we refer to this as the spin
capacitance effect. Adapted from [24], with permission; ©2001
American Physical Society.

are 4,000 (400) cm>V~"-s7! and 103.6 (10.36) cm>s .
The total recombination rate is assumed to be

r=(1/3) X 107> cm®:s™", giving an electron lifetime in
the p-region of 7, = 1/rN, =0.1 ns, and a hole lifetime in
the n-region of 7, = 1/rNg = 0.06 ns. The spin relaxation
time (which is the spin lifetime in the n-region) is
calculated to be 7,=0.2 ns. In the p-region, the electron
spin decays on a time scale of [recall Equation (32)]

Ts = 15T0/(1s + Tn) =~ 0.067 ns. The minority diffusion
lengths are L, = v/D,1t, ~ 1 pm for electrons in the
p-region, and L, = \/Dy7, ~0.25 for holes in the
n-region. The spin decays on the length scale of

Ly, = v/DyT;~0.8 um in the p-region and

Ly, = /Dyt~ 1.4 um in the n-region.

I. ZUTIC ET AL.

Circularly polarized light is assumed to be incident at
the left end (x = 0), while ohmic boundary conditions are
imposed at the right end (spin density is set to vanish at
x=w=2 um). In a metallic regime, away from the point
of spin injection (at an interface with a magnetic region),
there is usually a monotonic spatial decay of spin density
in the nonmagnetic region [13]. However, the spin density
in Figure 4(b) shows a qualitatively different, non-
monotonic, behavior. Away from the point of spin
injection (x = 0), there is an increase of spin density inside
the nonmagnetic region. We refer to this effect as a
(spatial) spin density amplification [24]; it is one of the
predictions for a spin-polarized p—n junction having
inhomogeneous doping. Similar behavior was also
predicted via subsequent calculations [96]. An efficient
transfer of spin across a ZnSe/GaAs heterojunction [97]
suggests that a spatial amplification of spin density could
be realized in more general geometries, and not just in
p—n junctions.

Figure 4(b) and Figure 4(c) indicate that the spin
density and the corresponding spin polarization can vary
strongly with bias. As in the case of conventional p—n
junctions, with an application of forward (positive)
bias, the width of the depletion region decreases [recall
Equation (18)]. Since in all of the cases of Figure 4
illumination is assumed to be at x =0, P} is reduced
for V' > 0. At forward bias, x; (an effective length of
the p-region) increases, and electrons must travel farther
and experience additional spin decay before being swept
(by the built-in field) into the n-region. By analogy
with junction capacitance, we designate this as the spin-
capacitance effect [24], reflecting that an accumulated spin
is bias-dependent (a spin capacitance was also recently
predicted in the rather different geometry of a field-effect
transistor [98]). Another interesting property of a spin-
polarized p—n junction would be that it could be a source
of spin electromotive force (EMF) to generate spin-
polarized currents at no applied bias and to provide an
open circuit voltage [88]. In addition to our proposal for
a p—n junction-based spin-polarized solar battery [88],

a wide range of other structures have recently been
suggested as a source of spin EMF [99-101]; these are
often referred to as spin(-polarized) pumps, cells, or
batteries.

Magnetic p—n junctions

Including spin polarization in p—n junctions could lead
to effects such spin capacitance, spin amplification,

and the generation of spin EMF, as discussed in the
previous section. However, in the absence of equilibrium
magnetization and for the geometry of Figure 4(a), there
should not be strong coupling between spin and charge.
Changing the helicity of the illuminating light implies that
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P, — —P, or s — —s, but the charge properties such as the
charge current or open-circuit voltage would remain the
same. In this section we discuss how the presence of
equilibrium magnetization or, equivalently, equilibrium
spin polarization might lead to strong spin-charge
coupling. In particular, changing an injected
nonequilibrium spin could produce measurable effects
on charge properties.

For potential spintronic applications [13], as well as to
demonstrate novel effects due to spin-polarized bipolar
transport, it is desirable to have large carrier spin-
sub-band splitting (see Figure 3). In the absence of
magnetic field, such a splitting can be achieved by using
ferromagnetic semiconductors, while in the presence of
such a field one could utilize large effective g-factors
due either to magnetic impurities [102] or to spin-orbit
coupling in narrow-bandgap semiconductors. For
example, in (Cd, Mn)Se, |g| =~ 500 at T < 1 K [103];
in n-doped (In, Mn)As, |g| > 100 at 30 K [104]; and
in a narrow-bandgap InSb, |g| ~ 50 even at room
temperature. Selective doping with magnetic impurities
and/or an application of an inhomogeneous magnetic
field could be used to realize a desirable, spatially
inhomogeneous spin-splitting. Inhomogeneous spin-
splitting can also occur in domain walls (see for example
[105]). By solving a system of drift-diffusion and Poisson
equations, one can show that an inhomogeneous spin-
splitting leads to deviations from local charge neutrality
[86].

We discuss several properties of magnetic p—n junctions
that rely on the interplay of the carrier spin-sub-band
splitting (implying that there is a finite equilibrium spin
polarization of carrier density) and the nonequilibrium
spin induced for example by optical or electrical means.
We also focus here on a diffusive regime, while a magnetic
diode in a ballistic regime was recently discussed in [106].
For simplicity, we examine a particular case in which the
band-offsets (see for example Figure 3) are negligible, the
spin polarization of holes can be neglected, and in the
notation for both the carrier spin-splitting 2¢{ and the
spin density s we can omit the index 7. A simple schematic
of such a magnetic p—n junction is shown in Figure 5.

From Equations (7) and (9) we can rewrite the product
of equilibrium densities as

nypy = ”12 cosh (¢C/kyT), (35)

where #; is the intrinsic (nonmagnetic) carrier density
[87]. Note that the density of minority carriers in

the p-region should depend on the spin-splitting

no(0) = no({ = 0) cosh (¢¢/kgT). As in the theory of
charge transport in nonmagnetic junctions [29], the total
charge current can be expressed as the sum of minority
carrier currents at the deletion edges j = jur. + jpr, With
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Potential magnetic p—n junction. (a) Band-energy diagram with
spin-polarized electrons (arrows) and unpolarized holes (circles),
showing the spin-splitting 2¢{, the nonequilibrium spin polarization
at the depletion region edge 8P, (xy), and the region where the spin
is injected. (b) Junction schematic. Using circularly polarized light
(photoexcited electron—hole pairs absorb the angular momentum
carried by the incident photons), nonequilibrium spin is injected
transversely into the nonmagnetic n-region. The circuit loop for
obtaining /- characteristics is indicated. (c) An alternative scheme
to electrically inject spin into the n-region. Adapted from [89], with
permission.

jnLoc 5l’lL ) ijoc 5pR ’ (36)

where dny_ is given by Equation (24), with PR =0,

Opr = polexp (¢V/kgT) — 1], and V the applied bias
(positive for forward bias). Equation (35) implies that in
the regime of large spin-splitting, ¢{ > kgT, the density
of minority electrons changes exponentially with B (o ()
and could create exponentially large magnetoresistance
[25]. In the absence of an external spin source, a geometry
depicted in Figures 5(a) and 5(b) can also be used to
illustrate the prediction of spin extraction [25], a process
opposite to spin injection. Spin-splitting in the p-region
should provide spin-dependent barriers for electron
transport across the depletion region. With a

large forward-applied bias and the generation of
nonequilibrium carrier density, there could be a
significant spin extraction from the nonmagnetic n-region
into the magnetic p-region, with spin densities having
opposite signs in these two regions (for sop. > 0 there
would be a spin accumulation dsg < 0). These findings,
obtained from a self-consistent numerical solution of
drift-diffusion equations [25], can also be confirmed
analytically within the small bias approximation

[86]. Similar spin extraction was recently observed
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2q¢ /T

Calculated giant-magnetoresistance (GMR) effect in magnetic
diodes. Current/spin-splitting characteristic (/ — {) are calculated
self- consistently at /' = 0.8 V for the diode of Figure 5. Spin-
splitting 2¢{ in the p-region is normalized to k;T. The solid curve
corresponds to a switched-off spin source. The current is symmetric
in {. With the spin source on (the extreme case 100% spin polariza-
tion injected into the n-region is shown), the current is a strongly
asymmetric function of {, displaying large GMR values, as shown
by the dashed curve. Materials parameters were assumed to be those
of GaAs. Adapted from [25], with permission; ©2002 American
Physical Society.

experimentally in MnAs/GaAs junctions [107], and
theoretical implications due to tunneling from
nonmagnetic semiconductors into metallic ferromagnets
were considered [108].

The interplay between the P, [recall Equation (15)]
in the p-region and the nonequilibrium spin source of
polarization dP, in the n-region, at the edge of the
depletion region, should determine the /-7 characteristics
of the diodes. The dependence of the electric current j
on ¢{ and 0P, was obtained by both numerical and
analytical methods. Numerical calculations [25] were
performed by self-consistently solving for the system
of drift-diffusion equations, and analytical results
[27, 86, 89] were obtained using a small-bias
approximation [recall Equations (16)—(27)].

To illustrate the /- characteristics of potential
magnetic p—n junctions, consider the small-bias limit in
the configuration of Figure 5. The electron contribution
to the total electric current can be expressed from
Equations (24) and (36) [25, 87] as

Jo ~ng@ [T (14 5P P ) — 1. (37)

Equation (37) generalizes the Silsbee—Johnson spin-
charge coupling [109, 110], originally proposed for
ferromagnet/paramagnet metal interfaces, to the case of
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magnetic p—n junctions. An attractive aspect of the spin-
charge coupling in p—n junctions, as opposed to metals or
degenerate systems, is the nonlinear voltage dependence
of the nonequilibrium carrier and spin densities [25, 86],
resulting in the exponential enhancement of the effect
with increasing V. Equation (37) can be understood
qualitatively from Figure 5. In equilibrium (6P, =0 and
V' =0), no current flows through the depletion region,
since the electron currents from both sides of the junction
balance. The balance is disturbed either by applying bias
or by selectively populating different spin states, making
the flow of one spin species greater than that of the other.
In the latter case, the effective barrier associated with
the crossing of electrons from the n-side to the p-side

is different for spin-up and spin-down electrons (see
Figure 5). Current can flow even at V=0 when 6P, # 0.
This is an example of the spin-voltaic effect (a spin analog
of the photovoltaic effect), in which nonequilibrium spin
causes an EMF [25, 111]. In addition, the direction of the
zero-bias current is controlled by the relative sign of Py
and 0P,. In the section on magnetic bipolar transistors,
we revisit the implications of spin-voltaic effect in three-
terminal structures.

Magnetic p—n junctions should display an interesting
giant-magnetoresistance (GMR)-like effect, which follows
from Equation (37) [25]. The current should depend
strongly on the relative orientation of the nonequilibrium
spin and the equilibrium magnetization. Figure 6 plots
the current density j, which also includes the contribution
from holes, as a function of 2¢{/kgT for both the
unpolarized (6P, = 0) and fully polarized (6P, = 1)
n-regions. In the first case, j is a symmetric function of {,
increasing exponentially with increasing { because of the
increase in the equilibrium minority carrier density 7q(().
In unipolar systems, where transport is due to the
majority carriers, such a modulation of the current is
not likely, since the majority carrier density is fixed by
the density of dopants. A realization of exponential
magnetoresistance was recently demonstrated in a very
different materials system—that of manganite—titanate
heterojunctions [112]—in which an applied magnetic
field affected the width of a depletion layer.

If 6P, # 0, the current should depend on the sign of
Po-0P,. For parallel nonequilibrium (in the n-region)
and equilibrium spins (in the p-region), most electrons
should cross the depletion region through the lower
barrier (see Figure 5), increasing the current. In the
opposite case of anti-parallel relative orientation,
electrons should experience a larger barrier, and the
current should be inhibited. This is demonstrated in
Figure 6 by the strong asymmetry in j. The corresponding
GMR ratio, the difference between j for parallel and anti-
parallel orientations, can also be calculated analytically
from Equation (37) as 2|0P,Pno|/(1 — [0P,Pro|) [86].
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If, for example, |Pny| = [0P,| = 0.5, the relative change
is calculated to be 66%. The GMR effect should

be useful for measuring the spin relaxation rate of
bulk semiconductors [89], as well as for detecting
nonequilibrium spin in the nonmagnetic region of the
p—n junction.

Although practical room-temperature magnetic p—n
junctions are yet to be fabricated, and the effects discussed
here are currently being experimentally examined'

[113, 114], magnetic p—n junctions have already been
demonstrated. Indeed, Wen et al. [115] were perhaps the
first to show that a ferromagnetic p—n junction, based on
the ferromagnetic semiconductor CdCr,Se4 doped with
Ag acceptors and In donors, could act as a diode.

Also, photovoltaic diodes have been fabricated using a
(Hg, Mn)Te magnetic semiconductor [116]. However,
more extensive work on magnetic p—n junctions began
after the discovery of (III, Mn)V ferromagnetic
semiconductors, discussed in [65]. Heavily doped

p-(Ga, Mn)As/n-GaAs junctions have been fabricated
[117-121] to demonstrate tunneling interband spin
injection. Recently, Tsui et al. [122] have shown that

the current in p-CoMnGe/n-Ge magnetic heterojunction
diodes can indeed be controlled by a magnetic field.

Further studies of magnetic p—n junctions could also be
relevant to a class of bipolar structures known as the spin
light-emitting diodes (spin LEDs), now widely used to
detect electrically injected spin in semiconductors
[123-127]. As in the case of an ordinary LED [30],
electrons and holes recombine (in a quantum well
or a p—n junction) and produce electroluminescence.
However, in a spin LED, as a consequence of radiative
recombination of spin-polarized carriers, the emitted light
should be circularly polarized and could be used to trace
back the degree of polarization of carrier density upon
injection into a semiconductor. The spatial separation
and spin relaxation between the spin injection and the
point of spin detection (in a quantum well) make a fully
quantitative analysis of the injected polarization more
difficult. It would be valuable to perform realistic
calculations of spin-polarized transport and spin injection
which would treat the entire spin LED as a single entity
[13]. An intriguing possibility for a low-power bipolar
spintronic application was recently demonstrated by
Rudolph et al. [128] with the operation of a spin laser.
The laser was a vertical-cavity surface-emitting laser
(VCSEL), optically pumped in the gain medium,
consisting of two InGaAs quantum wells, with 50%
spin-polarized electrons. The electrons recombine with
heavy holes, which are effectively unpolarized, emitting
circularly polarized light. The threshold electrical current
density, extracted from the pump power for the lasing

"H. Munekata, Tokyo Institute of Technology, and G. Karczewski, Polish Academy
of Sciences, Warsaw, private communications, 2003.
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operation, was found to be 0.5 A/cmz, which is 23%
below the threshold current density of the spin-
unpolarized VCSEL. Furthermore, for a fixed pump
power, the emission power of the laser changed by 400%
when the degree of circular polarization of the pump laser
was changed. The reason for the decrease in threshold
is the selective coupling of spin-polarized electrons to
photons with one helicity. While the experiment was
conducted at 6 K, room-temperature operation and an
electrically pumped counterpart should be viable as well.

Bipolar junction transistor

The proposed magnetic bipolar transistor (MBT) is based
on spin population differences relying on ensemble

spin (magnetization) and can be viewed as having two
magnetic p—n junctions [25, 86] connected in series.
MBT builds on the bipolar junction transistor (BJT),

a conventional device scheme introduced by Shockley
et al. [129] and widely used in signal amplification and
processing as well as in fast logic applications. We first
introduce BJT and its formalism in order to recall some
standard transistor terminology and to make a smooth
transition to the magnetic case.

Conventional bipolar junction transistors comprise two
p—n junctions in series, forming a three-terminal device.
While such an arrangement may sound like a trivial
extension of the p—n junction diode, the new structure has
the remarkable novel functionality of amplifying small
current signals. The structure of an npn BJT is shown in
Figure 7. The emitter is doped with N4, donors, the base
with N, acceptors, and the collector with Ny, donors.
The donor (acceptor) densities are also the electron (hole)
majority densities in the respective regions. In equilibrium
the minority densities are small. For example, the number
of conduction electrons in the base is ng, = nf / Nab, where
n; is the intrinsic carrier density in the semiconductor.
External biases drive the current. In the most useful form
of transistor operation, the forward active mode, in which
the transistor is an amplifier, the emitter—base junction
is forward-biased with a potential V. > 0, while the
collector—base junction is reverse-biased with a potential
Ve < 0. Thus, the built-in potential in the emitter—base
junction is reduced by V4., permitting electron injection
from the emitter to the base. The number of minority
electrons in the base close to the junction increases
exponentially to the nonequilibrium density

k
n, = nObqu"e/ o7 (38)
As in the section on spin-polarized drift-diffusion
equations, we introduce the nonequilibrium (excess)
density as
k.
Sny, = ny, — gy = ngy (¢ 1. (39)
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Conventional npn bipolar junction transistor biased in the forward
active mode: (a) Overall structure; (b) conduction and valence
bands, populated respectively with electrons (filled circles) and
holes (empty circles). The dashed lines indicate the Fermi levels
(chemical potentials). The emitter—base junction is forward-biased,
with potential V, > 0, while the collector—base junction is reverse-
biased, with potential 7, < 0. The magnitude of the corresponding
applied potentials is given by the difference between the Fermi
levels. The solid arrows indicate carrier flow, while the dashed
arrows illustrate recombination. For effective operation, the base
width w, must be less than the electron diffusion length in the
base L.

Similarly, the nonequilibrium electron density in the base
at the base—collector junction is

on_.=n_ —n, =n

0b Ob(qubC/kBT —1). (40)

be be

In the forward active mode, dmny, is small (and can be
neglected) because V. < 0. It becomes important in
other modes. The hole excess densities in the emitter
and collector, close to the depletion region with the
base, are

GV kg T o

5pe :poe(e 1)7 (41)

Vi /hg T _

o0p. = Ppy.(e 1). (42)

Again, only dp, need be considered in the forward active
mode.

The emitter current j, consists of the electron injection
current into the base and the hole injection current into
the emitter. As the injected electrons travel through the
base, some of them recombine with the holes and leave
the base via the valence band. Together with the flow of
holes in the opposite direction, this constitutes the hole
current j,. Most of the electrons manage to reach the
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collector junction, where they are swept into the collector
by the large electric field in the depletion region. Unless
recombination occurs inside the depletion region, the
electrons reach the collector, forming the collector current
Jeo together with the holes injected into the collector from
the base (this is a small contribution in the forward active
mode).

The most interesting characteristic of a transistor is its
current gain, defined by
p="e. (43)

J

Typically f ~ 100, indicating that a small current signal
introduced by varying j, is amplified a hundred times in
the collector circuit. In other words, removal of one
electron (per unit time and area) from the base results in
the arrival of a hundred electrons at the collector. If there
were no current drawn from the base, the electrons
recombining there would oppose further injection from
the emitter, stopping the current altogether. The sign
convention for the current is specified in Figure 7. The
base current is

Jo =Je —Je- (44)
We can calculate § by calculating the currents. A
convenient way to write the currents in a BJT is through

the nonequilibrium densities of the minority carriers
(see for example [130, 131]):

on 1 on } op
. .n be bc -P eb
Je=1J e (45)
e Jgb {nOb cosh (w, /L) 1, £ Do
I, 7% 1 on,, o Py, (46)
¢ gb o cosh (w, /L) ny, € Doe ’

The base current is then calculated using Equation (44).
The generation currents j, reflect the flow of thermally
generated carriers in their majority regions close to the
depletion region. Such carriers are then swept into the
minority sides, regardless of the applied bias. The electron
generation current in the base is

b) , (47)

nb

W
L

n gDy <
Jgb L, 1, coth
Here D, stands for the electron diffusion coefficient in
the base whose width is wy,. As in the case of diodes, the
width of a region is an effective (rather than nominal)
width, excluding the associated depletion region, whose
size depends on the applied bias [recall Equation (18)].
L,y is the electron diffusion length in the base. The

hole generation currents in the emitter, ;P , and

ge?

collector, j§ , are
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Table 1  Operating modes of conventional and potential magnetic bipolar transistors. Forward (reverse) bias corresponds to positive
(negative) voltage V. The terms MA and GMA stand for magneto-amplification and giant magneto-amplification, while ON and OFF are
modes of small and large resistance, respectively; SPSW designates spin switch. The spin-voltaic mode would apply only to the proposed
MBT. From [131], with permission.

Mode Ve Ve BJT MBT
Forward active Forward Reverse Amplification MA, GMA
Reverse active Reverse Forward Amplification MA, GMA
Saturation Forward Forward ON ON, GMA, SPSW
Cutoff Reverse Reverse OFF OFF
Spin-voltaic Null Null N/A SPSW
» que In the npn BJT, Equations (45) and (46) give for the
Jee = Ppccoth (48) emitter efficiency
pe
1 (54)
Ve =7 p ;>
gD w L4/
o= P p coth <—°> . (49) gelgb
gc L Oc L 3 . .
pe pe since onyp and dpy,. can be neglected in the forward active
The notation is similar to that for the electron case. mode. The base transport factor is
Equations (39)—(42) and (45)—(49) fully describe 1
the eliectrical characteristics of ideelll bipolar junction * = Cosh (/Ly) (55)
transistors. Let us calculate the gain £ in the forward
active mode. We generalize this calculation for the The emitter efficiency is usually increased by heavy emitter
magneti.c case in the next.section.'The ampliﬁcation doping and light base doping, since jge /J gb ~ Nab/Nee.-
mechanism becomes manifest by introducing three The greater the doping, the smaller is the equilibrium
additional quantities: the transport factgr o, the base number of the minority carriers and the corresponding
transplort ;ak():tor o, and the emitter efficiency y.. They generation current. The base transport factor can be
are related by increased by making the base narrower, so that
Yo J. (50) Wy, < Lpp. In this limit, the transistor amplification
= T g’ factor becomes
where 1
B=———F—%7" (56)
j" wb/anb +J ge/ng
Ye =" (51) . . o . .
o In Si transistors, it is usually the emitter efficiency that
determines amplification, since L,y is rather large in Si
A (52) because of relatively slow electron—hole recombination.
' j: In contrast, GaAs transistors have very small L, values,

The emitter efficiency measures the contribution of
electrons to the emitter current. The higher it is, the more
electrons (and fewer holes) are injected across the base—
emitter junction. The base transport factor o, shows how
many of the injected electrons traverse the base to form
the collector current. The current gain is

B=

o

1—a’ (53)

Ideally, o is close to 1, so that f is large. For efficient
current amplification, both efficient emitter injection
(ye =~ 1) and base transport are needed.
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and the amplification is limited by the base transport
factor. To reduce this factor, spatially modulated GaAs
heterostructures are used to create electric drift in the
base (to boost the transport).

Table 1 summarizes different operating modes of both
conventional BJT and potential magnetic transistors
(the latter are discussed in the next section). We have
described the active forward mode, in which a BJT
amplifies small signals. The reverse active mode simply
reverses the biases. In this mode, a BJT can also amplify
signals, but f is much smaller because the emitter
efficiency is small. Usually transistors have a small
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Proposed magnetic npn bipolar transistor in the forward active
mode: (a) Overall structure; (b) corresponding bands and bandgap.
The notation is as in Figure 7. Only the base has an equilibrium
electron spin polarization P, , illustrated in part (b) by the spin-split
conduction band. Spin up (down) electrons are shown as dark (light)
filled circles. Holes are unpolarized. The emitter is assumed to have
a source of spin polarization, here shown as circularly polarized
incident light giving rise to nonequilibrium spin polarization dF..
The coupling between the equilibrium and nonequilibrium polariza-
tions is expected to give rise to many new functionalities, as
described in the text. From [131], with permission.

collector doping in order to have large breakdown
voltage in the reverse mode. In the saturation mode, both
junctions are forward biased. The collector and base
currents are similar in magnitude, and amplification is
inhibited. This mode, used in logic circuits, is denoted as
ON, in contrast to the high-resistance cutoff (OFF) state,
in which both junctions are reverse biased and only small
currents of the magnitudes of the generation current flow.
More discussion can be found in standard textbooks; see
for example [132].

Magnetic bipolar transistor

The magnetic bipolar transistor (MBT) was initially
proposed as a bipolar junction transistor that would
contain magnetic semiconductors as its active elements
[26, 133]. Such a transistor is depicted in Figure 8.
Simplified variations of the MBT, not including the
effects of nonequilibrium spin, were later considered by
Lebedeva and Kuivalainen [134], by Flatté et al. [135],
and by Bandyopadhyay and Cahay [136]. Experimental
realization of GaAs/(Ga, Mn)As-based MBT is currently
in progress.> The magnetic semiconductors can be

>M. Field, Rockwell Scientific, Thousand Oaks, CA, private communication, 2004.
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ferromagnetic or they can have giant g factors and be
placed in a magnetic field. Whatever the case, there is a
large (comparable to thermal energy), spin-splitting 2¢{y,
of the carrier bands. Here we illustrate the predicted
properties of MBTs using electron spin polarization
(assuming that the holes are unpolarized). Only the base
will have equilibrium spin polarization. Exciting new
features appear when we allow for a nonequilibrium spin
to be added (which can viewed as a generalization of a
simplified scheme that considers only the effects of
equilibrium spin [134, 135]. This should be achievable
by optical spin orientation or electrical spin injection.

We assume that there is a nonequilibrium spin of
polarization § P, in the emitter and the equilibrium spin of
polarization Py, in the base. The presence of a magnetic
field can modify Py, by changing ¢(, since [recall
Equation (15)] Py, = tanh (q{p/kgT).

The most important new feature of the MBT is the
spin-dependent barrier for electron injection from the
emitter to the base. As indicated in Figure 7, this barrier
favors spin-up electrons. More electrons would thus be
injected into the lower conduction level in the base than
into the upper conduction level. The equilibrium spin
polarization in the base would be preserved. We have
learned in the previous section that emitter efficiency 7, is
a limiting factor in amplification. We should be able to
modify y. in the MBT by increasing or decreasing the
spin-up electrons in the emitter so that more (fewer)
electrons would be injected through the lower spin
barrier. It should be possible to achieve this by
introducing nonequilibrium spin ¢ P.. In effect, the emitter
efficiency could thus be controlled by spin-charge
coupling. As for the base transport factor o, there is not
much to be done by either spin or magnetic field. While
this factor is governed by electron diffusion, there is a
possibility that L, depends on the applied magnetic field,
leading to small magnetic effects (also observed for
conventional transistors).

The electrical currents through MBTs should also
depend on the nonequilibrium minority carrier
densities and on the applied biases. The expressions
for the currents were given in the previous section
[Equations (45) and (46)]. The difference now is that
the nonequilibrium electron densities would depend
on spin. The spin-charge coupling should lead to the
familiar 0 PPy, dependence for the electron densities,

V. [k, T
Oy, = 1, (Gy) [’ /o (I+3P.Py,) — 1], (57)

o/l Ty (58)
The influence of the equilibrium spin appears both

in 1oy (&) = nop(0) cosh (¢lw/kgT), which reflects the
change of the equilibrium minority density in the
magnetic region, and in the spin-charge coupling factor.
The nonequilibrium spin plays a role only in the latter.

Oy, = ng, (Gy) (e
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The expression for dny, remains Equation (40). The excess

hole densities are given by Equations (41) and (42).
Substituting dny,. from Equation (57) into the formula

for j. [Equation (45)], we obtain for the emitter efficiency

it 1 -
y, = 1+i7] . (59)

J;b(cb) 1+ 5PeP0b

This generalizes Equation (54) to the case of equilibrium
spin polarization in the base and the presence of spin-
charge coupling. We specify that jg, depends on {y,
through ngy, ({p). The base factor « is given by
Equation (55). The gain f is then

Wl Jb 1 -
B= |5+ | - (60)
2Lib »/gb((:b) I+ 6PeP0b

where we assume the narrow base limit wy, < Lyp.

The above formula generalizes Equation (56). The
amplification depends on both the equilibrium and
nonequilibrium spin. The dependence on the equilibrium
spin is through both g, (Gy), which is an even function of
(v, and thus also Py, and through spin-charge coupling.
We designate this dependence as magneto-amplification
(MA), since it allows a control over amplification by

a magnetic field, giving rise to the equilibrium spin
polarization. Magneto-amplification should be present
even without the nonequilibrium spin and should be
useful for detecting a magnetic field or for measuring
the equilibrium spin polarization. In analogy with giant
magnetoresistance, we designate the effect of a relative
change of f upon switching the sign of 0P.Pg, as

giant magneto-amplification (GMA) [130, 131]. The
corresponding giant magneto-amplification factor

GMA is defined as

f(parallel) — f(anti-parallel)
B(parallel) ’

where (anti)parallel refers to the relative orientation of
the equilibrium and nonequilibrium spins Py, and 0 P..
Spin and magnetic control of current amplification
would be optimized when the emitter efficiency dominates
over base transport, as in Si-like transistors or specially
tailored GaAs heterostructure transistors. In this case, we
can neglect the factor wZ/2L2, in Equation (60) and write
.n
gl s (62)
Jge

GMA =

(61)

The relative change of f in a magnetic field or spin
orientation change becomes

OoP_P
| e Ob| (63)

GMA =2—20
1+ [0P, Py, |
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which, for reasonable values of 50% spin polarizations
would give a giant magneto-amplification of about 40%.
The above analysis of the forward active mode of an
MBT should also apply to the reverse active mode, with
the same proviso that the amplification is usually much
smaller by design. The saturation mode of an MBT differs
from that of a BJIT. We have found that an MBT should
be able to amplify signals also in this mode, solely due to
spin-charge coupling, which should significantly enhance
Je over j, [137]. If nonequilibrium spin is assumed to be
added to both the emitter (6P.) and the collector (6 P,),
one can show that it should be possible to control the
current amplification by altering the difference of the two
spin polarizations [137]:
POb(POe_POC) (64)

- 2 2 poan .p ,.n
M}b/l'nb +]ge/]gb +]gc/]gb

The current gain would be large because of the
denominator, which contains the ratio of the hole to
electron equilibrium densities. A remarkable aspect is
that it should be possible to make the gain negative by
switching from the emitter to collector spin polarization,
or by changing the sign of the polarization.

It should also be possible to tune the ON and OFF
logic states within this mode by spin-charge coupling. An
MBT in the saturation mode should also act as a spin
switch. In the cutoff mode, the MBT would be in the OFF
state. Spin effects would be inhibited. We also include the
spin-voltaic mode, in which V.= V1, =0. A conventional
BIJT is in equilibrium, with no currents flowing, but
an MBT would be active because of the presence of
nonequilibrium spin. In this mode, dnpe = nop ({p)9 PePop,
while the nonequilibrium hole densities should vanish.
All of the activity would be controlled by spin-charge
coupling. The transistor could act as a spin switch,
changing the direction of the currents by changing the
direction of spin. Unfortunately, the currents would be
small, of the order of generation currents. Since only
electrons would flow, y. = 1, and amplification in this
mode could be very large, since it is solely due to «.
These five modes are summarized in Table 1.

What is remarkable is that MA and GMA should not
depend on spin relaxation in the base (typically much
faster than the spin relaxation in the nonmagnetic
regions). The controlling factor would be the carrier
injection from the emitter into the base. Only spin
relaxation in the depletion region between the emitter and
base should be able to mask the effect. Fortunately, the
depletion region would be rather small, especially in the
forward bias, and the built-in electric field would cause
fast spin drift. Magnetic bipolar transistors might also be
used for electrical control of magnetism. In high injection
limits (beyond the validity of our analytical theory),
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where the number of injected electrons from the emitter
to the base is comparable to the base doping density,
the presence of free carriers should be able to induce
ferromagnetism. Similar considerations would apply to
small subregions of the depletion region. With increasing
depletion, for example by reverse biasing, the subregions
might lose their ferromagnetism, being void of free
carriers. Such electrical control of ferromagnetism might
be applicable to magnetic storage.

Concluding remarks

We have reviewed here both a theoretical framework
for bipolar spin-polarized transport in semiconductors
and several proposed device structures in which the
contributions of both electrons and holes play important
roles. By generalizing a concept of a p—n junction (a
nonmagnetic diode) to include the effects of magnetism
and nonequilibrium spin (injected by electrical or optical
means), we have been led to several predictions. Circularly
polarized light illuminating a p—n junction might be
useful as a spin-polarized battery which would create

a spin electromotive force and produce both spin and
charge currents.

In the presence of a magnetic region, a nonequilibrium
spin should lead to a spin-voltaic effect, a spin-analog
of the photovoltaic effect. The direction of the charge
current, which could flow even at no applied bias, could
be switched by reversal of the equilibrium magnetization
or by reversal of the polarization of the injected spin.

Our findings for p—n junctions can also be applied
to more complicated multi-terminal geometries, in
particular, to a magnetic bipolar transistor, which can
be viewed as consisting of two magnetic p—n junctions
connected in series. The spin-voltaic effect would then
imply that by changing either the degree of injected
nonequilibrium spin polarization or the spin-splitting
of bands in one of the three regions (emitter, base, or
collector), one could effectively control the gain or
current amplification in such a device. We also predict the
possibility of giant magneto-amplification, which could
be viewed as a generalization of the spin-valve effect
to semiconductor structures with strong intrinsic
nonlinearities and thus possibly suitable for spin-
enhanced logic applications.
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