An approximation to
the greedy algorithm for
differential compression

We present a new differential compression algorithm that combines
the hash value techniques and suffix array techniques of previous
work. The term “differential compression” refers to encoding a file
(a version file) as a set of changes with respect to another file (a
reference file). Previous differential compression algorithms can
be shown empirically to run in linear time, but they have certain
drawbacks; namely, they do not find the best matches for every
offset of the version file. Our algorithm, hsadelta (hash suffix array
delta), finds the best matches for every offset of the version file,
with respect to a certain granularity and above a certain length
threshold. The algorithm has two variations depending on how we
choose the block size. We show that if the block size is kept fixed,
the compression performance of the algorithm is similar to that of
the greedy algorithm, without the associated expensive space and
time requirements. If the block size is varied linearly with the
reference file size, the algorithm can run in linear time and constant
space. We also show empirically that the algorithm performs better
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than other state-of-the-art differential compression algorithms in
terms of compression and is comparable in speed.

Introduction

Differential compression, or delta compression, is a way
of compressing data with a great number of similarities.
Differential compression produces a delta encoding, a
way of representing a version file in terms of an original
file plus new information. Thus, differential compression
algorithms try to efficiently find data common to a
reference and a version file to reduce the amount of new
information that must be used. By storing the reference
file and this delta encoding, the version file can be
reconstructed when needed. An overview of differential
compression is presented in Figure 1.

Early differential compression algorithms ran in
quadratic time or made assumptions about the structure
and alignment of the data to improve running time.
However, many of the applications that we discuss
require differential compression algorithms that are
scalable to large inputs and that make no assumptions
about the structure or alignment of the data.

The advantages of differential compression are clear
in terms of disk space and network transmission. The
main uses of differential compression algorithms are
in software distribution systems, web transportation

infrastructure, and version control systems, including
backups. In systems in which there are multiple backup
files, considerable storage space can be saved by
representing each backup as a set of changes to the
original (a “delta” file or, simply, a “delta”). Alternately,
we can choose to represent the reference file in terms of a
version file or represent each file as a set of changes to the
subsequent version. Furthermore, transmission costs
would be reduced when information was being
transferred, since we would need to send only the changes
rather than the entire version file. In client/server backup
and restore systems, network traffic is reduced between
clients and the server by exchanging delta encodings
rather than exchanging whole files [1]. Furthermore, the
amount of storage required in the backup server is less
than if we were to store the entire file. Software updates
can be performed this way as well. Also, this method of
updating software has the added benefit of providing a
level of piracy protection, since the reference version is
required in order to reconstruct the version file. Thus,
software updates can be performed over the web, since
the deltas are of very little use to those who do not have
the original.
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Overview of differential compression.

The problem of differencing can be considered in terms
of a single version file along with a reference file or a
number of version files along with a single reference file.
The hsadelta encoding algorithm allows us to bring into
memory only the metadata information (offsets and
lengths of the copy tokens from the reference file, and
lengths of the insert tokens for the new information)
about the delta file. This metadata information is usually
much smaller and therefore fits in memory. This allows us
to reconstruct only a desired part of the delta file. The
feature can be used in version control systems for keeping
previous deltas and reconstructing any old revision by
simply bringing in the metadata and reference file. For
purposes of simplicity, we consider the case of a single
version file along with a single reference file, but our
results can be extended to the consideration of a number
of version files along with a single reference file.

Related work

Differential compression arose as part of the string-to-
string correction problem [2], finding the minimum cost
of representing one string in terms of another. The
problem goes hand in hand with the longest common
subsequence (LCS) problem. Miller and Myers [3]
presented an algorithm based on dynamic programming,
and Reichenberger [4] presented a greedy algorithm to
optimally solve the string-to-string correction problem.
Both of these algorithms ran in quadratic time and/or
linear space, which proved to be undesirable for very
large files.

One of the most widely used differencing tools is the
diff utility in UNIX**. Tt is not desirable for most
differential compression programs because it does not
find many matching substrings between the reference
and version files. Since it does line-by-line matching, it
operates at a very high granularity, and when data
becomes misaligned (because of the addition of a few
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characters as opposed to a few lines), diff fails to find the
matching strings following the inserted characters.

In the past few years, there has been much work in the
area of the copy/insert class of delta algorithms. The
hsadelta algorithm (or, simply, hsadelta) falls into this
class of algorithms. The copy/insert class of delta
algorithms use a string-matching technique to find
matching substrings between the reference file and version
file, encode these as copy commands, and then encode the
new information as an insert command. The vediff [5] and
xdelta [6] algorithms and the work of Ajtai et al. [7] fall
into the copy/insert class of delta algorithms. The benefit
of using this method is that if a particular substring in the
reference file has been copied to numerous locations in
the version file, each copied substring can be encoded
as a copy command. Also, if a contiguous part of the
reference file substring has been deleted in the version file,
the remaining part of the old substring can be represented
as two copy commands. There is a benefit to representing
the version file in terms of copy commands as opposed to
insert commands. Copy commands are compact in that
they require only the reference file offset and the length
of the match. Insert commands require that the length
as well as the entire new string be added. Thus, for a
compact encoding, it is desirable to find the longest
matches at every offset of the version file in order to
reduce the number of insert commands and increase
the length of the copy command.

We compare our results empirically to those of the
vediff [5), xdelta [6], and zdelta [8] algorithms. These seem
to be the most competitive differential compression
algorithms currently available in terms of both time and
compression. The vediff algorithm runs in linear time,
while the xdelta algorithm runs in linear time and linear
space (although the constant of the linear space is quite
small). The zdelta algorithm is a modification of z/ib
library, and it uses a hash-based mechanism on reference
and version files. Thus, it uses constant time and space at
the cost of compression for very large files. Ajtai et al. [7]
present a family of differential compression algorithms
for which they prove that one of their algorithms runs
in constant space that also has linear time and good
compression (empirically). However, in some situations,
it produces suboptimal compression. They present three
more algorithms that cannot be proven to be linear-time
but produce better compression results.

The vediff algorithm [5], developed by Tichy, Korn,
and Vo, combines the string-matching technique of
the Lempel-Ziv’77 algorithm [9] and the block-move
technique of Tichy [10]. The vediff algorithm uses the
reference file as part of the dictionary to compress the
version file. Both the Lempel-Ziv algorithm and the
Tichy block-move algorithm run in linear time. The
application of differential layer encoding in progressive
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transmission using the Lempel-Ziv algorithm has been
discussed by Subrahmanya and Berger [11]. Wyner and
Ziv have demonstrated that a variant of the Lempel—
Ziv data compression algorithm for which the database is
held fixed and is reused to encode successive strings of
incoming input symbols is optimal, provided that the
source is stationary [12]. Gibson and Graybill have
discussed the application of hashing for the Lempel-
Ziv algorithm [13]. The vediff algorithm allows string
matching to be done both within the version file and
between the reference file and the version file. In the vediff
algorithm, a hash table is constructed for fast string
matching.

In his master’s thesis, MacDonald has described the
xdelta algorithm and the version control system designed
to utilize it [6, 14]. The algorithm is a linear-time, linear-
space algorithm and was designed to be as fast as
possible, despite suboptimal compression [14]. It is an
approximation of the quadratic-time linear-space greedy
algorithm [1]. The xdelta algorithm works by hashing
blocks of the reference file and keeping the entire hash
table in memory. When there is a hash collision, the
existing hash value and location are kept, and the current
hash value and location are discarded. The justification
for this is to favor earlier, potentially longer matches.
Both hash values and locations cannot be kept if the
algorithm is to run in linear time, since searching for
matches among the duplicate hash values would cause
the algorithm to deviate from linear time. At the end
of processing the reference file, the fingerprint table is
considered populated. The version file is processed by
computing the first hash value on a fixed-size block. If
there is a match in the hash table, the validity of the
match is checked by exact string matching, and the match
is extended as far as possible. Then the version file pointer
is updated to the location immediately following the
match. If there is no match, the pointer is incremented by
one. The process repeats until the end of the version file is
reached. The linear space of xdelta appears not to be
detrimental in practice, since the constant is quite small
[14]. Tt does not find the best possible matches between
the reference file and the version file, since hash collisions
result in new information being lost. Each subsequent
hash to the same location is lost, and the previous
information remains in the hash table.

Ajtai et al. [7] have presented four differential
compression algorithms: the one-pass differencing
algorithm, the correcting one-pass algorithm, the
correcting 1.5-pass algorithm, and the correcting 1.5-pass
algorithm with checkpointing. Their one-pass differencing
algorithm has been proven to be linear in the worst case
but to produce suboptimal compression, since it neither
detects transpositions in data nor finds optimal matches
at a given location of the version file. Their one-pass
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algorithm continually processes both the original file and
the version file sequentially, finding matches by hashing
blocks and comparing the blocks. Thus, their algorithm
encodes the first match it sees and then clears the hash
tables. Hence, all encoded matches must be in the same
sequential order between the reference file and the version
file to be detected. In order to address these shortcomings,
they have devised two new methods, corrections and
checkpointing. Their corrections method is a way to
improve the match, yet it does not guarantee that they
pick the optimal match. It involves implementing a
circular queue to store previous hash values of the
reference file; thus, it can also cause the existing one-pass
algorithm to deviate from the worst-case linear-time
complexity. The 1.5-pass algorithm works by first hashing
footprints in the reference file, but when there is a hash
collision it stores only the first offset encountered. Next,
the version file is continually processed by hashing on
blocks from the version file. If there is a valid match, the
match is encoded, the version file pointer is incremented,
and the process continues. The checkpointing method is
used when all possible hash values cannot fit into memory
and a subset of these hash values must be selected as an
accurate representation of the file. Thus, checkpointing
implemented along with corrections allows the existing
algorithm to improve upon matching substrings already
found. This modified algorithm can find longer matches.
The work of Ajtai et al. is currently used in the IBM
Tivoli* Storage Manager product.

Differential compression methods have also been
presented that are based solely on suffix trees. Weiner [15]
has proposed a greedy algorithm based on suffix trees that
solves the delta encoding problem using linear time and
linear space. In contrast to xdelta, the constant factor
of this algorithm is quite large, preventing it from being
used on very large files. Our work combines the hashing
techniques of Ajtai et al. [7] and those of MacDonald [6]
with the suffix array methods of Manber and Myers [16].

In the most recent work in differential file compression,
Shapira and Storer present a differential compression
algorithm that works in place and uses the sliding-
window method [17]. They show through empirical
results that the method is effective in tackling the
differential compression problem. Their algorithm uses
O[max(n, m)] + O(1) space, where m is the size of the
reference file and 7 is the size of the version file. The O(1)
factor comes from the amount of space needed to store
the program and a fixed number of loop variables, etc.
They also show through empirical results that the limited
amount of memory does not impair the compression
performance of their algorithm.

Our contributions
The hsadelta algorithm, presented in this paper, can be
regarded as an approximation to the greedy algorithm for

R. C. AGARWAL ET AL.

151



152

differential compression or as a linear-time constant-
space differential compression algorithm that is scalable
to very large files, depending on how we define our
granularity, or block size. Previous differential
compression algorithms used hashing on blocks of fixed
width or a sliding-window method or suffix trees or LZ’77
with block move. Our work combines the use of hashing
on blocks of a fixed width with suffix arrays, a data
structure similar to suffix trees that requires less space.
Unlike previous algorithms that hash on blocks, hsadelta
finds the best match at every offset of the version file
encountered. In this paper we also introduce three new
data structures that significantly reduce the cost of
matching version file hash values against reference file
hash values.

The hsadelta algorithm

Preliminaries

In this section we introduce some notation that is used
throughout the remainder of the paper. We define some
quantities and functions to help us describe the
algorithms to be discussed:

e m is the length of the reference file.

¢ 1 is the length of the version file.

* pis the width of each block.

¢ /is the number of blocks in the reference file, /= (m/p).

* H(x) is the value of the hash function for a block of
data that starts at location x and ends at location
x+p—1.

® Jep(x, y) is the longest common prefix of two
substrings x and y.

* sis the number of bits to index the pointer array; note
that s = [log, /] — 2.

* tis the number of bits to index the quick index array;
note that ¢ = [log, /] + 5.

We also define some pointers necessary for the
algorithm pseudo-code:

* . is the position of a pointer in the version file.

® Viemp 1S @ temporary pointer to the version file.

* 1. is the position of a pointer in the reference file.

® Vv IS pointer to the version file used to denote
the end of the previous encoded match.

Algorithm overview

The hsadelta algorithm, much like previous algorithms,
hashes on blocks of the reference and version file. The
hash value is an abbreviated representation of a block, or
substring. It is possible for two different blocks to hash to
the same value, giving a spurious match. Therefore, if the
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hash values match, we must still check the blocks using
exact string matching to ensure that we have a valid
match. It also follows that hash values do not uniquely
define a block, but if two blocks have different hash
values, the two blocks do not match. We use the Rabin—
Karp hash method [18] because we believe it produces
the smallest number of collisions in most situations

and it is efficient for computing for a sliding window.
Furthermore, we hash modulo a Mersenne prime, 2°' — 1.
The reason we use a Mersenne prime is that it allows us to
compute hash values very efficiently. All hash values are
61-bit numbers stored in a 64-bit (8-byte) unsigned long
integer. Typically the number of blocks in the reference
file is much smaller than 2°' — 1. Thus, only a small subset
of all possible hash values are present in the reference file.
This reduces the probability of a spurious match when
two unequal blocks hash to the same value.

The algorithm also takes advantage of the suffix array
data structure introduced by Manber and Myers [16]. The
suffix array is a data structure that can be used for online
string matching, yet requires three to five times less space
than a suffix tree. The suffix array construction is detailed
in Appendix A and is similar to that of Manber and
Myers [16].

We must also choose a block size (or seed length [7]).
The block size is a very important parameter because it
determines the granularity of the matches we detect as
well as the length of the shortest match detected by the
algorithm. It also governs the amount of memory needed
for the algorithm, which is inversely proportional to the
block size.

In hsadelta, we first process the reference file. Once this
is done, we have a complete hash table that is stored in
memory. We store this information as the hash value
array, which is an array of / eight-byte values. After we
have completed these hash computations, we create a
suffix array of 29 high-order bits of hash values. The size
of the suffix array is 2 - /, where / is the number of hash
values. The exact creation of the suffix array is described
in Appendix A. We also create three data structures that
allow for easy search into the hash value array. These
data structures are described in more detail in the next
section. We next process the version file by starting at
offset zero and computing the hash value at every offset
until we find a match. If we have a match, hsadelta is
structured to pick the longest match with an error of
approximately a block length. In order to ensure that we
have the best match, we keep track of the best seen match
of the version file until we are done hashing on every
offset of that block. When we encounter a better match,
we replace the match. This procedure ensures that we
have examined all possible relative alignments between
the two files. We increment the pointer to the location
immediately following the match and continue the same

IBM J. RES. & DEV. VOL. 50 NO. I JANUARY 2006



process until we are done processing the entire reference
file. The run time of hsadelta is improved by the creation
of three data structures, as discussed in the next section.

Important data structures

In this section, we introduce three data structures that are
crucial to the running time of hsadelta but do not affect its
complexity analysis. We have found that the construction
time of these data structures is fairly small in the entire
algorithm, but the data structures improve the running
time. The three data structures are the quick index array,
the block hash table, and the pointer array. These three
data structures are created in one pass of the suffix array
constructed by methods described in Appendix A. For
the purpose of discussing /sadelta, it is important to
remember that the suffix array allows for quick searching.
The array is essentially a set of indices in the hash value
array such that the hash substring starting at an index
given early in the suffix array is lexicographically lower
than a hash substring starting at an index given later in
the array. This is consistent with the definition provided
by Manber and Myers [16].

The purpose of the quick index array is to serve as an
early exit mechanism if a hash value is not present in the
hash table. Use of the quick index array is important
because there are 2°' possible hash values given the prime
number used in our hash computation. The number of
distinct hash values is always less than the number of
blocks, or /, which is typically less than 22*. This means
that our hash table is about 7 X 10~'2% populated. Thus,
it is to our advantage to design data structures that take
advantage of the sparsity of the hash table. The size of the
quick index array can be described as a tradeoff between
storage and the efficiency of our early exit scheme. It is an
array of bits that contains 2’ bits or 2 bytes (see the
section on preliminaries for variable definitions) and is
initialized to contain all Os.

The quick index array is formed by a single pass on the
suffix array. For each hash value in the suffix array, we
extract the first ¢ bits (r = [log, /] + 5) of the hash value.
We use those bits to index the location in the quick index
array and place a 1 in that bit location. Thus, if a hash
value is present in the suffix array (and thus in the hash
value array), there will be a 1 present in the location
indexed by the first 7 bits of the hash value. If a hash value
is not present in the suffix array, there could be either a 1
or a 0 in the location indexed by the first ¢ bits of the hash
value, depending on whether there is another hash value
present with the same leading ¢ bits. Thus, the quick index
array serves as an early exit mechanism if the hash value
we are searching for is not in the hash table.

We decided on the number of bits to use by the
following reasoning: Since there are at most / different
hash values, at most / of the 2’ bits in the hash table are
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table H(ptrd+p) | ptrd
H(ptr5+p) ptrs
H(ptr6+p) ptr6
1| H(ptr7) ptr7
Pointer array Block hash table

Block hash table illustrating how we access a value in the pointer
array using the first s bits of the version file hash value. This
value in turn produces an index to the table. A few typical entries
are shown.

1s. Thus, for a random hash value that is not present in
the hash value array, the probability of finding a 1 in the
quick index array is less than 27°. As can be seen, that
quick index array is a special case of a Bloom filter [19],
for which k (the number of hash functions) is 1 and m/n
(where m is the table size and 7 is the number of keys)
is 32 in hsadelta. This gives us a 97% rejection rate of
version file hash values. Increasing k to 2 or more can
reduce the filter size at the cost of a proportional increase
in the number of cache misses. For a quick index array
that does not fit in the cache, the cost of checking a hash
value in the array is k cache misses. The cost of one cache/
TLB miss is approximately 500 cycles on our machine.
This affects the performance of the algorithm with an
improvement of only 2% in the rejection ratio. Since
we make only one pass on the suffix array, our data
structure takes O(/) time to construct, where / is the
number of hash values in the hash array.

Our second data structure is the block hash table,
as illustrated in Figure 2. In the block hash table,
we organize our reference file hash values for efficient
matching. The block hash table is implemented as an
array. The even locations in the array contain the (29-bit)
high-order hash values in the same order as they appear
in the suffix array, and in the odd locations we have either
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an index to hash value array or a hash value count. We
also want to distinguish between unique hash values and
hash values that are replicated, since we need to know
whether we should perform binary search to find the
longest match. Since our hash values are 61 bits

and we use 29 high-order bits, we have three free bits
available. We use the highest bit to distinguish between
unique and duplicate hash values. The leading bit is a 1 if
the hash value is unique and a 0 if the hash value is not
unique. The remaining bits contain the high-order 29 bits
of the hash value H(r), where r is a pointer in the
reference file. If H(r) is unique, the odd location contains
its index r in the hash value array. If H(r) is not unique,
the first odd location contains the count, or total number
of occurrences of this hash value in the suffix array. The
first pair after the hash value and count represents the
lowest-ranked substring that starts with H(r), and the last
pair represents the highest-ranked substring that starts
with H(r). In the example of Figure 2, ptrl to ptr7 entries
are indices of the hash value array. In the figure, the hash
value string at ptr2 is the lexicographically lowest string
starting with H(ptr2), and the hash value string at ptr6 is
the lexicographically highest string starting with H(ptr2).

All of the substrings are ordered as they are in the suffix
array, since the block hash table was created by a single
pass of the suffix array. Thus, every hash substring
starting with H(r) is in its lexicographic order. Each pair
consists of a pointer to the hash value array in the odd
locations, and the corresponding even positions contain
the high-order 29 bits of the hash value corresponding to
the next block after the pointer. This provides immediate
access to high-order hash values for comparisons in a
binary search. However, we need to access the hash value
array to find the exact matches and perform a search in
case high-order values match. Unique and duplicate hash
values are represented as indicated in the figure.

The final data structure is the pointer array. The
pointer array is an array of indices to the block hash table
that is indexed by the first s, or [log, /] — 2, bits of the
hash value. This location contains a pointer to the
smallest reference file hash value with the same leading
s bits. If there is no reference file hash value with the
same leading s bits, the location contains the next lowest
reference file hash value. Thus, the pointer array reduces
the number of hash values we must process in order to
determine whether a match exists.

We decided on the number of bits to use by the
following reasoning: There are at most / different hash
values in the hash table; if we use s bits, each pointer in the
pointer array, on average, will map to approximately four
distinct hash values in the block hash table, assuming that
we have a good hash function. The pointer array and
block hash table combination serves as a two-dimensional
table of hash values. The new hash function is the choice
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of leading s bits. Given a good first-61-bit hash function,
we expect that the hash value bits are also random with
good uniform distribution. We should expect no more
collisions through choosing first s bits than by any
other s-bit hash computation on the hash values.

These three data structures are used for efficient
matching between the version file hash values and the
reference file hash values. This matching algorithm is
shown in Figure 3. The matching is done as follows: After
each hash value computation in the version file, we extract
the first 7 bits and check the quick index array. If itis a 0,
we quit because there is no match in the hash value array.
Ifitisa 1, we check the pointer array. The first s bits of the
version file hash value give us an index in the block hash
table. If the high part (high-order 29 bits) of the hash value
to which it points in the block hash table is greater than
the high part of our version file hash value, we know that
the version file hash value is not in the block hash table.
We exit, since we do not have a match. If the high part
matches, we obtain the full hash value from the block hash
array index pointed to from the block hash table. If this
hash value is greater than the version file hash value, we
quit. If the hash value is equal to the version file hash
value, we check to see whether the match is unique. If the
match is unique, we return the match. If the match is not
unique, we perform a binary search to see which of the
matches provides the longest match.

The nature of the suffix array allows us to perform
binary search, since the hash substrings with the greatest
number of block matches are grouped together. After we
have found the longest match, we return it. If the high
part of the hash value to which the pointer array points
is less than our current high part of the hash value, we
sequentially traverse other hash values in the array to see
whether we have a match. If the hash values that we
process sequentially are repeated hash values, we use the
count in the odd entries to skip over the next count pair
of values. As mentioned earlier, we have approximately
four distinct hash values mapped to one pointer; thus,
the sequential processing of hash values is not a time-
consuming step. Also, if we have repeated hash values,
this does not affect the complexity of the sequential
processing of hash values, since the count value allows
us to skip over the repeated hash values. These data
structures are illustrated in Figure 2. If we encounter a
hash value that is larger than our desired hash value while
processing the block hash table sequentially, we quit. If
we encounter a match on the high part, we follow the
same matching procedure as described above for the
complete hash value. As one can see, the quick index
array, the pointer array, and block hash table
substantially reduce the amount of time spent searching
for the desired hash substring. In the absence of these
data structures, for all version file hash values generated,
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Input: hash value H (Vc) that we are seeking to match:
1. if [the corresponding entry to (v, ) in the quick index array is 0]
(a) return a null value since /(v,) is not in the hash table
2. else

(a) use the corresponding entry in the pointer array to get a hash
value in the block hash table

(b) if [high part (hash value) in the block hash table > high
part H(v,)]

i. return a null value since H(v,) is not in the table
(c) else if high parts are equal

i. get the hash value from the hash value array pointed to by
the block hash table

ii. if [the hash value > H(v,)]
A. return a null value since H(v,) is not in the table
iii. else
A. now sequentially process the values in the block hash
table (high part and low part from the hash value array)

until we either find an entry equal to H(v,) or we find
the first entry that is larger than H(v,)

B. if the latter case is true
* return a null value because H(v,) is not in the table
C. else (we have a match)

« if the match is unique, indicated by the leading bit of
the 32-bit entry in the block hash table

- return the match
« else (the match is not unique)

- perform binary-search-for-suffixes as described
in Figure 5 to find the longest match where the
initial range is count number of values

- return the longest match
(d) else

i. doas in (c)iii [in this case high part of the hash value in
the block hash table < high part of H(v,)]

Output: the best match for the input hash value, H(v,), if it exists
and a null value otherwise.

Best-match algorithm—Finds the best match for a particular
version file hash value in the hash table.

we have to perform binary search on the entire suffix
array, which contains / values.

Algorithm pseudo-code

The main differential compression algorithm is shown in

Figure 4. The specific binary search method (hereafter
designated simply as binary search) that we use on the

suffixes in the block hash table is shown in Figure 5. This

binary search method is similar to that presented in the
work of Manber and Myers [16]; it is a modification
of the familiar binary search method. We maintain a

Input: reference file string, version file string:
L. (a) initialize r, = 0.
(b) while (r, < m — p)
i. compute H(r,) and store in the hash value array

ii. increment r, by p

N

. Call suffix-array-construction with hash value array as input.

w

. In a single pass of the suffix array, create the quick index array,
the pointer array, and the block hash table as described in the
section on important data structures.

S~

- Initialize v, = 0 and D 0.

- While (v, <n — p)
(a) initialize best-seen-match to null
(b) compute H(v,)

(c) call best-match-algorithm as described in Figure 3 with H(v,)
as input

W

(d) if matching algorithm returns null
i. increment pointer v by 1

(e) else (we have a match)
i. store match in the best-seen-match variable
ii.

vtcmp = vc

iii. for (v, = G ltov, = Viemp TP~ 1)

* compute H(v,) and call the best-match-algorithm
with H(v,) as input

« if matching algorithm returns a match and it is longer
than the best-seen-match

- update the best-seen-match variable to contain the
current match

iv. check the validity of the best-seen-match and extend it as
far left and right as possible and finally encode the match
as a copy command

v. encode the information starting at Vorey 10 the start of the
match as an insert command

vi. update the v, and Vo pointers to the end of the match

6. Encode the last bit of information from Vprey 10 the end of the
file as an insert command.

Postcondition: delta encoding with copy and insert commands and
new information to be encoded.

Main differential compression algorithm.

Figure 2, the lowRankPtr is initially set to the row
containing ptr2 and the highRankPtr is set to the row
containing ptro.

Note that we can reduce the number of hash value
comparisons in our binary search method by keeping
track of min(|lcp(low, w)|, |lep(w, high)|), where low
is the string in the hash value array corresponding to
lowRankPtr and high is the string in the hash value array
corresponding to highRankPtr. This binary search
method exploits a property of suffix arrays in which,

lowRank Ptr and a highRank Ptr, which are pointers that when searching for a particular string w in a suffix array,

index the block hash table. In the example given in if the length of the longest common prefix is x blocks in 155
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Precondition: We have a range of suffixes that match our version
file hash value string in the first block. Let the first block of the
version file hash value be H(v,).

1. Initialize our lowRankPtr to point to the lexicographically lowest
reference file hash substring starting with H(v,) (the first pair of
values after H(v,) and its count; this is the row containing ptr2 in
the example given in Figure 2) and highRankPtr to point to the
lexicographically highest reference file hash substring starting
with H(v_) (count pair of values after /(v,) and its count; this is
the row containing ptr6 in the example given in Figure 2). Let w
be the string of hash values that we seek to match.

2. While (highRankPtr — lowRankPtr > 1)
(a) midRankPtr = (highRankPtr + lowRankPtr)/2

(b) Ptr —— the pointer stored in the odd location of the
midRankPtr row of the block hash table

(c) if the string of hash values starting at hash value
array[Ptr] > w then

i. highRankPtr = midRankPtr
(d) else
i. lowRankPtr = midRankPtr

3. Compare |lcp(low, w)| and |lcp(w, high)| where low is the string
in the hash value array corresponding to lowRankPtr and high is
the string in the hash value array corresponding to highRankPtr
to find whether low or high is the longer match.

4. Return the longer of the matches from the previous step

Postcondition: We have a single suffix that matches the version file
hash value string in the maximum number of blocks.

Binary search among sorted suffixes.

length, all suffixes that match w to x blocks will be
adjacent to one another in the array. For the in-
memory implementation of the algorithm, we have the
optimization that rather than extending the best seen
match after examining all the offsets of a given block, as
described in Step 5(e)iv of Figure 4, we check the validity
of the match for each offset and then extend the match on
either side in Step 5(e)iii. Since our data is all in memory,
this step is not expensive. The step may give us a longer
match, up to two blocks in length. Also, after the
binary search, the best match for that offset is compared
against the best seen match, on the basis of the total
length of the match.

Time and space analysis

In this section, we analyze the time and space
requirements of the Asadelta algorithm. It then becomes
obvious that depending on how we pick our block size,
we have either a linear-time constant-space algorithm or
an approximation to the greedy algorithm that requires
less space and time.

Space analysis

The main data structures in the algorithm that require
space proportional to the number of blocks in the
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reference file are the hash value array, the suffix array, the
rank array in the suffix array construction routine, the
quick index array, the pointer array, and the block hash
table. It is important to mention that the block hash table
is created in place using the space occupied by the suffix
array and the rank array. The hash value array contains
[ hash values, each an eight-byte value. The suffix array
contains / indices in the odd locations and / hash values
(high part only) in the even locations, each a four-byte
value. As mentioned in the section on important data
structures, the quick index array contains 2M1°2/1+3 bits
or 2M°22/1%2 pytes, and the pointer array contains

2ol 1=2 entries or 2/'°2/1 bytes. The block hash table
contains 2 - / entries if all of the hash values are unique.
When the hash values are not unique, the block hash
table contains at most 3 - / values. This happens when all
hash values occur exactly twice. In this situation, we have
one row indicating the count, followed by the two rows
corresponding to the hash values. The rank array in the
suffix array construction routine contains / indices, each
of which is a four-byte value. All other variables and
arrays require O(1) space. The hsadelta algorithm is
structured such that the block hash table shares memory
with the suffix array and the rank array. Thus, the worst-
case memory requirement is only 30 - / bytes. The space
requirements of the algorithm are summarized in Table 1.
As can be seen, the space requirements are always less
than or equal to 30 - / bytes. Note that the requirements
for the block hash table are not included in the total, since
it uses the space of existing data structures.

The space requirements for the greedy algorithm are
simply those of the hash table. However, since the greedy
algorithm hashes on every offset of the reference file, there
are n — p + | hash values in the hash table. The space
requirements for the greedy algorithm are approximately
3 - n, since the greedy algorithm as implemented by Ajtai
et al. [7] uses a three-byte hash value. Hence, if we choose
our block size to be greater than ten bytes (we typically
do so in practice), hsadelta requires less space than the
greedy algorithm. Note that if we increase block size, or p,
as the reference file size increases, hsadelta requires
constant space, because / is constant. In this situation,
however, the greedy algorithm is still a linear space
algorithm.

Time analysis

We consider a simplified version of Asadelta when
performing a time analysis. Rather than using the quick
index array, the pointer array, and the block hash table in
our time analysis, we simply consider matching to be
done as a binary search on the entire suffix array. This
is reasonable, since the quick index array, pointer array,
and block hash table are simply implemented to make the
matching process more efficient; hence, we know that the
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algorithm performs at least as well as its simplified
version. However, we have included the creation of
these data structures in its complexity analysis. Another
assumption we make is that there are no spurious multi-
block matches, that is, instances in which two or more
consecutive hash values match but the blocks themselves
do not match. This is reasonable, since the probability of
having a spurious multi-block match is very low.
During the time analysis, we refer to Figure 4.
Although the analysis pertains to a simplified model
of our differential compression algorithm, the steps
in Figure 4 remain the same. However, the matching
algorithm described in Figure 3 is simplified to a binary
search on the entire suffix array. The single pass of the
reference file and the hash computation in Step 1 of
Figure 4 require O(m) time, since the hash computation
requires the use of every byte in the reference file. The
creation of the suffix array requires O(/ log /) time, as
described in Appendix A. The single pass of the suffix
array to create the quick index array, the pointer array,
and the block hash table requires O(/) time. Now let us
consider Step 5 of Figure 4, processing of the version file.
In Step 5(b), we could compute hash values at every offset
of the version file, a process that has complexity O(n).
This argument relies on a property of the Karp—Rabin
hash computation [18], which requires O(1) computation
on H(x) to produce H(x + 1). The binary search routine
described in Figure 5, used in the processing of the
version file, has complexity O(d + log /), where d is the
depth of the longest match in terms of blocks, as shown in
the work of Manber and Myers [16]. We consider two
separate cases. The first case is Step 5(d) in Figure 4, in
which there is no match to the hash value of a version file
offset. In this case the depth is 0, so d =0. Thus, for each
version file offset for which there is no match, the
complexity is simply the cost of performing a binary
search, or O(log /). In the case in which there is a
match [Step 5(e) of Figure 4], we check the matches
corresponding to the next p — 1 offsets; in other words, we
perform a binary search for the hash value generated for
each version file offset in this block. This is Step S(e)iii
of Figure 4. Since we must perform a binary search,
for each offset within a block, the complexity is
O[p - (dmax + 1log )], where dp.x is the largest value
of d for any offset in the entire block. This results in a
match of size p - dpn.x bytes. Amortized per byte of the
match, the complexity is O[(p - dimax + p 108 1)/(p - dmax)]
or O[1 + (1/dnax) log []. Since dyay is at least 1, this is
bounded by O(1 + log /), or O(log /). Thus, the worst-
case complexity of processing the version file amortized
to each byte, regardless of whether or not there is a
match, is O(log /); hence, processing the entire version
file takes O(n log /). The time requirements for the
hsadelta algorithm are summarized in Table 2.
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Table 1  Space requirements of each data structure in the
hsadelta algorithm.

Data Space

structure (bytes)
Hash value array 8-/
Suffix array 8-/
Rank array 4.1

Between 4 -/ and 8-/
Between / and 2 -/
Between 8-/ and 12-/

Quick index array
Pointer array
Block hash table

Total Between 25/ and 30-/

Table 2 Complexity of each step of the hsadelta algorithm.

Step Complexity
Hashing on reference file O(m)
Suffix array construction O(l log 1)
Creation of data structures o(l)
Hashing on the version file On)
Processing the version file O(n log 1)
Total O(m + [log !+ nlogl)

As one can see, the total complexity of the algorithm is
O(m+1[log!/4+n+nlog!), which can be reduced to simply
O(m+[log I+ nlog /). This can also be written as
O[m + (m/p) log (m/p) + n log (m/p)]. If p remains
constant as m increases, the complexity can be simplified
to O(m+ m log m + n log m) or just O[(m + n) log m].
When we consider the algorithm as an approximation
to the greedy algorithm by fixing the block size, it
clearly has a better asymptotic complexity with similar
compression performance, as shown in the next section.
In the case in which p increases proportionally with m,
(m/p) or [ is a constant. Thus, the complexity reduces
to O(m + n), and if we increase p proportionally with m
(that is, fix /), the algorithm becomes a linear-time
constant-space algorithm.

In practice, however, we obtain much better running
time than the asymptotic complexity derived above
because of the creation of the quick index array, the
pointer array and the block hash table, which narrow the
scope of our binary search and the matching procedure.

Performance compared to that of the greedy algorithm
The compression performance of the hsadelta algorithm is
equivalent to the performance of the greedy algorithm for
the following reasons. In the greedy algorithm, hash
values are computed on the reference string for all offsets.
Thus, it can find matching substrings that are at least one
block long. The hsadelta algorithm computes hash values
only on the block boundaries of the reference file. Thus, it
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will miss matches that are longer than a block but do not
contain a full reference block, or, in other words, if the
common substring straddles two blocks. This is because
there is no single reference file hash value that represents
the information in this match. However, we are sure to
find any match that is at least two blocks long, because, in
this case, the match contains at least one complete block
of the reference file, for which we have computed the hash
value. Thus, we can obtain results equivalent to those
for the greedy algorithm if we choose our block size to be
half of the block size used by the greedy algorithm. As
described by Ajtai et al., the greedy algorithm requires
storing n — p + 1 hash values (approximately » hash
values), where n is the length of the reference string. The
hsadelta algorithm requires the use of only (2:n/p) hash
values, where p is the block size used by the greedy
algorithm. In this step, our algorithm reduces the space
requirement by approximately p/2 without giving up any
capability for finding small matches.

When there are multiple matches for a given offset
of the version file, the greedy algorithm performs
an exhaustive search to find the best match. This is
very expensive if hash collisions are frequent. In our
algorithm, we perform a binary search, as described
in Figure 5, to find the best match with the granularity
of a block size. Here our algorithm cannot discriminate
between two matches which have same number of full
blocks but fractional blocks of different sizes on either
side of the match. Other than this flaw, the algorithm is
essentially a more efficient implementation of the greedy
algorithm. We can circumvent this flaw by modifying the
algorithm as follows: After a binary search, we conclude
that the longest matching substrings match to a depth of
d blocks. We should consider all matches that match at a
depth of d blocks as well as those that match at a depth of
d — 1 blocks. For all of these hash substrings, we look at
one block at both ends of the string to find the longest
overall match. This is still much more efficient than the
greedy algorithm, since we have narrowed down the
number of matches for which we perform full string
matching. For example, consider the scenario in which
there are 100 matches having the same hash values and
only four matches that match at a depth of 9 or 10 blocks.
The greedy algorithm examines all 100 matches, and each
of these examinations may be potentially up to 10 blocks
long. In our algorithm, we look at only the four longest
matches, and for each of these matches, we have to
examine only one block on either side. Note that we have
to examine the hash substrings that match at a depth of
d — 1, since the match may be extended to an additional
fractional block on either side to give a match that is
longer than d blocks. In other words, with the scenario
given above, it is possible that the matches at a depth of
10 match in a length of exactly 10 blocks, and a match at
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a depth of 9 matches at a depth of almost 11 complete
blocks, since the strings could match up to an additional
block on either side of the match. However, we do not
know this until we actually examine the matches. Thus, it
is necessary to explore not only the matches that match in
the longest depth, but also those that match in the longest
depth minus 1. Our implementation of the differential
compression algorithm does not include this
optimization.

Experimental results

We compare hsadelta with xdelta, vediff, and zdelta on a
data set ranging in size from 1.3 MB to 1.3 GB. We were
not able to compare with the results of the algorithm

by Ajtai et al. [7] because the code provided to us did
not scale to such large data sets. The data-set corpus is
composed of real-world data sets and artificially created
data sets in order to demonstrate various aspects of the
algorithm. The data-set corpus and the experiments are
based on the recommendations of Hunt et al. [5].

We divide the version file into fixed-size buffers (no
greater than 20 Mb) and process the buffers as separate
files. This method also helps us to optimize for I/O, since
we can read in the next version buffer while compressing
the first one. The /hsadelta algorithm uses a runtime test to
check the need to compress the data with the second-level
bzip2 compression. If the delta information stream is
more than 1 MB in size, we compress the first | MB and
check whether we have a reduction greater than 5%. If we
do, we run bzip2 on the rest of the buffer. This is done for
the delta stream of each version buffer. The process is
used to save time for the cases in which a buffer contains
encrypted data or already compressed data on which
lossless self-compression techniques such as bzip2 will
not provide further compression. If the delta has to be
computed on two .tar files,' the files are considered as one
large file and used as such for the input to the various
delta algorithms.

All of the experiments were run on an IBM
Intellistation® Model M Pro computer running the
Red Hat Linux** v9.0 operating system, with an Intel
Pentium™* 4 3-GHz processor and 2 GB of RAM. All
results were obtained after ensuring that the cache was
warm. The timing results were averaged over ten
simulations of each compression algorithm after the
cache had been warmed up. We ensured that the
compression program was the only user-executed
program on the CPU, trying to homogenize the
environment for running the simulations.

The real-world data set of Table 3 comprises large
software distributions such as linux kernels, gec, and

" A tar file is a tape archive file; it keeps related files together, thus facilitating the
transfer of multiple files between computers. The files in a .tar archive must be
extracted before they can be used.

IBM J. RES. & DEV. VOL. 50 NO. I JANUARY 2006



Table 3 Comparison of compression performance of hsadelta vs. several other differential compression algorithms for a real-world data
set of files. For each entry, the top row gives the size of the delta file in bytes; the lower row gives the compression ratio (version file size/delta

size). Missing entries indicate that the algorithm failed to complete or aborted prematurely.

File set File size hsadelta xdelta zdelta vediff
netscape-4.78 13,795,752 1,855,840 2,138,632 1,544,408 1,576,305
netscape-4.79 13,800,136 7.44 6.45 8.94 8.75

samba-3.0.4.tar 35,573,760 3,206,433 4,121,002 5,253,316 13,060,041
samba-2.2.9.tar 22,794,240 7.11 5.53 4.34 1.75
gee-3.3.4.tar 152,770,560 9,323,081 14,944,614 35,483,375 53,727,573
gee-3.4.0.tar 191,467,520 20.54 12.81 5.40 3.56
gee-3.4.0.tar 191,467,520 1,376,608 2,896,636 31,633,029 6,244,998
gee-3.4. 1 tar 190,003,200 138.02 65.59 6.01 30.42
linux-2.4.26.tar 172,001,280 14,352,755 20,745,449 43,489,818 89,258,640
linux-2.6.7.tar 197,888,000 13.79 9.54 4.55 222
linux-2.6.7.tar 197,888,000 1,859,561 3,256,524 43,530,507 17,387,095
linux-2.6.8.tar 200,847,360 108.01 61.68 4.61 11.55
linux-2.6.8.tar 200,847,360 1,849,226 3,180,391 44,522,144 19,835,278
linux-2.6.9.tar 204,615,680 110.65 64.34 4.60 10.32
gentoo-stage2-x86-2004.1.tar 145,111,040 12,921,779 14,640,011 48,475,530 46,499,676
gentoo-stage2-x86-2004.2.tar 147,281,920 11.40 10.06 3.04 3.17
gentoo-stage3-x86-2004.1.tar 286,556,160 22,787,474 26,264,924 105,214,160 111,180,033
gentoo-stage3-x86-2004.2.tar 293,949,440 12.90 11.19 2.79 2.64
install-x86-universal-2004.0.iso 721,184,768 609,168,451 605,070,346 616,700,030
install-x86-universal-2004.1.iso 706,514,944 1.16 1.17 1.15
potpourri.tar.reference 1,449,656,320 121,207,197 133,135,549 456,428,504
potpourri.tar.version 1,541,416,960 12.72 11.58 3.38
Average compression ratio 40.37 23.63 4.92 7.17

linux OS. The “netscape” distribution is an example of
pure object binaries; “gentoo” is a combination of source
and object (lisp) files; and “potpourri” is a concatenated
tar file of gcc, samba, linux, and gentoo versions. The
“potpourri” distribution was created to obtain large files
and also to find deltas within distributions. In the table,
we compare the compression results. In each set the first
file is used as the reference file and the second file is used
as the version file. For “samba” we report the result of
delta generation from a newer version to an older version;
we obtain a 28% higher compression than xdelta and an
approximately 63% improvement over zdelta. Delta
compression values between “linux-2.4.26” and “linux-
2.6.7” versions are far apart, with significant file size
difference. The hsadelta algorithm shows 44% better
results than xdelta. For other gce and linux results, we see
that hsadelta outperforms xdelta by approximately 80%
in compression sizes.

In Table 4 we report the pristine results of the delta
algorithms (i.e., no use of second-level bzip- or gzip-type
compression schemes). As soon as the file size grows
beyond few megabytes, the vediff algorithm quickly
degenerates because it fails to find long-distance matches.
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The hsadelta algorithm adaptively selects the block size
and the maximum memory used, depending on the
available memory in the system or specified by the user
and the file size. It never exceeds the 500-Mb memory
limit for the experiments. Block size is the smallest match
that can be found. The xdelta algorithm uses a fixed block
size of 16 and the maximum memory available. For
medium-sized files (file sizes up to approximately

300 MB), the hsadelta results are approximately 30%
better than those for xdelta. The “potpourri” results
demonstrate that if hsadelta uses a larger block size to
work within the given memory size constraint, a larger
pristine output is generated. However, it more than
makes up for those losses in the final result by using bzip2
on the pristine output, as indicated in Table 3.

Table 5 compares the delta and pristine results for
hsadelta by changing the memory constraint. The pristine
output improves by approximately 40% with the increase
in memory. The decrease in block size helps hsadelta to
pick up many small-size matches; however, it does not
always translate to better final output because of the
generation of a large number of tokens that are not bzip2-
compressible. The decrease in block size fragments the
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Table 4  Comparison of pristine output (output without second level of compression).

File set File size hsadelta xdelta vediff
netscape-4.78 13,795,752 3,152,688 4,074,012 1,637,594
netscape-4.79 13,800,136 4.38 3.39 8.43

samba-3.0.4.tar 35,573,760 10,780,947 11,991,996 17,102,081
samba-2.2.9.tar 22,794,240 2.11 1.90 1.33
gce-3.3.4.tar 152,770,560 34,153,687 44,032,927 112,341,720
gee-3.4.0.tar 191,467,520 5.61 4.35 1.70
gce-3.4.0.tar 191,467,520 2,961,812 6,237,463 85,568,046
gee-3.4.1.tar 190,003,200 64.15 30.46 2.22
linux-2.4.26.tar 172,001,280 43,484,522 53,978,787 119,241,803
linux-2.6.7.tar 197,888,000 4.55 3.67 1.66
linux-2.6.7.tar 197,888,000 4,538,719 7,010,935 118,652,057
linux-2.6.8.tar 200,847,360 4425 28.64 1.69
gentoo-stage3-x86-2004.1.tar 286,556,160 41,130,998 47,822,564 225,373,687
gentoo-stage3-x86-2004.2.tar 293,949,440 7.15 6.15 1.30
potpourri.tar.reference 1,449.656,320 311,582,836 280,352,480 1,105,258.,077
potpourri.tar.version 1,541,416,960 4.95 5.50 1.39

Table 5 Comparison of delta and pristine output for several amounts of memory. For each entry, the upper row shows delta output and

the lower row shows pristine output. Results are in bytes.

File set File size 200 Mb 300 Mb 500 Mb
linux-2.4.26.tar 172,001,280 12,921,956 13,686,018 14,352,755
linux-2.6.7.tar 197,888,000 57,234,571 47,756,733 43,484,522

gee-3.3.4.tar 190,003,200 1,089,494 1,055,198 1,037,190
gee-3.4.0.tar 191,467,520 3,630,070 3,168,238 2,797,990
gee-3.4.0.tar 191,467,520 1,413,966 1,381,971 1,376,608
gce-3.4.1.tar 190,003,200 3,676,793 3,305,645 2,961,812
gentoo-all-stages.1.tar 478,945,280 47,742,049 45,131,635 42,177,936
gentoo-all-stages.2.tar 485,242,880 108,641,860 98,391,567 86,566,329
potpourri.tar.reference 1,449,656,320 128,205,826 123,302,192 121,207,197
potpourri.tar.version 1,541,416,960 383,018,822 355,456,960 311,582,836
Total reference 2,482,073,600 191,373,291 184,557,014 180,151,686
Total version 2,606,018,560 556,202,116 508,079,143 447,393,489

buffer window of the secondary compression algorithms
(zlib/bzip2) which, up to a limit, perform better on bigger
windows. Thus, we need a minimum block size above
which both delta compression and bzip2 compression can
perform well.

Table 6 shows the performance of hsadelta in terms of
speed of compression and reconstruction of the data sets.
Compression speed is the time taken by the algorithm
to compress the version file, so it is version file size
divided by time to compress. The “install-x86*.iso” files
demonstrate the adaptive capability of &sadelta in which
it decides against second-level compression (bzip2) and
shows nearly a factor of 2 improvement in speed over
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xdelta without significantly affecting delta size. The linux
and gcc data set provide examples in which hsadelta was
able to pick up a large number of matches across the file,
helping to reduce the delta size and also improve the
speed of compression. The last row gives the average
compression and reconstruction speeds for various
algorithms. We note that hsadelta is comparable to xdelta
in speed. Both of these algorithms are significantly faster
than other algorithms, particularly for compressing large
files.

Table 7 shows the compression results for jigsaw files.
Jigsaw files are created by generating move instructions
of random lengths and random source and destination
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Table 6  Comparison of compression time and reconstruction time. For each entry, the upper row shows compression time and the lower

row shows reconstruction time.

File set File size hsadelta xdelta zdelta vediff
netscape-4.78 13,795,752 Om3s Om3s Om7s Om 10 s
netscape-4.79 13,800,136 Omls OmOs OmOs OmOs

samba-2.2.9.tar 22,794,240 Om 19 s 0Om 20 s Om 35s ImIl0s
samba-3.0.4.tar 35,573,760 Om38s Oml1ls Om1ls Om 28 s
linux-2.4.26.tar 172,001,280 2mls 2m22s SmSs 12m 40 s
linux-2.6.7.tar 197,888,000 Im3s 1 m30s Im3s 1m28s
linux-2.6.7.tar 197,888,000 Im24s 2m7s 7m30s 11m 38 s
linux-2.6.8.tar 200,847,360 0Om 59 s Im?28s Iml3s Im8s
gee-3.3.4.tar 152,770,560 2mé4s 2m17s 6mlls 12m 14 s
gee-3.4.0.tar 191,467,520 Im2s 1m27s Om 55s 0Om 58 s
gee-3.4.0.tar 191,467,520 Im28s 2mlSs Tmo6s 7m19s
gee-3.4.1.tar 190,003,200 Im3s 1m37s Iml8s 1m16s
gentoo-stage2-x86-2004.1.tar 145,111,040 0Om 56s Om35s SmS3s 9m 40 s
gentoo-stage2-x86-2004.2.tar 147,281,920 Om 16 s Oml1Ss Om 10s Om25s
gentoo-stage3-x86-2004.1.tar 286,556,160 Im48s Im19s 8mls 24ml6s
gentoo-stage3-x86-2004.2.tar 293,949,440 Om3ls 0m 36s 0Om29s 0m 49 s
install-x86-universal-2004.0.iso 721,184,768 S5m06s 9m49 s 106 m 40 s
install-x86-universal-2004.1.iso 706,514,944 0m 50 s Om43s 0m 50 s
potpourri.tar.reference 1,449,656,320 I Im9s 8§m42s 33lm 12 s
potpourri.tar.version 1,541,416,960 3mO0s 2mS52s 3ml16s
Average compression speed 2.52 Mb/s 2.53 Mb/s 0.72 Mb/s 0.42 Mb/s
Average decompression speed 6.89 Mb/s 6.60 Mb/s 6.4 Mb/s 5.71 Mb/s
Table 7 Comparison of delta sizes for jigsaw file examples. Size is shown in bytes.
File set File size hsadelta xdelta zdelta vediff
jl 20,971,520 1,349 2,367 12,746,463 13,807,839
j2 41,943,040 2,415 4,028 25,546,779 27,970,833
i3 83,886,080 4,591 8,090 50,908,745 56,059,744
j4 167,772,160 8,991 15,352 102,237,075 112,265,689
i5 335,544,320 18,291 42,121 204,450,572 224,606,798

offsets within the source file. No new data is inserted,
no data is deleted, and no segment of the source file is
repeated. This means that the source and target file
lengths are same. The number of move instructions
ranges from 200 to 2,500, depending on file size. The
pristine outputs for all but the zdelta algorithm are shown
(zdelta does not provide a mechanism to obtain pristine
output). Ideally the target file should be encoded as move
(copy/add) instructions only.

Table 8 gives the details of the artificially created
longest common subsequence (LCS) data sets. The
performance of the delta algorithm is dependent on the
size difference between the pairs of files and the file sizes.
LCS files are constructed by first performing a set of
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deletes at random offsets and of randomly chosen lengths.
This is followed by insertions of random lengths at
random offsets, which are composed of data that cannot
be compressed further. We can see in Table 9 that the
hsadelta output closely tracks the difference between the
pairs of files, which means that we were able to encode
most of the LCS as copy tokens. Table 10 shows the
hsadelta compression time and compression speed for
two unrelated random files.

We have explored the use of Asadelta as a self-
compression algorithm. It can take advantage of the long-
range redundancies in large files, which are missed by gzip
or bzip2 because of their limited buffer of 32 KB. The
algorithm is a two-pass algorithm. In the first pass we
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Table 8 Details of LCS file sets. The designations 10 and 30
indicate the approximate percentage of difference between version
file size and LCS file size. The headings “Insert tokens” and
“Delete tokens” refer to the number of insert/delete operations
performed on the reference file to create the version file.

File ID Ref. file size Insert tokens LCS
Ver. file size Delete tokens Difference
les-1-10 3,010,560 2,005 2,709,387
3,008,223 2,185 298,836
les-1-30 3,010,560 5,905 2,107,361
2,988,514 7,610 881,153
les-2-10 145,111,040 1,979 130,590,673
144,821,600 2,109 14,230,927
les-2-30 145,111,040 5,962 101,576,270
144,967,694 7,674 43,391,424
les-3-10 601,096,192 2,028 540,980,917
600,880,556 2,163 59,899,639
lcs-3-30 601,096,192 5,983 420,765,717
600,162,815 7,511 179,397,098

Table 9 Comparison of delta algorithms on LCS data sets.

File set hsadelta xdelta vediff zdelta

les-1-10 314,710 376,700 710,881 517,802
les-1-30 924,223 999,280 1,393,938 1,102,254
les-2-10 14,250,639 14,338,245 104,989,252 33,560,351
les-2-30 43,478,357 43,690,205 121,008,877 69,042,863

les-3-10 60,649,460 60,929,690 542,596,966 334,196,106
les-3-30 179,458,488 179,992,872 554,146,670 387,507,858

Table 10 Random file processing; files were not compressible
and were not related to one another.

Reference file size 419,430,400
Version file size 629,145,600
Compressed file size 629,146,032
Compression time 2m47s
Compression speed 3.6 Mb/s

build the suffix array, and in the second pass we find the
matches. The matches are restricted to the blocks that
have offset values lower than the current offset value. This
restricts the algorithm from being used in streaming
input/output mode. Finding matching substrings within a
file is like computing an auto-correlation on the file, and
it provides useful insights into the structure of large files.
The leading algorithm in this space is rzip [20], which
demonstrates the advantages of delta compression on

a single very large file.
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Concluding remarks

We have presented hsadelta, a differential compression
algorithm that finds the optimal matches between a
reference file and a version file at the granularity of a
certain block size. We have shown that the algorithm
operates in linear time and constant space when we
increase the block size in proportion to the reference file
size, and we have shown empirically that this algorithm
provides better compression than xdelta, vediff, and zdelta
in almost all cases investigated. On the whole, the speed
of hsadelta is comparable to that of xdelta, and it is
significantly faster than vediff and zdelta. We regard the
main contribution of this work to be the use of a suffix
array on hash values to find the longest matches—an
approach which is computationally relatively efficient and
practical, given memory constraints. Previously, hashing
was used on raw data to speed up searches, and suffix
arrays/trees were used on raw data to find the longest
matches. However, to the best of our knowledge, no
previous work has combined these two approaches in a
novel way. We expect that our method of finding longest
matching strings will be used not only in compression
applications but also as a general string-matching
technique for web searching and in computational biology.

Appendix A: Suffix array construction

In our differential compression algorithm, we use a suffix
array construction algorithm similar to that of Manber
and Myers [16]. By means of construction, we form a
suffix array of the hash values computed on the reference
string. The initial array of hash values is called the hash
value array.

Sorting algorithm
Before we present our suffix array construction algorithm,
it is necessary to describe our sorting algorithm, which is
used as a part of our suffix array construction algorithm.
Our hash values are eight-byte values, and we sort them
four bytes at a time. For four-byte hash values (high
part), we can sort the hash values in linear time by
making five passes over the array of hash values. We
call this sorting algorithm four-byte integer-sort.

The algorithm requires the use of three data structures:
a primary array, a work array, and four count arrays. We
begin with an array that we call the primary array. It
contains 2 - / total values, where / is the number of hash
values computed on the reference file and each value
equals four bytes. We store the index of each hash value
in the hash value array in the odd locations, and the hash
values themselves in the even locations. We require four
count arrays, one for each byte position; each array
contains 256 values to store the number of occurrences
for each possible byte value. We also have a work array,
which contains 2 - / values much like the primary array,
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but is uninitialized at the beginning of four-byte integer-
sort. The algorithm is presented in Figure 6.

Since four-byte integer-sort requires five passes on the
array, its time complexity is five times the size of the array
plus a constant amount of time required to allocate the
data structures used. It requires space of two times the
size of the array plus the size of the count arrays, which is
4 - 256 integers, or 4,096 bytes. Note that the four-byte
integer-sort routine is an order-preserving sort algorithm.
This is a necessary feature for the construction of suffix
arrays.

Theorem A.l
At the (n + 1)th pass of four-byte integer-sort, the data is
sorted by the lowest-order n bytes.

Proof
We prove this fact by induction.

Base case

Note that the first pass is used to count the occurrence
of various byte values. On the second pass of four-byte
integer-sort, the values are placed in buckets on the basis
of their lowest-order byte. The count array tells us how
large each bucket has to be, progressing from the smallest
byte to the largest byte. Thus, the values are sorted on
their lowest-order byte.

Inductive step

We assume that on the nth pass of four-byte integer-sort,
the data is sorted by the lowest-order n — 1 bytes. We next
consider the (n + 1)th pass of the algorithm and consider
two hash values in the array, ¢; and ¢;. Without loss of
generality, let ¢; <, ¢;, where <, respects ordering only to
the last n bytes. We first consider the two cases in which ¢;
and ¢; are not equal. Let ¢[n] be the nth-order byte of c;.

Case 1

¢i[n] = ¢j[n] — ci <, ¢;. Thus, after the nth pass, ¢;
appears before ¢; in the partially sorted array. In the

(n + 1)th pass of the algorithm, ¢; and ¢; are to be placed
in the same bucket. However, in the (n 4+ 1)th pass of the
algorithm, ¢; is encountered before ¢;, and it is placed in
the bucket before ¢;. Thus, ¢; appears before ¢; after the
(n + 1)th pass is complete.

Case 2

¢;[n] < ¢;[n]. This means that on the (n+ 1)th pass, ¢; is to
be placed in a bucket of smaller value than ¢;. Thus, ¢;
appears before ¢; after the (n 4 1)th pass is complete.

Case 3

We now consider the case in which ¢; =, ¢;. The (n+ 1)th
pass of the algorithm seeks to place ¢; and ¢; in the same
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Input: an array (the primary array) with hash values in the even
locations and the corresponding pointers to the hash value array in
the odd locations.

1. First we construct the four count arrays, one for each byte position
to be sorted. In the first pass, we count the number of occurrences
of each byte value, which will be anywhere from 0 to 255. Thus
we have created four arrays with 256 values each that contain the
number of occurrences of each byte value. This step takes O(/)
time. From now on we refer to the lowest-order byte as byte 1, the
next byte 2, etc. until the highest-order byte is byte 4.

2. We sequentially process the primary array and copy values into the
work array using the count array. The count array for byte 1 tells
us exactly where each hash value (along with its index in the hash
value array stored in the odd location) should be placed when
sorting on the lowest-order byte. After completion of this step, the
work array is sorted on the lowest-order byte of hash values by
Theorem A.1. This step takes O(/) time.

3. Now we sort on the next low-order byte (byte 2), using the array
work array and the count array for byte 2. We sequentially process
the work array and place the hash values (with their indices in the
odd locations) in their correct places in the primary array. We use
the count array which tells us where the hash values should go. At
the completion of this step, the primary array has the hash values
sorted on the last two bytes by Theorem A.1. This step takes O(/)
time.

4. Now we sort based on the next low-order byte. We sequentially
process the primary array, and each hash value is stored in its
correct location using the count array for byte 3. At the conclusion
of this step, the work array has the hash values sorted on the last
three bytes by Theorem A.1. This step takes O(/) time.

wn

. Finally we sort based on the highest-order byte, using the same
process as described in step 3. At the conclusion of this step, the
primary array has the hash values sorted on all four bytes by
Theorem A.1. This step takes O(/) time.

Output: an array with sorted hash values stored in the even locations
and the corresponding pointers to the hash value array in the odd
locations.

Four-byte integer-sort algorithm.

bucket. After the nth pass of the algorithm, if there are
values c; that are between ¢; and ¢; in the partially sorted
array, ¢; =, Cx =n—1 ¢; for all such c;. Thus, when this
array is sequentially processed in the (1 + 1)th pass, ¢; is
placed in the bucket corresponding to its nth byte, the ¢,
are placed in the bucket corresponding to their nth byte,
and ¢; is placed in the bucket corresponding to its nth
byte. Hence, if there are values between ¢; and ¢; after the
(n+ 1)th pass of the algorithm, they must equal ¢; and ¢;
in the lowest n-order bytes.

At the end of four-byte integer-sort, the high-order
four bytes of the hash value array have been sorted. We
scan the values to determine whether there are duplicates.
Then, for each set of duplicate values as a group, we again
sort on the basis of their lower four-byte values by using
the above four-byte integer sort. []
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Input: array with hash values (high part) in the even locations and
corresponding pointers in the odd locations.

—

. Sort the hash values as described in Appendix A. At the end of this
step, we have sorted the hash values, with the high part stored in
even locations of the array. The corresponding pointers in the odd
locations have been moved with the hash values as they were
sorted; thus, each hash value is still adjacent to its pointer. This is
our preliminary suffix array.

38}

. If all hash values are distinct, the hash values are sorted and we are
done. If the hash values are not distinct, we construct and initially
populate the rank array. The rank array is initially populated by a
single scan on the preliminary suffix array. If a hash value is
unique, it has a unique rank value. However, if the hash value is
not unique, all identical hash values share the same rank. We now
define a group to be the set of identical hash values. Note that each
group shares the same rank.

w

. Initialize the depth of sorting variable to 1.

ks

For each group, we perform the following procedure:

(a) We sort on the ranks corresponding to the location that is equal
to the current location plus the depth of sorting. These ranks are
obtained from the rank array. The sorting is done using the
four-byte integer-sort described in Figure 6.

(b) Then we update the ranks in our rank array.

W

. At the conclusion of step 4, the hash values are sorted at twice the
depth of sorting before step 4. Therefore, we double the depth of
the sorting variable.

6. If there are still unresolved ranks, go to step 4. Otherwise, exit.
Output: suffix array that contains the indices corresponding to the

sorted suffixes. In other words, string of hash values starting at suffix
[i] < string of hash values starting at suffix [i +1] Vi.

Suffix array construction algorithm.

Header

Try bzip2
Token information on this stream Token information

stream stream

Reference file Reference file

offsets offsets
Try bzip2
on this stream

Delta information Delta information

stream . stream
Post-processing
Information needed steps Final
for delta file delta file

Encoding scheme and post-processing steps.

Suffix array construction algorithm

At the start of the suffix array construction algorithm, we
sort the eight-byte hash values as described above. At the
end of this process, if the hash values are distinct, we have
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the suffix array. If the hash values are not distinct, for
each group of duplicate hash values, we must look at the
subsequent hash values in the hash value array until the
strings of hash values are distinct.

We create a data structure called the rank array that
allows us to access the suffix array position (or the rank)
for any location in the hash value array. As we transform
the primary array into the suffix array of hash values, the
rank array is continually updated. Thus, we index the
rank array by the index of the original hash value array,
and the rank array value is its location in the suffix array.

Our suffix array construction algorithm is described in
Figure 7. We know that our suffix array construction
terminates, because no two strings are the same in the
hash value array. Our suffix array construction takes
O(l log d) time, where [ is the number of hash values
(or blocks) and d is the length of the longest matching
substring (in blocks) in the reference file.

Appendix B: Encoding scheme

We divide the version file into fixed-size buffers that can
be brought into memory for compression. The size of
these buffers is decided on the basis of the maximum
memory available for compression with the limit of

20 Mb. In order to have a compact representation of
these version file buffers, we have developed an encoding
scheme that we believe is not only compact but is further
compressible, since all of the delta substrings are
concatenated as a single string.

Our encoding scheme, depicted in Figure 8, is described
below. We first describe the information we must
represent in our delta file. We describe matching
substrings between two files as tokens. We have two kinds
of tokens, reference file tokens and delta file tokens. The
reference file tokens must store the length of the match
and the location of the start of the match in the reference
file. This is equivalent to the copy command term used in
other work. The delta file tokens must store the length
of the new substring to be added. This is equivalent to
an add command in other work. Thus, we have three
different streams of data, the token information stream
(which gives us information about whether we have a
delta file token or a reference file token along with the
length of the token), the reference file offset stream (which
tells us where the matching substring starts in the
reference file), and the delta stream (the substrings that
must be added). The separation of token streams helps us
to separate metadata information from the deltas. Thus,
by just bringing the metadata information into memory,
we are able to reconstruct only a portion of the file, which
can be useful for keeping previous deltas in version
control systems.

The token information stream is stored as follows:
The first bit denotes whether the token is a delta file

IBM J. RES. & DEV. VOL. 50 NO. I JANUARY 2006



token or a reference file token. The next six bits contains
the length. If six bits is not enough information to store
the length of the match, we terminate the byte with a 1
in the last bit. If six bits is sufficient, we terminate the
byte with a 0 in the last bit. If we need to use the next
byte, the first seven bits is used for length (which gives
a total of 13 bits for length) and the last bit tells us
whether we have used the next byte or the token has
been terminated. We know that the token terminates
when the last bit of a byte is a 0. Thus, the length of the
token contains a certain number of complete bytes. The
rationale behind this scheme is that most tokens can be
represented with only one byte. In rare cases, we need
to use two or more bytes to represent the length. Also,
we want to represent tokens of small length compactly
in order to maximize the reduction in space.

The reference file offset stream is stored using a fixed
number of bits per token, namely [log, m], since it is the
maximum possible offset value. The total length of the
reference file offset stream is [(k/8) - [logy m]], where k is
the number of reference file tokens. Finally, the delta
information stream contains all of the new information
to be added in one contiguous stream.

In order to reduce the amount of information to be
stored, we try using bzip2 on the token information
stream and the delta information stream. If the delta
information stream is greater than 1 MB, we compress
the first 1 MB and ascertain whether we have achieved
more than a 5% reduction. If we have, we run bzip2 on
the rest of the data stream. If not, we realize that running
bzip2 does not help, and we do not continue. If the delta
information stream is less than 1 MB, we run bzip2 on the
stream. Note that if the compressed stream is larger than
the original stream, we use the original stream for the
token information stream and the delta information
stream, as the case may be. Since we have found that the
reference file offset stream is generally not compressible,
we do not try to run bzip2 on it. Thus, for each version file
buffer we have a token buffer stream with token header
encoding the length of the stream and bzip2 status. The
other two streams also have similar headers. Then there is
the main header, which has the Asadelta magic number,
the number of version file buffers, and the offsets of
version file compressed buffers.
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