Toward
dissipationless
spin transport

In semiconductors

Spin-based electronics promises a radical alternative to charge-
based electronics, namely the possibility of logic operations with
much lower power consumption than equivalent charge-based logic
operations. In this paper we review three potential means of
dissipationless spin transport in semiconductors with and without
spin-orbit coupling: the use of spin currents, propagating modes,
and orbital currents. Spin and orbital currents induced by electric
fields obey a fundamentally different law than charge transport,
which is dissipative. Dissipationless spin currents occur in materials
with strong spin-orbit coupling, such as GaAs, while orbital
currents occur in materials with weak spin-orbit coupling, such as
Si, but with degenerate bands characterized by an atomic orbital
index. Spin currents have recently been observed experimentally.
Propagating modes are the coupled spin-charge movement that
occurs in semiconductors with spin-orbit coupling. In contrast to
normal charge transport, which is diffusive, the spin-charge mode
can exhibit propagating transport, with low energy loss over
relatively large distances (>100 um), by funneling energy between
the spin and the charge component through the spin-orbit coupling
channel. This opens the possibility for spin-based transport without
either spin injection or spin detection. The schemes discussed in this
paper are analyzed in comparison with schemes based on molecular
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electronics phenomena, dilute magnetic semiconductors, etc.

Introduction
Conventional microelectronic devices are based on the
ability to store and control the flow of electronic charge.
As reflected in the number of transistors per chip, the
performance of such devices has increased exponentially,
by more than eight orders of magnitude since the first
integrated circuit was fabricated more than forty years
ago. Underlying this remarkable evolution in technology
have been advances in materials and processing, as well
as inventions and innovations. Nevertheless, it is now
widely recognized that the achievement of improved
performance has become more difficult with each
succeeding CMOS generation. For example, the amount
of power required by modern CMOS-based logic and
memory devices is now increasingly limiting progress.
The increase in the number of transistors per chip since
1970 has been phenomenal, of the order of 10°. For

example, the latest Intel processor, the Intel Itanium™** 2,
accommodates 410,000,000 transistors. While Moore’s
law has thus far been applicable, the increase in the
number of transistors per chip makes it obvious that that
will have to change. Expectations are that Moore’s law
will fail at the beginning of the next decade. Figure 1
shows the evolution of the average power density in a
chip vs. minimum feature size (or technology node).
State-of-the-art chips contain features down to 90 nm
in width. Modern processor chips consume ~100 W of
power, with 20% wasted in transistor gate leakage. The
local power densities within chips at present are even
higher than those indicated in Figure 1. The current
method of coping with increasing power levels is to scale
down the operating voltages of the chips. Unfortunately,
those voltages are reaching the lower limits set by thermal
fluctuation effects.
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Measures to deal with the associated, relatively high
power densities are being developed (for example, the use
of improved materials for heat transfer between the chips
and their heat sinks, and liquid cooling through channels
in the chips). However, such methods are essentially
stopgap measures. They will ultimately be insufficient to
deal with the rapid power density increases anticipated in
the next two or three technology generations. There is an
emerging consensus among the semiconductor industry
experts that a major paradigm shift away from the charge
state device will be needed in order to meet the power
dissipation challenge.

Spintronics (spin-based electronics) promises a radical
alternative, offering the possibility of logic operations
with much lower power consumption than equivalent
charge-based electronics [1]. One fundamental advance
in the field of spintronics has been the groundbreaking
research on solid-state nonvolatile magnetic random
access memory (MRAM) [2]. Recent theoretical work
[3, 4] suggests that spin transport is fundamentally
different from the transport of charge. Ohm’s law
governing the flow of charge current describes the
inevitable dissipation of power in current microelectronic
devices. However, the generalized version of Ohm’s law
that governs the flow of spins indicates that the
generation of spin current by an electric field can
be reversible and non-dissipative. Interestingly, the
practical problem of power dissipation in semiconductor
devices may be related to the fundamental physics of
time-reversal symmetry: While the charge current is
odd under time-reversal symmetry, the spin current is
even under time-reversal symmetry. Because both the
spin current and the electric field transform in the same
manner under time reversal, their intrinsic coupling
can be non-dissipative.
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To exploit the energy-saving potential of spin currents,
it is essential to be able to control them, as in the case of
charge flow. Historically, spins have been manipulated by
magnetic fields, which will be more difficult to control as
we approach the nanometer feature level. Recently it has
been recognized theoretically that through intrinsic spin-
orbit coupling it is possible to manipulate spin currents
via electric fields [4-10]. New experiments have indeed
demonstrated that electron spins may be controlled with
traditional electric gates [11, 12]. This would appear to be
a significant approach to spin control and manipulation.
Control of electric fields forms the basis for integrated
circuit technology and is therefore very highly developed.
Electric-field rather than magnetic-field control of spin,
via spin-orbit coupling, should provide a more viable
path for developing spin-based devices for technological
use.

According to theory, spin-orbit coupling profoundly
changes the nature of spin transport in semiconductor
devices [9, 13, 14]. In the standard set of drift-diffusion
equations used in semiconductor modeling, the dynamics
of charge and spin are essentially decoupled; thus, it is
possible to have a charge current in the absence of a
spin current, and vice versa. Including the spin-orbit
interaction leads to an entirely new set of drift-diffusion
equations, in which spin and charge dynamics are tightly
coupled. In their simplified form, these equations
formally resemble Maxwell equations, where spin and
charge play the role of electric and magnetic fields [14].
Thus, gradients of spin density drive charge-density
fluctuations, and vice versa. In particular, the equations
predict propagating modes of spin and charge (analogous
to light propagation) in certain parameter regimes of
spin-orbit coupling and spin relaxation. In stark contrast
to a diffusive mode, these propagating modes exhibit low
energy loss over large distances. Owing to the suppression
of the relaxation time within two-dimensional channels of
finite width [15], the propagating mode can easily be
accessed and enhanced with appropriate materials
engineering.

In the absence of spin-orbit coupling, one can use the
local (atomic) orbital moment of the carriers in a fashion
similar to their spin. This is not possible for s-orbitals,
but it is possible for p- or d-like orbitals coupled to the
carrier momentum, as occurs in the valence band of
semiconductors such as Si, GaP, and GaN, which display
weak spin-orbit coupling. An electric field applied to the
system creates a current of holes perpendicular to the field
[16]. The holes tend to preferentially occupy atomic
orbitals (or their remnants) in a direction perpendicular
to both the electric field and the direction of movement.
For all practical purposes, this is similar to a spin current
and is detectable in Kerr rotation measurements.
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In this paper, we review these phenomena and propose
theoretical and experimental roadmaps for future
advances in the field.

Spin currents

The spin Hall effect is the generation of a transverse spin
current by an applied electric field. The extrinsic version
of the effect arises from the skew scattering against
impurities, which are spin-orbit-coupled to the charge
carriers [17-19]. However, the cross section for skew
scattering is extremely small, and so is the predicted value
of the spin Hall effect. Recently, considerable interest has
been generated by theoretical predictions that under
certain conditions the spin Hall current could arise from
the intrinsic spin-orbit coupling in the band structure;

it would be relatively large and would flow without
dissipation, potentially enabling control over spin
currents through applied electric rather than

magnetic fields. The effect appears in the analysis of
semiconductors with spin-orbit coupling; two examples
are the spin-3/2 valence band of GaAs, described by the
Luttinger model, and the conduction band of asymmetric
quantum wells, described by the Rashba model,

i 5 2 2
H = - Kyl +§y2>k —29,(k-S) }

and

2
HR:;—mk2+a(?x&)-2, (1)
where S is a spin-3/2 matrix describing the Ps, valence
band state, y; and y, are material constants called
Luttinger parameters, and o is the Rashba constant
describing the two-dimensional spin-orbit coupling.

The origin of the spin current is a topological phase
acquired by the carrier wave functions as they move
through momentum space. This is a generalization of the
U(1) Berry phase, which has found application in a wide
range of fields; however, the phase is richer because of the
twofold degeneracy of the bands in time-reversal and
inversion-symmetric materials. As Berry showed, the
origin of such a phase is the topological structure of
the parameter space which arises from the presence of
degeneracy (level crossings) in the band structure. In our
case, we have found that the fourfold degeneracy in the
valence hole spectrum at the gamma point (kK = 0) in
diamond and zinc-blende lattices leads to a Berry phase
for states that move through momentum space. The
phase can be thought of as the result of a sort of
gauge field, which, as in the quantum Hall effect, leads
to an anomalous velocity. This anomalous velocity is
dependent on the orientation of the carrier spins, hence
leading to a net flow of spins, although it does not
contribute to the total flow of charge. It has been shown
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Spin current directions for bulk and two-dimensional semicon-
ductors. The applied electric field, the spin polarization (red
arrows), and the direction of motion (blue arrows) constitute
an oriented triad.

N\

[3] that the response of the spin current J{ to an electric
field E; has the form

j
Ji = otk s (2)

which predicts, for example, that an electric field in the x
direction induces a spin current J; (spins polarized along
z and flowing in the y direction) as shown in Figure 2.
In this equation, the intrinsic transport coefficient oy
is determined by the spin-dependent properties of the
ground state (not by the random scattering processes that
determine the ohmic conductivity), and & is the totally
anti-symmetric tensor in three dimensions. We should
mention in passing that since spin is not conserved
in semiconductors, defining a spin current is not as
straightforward as defining the charge current. However,
one can still write down a spin continuity equation which
is similar but not analogous to the one for charge [see
Equation (9)]. It differs from the charge continuity
equation by a term which incorporates the essence of spin
relaxation in semiconductors due to spin-orbit coupling
(the Dyakonov—Perel term). The other terms in the spin-
continuity equation are in one-to-one analogy with the
charge continuity equation and hence enable us to define
a spin current which relates the change in time of the
spin density to its variation in space.

The dissipationless nature of the spin Hall current
follows from its properties under time reversal. For
example, the dissipative ohmic current,

J,=oE,, (3)

having dimensions of charge times velocity, is odd under
time reversal. Since the electric field E; is even under time
reversal, the charge conductivity ¢ is odd and hence
dissipative, being dependent on random scattering
processes such as momentum scattering. On the other
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hand, the spin current, having dimensions of angular
momentum times velocity, is even. Thus, the spin current
induced by an electric field through spin-orbit coupling is
not essentially tied to heat-generating processes such as
scattering.

The intrinsic spin Hall conductivity has been predicted
for semiconductors with both p-type and n-type doping
[3, 5], in both bulk and two-dimensional semiconductors.
In bulk p-doped semiconductors, the valence band is split
into a light-hole (LH) band and a heavy-hole (HH) band
by the spin-orbit coupling, with Fermi momenta k% and
kH respectively. The associated intrinsic spin Hall
conductivity is given by

O = —5 (kg — kg). 4)

For a two-dimensional electron gas, the conduction band
can be split because of spin-orbit interaction in systems
(such as a two-dimensional gas) that do not have
inversion symmetry; this can be of either structural or
bulk origin. For the simple Rashba model (structural
inversion asymmetry), the spin Hall conductivity,
predicted to be universal, is given by

e
GSH:8_TE7 (5)

It turns out to be the case that in the clean (free of
impurities, long momentum relaxation time) limit, all of
the two-dimensional n-doped (for which the conduction
band is spin 2) semiconductors with spin-orbit coupling
have a universal spin Hall conductivity.

These theoretical predictions are valid for systems free
of impurities for which the spin splitting is much greater
than the lifetime broadening arising from impurity
scattering. In the presence of impurity scattering, there
are two main contributions, the self-energy correction
and the vertex correction. Although the self-energy
correction vanishes in the clean limit, the question of
whether vertex correction also vanishes has required
extensive consideration. After numerous debates in the
recent theory literature, a unifying consensus has been
reached. For semiconductors with p-type doping, with
both bulk and two-dimensional planar band structures,
it has been shown that the vertex correction vanishes for
s-wave impurity scatterers [20, 21]. On the other hand,
the vertex correction for the Rashba model has been
shown to cancel theoretical prediction of the intrinsic
spin Hall effect [22].

One consequence of the presence of spin current is spin
accumulation at the boundary, as shown in Figure 3.
Thus far, this is the only method that has been used
to detect the spin Hall effect. Recently, Awschalom
and collaborators [23] and Wunderlich et al. [24] have
reported the detection of spin accumulation in an applied
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Spin accumulation at a boundary of the sample as a result of spin
current J? flowing in the x-direction (the spin vector being in the
y-direction). The accumulation occurs over a distance of the order
of the spin diffusion length. D is the diffusion coefficient and 7,
is the spin relaxation coefficient.

field in semiconductor structures, in n-type and p-type
semiconductors, respectively. The spin direction reverses
with the applied field E establishing the existence of spin
Hall currents leading to nonzero spin accumulation

at boundaries. What remains to be clarified is the
mechanism for the spin Hall currents. Awschalom and
collaborators conducted the experiment in the regime

in which the spin splitting is smaller than the lifetime
broadening, and concluded that the spin Hall mechanism
may be extrinsic (e.g., impurity-related) in their samples.
More recent analyses [25, 26] have shown that the
experimental results can also be accounted for on the
basis of the intrinsic spin-orbit coupling in the conduction
band due to the breaking of bulk inversion symmetry (the
Dresselhaus term). Wunderlich et al. have conducted the
experiment in a hole-doped sample, in a regime in which
the spin splitting is larger than the lifetime broadening,
and it is commonly believed that in their system the
spin Hall currents may have been intrinsic.

Spin-charge propagating mode—spintronics
without spin injection or spin detection
The spin-orbit interaction of electrons in GaAs quantum
wells is described by Rashba and Dresselhaus terms (Hg
and Hp, respectively) in the spin Hamiltonian. These
terms describe the magnetic field experienced by electrons
(in their rest frame) arising from static electric fields in the
rest frame of the crystal lattice. The strength of the terms
determines how the internal magnetic field depends on the
clectron wave vector k. Between collisions, the spin of the
electron precesses in the internal field at a lg-dependent
rate. The dependence of the precession vector on
momentum leads to a strong correlation between the
propagation of the electron in position space and its
angular momentum in spin space.

In a two-dimensional electron gas, the confining
potential breaks the inversion symmetry and leads to an
electric field perpendicular to the two-dimensional plane
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of the electron gas. Specifying the confining electric field
as being in the z direction in Equation (2), Rashba [8] has
pointed out that there is a spin current in the ground
state, of the form of

sza

i sy = ey (6)

where « is the spin-orbit coupling constant, n is the
electron density, and / and j take on values of the two-
dimensional coordinates x and y. Similarly, one can show
that the electron spin also makes a contribution to the
charge current, of the form of

J, = oteiij , (7)

where S; is the electron spin density. As Rashba has
indicated, the spin current in the ground state in the
absence of external fields cannot cause transport or spin
accumulation as long as the system is in equilibrium.
However, when the system is driven out of equilibrium, as
in the familiar case of local spin or charge packets excited
in semiconductors, the spin current in the ground state is
predicted to have remarkable consequences. The existence
of the dissipationless ground-state spin current
profoundly changes the spin transport in semiconductor
devices and, as we shall see, leads to the possibility of spin
injection purely by electric means. The standard charge
and spin transport equations are given by

o
S0, =0, J, = —Di;

08 . j
E‘F 9. = *S}./‘Cs, J; =—=DJS,, (8)
where D is the diffusion constant and t is the spin
relaxation time. These equations only account for
diffusive behavior as a result of charge and spin transport.
However, taking into account the effects of the spin-orbit
coupling and substituting the additional contributions
of the spin and the charge currents (6) and (7) into the
standard transport equations (8), it follows that, in a two-
dimensional electron gas with Rashba spin-orbit
coupling, the equations become

on

5 +0.J, =0, J; = =Don— S,

BS/. J
E—i—ai][. = _Sj/‘cs_ D/'CSBJ.S37

JI{ =—Di.S, +ae;n+08,,/D/t 8. (9)

The second term in the spin current is the dissipationless
spin current. By restricting to the in-plane components
of the spin S}, j =1, 2, the following two continuity
equations are easily obtained:
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as;

e Do0S, —aeon— S/t —2,/D/10.S,. (10)

The first term on the right-hand side of each of the
equations represents the usual diffusion current; the
second term represents the dissipationless spin-current
contribution; the third term of the second equation is the
usual Dyakonov—Perel relaxation time, and the last term
of that equation represents the coupling of diffusion terms
with spin-current terms.

If for the moment we neglect the D and 7, terms, we see
that the coupled spin and charge-transport equations
formally take the same form as the Maxwell equations in
two dimensions, provided we interpret the charge density
n as being a magnetic field B in two dimensions (in
two spatial dimensions a magnetic field has only one
component) and we interpret the two in-plane spins Sy, S,
as being the two electric fields E\, E,. The first equation
of continuity then becomes Faraday’s induction law,
0B = ae;d,E;, while the second equation becomes
Ampere’s law, 9 E; = —oe;0;B. The only difference
between the behavior of the system and the behavior
of light rests in the value of the “speed of light,”
which in this case is the Rashba coefficient o ~ 10~ .

The analogy with Maxwell’s equations for the case
in which we neglect the D and 7, terms is very helpful
for two reasons: First, it predicts the existence of a
propagating mode of the system—a mode in which
energy propagates rather than dissipates. As shown
above, this mode is the dissipationless spin current in the
ground state. Second, as is usually the case in Maxwell
physics, a disturbance in the magnetic field (the charge
density) creates an electric field (a spin density), thus
predicting the appearance in spin-orbit-coupled systems
of spin density from pure charge density.

A complete analysis of the above equations shows that
the existence of a propagating mode is linked to a large
spin-orbit coupling given by the condition

x> 4/D/t,. (11)

For the generic values of D ~ 1072 m?/s, 7, ~ 1 ns [12],
the condition reads « > 3 X 10* m/s, which is easily
realizable with today’s experimental techniques [27]. For
these values of the parameters, the propagating mode
should have weak damping if its wavelength is within
0.1 um < 7 < 10 um and its frequency is within the
domain 10 GHz < w < 100 GHz.

The development of a propagating mode (depicted
in Figure 4) is clearly seen by solving the equations
numerically for the situation in which a one-dimensional
stripe of charge is assumed to be created along the y
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n (arbitrary units)

Sy (arbitrary units)

As the spin-orbit coupling strength is increased so as to satisfy the
condition o >> \/Wﬂrs, a propagating mode appears, as evidenced
by the behavior of the charge density (a) and the induced spin
density (b). Time is plotted in units of 7./10, whereas the distance
x is plotted in units of a7, /10 (roughly 1 um).

Proposed experiment: a modified version of the classic Haynes—
Shockley experiment. A density packet injected by the emitter
spontaneously splits into two counter-propagating packets with
opposite spin. Unlike the settings of the Haynes—Shockley
experiment, one of the two packets propagates to the collector
without experiencing a sweeping electric field. The time delay
between the injection pulse and the collecting pulse should
give a purely electric determination of the Rashba spin-orbit
coupling constant.

B. A. BERNEVIG AND S. ZHANG

direction (with resulting motion along the x direction)
[28].

Through spin-orbit coupling, the charge disturbance
creates a non-zero spin density. This would not happen
in the absence of spin-orbit coupling. As the spin-orbit
coupling strength is increased, the induced spin density
increases, and its motion changes from a diffusive to a
propagating regime.

For two-dimensional wells of finite width, it has been
shown that the Dyakonov—Perel (DP) spin relaxation
time increases as the width is decreased [15]. In the
limit when the width is decreased such that the two-
dimensional well transforms into a quantum wire, the
DP part of the relaxation time g — o°. In this limit, a
propagating mode should be possible as the condition
o> /D/1s — 0 becomes easier to realize for increasing
spin relaxation times.

The discovery of the propagating mode would have
profound theoretical and experimental implications.
First, the mode should facilitate long-range spin
manipulation by manipulation of the charge packet.
Second, if we are not interested in the spin motion,
we can see that, owing to the reactive coupling to the
spin, the charge of the packet should propagate over
large distances with little dissipation. This suggests a
remarkably simple experiment in the spirit of the classic
Haynes—Shockley experiment but without sweeping
electric field. Figure 5 depicts such a proposed experiment
using a narrow sample with light p-doping. Two
rectifying metal-to-semiconductor point contacts would
respectively be forward- and reverse-biased to serve as
emitter and collector electrodes. After the emitter pulse
was turned on, an electron density packet would be
injected into the sample. In conventional Haynes—
Shockley setup, the electron packet would be swept to
the collector electrode by a electric field. In our case, no
sweeping electric field would be applied, but the density
packet would spontaneously split into two counter-
propagating packets with opposite spin orientations, with
a velocity directly given by the Rashba coupling constant
o. Upon capture of the rightward-moving packet by the
collector electrode, a voltage pulse should be registered.
From the time delay and the shape of the voltage pulse,
one should be able to determine the Rashba coupling
constant and the diffusion constant; this could be done
by controlling only the charge. This experiment suggests
that the injected density pulse should be able to take
advantage of the spin current in the ground state and
propagate without any applied voltage.

Silicon orbitronics

The small spin-orbit coupling in silicon, as measured by
the energy of the split-off band relative to the top of
the valence band, ~44 meV, renders the spin Hall
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effect relatively small at room temperature. Given the
dominance of silicon in the semiconductor industry, it

is important to find a similar dissipationless transport
process which does not rely on the spin-orbit coupling. In
[16], we have investigated the possibility of replacing the
spin degree of freedom with the orbital degree of freedom,
and have designated the associated field of study as
orbitronics. The valence band of Si consists largely of
three p-orbitals. The three orbital degrees of freedom
transform as a (pseudo-) spin-1 quantity under rotation,
are odd under time reversal, and couple to the crystal
momentum of the holes in the Si. We have shown

that p-doped Si under the influence of an electric field
develops an intrinsic orbital current of the p-band

hole orbitals. The polarization of the p-orbitals, the
direction of flow, and the direction of the electric field
are mutually perpendicular. The transport equation

is similar in form to the spin Hall equation [3]:

J{.:as. E

i 175k~ k> (12)

where Jl’ is the orbital current flowing along the j
direction, and the local orbitals are polarized along the
direction perpendicular to both the applied field and the
current. For an electric field on the y-axis, we expect an
orbital current flowing in the positive x direction to be
polarized in the 4+z = p, + ip, direction, while the orbital
current flowing in the negative x direction is polarized in
the —z = p, — ip, direction. As in the case of the spin
current, the orbital current is even under time reversal,
and the above response equation is dissipationless. The
orbital current should appear as a result of the coupling
between the hole momentum k and the local orbital 7,
which is apparent in the Hamiltonian for Si close to

the gamma point of the valence band:

H=AK +(4—B)F-T). (13)

It should be possible to detect the effect by using
techniques similar to those used in detecting the spin
current. Several recent experiments involving detection
of spin currents via the associated spin accumulation at
the boundary [23, 24] should provide us with a basis for
attempting to detect the intrinsic orbital current in Si.
Because Si is an indirect-gap semiconductor with low
efficiency for light emission, an LED-type experiment like
that described in [24], in which the polarization of the
emitted light gives information about the orbital in which
the emitting electron resides, is not experimentally viable.
However, Kerr and Faraday rotation measurements are
insensitive to the Si indirect gap and should be suitable
for probing the orbital polarization.

Concluding remarks

The potential means for achieving dissipationless spin
transport reviewed in this paper constitute theoretical
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and associated, potential experimental directions with
technological implications. A number of alternatives

to the current semiconductor technology have recently
been proposed, including technologies based on carbon
nanotubes, molecular electronics, and dilute magnetic
semiconductors. Spin-based electronics, discussed in

this paper, is based on the use of spin-orbit coupling

in conventional semiconductor materials. As such, it
leverages the tremendous investment of semiconductor
materials processing, and should lead to an easier path of
adoption. We regard the prediction and discovery of the
intrinsic spin Hall effect as an important step toward
developing integrated spin logic devices and achieving
low-energy computing. One of the future challenges for
the field is to develop a way to measure the intrinsic spin
Hall effect directly instead of through spin accumulation.
Other important theoretical and experimental challenges
involve the use of the spin current to inject and
manipulate spins. In materials without (strong) spin-orbit
coupling, one of the future efforts should be to try to
detect the orbital Hall effect and to investigate whether
the orbital moment can be transferred to spin and hence
be used for spin injection. Moreover, experimental
techniques should be devised to enhance the amount

of spin polarization arising from spin current.

The spin-charge-propagating mode predicted in
systems with strong spin-orbit coupling should be another
way of manipulating spin. Because of its propagating
character, it should almost conserve energy. Moreover,
it should be possible to use the mode without regard to
the spin: Use would be made of only its propagating
charge packet. The experimental detection of this
mode, as well as proposals for real devices, constitutes
a focus for future research in spin-based electronics.

**Trademark or registered trademark of Intel Corporation in the
United States, other countries, or both.
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