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Spin-based electronics promises a radical alternative to charge-
based electronics, namely the possibility of logic operations with
much lower power consumption than equivalent charge-based logic
operations. In this paper we review three potential means of
dissipationless spin transport in semiconductors with and without
spin-orbit coupling: the use of spin currents, propagating modes,
and orbital currents. Spin and orbital currents induced by electric
fields obey a fundamentally different law than charge transport,
which is dissipative. Dissipationless spin currents occur in materials
with strong spin-orbit coupling, such as GaAs, while orbital
currents occur in materials with weak spin-orbit coupling, such as
Si, but with degenerate bands characterized by an atomic orbital
index. Spin currents have recently been observed experimentally.
Propagating modes are the coupled spin-charge movement that
occurs in semiconductors with spin-orbit coupling. In contrast to
normal charge transport, which is diffusive, the spin-charge mode
can exhibit propagating transport, with low energy loss over
relatively large distances (.100 lm), by funneling energy between
the spin and the charge component through the spin-orbit coupling
channel. This opens the possibility for spin-based transport without
either spin injection or spin detection. The schemes discussed in this
paper are analyzed in comparison with schemes based on molecular
electronics phenomena, dilute magnetic semiconductors, etc.

Introduction

Conventional microelectronic devices are based on the

ability to store and control the flow of electronic charge.

As reflected in the number of transistors per chip, the

performance of such devices has increased exponentially,

by more than eight orders of magnitude since the first

integrated circuit was fabricated more than forty years

ago. Underlying this remarkable evolution in technology

have been advances in materials and processing, as well

as inventions and innovations. Nevertheless, it is now

widely recognized that the achievement of improved

performance has become more difficult with each

succeeding CMOS generation. For example, the amount

of power required by modern CMOS-based logic and

memory devices is now increasingly limiting progress.

The increase in the number of transistors per chip since

1970 has been phenomenal, of the order of 106. For

example, the latest Intel processor, the Intel Itanium** 2,

accommodates 410,000,000 transistors. While Moore’s

law has thus far been applicable, the increase in the

number of transistors per chip makes it obvious that that

will have to change. Expectations are that Moore’s law

will fail at the beginning of the next decade. Figure 1

shows the evolution of the average power density in a

chip vs. minimum feature size (or technology node).

State-of-the-art chips contain features down to 90 nm

in width. Modern processor chips consume ;100 W of

power, with 20% wasted in transistor gate leakage. The

local power densities within chips at present are even

higher than those indicated in Figure 1. The current

method of coping with increasing power levels is to scale

down the operating voltages of the chips. Unfortunately,

those voltages are reaching the lower limits set by thermal

fluctuation effects.
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Measures to deal with the associated, relatively high

power densities are being developed (for example, the use

of improved materials for heat transfer between the chips

and their heat sinks, and liquid cooling through channels

in the chips). However, such methods are essentially

stopgap measures. They will ultimately be insufficient to

deal with the rapid power density increases anticipated in

the next two or three technology generations. There is an

emerging consensus among the semiconductor industry

experts that a major paradigm shift away from the charge

state device will be needed in order to meet the power

dissipation challenge.

Spintronics (spin-based electronics) promises a radical

alternative, offering the possibility of logic operations

with much lower power consumption than equivalent

charge-based electronics [1]. One fundamental advance

in the field of spintronics has been the groundbreaking

research on solid-state nonvolatile magnetic random

access memory (MRAM) [2]. Recent theoretical work

[3, 4] suggests that spin transport is fundamentally

different from the transport of charge. Ohm’s law

governing the flow of charge current describes the

inevitable dissipation of power in current microelectronic

devices. However, the generalized version of Ohm’s law

that governs the flow of spins indicates that the

generation of spin current by an electric field can

be reversible and non-dissipative. Interestingly, the

practical problem of power dissipation in semiconductor

devices may be related to the fundamental physics of

time-reversal symmetry: While the charge current is

odd under time-reversal symmetry, the spin current is

even under time-reversal symmetry. Because both the

spin current and the electric field transform in the same

manner under time reversal, their intrinsic coupling

can be non-dissipative.

To exploit the energy-saving potential of spin currents,

it is essential to be able to control them, as in the case of

charge flow. Historically, spins have been manipulated by

magnetic fields, which will be more difficult to control as

we approach the nanometer feature level. Recently it has

been recognized theoretically that through intrinsic spin-

orbit coupling it is possible to manipulate spin currents

via electric fields [4–10]. New experiments have indeed

demonstrated that electron spins may be controlled with

traditional electric gates [11, 12]. This would appear to be

a significant approach to spin control and manipulation.

Control of electric fields forms the basis for integrated

circuit technology and is therefore very highly developed.

Electric-field rather than magnetic-field control of spin,

via spin-orbit coupling, should provide a more viable

path for developing spin-based devices for technological

use.

According to theory, spin-orbit coupling profoundly

changes the nature of spin transport in semiconductor

devices [9, 13, 14]. In the standard set of drift-diffusion

equations used in semiconductor modeling, the dynamics

of charge and spin are essentially decoupled; thus, it is

possible to have a charge current in the absence of a

spin current, and vice versa. Including the spin-orbit

interaction leads to an entirely new set of drift-diffusion

equations, in which spin and charge dynamics are tightly

coupled. In their simplified form, these equations

formally resemble Maxwell equations, where spin and

charge play the role of electric and magnetic fields [14].

Thus, gradients of spin density drive charge-density

fluctuations, and vice versa. In particular, the equations

predict propagating modes of spin and charge (analogous

to light propagation) in certain parameter regimes of

spin-orbit coupling and spin relaxation. In stark contrast

to a diffusive mode, these propagating modes exhibit low

energy loss over large distances. Owing to the suppression

of the relaxation time within two-dimensional channels of

finite width [15], the propagating mode can easily be

accessed and enhanced with appropriate materials

engineering.

In the absence of spin-orbit coupling, one can use the

local (atomic) orbital moment of the carriers in a fashion

similar to their spin. This is not possible for s-orbitals,

but it is possible for p- or d-like orbitals coupled to the

carrier momentum, as occurs in the valence band of

semiconductors such as Si, GaP, and GaN, which display

weak spin-orbit coupling. An electric field applied to the

system creates a current of holes perpendicular to the field

[16]. The holes tend to preferentially occupy atomic

orbitals (or their remnants) in a direction perpendicular

to both the electric field and the direction of movement.

For all practical purposes, this is similar to a spin current

and is detectable in Kerr rotation measurements.

Figure 1

Local power density per chip technology node.
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In this paper, we review these phenomena and propose

theoretical and experimental roadmaps for future

advances in the field.

Spin currents
The spin Hall effect is the generation of a transverse spin

current by an applied electric field. The extrinsic version

of the effect arises from the skew scattering against

impurities, which are spin-orbit-coupled to the charge

carriers [17–19]. However, the cross section for skew

scattering is extremely small, and so is the predicted value

of the spin Hall effect. Recently, considerable interest has

been generated by theoretical predictions that under

certain conditions the spin Hall current could arise from

the intrinsic spin-orbit coupling in the band structure;

it would be relatively large and would flow without

dissipation, potentially enabling control over spin

currents through applied electric rather than

magnetic fields. The effect appears in the analysis of

semiconductors with spin-orbit coupling; two examples

are the spin-3/2 valence band of GaAs, described by the

Luttinger model, and the conduction band of asymmetric

quantum wells, described by the Rashba model,

H
L
¼ �h

2

2m
c

1
þ 5

2
c

2

� �
k

2 � 2c
2
ð~k �~SÞ2

� �

and

H
R
¼ �h

2

2m
k

2 þ að~k 3~rÞ � ẑ; ð1Þ

where ~S is a spin-3/2 matrix describing the P3/2 valence

band state, c1 and c2 are material constants called

Luttinger parameters, and a is the Rashba constant

describing the two-dimensional spin-orbit coupling.

The origin of the spin current is a topological phase

acquired by the carrier wave functions as they move

through momentum space. This is a generalization of the

U(1) Berry phase, which has found application in a wide

range of fields; however, the phase is richer because of the

twofold degeneracy of the bands in time-reversal and

inversion-symmetric materials. As Berry showed, the

origin of such a phase is the topological structure of

the parameter space which arises from the presence of

degeneracy (level crossings) in the band structure. In our

case, we have found that the fourfold degeneracy in the

valence hole spectrum at the gamma point (k ¼ 0) in

diamond and zinc-blende lattices leads to a Berry phase

for states that move through momentum space. The

phase can be thought of as the result of a sort of

gauge field, which, as in the quantum Hall effect, leads

to an anomalous velocity. This anomalous velocity is

dependent on the orientation of the carrier spins, hence

leading to a net flow of spins, although it does not

contribute to the total flow of charge. It has been shown

[3] that the response of the spin current J j
i to an electric

field Ek has the form

J
j

i
¼ r

sH
e
ijk
E
k
; ð2Þ

which predicts, for example, that an electric field in the x

direction induces a spin current Jz
y (spins polarized along

z and flowing in the y direction) as shown in Figure 2.

In this equation, the intrinsic transport coefficient rsH

is determined by the spin-dependent properties of the

ground state (not by the random scattering processes that

determine the ohmic conductivity), and eijk is the totally

anti-symmetric tensor in three dimensions. We should

mention in passing that since spin is not conserved

in semiconductors, defining a spin current is not as

straightforward as defining the charge current. However,

one can still write down a spin continuity equation which

is similar but not analogous to the one for charge [see

Equation (9)]. It differs from the charge continuity

equation by a term which incorporates the essence of spin

relaxation in semiconductors due to spin-orbit coupling

(the Dyakonov–Perel term). The other terms in the spin-

continuity equation are in one-to-one analogy with the

charge continuity equation and hence enable us to define

a spin current which relates the change in time of the

spin density to its variation in space.

The dissipationless nature of the spin Hall current

follows from its properties under time reversal. For

example, the dissipative ohmic current,

J
i
¼ rE

i
; ð3Þ

having dimensions of charge times velocity, is odd under

time reversal. Since the electric field Ei is even under time

reversal, the charge conductivity r is odd and hence

dissipative, being dependent on random scattering

processes such as momentum scattering. On the other

Figure 2

Spin current directions for bulk and two-dimensional semicon-
ductors. The applied electric f ield, the spin polarization (red 
arrows), and the direction of motion (blue arrows) constitute 
an oriented triad.
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hand, the spin current, having dimensions of angular

momentum times velocity, is even. Thus, the spin current

induced by an electric field through spin-orbit coupling is

not essentially tied to heat-generating processes such as

scattering.

The intrinsic spin Hall conductivity has been predicted

for semiconductors with both p-type and n-type doping

[3, 5], in both bulk and two-dimensional semiconductors.

In bulk p-doped semiconductors, the valence band is split

into a light-hole (LH) band and a heavy-hole (HH) band

by the spin-orbit coupling, with Fermi momenta kL
F and

kH
F respectively. The associated intrinsic spin Hall

conductivity is given by

r
sH
¼ e

6p
2
ðkH

F
� k

L

F
Þ: ð4Þ

For a two-dimensional electron gas, the conduction band

can be split because of spin-orbit interaction in systems

(such as a two-dimensional gas) that do not have

inversion symmetry; this can be of either structural or

bulk origin. For the simple Rashba model (structural

inversion asymmetry), the spin Hall conductivity,

predicted to be universal, is given by

r
sH
¼ e

8p
; ð5Þ

It turns out to be the case that in the clean (free of

impurities, long momentum relaxation time) limit, all of

the two-dimensional n-doped (for which the conduction

band is spin ½) semiconductors with spin-orbit coupling

have a universal spin Hall conductivity.

These theoretical predictions are valid for systems free

of impurities for which the spin splitting is much greater

than the lifetime broadening arising from impurity

scattering. In the presence of impurity scattering, there

are two main contributions, the self-energy correction

and the vertex correction. Although the self-energy

correction vanishes in the clean limit, the question of

whether vertex correction also vanishes has required

extensive consideration. After numerous debates in the

recent theory literature, a unifying consensus has been

reached. For semiconductors with p-type doping, with

both bulk and two-dimensional planar band structures,

it has been shown that the vertex correction vanishes for

s-wave impurity scatterers [20, 21]. On the other hand,

the vertex correction for the Rashba model has been

shown to cancel theoretical prediction of the intrinsic

spin Hall effect [22].

One consequence of the presence of spin current is spin

accumulation at the boundary, as shown in Figure 3.

Thus far, this is the only method that has been used

to detect the spin Hall effect. Recently, Awschalom

and collaborators [23] and Wunderlich et al. [24] have

reported the detection of spin accumulation in an applied

field in semiconductor structures, in n-type and p-type

semiconductors, respectively. The spin direction reverses

with the applied field E establishing the existence of spin

Hall currents leading to nonzero spin accumulation

at boundaries. What remains to be clarified is the

mechanism for the spin Hall currents. Awschalom and

collaborators conducted the experiment in the regime

in which the spin splitting is smaller than the lifetime

broadening, and concluded that the spin Hall mechanism

may be extrinsic (e.g., impurity-related) in their samples.

More recent analyses [25, 26] have shown that the

experimental results can also be accounted for on the

basis of the intrinsic spin-orbit coupling in the conduction

band due to the breaking of bulk inversion symmetry (the

Dresselhaus term). Wunderlich et al. have conducted the

experiment in a hole-doped sample, in a regime in which

the spin splitting is larger than the lifetime broadening,

and it is commonly believed that in their system the

spin Hall currents may have been intrinsic.

Spin-charge propagating mode—spintronics
without spin injection or spin detection
The spin-orbit interaction of electrons in GaAs quantum

wells is described by Rashba and Dresselhaus terms (HR

and HD, respectively) in the spin Hamiltonian. These

terms describe the magnetic field experienced by electrons

(in their rest frame) arising from static electric fields in the

rest frame of the crystal lattice. The strength of the terms

determines how the internal magnetic field depends on the

electron wave vector ~k. Between collisions, the spin of the

electron precesses in the internal field at a ~k-dependent

rate. The dependence of the precession vector on

momentum leads to a strong correlation between the

propagation of the electron in position space and its

angular momentum in spin space.

In a two-dimensional electron gas, the confining

potential breaks the inversion symmetry and leads to an

electric field perpendicular to the two-dimensional plane

Figure 3

Spin accumulation at a boundary of the sample as a result of spin 
current Jx flowing in the x-direction (the spin vector being in the 
y-direction). The accumulation occurs over a distance of the order 
of the spin diffusion length. D is the diffusion coefficient and �s 
is the spin relaxation coefficient.
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of the electron gas. Specifying the confining electric field

as being in the z direction in Equation (2), Rashba [8] has

pointed out that there is a spin current in the ground

state, of the form of

J
j

i
¼ r

S
e
ij
¼ ane

ij
; ð6Þ

where a is the spin-orbit coupling constant, n is the

electron density, and i and j take on values of the two-

dimensional coordinates x and y. Similarly, one can show

that the electron spin also makes a contribution to the

charge current, of the form of

J
i
¼ ae

ij
S
j
; ð7Þ

where Sj is the electron spin density. As Rashba has

indicated, the spin current in the ground state in the

absence of external fields cannot cause transport or spin

accumulation as long as the system is in equilibrium.

However, when the system is driven out of equilibrium, as

in the familiar case of local spin or charge packets excited

in semiconductors, the spin current in the ground state is

predicted to have remarkable consequences. The existence

of the dissipationless ground-state spin current

profoundly changes the spin transport in semiconductor

devices and, as we shall see, leads to the possibility of spin

injection purely by electric means. The standard charge

and spin transport equations are given by

]n

]t
þ ]

i
J
i
¼ 0; J

i
¼ �D]

i
n;

]S
j

]t
þ ]

i
J
j

i
¼ �S

j
=s

s
; J

j

i
¼ �D]

i
S
j
; ð8Þ

where D is the diffusion constant and ss is the spin

relaxation time. These equations only account for

diffusive behavior as a result of charge and spin transport.

However, taking into account the effects of the spin-orbit

coupling and substituting the additional contributions

of the spin and the charge currents (6) and (7) into the

standard transport equations (8), it follows that, in a two-

dimensional electron gas with Rashba spin-orbit

coupling, the equations become

]n

]t
þ ]

i
J
i
¼ 0; J

i
¼ �D]

i
n� ae

ij
S
j
;

]S
j

]t
þ ]

i
J
j

i
¼ �S

j
=s

s
�

ffiffiffiffiffiffiffiffiffiffi
D=s

s

q
]
j
S

3
;

J
j

i
¼ �D]

i
S
j
þ ae

ji
nþ d

ij

ffiffiffiffiffiffiffiffiffiffi
D=s

s

q
S

3
: ð9Þ

The second term in the spin current is the dissipationless

spin current. By restricting to the in-plane components

of the spin Sj, j ¼ 1, 2, the following two continuity

equations are easily obtained:

]n

]t
¼ D]

i
]
i
n� ae

ji
]
i
S
j
;

]S
j

]t
¼ D]

i
]
i
S
j
� ae

ji
]
i
n� S

j
=s

s
� 2

ffiffiffiffiffiffiffiffiffiffi
D=s

s

q
]
j
S

3
: ð10Þ

The first term on the right-hand side of each of the

equations represents the usual diffusion current; the

second term represents the dissipationless spin-current

contribution; the third term of the second equation is the

usual Dyakonov–Perel relaxation time, and the last term

of that equation represents the coupling of diffusion terms

with spin-current terms.

If for the moment we neglect the D and ss terms, we see

that the coupled spin and charge-transport equations

formally take the same form as the Maxwell equations in

two dimensions, provided we interpret the charge density

n as being a magnetic field B in two dimensions (in

two spatial dimensions a magnetic field has only one

component) and we interpret the two in-plane spins Sx, Sy

as being the two electric fields Ex, Ey. The first equation

of continuity then becomes Faraday’s induction law,

]tB ¼ aeij]iEj, while the second equation becomes

Ampere’s law, ]tEi ¼�aeij]jB. The only difference

between the behavior of the system and the behavior

of light rests in the value of the ‘‘speed of light,’’

which in this case is the Rashba coefficient a ’ 10�4 c.

The analogy with Maxwell’s equations for the case

in which we neglect the D and ss terms is very helpful

for two reasons: First, it predicts the existence of a

propagating mode of the system—a mode in which

energy propagates rather than dissipates. As shown

above, this mode is the dissipationless spin current in the

ground state. Second, as is usually the case in Maxwell

physics, a disturbance in the magnetic field (the charge

density) creates an electric field (a spin density), thus

predicting the appearance in spin-orbit-coupled systems

of spin density from pure charge density.

A complete analysis of the above equations shows that

the existence of a propagating mode is linked to a large

spin-orbit coupling given by the condition

a�
ffiffiffiffiffiffiffiffiffiffi
D=s

s

q
: ð11Þ

For the generic values of D ’ 10�2 m2/s, ss ’ 1 ns [12],

the condition reads a � 3 3 103 m/s, which is easily

realizable with today’s experimental techniques [27]. For

these values of the parameters, the propagating mode

should have weak damping if its wavelength is within

0.1 lm , k , 10 lm and its frequency is within the

domain 10 GHz , x , 100 GHz.

The development of a propagating mode (depicted

in Figure 4) is clearly seen by solving the equations

numerically for the situation in which a one-dimensional

stripe of charge is assumed to be created along the y
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direction (with resulting motion along the x direction)

[28].

Through spin-orbit coupling, the charge disturbance

creates a non-zero spin density. This would not happen

in the absence of spin-orbit coupling. As the spin-orbit

coupling strength is increased, the induced spin density

increases, and its motion changes from a diffusive to a

propagating regime.

For two-dimensional wells of finite width, it has been

shown that the Dyakonov–Perel (DP) spin relaxation

time increases as the width is decreased [15]. In the

limit when the width is decreased such that the two-

dimensional well transforms into a quantum wire, the

DP part of the relaxation time ss ! ‘. In this limit, a

propagating mode should be possible as the condition

a�
ffiffiffiffiffiffiffiffiffiffi
D=ss

p
! 0 becomes easier to realize for increasing

spin relaxation times.

The discovery of the propagating mode would have

profound theoretical and experimental implications.

First, the mode should facilitate long-range spin

manipulation by manipulation of the charge packet.

Second, if we are not interested in the spin motion,

we can see that, owing to the reactive coupling to the

spin, the charge of the packet should propagate over

large distances with little dissipation. This suggests a

remarkably simple experiment in the spirit of the classic

Haynes–Shockley experiment but without sweeping

electric field. Figure 5 depicts such a proposed experiment

using a narrow sample with light p-doping. Two

rectifying metal-to-semiconductor point contacts would

respectively be forward- and reverse-biased to serve as

emitter and collector electrodes. After the emitter pulse

was turned on, an electron density packet would be

injected into the sample. In conventional Haynes–

Shockley setup, the electron packet would be swept to

the collector electrode by a electric field. In our case, no

sweeping electric field would be applied, but the density

packet would spontaneously split into two counter-

propagating packets with opposite spin orientations, with

a velocity directly given by the Rashba coupling constant

a. Upon capture of the rightward-moving packet by the

collector electrode, a voltage pulse should be registered.

From the time delay and the shape of the voltage pulse,

one should be able to determine the Rashba coupling

constant and the diffusion constant; this could be done

by controlling only the charge. This experiment suggests

that the injected density pulse should be able to take

advantage of the spin current in the ground state and

propagate without any applied voltage.

Silicon orbitronics
The small spin-orbit coupling in silicon, as measured by

the energy of the split-off band relative to the top of

the valence band, ;44 meV, renders the spin Hall

Figure 4

As the spin-orbit coupling strength is increased so as to satisfy the 
condition � ��      ��s, a propagating mode appears, as evidenced 
by the behavior of the charge density (a) and the induced spin 
density (b). Time is plotted in units of �s/10, whereas the distance 
x is plotted in units of ��s /10 (roughly 1  m).
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Proposed experiment: a modified version of the classic Haynes– 
Shockley experiment. A density packet injected by the emitter 
spontaneously splits into two counter-propagating packets with 
opposite spin. Unlike the settings of the Haynes–Shockley 
experiment, one of the two packets propagates to the collector 
without experiencing a sweeping electric field. The time delay 
between the injection pulse and the collecting pulse should 
give a purely electric determination of the Rashba spin-orbit 
coupling constant.
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effect relatively small at room temperature. Given the

dominance of silicon in the semiconductor industry, it

is important to find a similar dissipationless transport

process which does not rely on the spin-orbit coupling. In

[16], we have investigated the possibility of replacing the

spin degree of freedom with the orbital degree of freedom,

and have designated the associated field of study as

orbitronics. The valence band of Si consists largely of

three p-orbitals. The three orbital degrees of freedom

transform as a (pseudo-) spin-1 quantity under rotation,

are odd under time reversal, and couple to the crystal

momentum of the holes in the Si. We have shown

that p-doped Si under the influence of an electric field

develops an intrinsic orbital current of the p-band

hole orbitals. The polarization of the p-orbitals, the

direction of flow, and the direction of the electric field

are mutually perpendicular. The transport equation

is similar in form to the spin Hall equation [3]:

J
j

i
¼ r

I
e
ijk
E
k
; ð12Þ

where J j
i is the orbital current flowing along the j

direction, and the local orbitals are polarized along the

direction perpendicular to both the applied field and the

current. For an electric field on the y-axis, we expect an

orbital current flowing in the positive x direction to be

polarized in the þz ¼ px þ ipy direction, while the orbital

current flowing in the negative x direction is polarized in

the �z ¼ px � ipy direction. As in the case of the spin

current, the orbital current is even under time reversal,

and the above response equation is dissipationless. The

orbital current should appear as a result of the coupling

between the hole momentum ~k and the local orbital ~I;

which is apparent in the Hamiltonian for Si close to

the gamma point of the valence band:

H ¼ Ak
2 þ ðA� BÞð~k �~I Þ2: ð13Þ

It should be possible to detect the effect by using

techniques similar to those used in detecting the spin

current. Several recent experiments involving detection

of spin currents via the associated spin accumulation at

the boundary [23, 24] should provide us with a basis for

attempting to detect the intrinsic orbital current in Si.

Because Si is an indirect-gap semiconductor with low

efficiency for light emission, an LED-type experiment like

that described in [24], in which the polarization of the

emitted light gives information about the orbital in which

the emitting electron resides, is not experimentally viable.

However, Kerr and Faraday rotation measurements are

insensitive to the Si indirect gap and should be suitable

for probing the orbital polarization.

Concluding remarks
The potential means for achieving dissipationless spin

transport reviewed in this paper constitute theoretical

and associated, potential experimental directions with

technological implications. A number of alternatives

to the current semiconductor technology have recently

been proposed, including technologies based on carbon

nanotubes, molecular electronics, and dilute magnetic

semiconductors. Spin-based electronics, discussed in

this paper, is based on the use of spin-orbit coupling

in conventional semiconductor materials. As such, it

leverages the tremendous investment of semiconductor

materials processing, and should lead to an easier path of

adoption. We regard the prediction and discovery of the

intrinsic spin Hall effect as an important step toward

developing integrated spin logic devices and achieving

low-energy computing. One of the future challenges for

the field is to develop a way to measure the intrinsic spin

Hall effect directly instead of through spin accumulation.

Other important theoretical and experimental challenges

involve the use of the spin current to inject and

manipulate spins. In materials without (strong) spin-orbit

coupling, one of the future efforts should be to try to

detect the orbital Hall effect and to investigate whether

the orbital moment can be transferred to spin and hence

be used for spin injection. Moreover, experimental

techniques should be devised to enhance the amount

of spin polarization arising from spin current.

The spin-charge-propagating mode predicted in

systems with strong spin-orbit coupling should be another

way of manipulating spin. Because of its propagating

character, it should almost conserve energy. Moreover,

it should be possible to use the mode without regard to

the spin: Use would be made of only its propagating

charge packet. The experimental detection of this

mode, as well as proposals for real devices, constitutes

a focus for future research in spin-based electronics.

**Trademark or registered trademark of Intel Corporation in the
United States, other countries, or both.
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