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An overview is presented of the use of a single-domain model for
developing an understanding of the switching of two coupled
magnetic free layers for toggle MRAM (magnetic random
access memory). The model includes the effects of length,
width, thickness, magnetization, thickness asymmetry, intrinsic
anisotropy, exchange coupling, dipole coupling, and applied
magnetic field. First, a simple perturbative approach is used to
understand the basic phenomena at low fields, including the critical
switching curve and activation energy. Then the more general
model is applied in order to understand the effects of saturation at
large field, and thickness asymmetry. The major results are that
toggle MRAM should have a larger margin for half-select and full-
select switching fields than Stoner–Wohlfarth MRAM, and that
the activation energy should increase upon half-select, thus
eliminating the half-select activated-error problem.

Introduction: Why is toggle MRAM better than
Stoner–Wohlfarth MRAM?
In traditional MRAM, use is made of a single free layer

[see Figure 1(a)] which switches by Stoner–Wohlfarth

reversal [1]. As shown in Figure 1(b), for fields applied

outside the astroid boundary only one state is stable,

whereas at T ¼ 0, for fields inside the astroid boundary

both states are stable and no switching occurs between

them. Switching is accomplished by simultaneously

applying both bit-line and word-line fields (full-select) to

the selected bit. Since this full-select field is outside the

astroid boundary, the selected bit is stable only in the

state to be written. At the same time, the other ‘‘half-

selected’’ bits on the same bit line and word line do not

switch because the half-select field is inside the astroid

boundary. This Stoner–Wohlfarth method of switching

has two major disadvantages. The first is that the margin

between half select and full select is small; this would

require tight control of the switching fields in order

to reach the multi-megabit chip level. The second

disadvantage is that for T 6¼ 0, there is a large drop

in the activation energy for half-selected bits, as shown

in Figure 1(c). This activation energy is the barrier

preventing the bit from making a thermally activated

switch into the other state. The drop in the activation

energy, combined with the large number of half selects

which occur over the lifetime of the chip, results in a

significant error rate. These two problems, half-select

margin and activated errors, limit the usefulness of

Stoner–Wohlfarth MRAM to small arrays and short

lifetimes.

Leonid Savtchenko invented a solution to these

problems, known as toggle MRAM [2]. As shown in

Figure 1(d), in spin-flop switching the single free layer

is replaced by two magnetic layers separated by a

nonmagnetic spacer layer. This dramatically changes

the shape of the critical switching curve, as shown in

Figure 1(e) [2]. The bit can now tolerate a half-select field

many times larger than the smallest required full-select

field, thus relaxing the requirement on control of the

switching fields from bit to bit. Furthermore, as shown in

Figure 1(f), the activation energy under half-select

actually increases, thus making the bit more rather than

less thermally stable [3]. This essentially eliminates the

activated-error problem.

Figures 1 and 2 capture the essence of the difference

between the Stoner–Wohlfarth and toggle MRAM

approaches. The rest of this paper explains these

approaches in more detail. The next section gives an

overview of toggling and spin-flop switching. Then a

simple perturbative model is introduced which gives an

intuitive but approximate description of the switching

behavior at small fields for the special case of a circular

balanced bit. Finally, an exact single-domain model is
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described and used to explain the switching behavior in

general.

Portions of this work have previously been published in

more abbreviated form in [3] and [4]. A similar single-

domain model has been discussed in [5]. Experimental

results on toggle MRAM have been reported in [2, 6, 7].

Overview of toggling and spin-flop switching

As shown in Figure 1(d), the toggle bit has two magnetic

layers of equal thickness t, which are separated by a

nonmagnetic spacer. Figure 2(a) shows a top-down view

of the bit, which is patterned in the shape of an ellipse or

circle. The magnetic poles formed at the edges of each of

the two magnetic layers create dipole fields, which make

the two layers line up anti-parallel (AP) in zero field. (It is

also possible to add some exchange coupling from the

spacer layer, though this is optional.) This flux closure

has several ramifications. First, in this flux-closed anti-

parallel state, the shape anisotropy does not determine

the orientation of the moments in zero field, since there

is no net moment. Instead, the zero-field orientation

is determined by the intrinsic anisotropy of the two

magnetic layers, which is chosen to lie at 45 degrees to the

bit lines and word lines (by depositing and annealing the

films in a magnetic field). This direction is termed the easy

axis. Second, the zero-field activation energy is set by the

intrinsic anisotropy, not by the shape anisotropy, as in

Stoner–Wohlfarth switching. Finally, the flux closure

results in an appreciable reduction in the bit-to-bit dipole

field coupling.

When a magnetic field is applied along the easy axis of

the bit [Figure 2(b)], the moments initially do not respond.

This is because there is no net moment for the field to act

upon. As the easy-axis field is increased, the AP state is

maintained until a critical field, known as the spin-flop

field Hsf, is reached; at this point the moments

discontinuously jump from the AP state into a

‘‘scissored’’ state. In the scissored state the net moment is

pointing in the direction of the applied field, with one

moment rotated clockwise and the other moment rotated

counterclockwise from this direction. In that state there is

a net moment, and as the field is further increased, the

moments respond by smoothly scissoring together

until they become parallel at a field Hxsat. This

spin-flop phenomenon is familiar from the study

of antiferromagnets, but is usually accessible only

Illustrative switching by Stoner–Wohlfarth reversal and toggle MRAM. In traditional Stoner–Wohlfarth switching, use is made of a single free 
layer, as shown in the tunnel junction cross section (a), which switches when a field is applied across the critical switching curve, or “astroid” 
(b).  When a field is applied along the half-select direction, the activation energy decreases dramatically (c).  In toggle switching, use is made 
of two magnetic free layers (d), which switch when a rectangular field excursion crosses the L-shaped critical switching curve (e). When a 
field is applied along the half-select direction, the activation energy initially increases, making the bit more stable (f). 
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at large fields because of the large exchange-coupling

fields present in antiferromagnets. In the synthetic

antiferromagnet configuration considered here, the cou-

pling field, composed of the sum of the dipole and spacer

exchange coupling, is substantially smaller, so that the

spin-flop switching can be achieved at fields less than

100 Oe.

Figure 2(c) shows the operation of a toggle bit in an

MRAM in the case of a ‘‘box-field’’ excursion. First the

word-line field is turned on, which scissors the moments

together, creating a net moment pointing roughly in the

direction of the applied field. Hence, the axis along which

the moments are anti-parallel rotates from the zero-field

state by roughly 45 degrees. Then the bit-line field is

turned on, which rotates each of the moments by roughly

45 degrees so that again the net moment is aligned with

the applied field. Then the word-line field is removed,

which continues the rotation of each moment another 45

degrees so that the net moment of the scissored moments

is pointing along the bit-field direction. Finally the bit

field is removed, and the moments relax into the AP state

along the intrinsic anisotropy direction, but with their

moments reversed from the starting condition. Hence, the

state of the bit has been toggled, either from a ‘‘1’’ to a

‘‘0’’ or from a ‘‘0’’ to a ‘‘1.’’ The toggle nature of this

process requires that the MRAM circuit first read each

bit before writing it to determine whether it has to be

toggled. Compared to Stoner–Wohlfarth MRAM, this

does increase the cycle time for the write operation;

however, it also reduces the write power, since on average

only half the bits have to be toggled.

Simple perturbative model

We now describe a simple perturbative model which is

useful for understanding the basic operation of toggle

bits. The merit of this model lies in its simplicity—it

is a one-dimensional model which is easy to visualize

and interpret. The critical assumption made is that the

dipole coupling field 2MsN, where Ms is the saturation

magnetization and N is the demagnetization factor, is

very large compared with the applied field H, which in

turn is very large compared with the intrinsic anisotropy

field Hi; i.e., 2MsN � H � Hi. Thus, the model is valid

for thick layers with small Hi when fields around the spin-

flop point or smaller are applied. In particular, it does not

describe the saturation of the moments at large fields. As

an example, this model can be well applied to 200-nm-

diameter, 6-nm-thick NiFe layers with Hi ¼ 5 Oe, where

2MsN ¼ 474 Oe. Errors in energy from this perturbative

model compared with the exact single-domain model are

then less than 10% for applied fields around 50 Oe or less;

the spin-flop field Hsf is calculated correctly to within

0.5% of the exact single-domain result. Additional

assumptions are that the bit is circular and that both

magnetic layers are of the same thickness t. All of these

assumptions are lifted when we later consider the general

case. However, throughout this paper, each magnetic

layer is always assumed to be a single domain. This not

only allows the use of a single degree of freedom for each

layer to describe the energy, but also allows the use of

simple demagnetization factors in the energy expression.

The single-domain assumption is valid for very small

magnetic layers, and a good approximation for the

several-hundred-nanometer-sized devices of technological

(a) Top view of a toggle bit in an MRAM. In zero field, the moments line up anti-parallel because of the dipole fields arising from the 
magnetic poles at the edges of the bit. The intrinsic anisotropy, aligned at 45 degrees to the bit and word fields, determines the zero-field 
orientation. When a field is applied along the easy axis, as illustrated in (b), the moments at first remain unchanged, then spin-flop, and then 
scissor together to saturation. When a box-field excursion is applied, as in (c), the moments adiabatically rotate perpendicularly to the applied 
field, thus toggling the state of the bit.
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interest [8]. The single-domain behavior certainly breaks

down as the thickness approaches some fraction of the

width; however, for thin-film samples (perhaps 6 nm in

thickness and 100–300 nm in width) the single-domain

assumption is a good starting approximation.

Figure 3 shows the coordinate system, with the easy

axis (Hi) along the x-direction. Thus, the bit fields and

word fields are at 45 degrees to the x-direction. The

applied field H is directed at an angle a to the easy axis.

The angle of the first moment is termed h, and the angle

of the second is tracked by recording the angle e, which is

the amount by which the two moments deviate from

being anti-parallel. The single-domain energy E is then

E

M
s
At
¼ �H½cos ðh� aÞ � cos ðhþ e� aÞ�

� M
s
N� J

M
s
t

� �
cos e

� 1

2
H

i
cos

2 ðhÞ � 1

2
H

i
cos

2ðhþ eÞ; ð1Þ

where A is the bit area, t is the thickness of the single

layer, and J is the spacer layer exchange coupling.

The first term is the Zeeman energy, arising from the

interaction of the applied field with each of the moments.

This term favors the alignment of each moment with the

applied field. The second term is the coupling field energy,

which is composed of two parts: the dipole coupling and

the exchange coupling. This term favors an anti-parallel

alignment of the two layers. Since these two coupling

terms enter in the same way, we drop J in what follows,

without loss of generality. The last two terms are the

intrinsic anisotropy energy from each of the two layers.

These two terms favor the alignment of each layer with

the easy axis (x-axis).

We nowmake use of our assumption: 2MsN�H�Hi.

We temporarily consider the case of no intrinsic

anisotropy. Then, for a field applied along a ¼ 0, the

problem is easy to solve: Hx¼ 2MsN sin (e/2) ’ MsNe.
For a field applied along an arbitrary direction, this

generalizes to

e ¼ Hsinðh� aÞ=ðM
s
NÞ: ð2Þ

Alternatively (and more rigorously), one can expand

Equation (1) in powers of Hi/MsN and H/MsN, retain

only the leading terms, and minimize, thus obtaining

Equation (2), correct to leading order. Using this

expression for e in Equation (1) leaves E as a function

of only one variable, h. To leading order this gives

E

M
s
At
¼ � H

2

2M
s
N

sin
2 ðh� aÞ �H

i
cos

2
h: ð3Þ

These two terms have very intuitive meanings. The first

favors alignment of the moments perpendicular to the

applied field, and the second favors alignment of the

moments along the intrinsic anisotropy axis. Note also

that the applied field appears only in second order. This is

because to first order there is no net moment, and so there

is no response to the applied field. However, to second

order, the applied field itself creates a moment, and then

this moment responds to the applied field. Finally, note

that there is only one field scale in the problem, making it

easy to guess the order of magnitude of the spin-flop field.

From dimensional analysis, the spin-flop field must be

of order (2HiMsN)1/2, i.e., the geometric mean of the

coupling field and the intrinsic anisotropy field. Again,

this can be interpreted in terms of a net moment being

created by the applied field (opposing the coupling field

2MsN), and then rotating that moment (opposing the

intrinsic anisotropy field Hi).

Further substitution leads to the following even simpler

expression for the energy, now in dimensionless units:

e ¼ 1

2
½h4 � 2h

2
cosð2aÞ þ 1�1=2

cosð2h� uÞ ; ð4Þ

where e is the dimensionless energy, e¼ E/(HiMsAt), h is

the dimensionless field, h¼H/(2HiMsN)1/2, and the phase

u is given by tan u¼ h2 sin 2a/[h2 cos (2a)�1]. Hence, in

this simple model, the energy landscape is always a simple

sinusoid. The equilibrium value of h is given by the value

at which Equation (4) is a minimum; i.e., h ¼ u/2 þ p/2.
At that value of h, tan u ¼ tan 2h; thus,

tan 2h ¼ h
2
sin 2a

h
2
cos ð2aÞ � 1

: ð5Þ

Thus, there is only one discontinuity in h as a function

of h, when the denominator of Equation (5) and the

amplitude of Equation (4) vanish, at a ¼ 0 and h¼ 1, as

described in more detail later. The presence of a single

discontinuity is in distinct contrast to what applies in

Figure 3
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Stoner–Wohlfarth switching, where the moment switches

at each point along the astroid curve because the energy

minimum that the system is in ceases to be a minimum,

and the system jumps discontinuously into another

nearby minimum. This is shown schematically in

Figure 4(a). The severe reduction in activation energy seen

in Stoner–Wohlfarth switching, as shown in Figure 1(c),

is a characteristic of this discontinuous type of switching;

the system switches when the activation energy is reduced

to zero. Figure 4(b) shows plots of Equation (4) for a

number of different applied field values. The equilibrium

value of h is given by the minimum in each curve, as

traced out by the thick brown line. The energy curves are

color-coded to correspond to the inset, which shows the

field path. At zero field, the energy curve is shown in

black. As the field is applied along the word axis, the

system rotates to negative values of h (red curves). With

each successive portion of the field path, the energy curve

continues to translate to the left, corresponding to the

clockwise rotation of the moments. The system is

smoothly carried through the green curves, and then

relaxes into the zero-field state as the field is reduced

along the bit axis (for clarity, the corresponding energy

curves are not shown). Hence, the moments have rotated

by 180 degrees and have reversed state. As the field is

applied, the moments rotate adiabatically in order to

maintain themselves roughly perpendicular to the field.

The activation energy at all field values is given directly

by twice the amplitude of Equation (4):

e
a
¼ ½h4 � 2h

2
cos ð2aÞ þ 1�1=2

; ð6Þ

i.e., by the vertical distance between the minimum and

maximum of each curve in Figure 4(b). From Figure 4(b)

it is clear that the activation energy increases during half

select (along the red series of curves). Furthermore, note

that during the entire switching event the activation

energy is maintained at a value larger than the zero-field

value. Again, this is in distinct contrast to the Stoner–

Wohlfarth case, where the activation energy vanishes

at the switching field. The continuous nature of the

switching event shown in Figure 4(b), as opposed to the

discontinuous event shown in Figure 4(a), constitutes a

major difference between toggle and Stoner–Wohlfarth

switching.

Figure 5 shows the one place where there is a

discontinuity in switching: when Equation (6) equals zero;

this occurs only when the field is applied along the easy

axis (a¼ 0), at a critical value h¼ hsf¼ 1. Figure 5 shows

energy curves for different values of the easy-axis field. At

h¼ 1, the minimum switches discontinuously from being

at h¼ 0 to h¼6p/2 (i.e., the scissor state). The family of

curves in Figure 5 explains the spin-flop behavior shown

in Figure 2(b). For h , 1, the energy minimum is at h¼ 0.

At h ¼ 1, the system abruptly jumps into the scissored

state at either h¼ p/2 or h¼�p/2. Furthermore, Figure 5

can be used to understand the general criterion for

toggling. Toggling requires passing through the state

h ¼ p/2 (or �p/2). From Equation (5), this can happen

only when a ¼ 0; i.e., the field is applied along the easy

axis. When the field is along the easy axis (see Figure 5),

the state at h ¼ p/2 is a minimum only if h . 1. Hence,

the criterion for toggling is that the field excursion must

cut across the easy axis at h . 1. This is shown as a red

ray in Figure 6, drawn with the x- and y-axes as the bit-

line and word-line fields (so that the easy axis is along

the 45-degree line). From the figure it is clear that the

toggling criterion is equivalent to requiring the field

excursion to enclose the spin-flop point, defined by a¼ 0,

h¼ 1, denoted by the red dot in Figure 6. Furthermore, if

one is restricted to rectangular field excursions (changing

hx and hy only separately), the toggling criterion defines

an L-shaped critical curve shown in blue in Figure 6. For

rectangular field excursions (starting at zero field) which

Figure 4

Energetics of Stoner–Wohlfarth switching vs. toggle switching. 
Stoner–Wohlfarth switching occurs discontinuously when the 
applied field changes the energy minimum into an inflection point 
(a). A toggle bit toggles without any discontinuities in the angle as a 
function of applied field (b). Curves of the dimensionless energy 
obtained from the perturbative model are color-coded, as indicated 
in the inset: black: zero-field energy; red: an increase in the word-line 
field only; green: the increase in the bit-line field; blue: the decrease 
in the word-line field. For clarity, the final set of curves, correspond-
ing to the bit-line field being decreased, is not shown.
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cross this critical switching curve, the system toggles,

whereas for rectangular field excursions which do not

cross this critical switching curve, the system does not

toggle. Note that this model explicitly ignores the effects

of large fields (i.e., what occurs at saturation) because of

the assumption that 2MsN � H. Therefore, the manner

in which the critical switching curve behaves at large fields

is outside this perturbative model and requires analysis

using the exact single-domain theory, discussed next.

To summarize this section: The analyses indicate that

there are no discontinuities in h as a function of applied

field, except at the spin-flop point. Instead, the moments

rotate adiabatically and perpendicularly to the applied

field. The activation energy increases under half select,

thus eliminating the activated-error problem, and the

critical switching curve for rectangular field excursions

has a perfect L shape, which reduces the half-select

margin problem.

Exact single-domain model
We now turn our attention to an exact solution of the

single-domain two-layer problem, which has been

discussed in [3] and [4]. The energy can be written,

again in reduced units, as

eðh
1
; h

2
Þ ¼ �h

x
½zcosh

1
þ cosh

2
� � h

y
½zsinh

1
þ sinh

2
�

þ ðn
x
� jzÞcosh

1
cosh

2
þ ðn

y
� jzÞsinh

1
sinh

2

þ z

2
ðn

y
� n

x
þ h

i
Þsin

2
h

1

þ 1

2z
ðn

y
� n

x
þ h

i
zÞsin

2
h

2
; ð7Þ

where e¼ Eb/p2M2
sabt1t2, hx,y,i ¼Hx,y,i b/4pMst1,

j¼ Jb/4pM2
s t

2
1, z¼ t1/t2 . 1, E is the energy, h1,2 are the

angles of the moments of the two layers measured from

the x-axis, Hi is the intrinsic anisotropy in the x̂-direction,

t1,2 are the thicknesses, a is the length in the x̂-direction,

b is the width in the ŷ-direction, nx,y are the reduced

demagnetizing factors in the x̂- and ŷ-directions, Ms is

magnetization, J is the exchange coupling between the

layers, and Hx,y are the applied fields in the x̂- and ŷ-

directions. Throughout this section, fields in lowercase

are in reduced units; conversion to CGS units can be

achieved by using H¼ h4pMst1/b. The minima of

Equation (7) define the equilibrium values of h1 and
h2. As the field is applied, these minima shift position,

corresponding to the moments rotating, and sometimes

change stability from being a minimum to being a saddle

point, corresponding to discontinuous switching events.

Given a critical point, it is possible to calculate the critical

fields at which these stability changes occur by calculating

the discriminant of Equation (7) and setting it to zero:

eh
1
h

1

eh
2
h

2

� ðeh
1
h

2

Þ2 ¼ 0: ð8Þ

This condition corresponds to either a minimum or a

maximum changing into a saddle point. For hy¼ 0 (i.e.,

easy-axis field only), it is easy to show that the parallel

(P) states (h1, h2) ¼ (0, 0), (p, p) and the anti-parallel

(AP) states (0, p), (p, 0) are always critical points of

Equation (7) by showing that eh1=0 and eh2=0 at these

values of (h1, h2). Evaluating Equation (8) at these values

Figure 6

Combined effects on switching of word and bit fields. The red dot 
is the spin-flop point; this or the red ray extending from the spin- 
flop point defines the switching criterion for arbitrary field 
excursions (see text). The field values are normalized to 
(2HiMsN )1/2. For rectangular field excursions, the red ray defines 
the blue L-shaped critical switching curve.
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of (h1, h2) and solving for hx gives the following switching

fields: For positive fields, the AP states lose stability at

h
sf

or

h
d

�
¼ h

i
ðn

y
� jzÞ 1þ 1

z

� �
þ h

i

� ��

þ
n
y
� jz

2

� �2

1� 1

z

� �2�1=2

6
1

2
1� 1

z

� �
ð2n

x
� n

y
� jzÞ; ð9Þ

where the þ of the 6 sign refers to hsf and the � to hd.

The spin-flop field hsf corresponds to the (0, p) state
losing stability, and the direct-write field hd corresponds

to the (p, 0) state losing stability (since z ¼ t1/t2 . 1, hd
corresponds to the thickness-imbalance unfavored state

losing stability). For positive fields, the P state (0, 0) loses

stability at

h
xsat
¼ ð1þ 1=zÞðn

x
� jzÞ � h

i
: ð10Þ

Next we consider the simple case in which the two

layers have the same thickness: z ¼ 1. Then hsf ¼ hd, and

Equations (9) and (10) reduce to Equation (11) (now with

units):

H
sf
¼ H

i
8pM

s
n
y

t

b
� 2J

M
s
t
þH

i

� �� �1=2

; ð11Þ

H
xsat
¼ 8pM

s
n
x

t

b
� 2J

M
s
t
� H

i
: ð12Þ

Similarly for z ¼ 1, the field at which the moments

saturate in the y-direction, i.e., at which the (p/2, p/2)
state loses stability, is given by

H
ysat
¼ 8pM

s
n
y

t

b
� 2J

M
s
t
þ H

i
: ð13Þ

One can see that the spin-flop field is the geometric mean

of the intrinsic anisotropy and the hard-axis saturation

field. This is in agreement with the discussion in the

perturbative calculation section above: regarding the

applied field as first creating a net moment and then

rotating against the intrinsic anisotropy. In particular,

note that the spin-flop field involves the hard-axis

saturation field and not the easy-axis saturation field;

this makes sense because in zero field the moments lie

along the x-axis, and to create a net moment they must

be canted toward the y-axis, i.e., toward the hard-axis

direction. The saturation fields also make intuitive sense;

the applied field must overcome both the dipole coupling

and the exchange coupling to make the moments become

parallel. Furthermore, in the x-direction (easy axis), the

intrinsic anisotropy assists the applied field, resulting in a

minus sign for the Hi term, whereas in the y-direction

(hard axis) it opposes it, resulting in a plus sign for the

Hi term.

Figure 7 shows the corresponding easy-axis hysteresis

loop for the case z¼ 1. Note that there is some hysteresis

as the field is decreased from saturation, because the

moments return in the scissoring state, which continues

to be a minimum down to a field Hr. For fields

Hr , H , Hsf, there are therefore two (four with

degeneracy) possible states: the AP state and the scissoring

state. The system does not return to the AP state until the

scissoring state ceases to be a minimum, at the return field

Hr. This field can be calculated as follows: 1) by noting that

on the easy axis, for the scissoring state, h1¼�h2; and 2)

by minimizing Equation (7) subject to this constraint.

Equation (8) can then be evaluated at the resulting critical

point and solved for Hx ¼Hr. This procedure gives

H
r
¼ 8pM

s
n
x

t

b
� 2J

M
s
t
� H

i

� �

3

0
B@ H

i

8pM
s
n
y

t

b
� 2J

M
s
t
þH

i

1
CA

1=2

: ð14Þ

From Equation (14) it is clear that the amount of

hysteresis decreases with decreasing aspect ratio and

is very small for circles, where nx ¼ ny (note that for

technologically relevant samples, Hi is much smaller than

the dipole coupling fields). Note that in practice it is Hsf

and not Hr that determines the toggling criterion, since

for field excursions between Hr and Hsf the moments can

stay in the AP state and hence not toggle. See [5] for a

Figure 7

Easy-axis hysteresis loop at zero temperature calculated from the 
exact single-domain model for the case of a circle with t1 � t2. Inset 
shows the coordinate system: the intrinsic anisotropy, applied field, 
long axis of the ellipse, and x-axis are all parallel.
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more detailed discussion. Also note that Figure 7 is

drawn for zero temperature. Since the activation

energy goes to zero at the spin-flop point, the measured

hysteresis loop depends on the speed of the field sweep, as

is the case for Stoner–Wohlfarth switching. Slower field

sweeps result in a smaller measured Hsf.

Figure 8 shows the saturation boundary, defined as the

field at which the two moments become parallel, for an

arbitrary field direction. In the easy-axis and hard-axis

directions, the saturation field is given by Hxsat and Hysat.

Figure 8 was calculated numerically as described in [4],

but for technologically relevant samples, the saturation

curve is an ellipse, to within less than one percent. Since

the moments are parallel for fields larger than the

saturation boundary, for a balanced bit (z¼ 1), any data

stored in the bit is lost. For the blue curve, Figure 8

shows three examples of rectangular field excursions. For

field excursions small enough not to contain the spin-flop

point, the bit is not toggled. For intermediate-sized field

excursions which do contain the spin-flop point but which

do not cross the saturation boundary, the bit is toggled.

Finally, for large field excursions which do cross the

saturation boundary, the data is lost—the bit returns to

one of the two AP states, but for a perfectly balanced

sample, the result is random. Note that the bits can be

toggled by field excursions in either the first or the third

quadrant, and that both quadrants do not have to be used

to write into both the ‘‘0’’ and ‘‘1’’ states. This is another

advantage of toggle MRAM over Stoner–Wohlfarth

MRAM: Only unidirectional current drivers are required

for toggle MRAM.

Figure 9 shows the resultant critical switching curve for

a balanced bit with rectangular field excursions. The field

plane is naturally divided into three regions. For fields

smaller than the blue-dotted L-shaped curve (e.g., the

orange field point), nothing occurs. For fields larger than

the blue-dotted L-shaped curve but smaller than the red

saturation boundary (e.g., the green field point), the bit

toggles. For fields larger than the red saturation

boundary, the data is scrambled.

Equation (7) can also be used to calculate the

activation energy. As discussed in [4], this can be done

analytically for fields along the easy axis and numerically

at arbitrary fields. The results are shown in Figure 10, as a

function of the bit-line and word-line fields, for a circular

bit with t1 ¼ t2. Figure 11(a) shows two cuts across

Figure 10, one along the easy axis and the other along the

bit-line or word-line direction. When activating over the

AP saddle point of the figure at low fields, the moments

Figure 8

Saturation boundary as a function of aspect ratio for the case t1 = t2, 
calculated using the exact single-domain model with t1 � t2 � 
2.5 nm, Ms � 1,500 emu/cc, b � 300 nm, Hi � 25 Oe, and J � 0. 
The three shapes of length a, shown at the bottom of the figure, 
correspond to a � 300, 400, and 500 nm. Larger aspect ratios result 
in a more elliptical saturation boundary. For the circle, the spin-flop 
points and Hxsat and Hysat are also shown. Three rectangular field 
excursions are also shown for the circle, demonstrating the three 
types of behavior as a function of excursion size. Adapted from [4], 
with permission; ©2004 American Institute of Physics.
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Critical switching curve calculated using the exact single-domain 
model for the case of a circle with t1 = t2. In addition to the low- 
field behavior predicted by the perturbative model (see Figure 6), 
this figure also shows the saturation boundary. For rectangular 
field excursions, the switching boundary has an ideal L shape, 
terminated at the saturation boundary.
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maintain their roughly anti-parallel orientation during

activation, whereas when activating over the P saddle

point at larger fields, the moments pass through the

parallel state. From these figures it is clear that the

activation energy initially increases under half select

(when the field is applied along the bit-line or word-line

direction). The activation energy goes to zero at the spin-

flop point and also at large fields along the saturation

boundary. One can distinguish two distinct regions in the

activation energy as a function of applied field; see for

example the half-select curve shown in Figure 11(a). For

small fields, the moments activate through the AP saddle

point, as shown in Figure 11(b). At these small fields the

moments are not significantly canted together, and so

they activate by staying substantially anti-parallel and

rotating together into the opposite state. At larger fields,

however, the moments are significantly canted together,

and so they activate by exchanging positions, i.e.,

by passing through the P saddle point. Note that the

increase in activation energy under half select shown in

Figure 11(a) is one of the key features which distinguishes

toggle MRAM from Stoner–Wohlfarth MRAM.

Equation (9) can be used to calculate the spin-flop and

direct-write fields for the case in which z 6¼ 1. In this case,

for fields along the easy axis, the bit switches from one AP

state to the other at a field Hd, spin-flops at a larger field

Hsf, and then saturates at an even larger field Hxsat, as

discussed in [4]. This is shown in Figure 12 for the case

of a circular bit. The field scale is 6230 Oe. The loop

was calculated assuming that t1 ¼ 2.5 nm, t2¼ 2 nm,

Ms ¼ 1,500 emu/cc, a¼ b¼ 300 nm, Hi ¼ 15 Oe, and

J ¼ 0.

Note that at small fields both AP states are stable, but

for larger fields only one state is stable (the state with the

thicker moment pointing in the applied field direction).

Furthermore, if one considers arbitrary fields, there is a

region in field space inside which only one magnetic state

exists, as shown in Figure 13 by the heart-shaped regions

outlined in black. This direct-write state has the thicker

moment pointing roughly in the direction of the applied

field and the thinner moment roughly anti-parallel.

Outside this direct-write region there always exist at least

two magnetic states; for example, along the easy axis near

zero field there are the two AP states (0, p) and (p, 0). The
consequence is that when a field excursion crosses the

direct-write boundary, the bit always ends up in the

direct-write state and, upon returning to zero field,

reaches the thickness-favored state (0, p) for fields applied
in the first quadrant. Thus, this direct-write region must

be avoided when toggling. Figure 13 shows the resulting

Figure 10

Activation energy (kT) as a function of bit and word fields.  Calcu-
lated for a circular bit 300 nm in diameter, with t1 � t2 � 2.5 nm, 
MS � 1,500 emu/cc, Hi � 25 Oe, and J = 0. Adapted from [4], with 
permission. ©2004 American Institute of Physics.
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(a) Activation energy cuts along the easy-axis and half-select 
directions, from Figure 10. There are two different saddle points, 
resulting in the two different activation energy regions as a function 
of applied field, labeled AP and P. (b) The associated activation 
paths. Adapted from [4], with permission; ©2004 American 
Institute of Physics.
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critical switching curves for rectangular field excursions.

The bit toggles in the green regions, does not change in

the white region, direct- or saturation-writes into the

(0, p) state in the blue regions, and direct- or saturation-

writes into the (p, 0) state in the red regions. The field

scales are 6400 Oe. The curves were calculated assuming

that t1¼ 4.1 nm, t2 ¼ 3.5 nm, Ms ¼ 1,500 emu/cc,

a ¼ b ¼ 300 nm, Hi ¼ 25 Oe, and J¼ 0.

Again, for small field excursions nothing occurs. For

intermediate-sized field excursions, the direct-write region

defines an L-shaped direct-write area. Any field excursion

inside this direct-write area results in a direct write to the

thickness-favored state (0, p). At fields large enough to

completely circumnavigate the direct-write region, the bit

toggles. At still larger fields, which cross the saturation

boundary, the bit saturation writes. This means that,

regardless of the initial state, upon crossing the saturation

boundary the bit reaches the thickness-favored state,

which determines the state returned to in zero field.

Hence, this should be avoided in a toggle MRAM. For

the most part, the bit saturation writes into the thickness-

favored state of (0, p) for the first quadrant and the

adjoining regions of the second and fourth quadrants,

and (p, 0) elsewhere. There is a small region in the first

quadrant that saturation-writes to the (p, 0) state because
of the thicker moment points on the intrinsic anisotropy

side of the applied field as the field returns through the

saturation boundary and the thinner moment points

on the other side of the applied field. This is shown in

Figure 13 for two examples on either side of the intrinsic

anisotropy direction. During the rest of the field

excursion, the moments continue to rotate through

the toggle region and thus reach the (0, p) state if

they cut across the saturation boundary at a bit field

Hbit . Hxsat/
ffiffiffi
2
p

or the (p, 0) state if they cut across the

saturation boundary at a bit field Hbit , Hxsat/
ffiffiffi
2
p

. Note,

however, that for bit fields small enough not to cut through

the direct-write region, the saturation write is again into the

thickness-favored state because the bit relaxes into the AP

state and not the scissoring state. Note that in Figure 13

the horizontal and vertical lines are an artifact of the

restriction to rectangular field excursions that turn on the

word-line field first, then turn on the bit-line field, then

turn off the word-line field, and then turn off the bit-

line field. The fundamental physical quantities are the

direct-write region, saturation boundary, and intrinsic

anisotropy direction. If these are known, the critical

switching curves can be calculated for arbitrarily shaped

field excursions.

Summary
We have presented an overview of the use of a single-

domain model in understanding the switching behavior

for spin-flop bits, including the spin-flop and direct-write

fields, saturation boundary, and direct-write region, thus

enabling us to predict the resulting critical switching

curves. In particular, the model predicts that for

rectangular field excursions (changing only Hx or Hy, one

at a time), toggle bits have an ideal L-shaped critical

switching curve, which allows fields along the bit or word

field direction to be several times larger than the full-

select field without disturbing the bit. In addition, the

Figure 13

Critical switching curve for rectangular field excursions calculated 
using the exact single-domain model for the case of a circle and 
t1 > t2.

H
w

or
d

Hbit

Figure 12

Easy-axis hysteresis loop, for a circular bit, calculated from the 
exact single-domain model, for the case t1 > t2.
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model shows that the activation energy increases under

half select, which should eliminate the half-select

activated-error problem. Also, the almost zero net

moment of the free layers minimizes cell-to-cell

magnetostatic coupling. These factors should make

toggle bits attractive for multi-megabit MRAMs.
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