Single-domain
model for
toggle MRAM
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An overview is presented of the use of a single-domain model for
developing an understanding of the switching of two coupled
magnetic free layers for toggle MRAM (magnetic random

access memory). The model includes the effects of length,

width, thickness, magnetization, thickness asymmetry, intrinsic
anisotropy, exchange coupling, dipole coupling, and applied
magnetic field. First, a simple perturbative approach is used to
understand the basic phenomena at low fields, including the critical
switching curve and activation energy. Then the more general
model is applied in order to understand the effects of saturation at
large field, and thickness asymmetry. The major results are that
toggle MRAM should have a larger margin for half-select and full-
select switching fields than Stoner—Wohlfarth MRAM, and that
the activation energy should increase upon half-select, thus
eliminating the half-select activated-error problem.

Introduction: Why is toggle MRAM better than
Stoner-Wohlfarth MRAM?

In traditional MRAM, use is made of a single free layer
[see Figure 1(a)] which switches by Stoner—Wohlfarth
reversal [1]. As shown in Figure 1(b), for fields applied
outside the astroid boundary only one state is stable,
whereas at 7= 0, for fields inside the astroid boundary
both states are stable and no switching occurs between
them. Switching is accomplished by simultaneously
applying both bit-line and word-line fields (full-select) to
the selected bit. Since this full-select field is outside the
astroid boundary, the selected bit is stable only in the
state to be written. At the same time, the other “half-
selected” bits on the same bit line and word line do not
switch because the half-select field is inside the astroid
boundary. This Stoner—Wohlfarth method of switching
has two major disadvantages. The first is that the margin
between half select and full select is small; this would
require tight control of the switching fields in order

to reach the multi-megabit chip level. The second
disadvantage is that for 7" # 0, there is a large drop

in the activation energy for half-selected bits, as shown
in Figure 1(c). This activation energy is the barrier
preventing the bit from making a thermally activated
switch into the other state. The drop in the activation
energy, combined with the large number of half selects
which occur over the lifetime of the chip, results in a

significant error rate. These two problems, half-select
margin and activated errors, limit the usefulness of
Stoner—Wohlfarth MRAM to small arrays and short
lifetimes.

Leonid Savtchenko invented a solution to these
problems, known as toggle MRAM [2]. As shown in
Figure 1(d), in spin-flop switching the single free layer
is replaced by two magnetic layers separated by a
nonmagnetic spacer layer. This dramatically changes
the shape of the critical switching curve, as shown in
Figure 1(e) [2]. The bit can now tolerate a half-select field
many times larger than the smallest required full-select
field, thus relaxing the requirement on control of the
switching fields from bit to bit. Furthermore, as shown in
Figure 1(f), the activation energy under half-select
actually increases, thus making the bit more rather than
less thermally stable [3]. This essentially eliminates the
activated-error problem.

Figures 1 and 2 capture the essence of the difference
between the Stoner—Wohlfarth and toggle MRAM
approaches. The rest of this paper explains these
approaches in more detail. The next section gives an
overview of toggling and spin-flop switching. Then a
simple perturbative model is introduced which gives an
intuitive but approximate description of the switching
behavior at small fields for the special case of a circular
balanced bit. Finally, an exact single-domain model is
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[lustrative switching by Stoner—Wohlfarth reversal and toggle MRAM. In traditional Stoner—Wohlfarth switching, use is made of a single free
layer, as shown in the tunnel junction cross section (a), which switches when a field is applied across the critical switching curve, or “astroid”
(b). When a field is applied along the half-select direction, the activation energy decreases dramatically (c). In toggle switching, use is made
of two magnetic free layers (d), which switch when a rectangular field excursion crosses the L-shaped critical switching curve (e). When a
field is applied along the half-select direction, the activation energy initially increases, making the bit more stable (f).

described and used to explain the switching behavior in
general.

Portions of this work have previously been published in
more abbreviated form in [3] and [4]. A similar single-
domain model has been discussed in [5]. Experimental
results on toggle MRAM have been reported in [2, 6, 7].

Overview of toggling and spin-flop switching

As shown in Figure 1(d), the toggle bit has two magnetic
layers of equal thickness 7, which are separated by a
nonmagnetic spacer. Figure 2(a) shows a top-down view
of the bit, which is patterned in the shape of an ellipse or
circle. The magnetic poles formed at the edges of each of
the two magnetic layers create dipole fields, which make
the two layers line up anti-parallel (AP) in zero field. (It is
also possible to add some exchange coupling from the
spacer layer, though this is optional.) This flux closure
has several ramifications. First, in this flux-closed anti-
parallel state, the shape anisotropy does not determine
the orientation of the moments in zero field, since there
is no net moment. Instead, the zero-field orientation

is determined by the intrinsic anisotropy of the two
magnetic layers, which is chosen to lie at 45 degrees to the
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bit lines and word lines (by depositing and annealing the
films in a magnetic field). This direction is termed the easy
axis. Second, the zero-field activation energy is set by the
intrinsic anisotropy, not by the shape anisotropy, as in
Stoner—Wohlfarth switching. Finally, the flux closure
results in an appreciable reduction in the bit-to-bit dipole
field coupling.

When a magnetic field is applied along the easy axis of
the bit [Figure 2(b)], the moments initially do not respond.
This is because there is no net moment for the field to act
upon. As the easy-axis field is increased, the AP state is
maintained until a critical field, known as the spin-flop
field Hgy, is reached; at this point the moments
discontinuously jump from the AP state into a
“scissored” state. In the scissored state the net moment is
pointing in the direction of the applied field, with one
moment rotated clockwise and the other moment rotated
counterclockwise from this direction. In that state there is
a net moment, and as the field is further increased, the
moments respond by smoothly scissoring together
until they become parallel at a field H . This
spin-flop phenomenon is familiar from the study
of antiferromagnets, but is usually accessible only
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(a) Top view of a toggle bit in an MRAM. In zero field, the moments line up anti-parallel because of the dipole fields arising from the
magnetic poles at the edges of the bit. The intrinsic anisotropy, aligned at 45 degrees to the bit and word fields, determines the zero-field
orientation. When a field is applied along the easy axis, as illustrated in (b), the moments at first remain unchanged, then spin-flop, and then
scissor together to saturation. When a box-field excursion is applied, as in (c), the moments adiabatically rotate perpendicularly to the applied

field, thus toggling the state of the bit.

at large fields because of the large exchange-coupling
fields present in antiferromagnets. In the synthetic
antiferromagnet configuration considered here, the cou-
pling field, composed of the sum of the dipole and spacer
exchange coupling, is substantially smaller, so that the
spin-flop switching can be achieved at fields less than
100 Oe.

Figure 2(c) shows the operation of a toggle bit in an
MRAM in the case of a “box-field” excursion. First the
word-line field is turned on, which scissors the moments
together, creating a net moment pointing roughly in the
direction of the applied field. Hence, the axis along which
the moments are anti-parallel rotates from the zero-field
state by roughly 45 degrees. Then the bit-line field is
turned on, which rotates each of the moments by roughly
45 degrees so that again the net moment is aligned with
the applied field. Then the word-line field is removed,
which continues the rotation of each moment another 45
degrees so that the net moment of the scissored moments
is pointing along the bit-field direction. Finally the bit
field is removed, and the moments relax into the AP state
along the intrinsic anisotropy direction, but with their
moments reversed from the starting condition. Hence, the
state of the bit has been toggled, either from a “1” to a
“0” or from a “0” to a “1.” The toggle nature of this
process requires that the MRAM circuit first read each
bit before writing it to determine whether it has to be
toggled. Compared to Stoner—Wohlfarth MRAM, this
does increase the cycle time for the write operation;
however, it also reduces the write power, since on average
only half the bits have to be toggled.
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Simple perturbative model

We now describe a simple perturbative model which is
useful for understanding the basic operation of toggle
bits. The merit of this model lies in its simplicity—it

is a one-dimensional model which is easy to visualize
and interpret. The critical assumption made is that the
dipole coupling field 2M N, where M is the saturation
magnetization and N is the demagnetization factor, is
very large compared with the applied field H, which in
turn is very large compared with the intrinsic anisotropy
field H;; i.e., 2M (N > H > H;. Thus, the model is valid
for thick layers with small H; when fields around the spin-
flop point or smaller are applied. In particular, it does not
describe the saturation of the moments at large fields. As
an example, this model can be well applied to 200-nm-
diameter, 6-nm-thick NiFe layers with H; =5 Oe, where
2M¢N = 474 Oe. Errors in energy from this perturbative
model compared with the exact single-domain model are
then less than 10% for applied fields around 50 Oe or less;
the spin-flop field Hy; is calculated correctly to within
0.5% of the exact single-domain result. Additional
assumptions are that the bit is circular and that both
magnetic layers are of the same thickness 7. All of these
assumptions are lifted when we later consider the general
case. However, throughout this paper, each magnetic
layer is always assumed to be a single domain. This not
only allows the use of a single degree of freedom for each
layer to describe the energy, but also allows the use of
simple demagnetization factors in the energy expression.
The single-domain assumption is valid for very small
magnetic layers, and a good approximation for the
several-hundred-nanometer-sized devices of technological
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Coordinate system for perturbative model. The intrinsic anisotropy
(easy axis) is along the x-axis. The angles of the moments are
denoted by 6 and &, and that of the applied field by .

interest [8]. The single-domain behavior certainly breaks
down as the thickness approaches some fraction of the
width; however, for thin-film samples (perhaps 6 nm in
thickness and 100-300 nm in width) the single-domain
assumption is a good starting approximation.

Figure 3 shows the coordinate system, with the easy
axis (H;) along the x-direction. Thus, the bit fields and
word fields are at 45 degrees to the x-direction. The
applied field H is directed at an angle « to the easy axis.
The angle of the first moment is termed 6, and the angle
of the second is tracked by recording the angle ¢, which is
the amount by which the two moments deviate from
being anti-parallel. The single-domain energy FE is then

T —H[cos (0 — o) — cos (0 + & — )]

J
— (MSN— M—st) cos ¢

_ %Hicos2 (0)—%HiCOSZ(0—|—£), (1)

where A is the bit area, ¢ is the thickness of the single
layer, and J is the spacer layer exchange coupling.
The first term is the Zeeman energy, arising from the
interaction of the applied field with each of the moments.
This term favors the alignment of each moment with the
applied field. The second term is the coupling field energy,
which is composed of two parts: the dipole coupling and
the exchange coupling. This term favors an anti-parallel
alignment of the two layers. Since these two coupling
terms enter in the same way, we drop J in what follows,
without loss of generality. The last two terms are the
intrinsic anisotropy energy from each of the two layers.
These two terms favor the alignment of each layer with
the easy axis (x-axis).

We now make use of our assumption: 2M N > H > H;.
We temporarily consider the case of no intrinsic
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anisotropy. Then, for a field applied along o = 0, the
problem is easy to solve: H,=2M N sin (g/2) ~ M Ne.
For a field applied along an arbitrary direction, this
generalizes to

&= Hsin(0) — o) /(M N). (2)

Alternatively (and more rigorously), one can expand
Equation (1) in powers of H;/M N and H/M N, retain
only the leading terms, and minimize, thus obtaining
Equation (2), correct to leading order. Using this
expression for ¢ in Equation (1) leaves E as a function
of only one variable, 6. To leading order this gives

E 2

.2 2
@ =- IMN sin” (6 — o) — H,cos” 0. (3)

These two terms have very intuitive meanings. The first
favors alignment of the moments perpendicular to the
applied field, and the second favors alignment of the
moments along the intrinsic anisotropy axis. Note also
that the applied field appears only in second order. This is
because to first order there is no net moment, and so there
is no response to the applied field. However, to second
order, the applied field itself creates a moment, and then
this moment responds to the applied field. Finally, note
that there is only one field scale in the problem, making it
easy to guess the order of magnitude of the spin-flop field.
From dimensional analysis, the spin-flop field must be
of order QH;MN)"?, i.e., the geometric mean of the
coupling field and the intrinsic anisotropy field. Again,
this can be interpreted in terms of a net moment being
created by the applied field (opposing the coupling field
2MN), and then rotating that moment (opposing the
intrinsic anisotropy field H;).

Further substitution leads to the following even simpler
expression for the energy, now in dimensionless units:

e= % [h4 — 2i cos (20) + 1]1/2 cos (20 — o), 4)

where e is the dimensionless energy, e = E/(H;MAt), h is
the dimensionless field, h = H/(2H;MN)"?, and the phase
@ is given by tan ¢ = h* sin 20/[h* cos (2«) —1]. Hence, in
this simple model, the energy landscape is always a simple
sinusoid. The equilibrium value of 0 is given by the value
at which Equation (4) is a minimum; i.e., 6 = ¢/2 + 7/2.
At that value of 0, tan ¢ = tan 20; thus,
2.

tan 20 = Z}ZS& . (5)

h™cos (2a) — 1
Thus, there is only one discontinuity in 6 as a function
of h, when the denominator of Equation (5) and the
amplitude of Equation (4) vanish, at « =0 and 7 =1, as
described in more detail later. The presence of a single
discontinuity is in distinct contrast to what applies in
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Stoner—Wohlfarth switching, where the moment switches
at each point along the astroid curve because the energy
minimum that the system is in ceases to be a minimum,
and the system jumps discontinuously into another
nearby minimum. This is shown schematically in
Figure 4(a). The severe reduction in activation energy seen
in Stoner—Wohlfarth switching, as shown in Figure 1(c),
is a characteristic of this discontinuous type of switching;
the system switches when the activation energy is reduced
to zero. Figure 4(b) shows plots of Equation (4) for a
number of different applied field values. The equilibrium
value of 0 is given by the minimum in each curve, as
traced out by the thick brown line. The energy curves are
color-coded to correspond to the inset, which shows the
field path. At zero field, the energy curve is shown in
black. As the field is applied along the word axis, the
system rotates to negative values of 0 (red curves). With
each successive portion of the field path, the energy curve
continues to translate to the left, corresponding to the
clockwise rotation of the moments. The system is
smoothly carried through the green curves, and then
relaxes into the zero-field state as the field is reduced
along the bit axis (for clarity, the corresponding energy
curves are not shown). Hence, the moments have rotated
by 180 degrees and have reversed state. As the field is
applied, the moments rotate adiabatically in order to
maintain themselves roughly perpendicular to the field.
The activation energy at all field values is given directly
by twice the amplitude of Equation (4):

e, = [114 — 2 cos (20) + 1]1/2, (6)

i.e., by the vertical distance between the minimum and
maximum of each curve in Figure 4(b). From Figure 4(b)
it is clear that the activation energy increases during half
select (along the red series of curves). Furthermore, note
that during the entire switching event the activation
energy is maintained at a value larger than the zero-field
value. Again, this is in distinct contrast to the Stoner—
Wohlfarth case, where the activation energy vanishes

at the switching field. The continuous nature of the
switching event shown in Figure 4(b), as opposed to the
discontinuous event shown in Figure 4(a), constitutes a
major difference between toggle and Stoner—Wohlfarth
switching.

Figure 5 shows the one place where there is a
discontinuity in switching: when Equation (6) equals zero;
this occurs only when the field is applied along the easy
axis («=0), at a critical value & = hyy= 1. Figure 5 shows
energy curves for different values of the easy-axis field. At
h =1, the minimum switches discontinuously from being
at 0 =0 to 0 = =x/2 (i.e., the scissor state). The family of
curves in Figure 5 explains the spin-flop behavior shown
in Figure 2(b). For i1 < 1, the energy minimum is at 6 =0.
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Energetics of Stoner—Wohlfarth switching vs. toggle switching.
Stoner—Wohlfarth switching occurs discontinuously when the
applied field changes the energy minimum into an inflection point
(a). A toggle bit toggles without any discontinuities in the angle as a
function of applied field (b). Curves of the dimensionless energy
obtained from the perturbative model are color-coded, as indicated
in the inset: black: zero-field energy; red: an increase in the word-line
field only; green: the increase in the bit-line field; blue: the decrease
in the word-line field. For clarity, the final set of curves, correspond-
ing to the bit-line field being decreased, is not shown.

At h =1, the system abruptly jumps into the scissored
state at either 0 = /2 or 0 =—n/2. Furthermore, Figure 5
can be used to understand the general criterion for
toggling. Toggling requires passing through the state

0 = n/2 (or —=n/2). From Equation (5), this can happen
only when o = 0; i.e., the field is applied along the easy
axis. When the field is along the easy axis (see Figure 5),
the state at 6§ = 7/2 is a minimum only if /# > 1. Hence,
the criterion for toggling is that the field excursion must
cut across the easy axis at # > 1. This is shown as a red
ray in Figure 6, drawn with the x- and y-axes as the bit-
line and word-line fields (so that the easy axis is along
the 45-degree line). From the figure it is clear that the
toggling criterion is equivalent to requiring the field
excursion to enclose the spin-flop point, defined by o =0,
h=1, denoted by the red dot in Figure 6. Furthermore, if
one is restricted to rectangular field excursions (changing
hy and h,, only separately), the toggling criterion defines
an L-shaped critical curve shown in blue in Figure 6. For
rectangular field excursions (starting at zero field) which
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Energy curves, from the perturbative model, for the field applied
along the easy axis; again, energy is dimensionless, and the zero-
field case is shown in black. As the field is increased, the minimum
continues to be at # = 0 (blue curves) until, for 4> 1, the minimum
discontinuously jumps to 6 = /2 (red curves).

H, word

bit

Combined effects on switching of word and bit fields. The red dot
is the spin-flop point; this or the red ray extending from the spin-
flop point defines the switching criterion for arbitrary field
excursions (see text). The field values are normalized to
(2H,M_N)"2. For rectangular field excursions, the red ray defines
the blue L-shaped critical switching curve.

cross this critical switching curve, the system toggles,
whereas for rectangular field excursions which do not
cross this critical switching curve, the system does not
toggle. Note that this model explicitly ignores the effects
of large fields (i.e., what occurs at saturation) because of
the assumption that 2M(N > H. Therefore, the manner
in which the critical switching curve behaves at large fields
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is outside this perturbative model and requires analysis
using the exact single-domain theory, discussed next.

To summarize this section: The analyses indicate that
there are no discontinuities in 0 as a function of applied
field, except at the spin-flop point. Instead, the moments
rotate adiabatically and perpendicularly to the applied
field. The activation energy increases under half select,
thus eliminating the activated-error problem, and the
critical switching curve for rectangular field excursions
has a perfect L shape, which reduces the half-select
margin problem.

Exact single-domain model

We now turn our attention to an exact solution of the
single-domain two-layer problem, which has been
discussed in [3] and [4]. The energy can be written,
again in reduced units, as

e(0,,0,) = —h [zcosO, + cos0)] — h [zsin0, + sin0,]

+ (n, —jz)cos0, cosl, + (n, — jz)sin0, sin0,

z

+ E(n —n, Jrhi)sinzf)1

y
1 .2
+ % (n‘ —n_+ hz)sin"0,, (7)

where e = Eb/m*M2abt\ta, h.,; = H,,;b/4nMt,,
Jj=Jb/AnM?3, z = 1/t > 1, E is the energy, 0, » are the
angles of the moments of the two layers measured from
the x-axis, H; is the intrinsic anisotropy in the X-direction,
115 are the thicknesses, a is the length in the x-direction,
b is the width in the y-direction, n. , are the reduced
demagnetizing factors in the x- and y-directions, M is
magnetization, J is the exchange coupling between the
layers, and H, , are the applied fields in the X- and y-
directions. Throughout this section, fields in lowercase
are in reduced units; conversion to CGS units can be
achieved by using H = h4nMt,/b. The minima of
Equation (7) define the equilibrium values of 0; and

0,. As the field is applied, these minima shift position,
corresponding to the moments rotating, and sometimes
change stability from being a minimum to being a saddle
point, corresponding to discontinuous switching events.
Given a critical point, it is possible to calculate the critical
fields at which these stability changes occur by calculating
the discriminant of Equation (7) and setting it to zero:

2
€y0,€0,0, ~ (6‘0[92) =0. (8)

This condition corresponds to either a minimum or a
maximum changing into a saddle point. For A, =0 (i.e.,
easy-axis field only), it is easy to show that the parallel
(P) states (0, 0,) = (0, 0), (%, ©) and the anti-parallel
(AP) states (0, ), (m, 0) are always critical points of
Equation (7) by showing that ey, =0 and ¢y, =0 at these
values of (6, 0,). Evaluating Equation (8) at these values
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of (61, 6,) and solving for /. gives the following switching
fields: For positive fields, the AP states lose stability at

hsf 1
or p = {hi {(n‘ —Jjz) <1 + —> + hi]
) z
hy
n —jz 2 1 25 1/2
(=27) ()

x (1 _ é) (2n,— n, —jz), )

where the + of the * sign refers to /g and the — to hy.

The spin-flop field /g corresponds to the (0, 7) state
losing stability, and the direct-write field /4 corresponds
to the (7, 0) state losing stability (since z = t;/t, > 1, hy
corresponds to the thickness-imbalance unfavored state
losing stability). For positive fields, the P state (0, 0) loses
stability at

h\sdt ( 1/2)(7[ _/Z) h (10)

Next we consider the simple case in which the two
layers have the same thickness: z = 1. Then hy = h4, and
Equations (9) and (10) reduce to Equation (11) (now with
units):

27 1/2
H; = { <8ann}E—m+H>} ) (11)
t 2J
Hxsal SnMsn‘cZ M t Hi : (12)

Similarly for z =1, the field at which the moments
saturate in the y-direction, i.e., at which the (n/2, 7/2)
state loses stability, is given by
H, o = S7M, 5 — AZIJ +H.. (13)
One can see that the spin-flop field is the geometric mean
of the intrinsic anisotropy and the hard-axis saturation
field. This is in agreement with the discussion in the
perturbative calculation section above: regarding the
applied field as first creating a net moment and then
rotating against the intrinsic anisotropy. In particular,
note that the spin-flop field involves the hard-axis
saturation field and not the easy-axis saturation field;
this makes sense because in zero field the moments lie
along the x-axis, and to create a net moment they must
be canted toward the y-axis, i.e., toward the hard-axis
direction. The saturation fields also make intuitive sense;
the applied field must overcome both the dipole coupling
and the exchange coupling to make the moments become
parallel. Furthermore, in the x-direction (easy axis), the
intrinsic anisotropy assists the applied field, resulting in a
minus sign for the H; term, whereas in the y-direction
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Easy-axis hysteresis loop at zero temperature calculated from the
exact single-domain model for the case of a circle with ¢, = t,. Inset
shows the coordinate system: the intrinsic anisotropy, applied field,
long axis of the ellipse, and x-axis are all parallel.

(hard axis) it opposes it, resulting in a plus sign for the
H; term.

Figure 7 shows the corresponding easy-axis hysteresis
loop for the case z= 1. Note that there is some hysteresis
as the field is decreased from saturation, because the
moments return in the scissoring state, which continues
to be a minimum down to a field H,. For fields
H, < H < Hyg, there are therefore two (four with
degeneracy) possible states: the AP state and the scissoring
state. The system does not return to the AP state until the
scissoring state ceases to be a minimum, at the return field
H.. This field can be calculated as follows: 1) by noting that
on the easy axis, for the scissoring state, 0, =—0,; and 2)
by minimizing Equation (7) subject to this constraint.
Equation (8) can then be evaluated at the resulting critical
point and solved for H, = H,. This procedure gives

t 2
<87‘cMn - —J — Hi>

S Yh M.t
1/2
X H; 57 : (14)
8nMs”}5 M t+H

From Equation (14) it is clear that the amount of
hysteresis decreases with decreasing aspect ratio and

is very small for circles, where n, = n,, (note that for
technologically relevant samples, H; is much smaller than
the dipole coupling fields). Note that in practice it is H
and not H, that determines the toggling criterion, since
for field excursions between H, and Hg the moments can
stay in the AP state and hence not toggle. See [5] for a
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Saturation boundary as a function of aspect ratio for the case ¢, = 7,
calculated using the exact single-domain model with ¢, = ¢, =
2.5 nm, M, = 1,500 emu/cc, b = 300 nm, /;, = 25 Oe, and J = 0.
The three shapes of length a, shown at the bottom of the figure,
correspond to @ = 300, 400, and 500 nm. Larger aspect ratios result
in a more elliptical saturation boundary. For the circle, the spin-flop
points and H , and H . are also shown. Three rectangular field

xsat

excursions are also shown for the circle, demonstrating the three
types of behavior as a function of excursion size. Adapted from [4],
with permission; ©2004 American Institute of Physics.

more detailed discussion. Also note that Figure 7 is
drawn for zero temperature. Since the activation

energy goes to zero at the spin-flop point, the measured
hysteresis loop depends on the speed of the field sweep, as
is the case for Stoner—Wohlfarth switching. Slower field
sweeps result in a smaller measured H.

Figure 8 shows the saturation boundary, defined as the
field at which the two moments become parallel, for an
arbitrary field direction. In the easy-axis and hard-axis
directions, the saturation field is given by H g, and H ;.
Figure 8 was calculated numerically as described in [4],
but for technologically relevant samples, the saturation
curve is an ellipse, to within less than one percent. Since
the moments are parallel for fields larger than the
saturation boundary, for a balanced bit (z = 1), any data
stored in the bit is lost. For the blue curve, Figure 8
shows three examples of rectangular field excursions. For
field excursions small enough not to contain the spin-flop
point, the bit is not toggled. For intermediate-sized field
excursions which do contain the spin-flop point but which
do not cross the saturation boundary, the bit is toggled.
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H word

Critical switching curve calculated using the exact single-domain
model for the case of a circle with #, = £,. In addition to the low-
field behavior predicted by the perturbative model (see Figure 6),
this figure also shows the saturation boundary. For rectangular
field excursions, the switching boundary has an ideal L shape,
terminated at the saturation boundary.

Finally, for large field excursions which do cross the
saturation boundary, the data is lost—the bit returns to
one of the two AP states, but for a perfectly balanced
sample, the result is random. Note that the bits can be
toggled by field excursions in either the first or the third
quadrant, and that both quadrants do not have to be used
to write into both the “0” and “1” states. This is another
advantage of toggle MRAM over Stoner—Wohlfarth
MRAM: Only unidirectional current drivers are required
for toggle MRAM.

Figure 9 shows the resultant critical switching curve for
a balanced bit with rectangular field excursions. The field
plane is naturally divided into three regions. For fields
smaller than the blue-dotted L-shaped curve (e.g., the
orange field point), nothing occurs. For fields larger than
the blue-dotted L-shaped curve but smaller than the red
saturation boundary (e.g., the green field point), the bit
toggles. For fields larger than the red saturation
boundary, the data is scrambled.

Equation (7) can also be used to calculate the
activation energy. As discussed in [4], this can be done
analytically for fields along the easy axis and numerically
at arbitrary fields. The results are shown in Figure 10, as a
function of the bit-line and word-line fields, for a circular
bit with #; = t,. Figure 11(a) shows two cuts across
Figure 10, one along the easy axis and the other along the
bit-line or word-line direction. When activating over the
AP saddle point of the figure at low fields, the moments
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Figure 10

Activation energy (k7)) as a function of bit and word fields. Calcu-
lated for a circular bit 300 nm in diameter, with ¢, = ¢, = 2.5 nm,
Mg = 1,500 emu/cc, H; = 25 Oe, and J = 0. Adapted from [4], with
permission. ©2004 American Institute of Physics.

maintain their roughly anti-parallel orientation during
activation, whereas when activating over the P saddle
point at larger fields, the moments pass through the
parallel state. From these figures it is clear that the
activation energy initially increases under half select
(when the field is applied along the bit-line or word-line
direction). The activation energy goes to zero at the spin-
flop point and also at large fields along the saturation
boundary. One can distinguish two distinct regions in the
activation energy as a function of applied field; see for
example the half-select curve shown in Figure 11(a). For
small fields, the moments activate through the AP saddle
point, as shown in Figure 11(b). At these small fields the
moments are not significantly canted together, and so
they activate by staying substantially anti-parallel and
rotating together into the opposite state. At larger fields,
however, the moments are significantly canted together,
and so they activate by exchanging positions, i.e.,
by passing through the P saddle point. Note that the
increase in activation energy under half select shown in
Figure 11(a) is one of the key features which distinguishes
toggle MRAM from Stoner—Wohlfarth MRAM.
Equation (9) can be used to calculate the spin-flop and
direct-write fields for the case in which z # 1. In this case,
for fields along the easy axis, the bit switches from one AP
state to the other at a field Hy, spin-flops at a larger field
Hy, and then saturates at an even larger field H g, as
discussed in [4]. This is shown in Figure 12 for the case
of a circular bit. The field scale is =230 Oe. The loop
was calculated assuming that ¢ = 2.5 nm, 7/, =2 nm,

IBM J. RES. & DEV. VOL. 50 NO. I JANUARY 2006

300 |

Half select

= 200

<

o

100
Easy axis
O 1 1
0 H Hg 125 H . 250
H (Oe)
(a)

o / /
Initial Activate Final
state state

r RN A\

(b)

(a) Activation energy cuts along the easy-axis and half-select
directions, from Figure 10. There are two different saddle points,
resulting in the two different activation energy regions as a function
of applied field, labeled AP and P. (b) The associated activation
paths. Adapted from [4], with permission; ©2004 American
Institute of Physics.

My = 1,500 emu/cc, a =b =300 nm, H; =15 Oe, and
J=0.

Note that at small fields both AP states are stable, but
for larger fields only one state is stable (the state with the
thicker moment pointing in the applied field direction).
Furthermore, if one considers arbitrary fields, there is a
region in field space inside which only one magnetic state
exists, as shown in Figure 13 by the heart-shaped regions
outlined in black. This direct-write state has the thicker
moment pointing roughly in the direction of the applied
field and the thinner moment roughly anti-parallel.
Outside this direct-write region there always exist at least
two magnetic states; for example, along the easy axis near
zero field there are the two AP states (0, ) and (7, 0). The
consequence is that when a field excursion crosses the
direct-write boundary, the bit always ends up in the
direct-write state and, upon returning to zero field,
reaches the thickness-favored state (0, ) for fields applied
in the first quadrant. Thus, this direct-write region must
be avoided when toggling. Figure 13 shows the resulting
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0 Easy-axis field

Figure 12

Easy-axis hysteresis loop, for a circular bit, calculated from the
exact single-domain model, for the case ¢, > ,.

Hword

Critical switching curve for rectangular field excursions calculated
using the exact single-domain model for the case of a circle and
1>t

critical switching curves for rectangular field excursions.
The bit toggles in the green regions, does not change in
the white region, direct- or saturation-writes into the

(0, m) state in the blue regions, and direct- or saturation-
writes into the (z, 0) state in the red regions. The field
scales are =400 Oe. The curves were calculated assuming
that 1, =4.1 nm, 1, = 3.5 nm, M = 1,500 emu/cc,
a=>b=300 nm, H; =25 Oe, and J=0.
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Again, for small field excursions nothing occurs. For
intermediate-sized field excursions, the direct-write region
defines an L-shaped direct-write area. Any field excursion
inside this direct-write area results in a direct write to the
thickness-favored state (0, ©). At fields large enough to
completely circumnavigate the direct-write region, the bit
toggles. At still larger fields, which cross the saturation
boundary, the bit saturation writes. This means that,
regardless of the initial state, upon crossing the saturation
boundary the bit reaches the thickness-favored state,
which determines the state returned to in zero field.
Hence, this should be avoided in a toggle MRAM. For
the most part, the bit saturation writes into the thickness-
favored state of (0, n) for the first quadrant and the
adjoining regions of the second and fourth quadrants,
and (7, 0) elsewhere. There is a small region in the first
quadrant that saturation-writes to the (=, 0) state because
of the thicker moment points on the intrinsic anisotropy
side of the applied field as the field returns through the
saturation boundary and the thinner moment points
on the other side of the applied field. This is shown in
Figure 13 for two examples on either side of the intrinsic
anisotropy direction. During the rest of the field
excursion, the moments continue to rotate through
the toggle region and thus reach the (0, n) state if
they cut across the saturation boundary at a bit field
Hyiy > Hyi/V2 or the (m, 0) state if they cut across the
saturation boundary at a bit field Hyjy < H st/ V2. Note,
however, that for bit fields small enough not to cut through
the direct-write region, the saturation write is again into the
thickness-favored state because the bit relaxes into the AP
state and not the scissoring state. Note that in Figure 13
the horizontal and vertical lines are an artifact of the
restriction to rectangular field excursions that turn on the
word-line field first, then turn on the bit-line field, then
turn off the word-line field, and then turn off the bit-
line field. The fundamental physical quantities are the
direct-write region, saturation boundary, and intrinsic
anisotropy direction. If these are known, the critical
switching curves can be calculated for arbitrarily shaped
field excursions.

Summary

We have presented an overview of the use of a single-
domain model in understanding the switching behavior
for spin-flop bits, including the spin-flop and direct-write
fields, saturation boundary, and direct-write region, thus
enabling us to predict the resulting critical switching
curves. In particular, the model predicts that for
rectangular field excursions (changing only H, or H,, one
at a time), toggle bits have an ideal L-shaped critical
switching curve, which allows fields along the bit or word
field direction to be several times larger than the full-
select field without disturbing the bit. In addition, the
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model shows that the activation energy increases under
half select, which should eliminate the half-select
activated-error problem. Also, the almost zero net
moment of the free layers minimizes cell-to-cell
magnetostatic coupling. These factors should make
toggle bits attractive for multi-megabit MRAMs.
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