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We present a new differential compression algorithm that combines
the hash value techniques and suffix array techniques of previous
work. The term ‘‘differential compression’’ refers to encoding a file
(a version file) as a set of changes with respect to another file (a
reference file). Previous differential compression algorithms can
be shown empirically to run in linear time, but they have certain
drawbacks; namely, they do not find the best matches for every
offset of the version file. Our algorithm, hsadelta (hash suffix array
delta), finds the best matches for every offset of the version file,
with respect to a certain granularity and above a certain length
threshold. The algorithm has two variations depending on how we
choose the block size. We show that if the block size is kept fixed,
the compression performance of the algorithm is similar to that of
the greedy algorithm, without the associated expensive space and
time requirements. If the block size is varied linearly with the
reference file size, the algorithm can run in linear time and constant
space. We also show empirically that the algorithm performs better
than other state-of-the-art differential compression algorithms in
terms of compression and is comparable in speed.

Introduction

Differential compression, or delta compression, is a way

of compressing data with a great number of similarities.

Differential compression produces a delta encoding, a

way of representing a version file in terms of an original

file plus new information. Thus, differential compression

algorithms try to efficiently find data common to a

reference and a version file to reduce the amount of new

information that must be used. By storing the reference

file and this delta encoding, the version file can be

reconstructed when needed. An overview of differential

compression is presented in Figure 1.

Early differential compression algorithms ran in

quadratic time or made assumptions about the structure

and alignment of the data to improve running time.

However, many of the applications that we discuss

require differential compression algorithms that are

scalable to large inputs and that make no assumptions

about the structure or alignment of the data.

The advantages of differential compression are clear

in terms of disk space and network transmission. The

main uses of differential compression algorithms are

in software distribution systems, web transportation

infrastructure, and version control systems, including

backups. In systems in which there are multiple backup

files, considerable storage space can be saved by

representing each backup as a set of changes to the

original (a ‘‘delta’’ file or, simply, a ‘‘delta’’). Alternately,

we can choose to represent the reference file in terms of a

version file or represent each file as a set of changes to the

subsequent version. Furthermore, transmission costs

would be reduced when information was being

transferred, since we would need to send only the changes

rather than the entire version file. In client/server backup

and restore systems, network traffic is reduced between

clients and the server by exchanging delta encodings

rather than exchanging whole files [1]. Furthermore, the

amount of storage required in the backup server is less

than if we were to store the entire file. Software updates

can be performed this way as well. Also, this method of

updating software has the added benefit of providing a

level of piracy protection, since the reference version is

required in order to reconstruct the version file. Thus,

software updates can be performed over the web, since

the deltas are of very little use to those who do not have

the original.
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The problem of differencing can be considered in terms

of a single version file along with a reference file or a

number of version files along with a single reference file.

The hsadelta encoding algorithm allows us to bring into

memory only the metadata information (offsets and

lengths of the copy tokens from the reference file, and

lengths of the insert tokens for the new information)

about the delta file. This metadata information is usually

much smaller and therefore fits in memory. This allows us

to reconstruct only a desired part of the delta file. The

feature can be used in version control systems for keeping

previous deltas and reconstructing any old revision by

simply bringing in the metadata and reference file. For

purposes of simplicity, we consider the case of a single

version file along with a single reference file, but our

results can be extended to the consideration of a number

of version files along with a single reference file.

Related work

Differential compression arose as part of the string-to-

string correction problem [2], finding the minimum cost

of representing one string in terms of another. The

problem goes hand in hand with the longest common

subsequence (LCS) problem. Miller and Myers [3]

presented an algorithm based on dynamic programming,

and Reichenberger [4] presented a greedy algorithm to

optimally solve the string-to-string correction problem.

Both of these algorithms ran in quadratic time and/or

linear space, which proved to be undesirable for very

large files.

One of the most widely used differencing tools is the

diff utility in UNIX**. It is not desirable for most

differential compression programs because it does not

find many matching substrings between the reference

and version files. Since it does line-by-line matching, it

operates at a very high granularity, and when data

becomes misaligned (because of the addition of a few

characters as opposed to a few lines), diff fails to find the

matching strings following the inserted characters.

In the past few years, there has been much work in the

area of the copy/insert class of delta algorithms. The

hsadelta algorithm (or, simply, hsadelta) falls into this

class of algorithms. The copy/insert class of delta

algorithms use a string-matching technique to find

matching substrings between the reference file and version

file, encode these as copy commands, and then encode the

new information as an insert command. The vcdiff [5] and

xdelta [6] algorithms and the work of Ajtai et al. [7] fall

into the copy/insert class of delta algorithms. The benefit

of using this method is that if a particular substring in the

reference file has been copied to numerous locations in

the version file, each copied substring can be encoded

as a copy command. Also, if a contiguous part of the

reference file substring has been deleted in the version file,

the remaining part of the old substring can be represented

as two copy commands. There is a benefit to representing

the version file in terms of copy commands as opposed to

insert commands. Copy commands are compact in that

they require only the reference file offset and the length

of the match. Insert commands require that the length

as well as the entire new string be added. Thus, for a

compact encoding, it is desirable to find the longest

matches at every offset of the version file in order to

reduce the number of insert commands and increase

the length of the copy command.

We compare our results empirically to those of the

vcdiff [5], xdelta [6], and zdelta [8] algorithms. These seem

to be the most competitive differential compression

algorithms currently available in terms of both time and

compression. The vcdiff algorithm runs in linear time,

while the xdelta algorithm runs in linear time and linear

space (although the constant of the linear space is quite

small). The zdelta algorithm is a modification of zlib

library, and it uses a hash-based mechanism on reference

and version files. Thus, it uses constant time and space at

the cost of compression for very large files. Ajtai et al. [7]

present a family of differential compression algorithms

for which they prove that one of their algorithms runs

in constant space that also has linear time and good

compression (empirically). However, in some situations,

it produces suboptimal compression. They present three

more algorithms that cannot be proven to be linear-time

but produce better compression results.

The vcdiff algorithm [5], developed by Tichy, Korn,

and Vo, combines the string-matching technique of

the Lempel–Ziv’77 algorithm [9] and the block-move

technique of Tichy [10]. The vcdiff algorithm uses the

reference file as part of the dictionary to compress the

version file. Both the Lempel–Ziv algorithm and the

Tichy block-move algorithm run in linear time. The

application of differential layer encoding in progressive

Figure 1

Overview of differential compression.
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transmission using the Lempel–Ziv algorithm has been

discussed by Subrahmanya and Berger [11]. Wyner and

Ziv have demonstrated that a variant of the Lempel–

Ziv data compression algorithm for which the database is

held fixed and is reused to encode successive strings of

incoming input symbols is optimal, provided that the

source is stationary [12]. Gibson and Graybill have

discussed the application of hashing for the Lempel–

Ziv algorithm [13]. The vcdiff algorithm allows string

matching to be done both within the version file and

between the reference file and the version file. In the vcdiff

algorithm, a hash table is constructed for fast string

matching.

In his master’s thesis, MacDonald has described the

xdelta algorithm and the version control system designed

to utilize it [6, 14]. The algorithm is a linear-time, linear-

space algorithm and was designed to be as fast as

possible, despite suboptimal compression [14]. It is an

approximation of the quadratic-time linear-space greedy

algorithm [1]. The xdelta algorithm works by hashing

blocks of the reference file and keeping the entire hash

table in memory. When there is a hash collision, the

existing hash value and location are kept, and the current

hash value and location are discarded. The justification

for this is to favor earlier, potentially longer matches.

Both hash values and locations cannot be kept if the

algorithm is to run in linear time, since searching for

matches among the duplicate hash values would cause

the algorithm to deviate from linear time. At the end

of processing the reference file, the fingerprint table is

considered populated. The version file is processed by

computing the first hash value on a fixed-size block. If

there is a match in the hash table, the validity of the

match is checked by exact string matching, and the match

is extended as far as possible. Then the version file pointer

is updated to the location immediately following the

match. If there is no match, the pointer is incremented by

one. The process repeats until the end of the version file is

reached. The linear space of xdelta appears not to be

detrimental in practice, since the constant is quite small

[14]. It does not find the best possible matches between

the reference file and the version file, since hash collisions

result in new information being lost. Each subsequent

hash to the same location is lost, and the previous

information remains in the hash table.

Ajtai et al. [7] have presented four differential

compression algorithms: the one-pass differencing

algorithm, the correcting one-pass algorithm, the

correcting 1.5-pass algorithm, and the correcting 1.5-pass

algorithm with checkpointing. Their one-pass differencing

algorithm has been proven to be linear in the worst case

but to produce suboptimal compression, since it neither

detects transpositions in data nor finds optimal matches

at a given location of the version file. Their one-pass

algorithm continually processes both the original file and

the version file sequentially, finding matches by hashing

blocks and comparing the blocks. Thus, their algorithm

encodes the first match it sees and then clears the hash

tables. Hence, all encoded matches must be in the same

sequential order between the reference file and the version

file to be detected. In order to address these shortcomings,

they have devised two new methods, corrections and

checkpointing. Their corrections method is a way to

improve the match, yet it does not guarantee that they

pick the optimal match. It involves implementing a

circular queue to store previous hash values of the

reference file; thus, it can also cause the existing one-pass

algorithm to deviate from the worst-case linear-time

complexity. The 1.5-pass algorithm works by first hashing

footprints in the reference file, but when there is a hash

collision it stores only the first offset encountered. Next,

the version file is continually processed by hashing on

blocks from the version file. If there is a valid match, the

match is encoded, the version file pointer is incremented,

and the process continues. The checkpointing method is

used when all possible hash values cannot fit into memory

and a subset of these hash values must be selected as an

accurate representation of the file. Thus, checkpointing

implemented along with corrections allows the existing

algorithm to improve upon matching substrings already

found. This modified algorithm can find longer matches.

The work of Ajtai et al. is currently used in the IBM

Tivoli* Storage Manager product.

Differential compression methods have also been

presented that are based solely on suffix trees. Weiner [15]

has proposed a greedy algorithm based on suffix trees that

solves the delta encoding problem using linear time and

linear space. In contrast to xdelta, the constant factor

of this algorithm is quite large, preventing it from being

used on very large files. Our work combines the hashing

techniques of Ajtai et al. [7] and those of MacDonald [6]

with the suffix array methods of Manber and Myers [16].

In the most recent work in differential file compression,

Shapira and Storer present a differential compression

algorithm that works in place and uses the sliding-

window method [17]. They show through empirical

results that the method is effective in tackling the

differential compression problem. Their algorithm uses

O[max(n, m)] þ O(1) space, where m is the size of the

reference file and n is the size of the version file. The O(1)

factor comes from the amount of space needed to store

the program and a fixed number of loop variables, etc.

They also show through empirical results that the limited

amount of memory does not impair the compression

performance of their algorithm.

Our contributions
The hsadelta algorithm, presented in this paper, can be

regarded as an approximation to the greedy algorithm for
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differential compression or as a linear-time constant-

space differential compression algorithm that is scalable

to very large files, depending on how we define our

granularity, or block size. Previous differential

compression algorithms used hashing on blocks of fixed

width or a sliding-window method or suffix trees or LZ’77

with block move. Our work combines the use of hashing

on blocks of a fixed width with suffix arrays, a data

structure similar to suffix trees that requires less space.

Unlike previous algorithms that hash on blocks, hsadelta

finds the best match at every offset of the version file

encountered. In this paper we also introduce three new

data structures that significantly reduce the cost of

matching version file hash values against reference file

hash values.

The hsadelta algorithm

Preliminaries

In this section we introduce some notation that is used

throughout the remainder of the paper. We define some

quantities and functions to help us describe the

algorithms to be discussed:

� m is the length of the reference file.
� n is the length of the version file.
� p is the width of each block.
� l is the number of blocks in the reference file, l¼ (m/p).
� H(x) is the value of the hash function for a block of

data that starts at location x and ends at location

x þ p � 1.
� lcp(x, y) is the longest common prefix of two

substrings x and y.
� s is the number of bits to index the pointer array; note

that s ¼ dlog2 le � 2.
� t is the number of bits to index the quick index array;

note that t ¼ dlog2 le þ 5.

We also define some pointers necessary for the

algorithm pseudo-code:

� mc is the position of a pointer in the version file.
� mtemp is a temporary pointer to the version file.
� rc is the position of a pointer in the reference file.
� mprev is pointer to the version file used to denote

the end of the previous encoded match.

Algorithm overview

The hsadelta algorithm, much like previous algorithms,

hashes on blocks of the reference and version file. The

hash value is an abbreviated representation of a block, or

substring. It is possible for two different blocks to hash to

the same value, giving a spurious match. Therefore, if the

hash values match, we must still check the blocks using

exact string matching to ensure that we have a valid

match. It also follows that hash values do not uniquely

define a block, but if two blocks have different hash

values, the two blocks do not match. We use the Rabin–

Karp hash method [18] because we believe it produces

the smallest number of collisions in most situations

ˇand it is efficient for computing for a sliding window.

Furthermore, we hash modulo a Mersenne prime, 261� 1.

The reason we use a Mersenne prime is that it allows us to

compute hash values very efficiently. All hash values are

61-bit numbers stored in a 64-bit (8-byte) unsigned long

integer. Typically the number of blocks in the reference

file is much smaller than 261� 1. Thus, only a small subset

of all possible hash values are present in the reference file.

This reduces the probability of a spurious match when

two unequal blocks hash to the same value.

The algorithm also takes advantage of the suffix array

data structure introduced by Manber and Myers [16]. The

suffix array is a data structure that can be used for online

string matching, yet requires three to five times less space

than a suffix tree. The suffix array construction is detailed

in Appendix A and is similar to that of Manber and

Myers [16].

We must also choose a block size (or seed length [7]).

The block size is a very important parameter because it

determines the granularity of the matches we detect as

well as the length of the shortest match detected by the

algorithm. It also governs the amount of memory needed

for the algorithm, which is inversely proportional to the

block size.

In hsadelta, we first process the reference file. Once this

is done, we have a complete hash table that is stored in

memory. We store this information as the hash value

array, which is an array of l eight-byte values. After we

have completed these hash computations, we create a

suffix array of 29 high-order bits of hash values. The size

of the suffix array is 2 � l, where l is the number of hash

values. The exact creation of the suffix array is described

in Appendix A. We also create three data structures that

allow for easy search into the hash value array. These

data structures are described in more detail in the next

section. We next process the version file by starting at

offset zero and computing the hash value at every offset

until we find a match. If we have a match, hsadelta is

structured to pick the longest match with an error of

approximately a block length. In order to ensure that we

have the best match, we keep track of the best seen match

of the version file until we are done hashing on every

offset of that block. When we encounter a better match,

we replace the match. This procedure ensures that we

have examined all possible relative alignments between

the two files. We increment the pointer to the location

immediately following the match and continue the same
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process until we are done processing the entire reference

file. The run time of hsadelta is improved by the creation

of three data structures, as discussed in the next section.

Important data structures

In this section, we introduce three data structures that are

crucial to the running time of hsadelta but do not affect its

complexity analysis. We have found that the construction

time of these data structures is fairly small in the entire

algorithm, but the data structures improve the running

time. The three data structures are the quick index array,

the block hash table, and the pointer array. These three

data structures are created in one pass of the suffix array

constructed by methods described in Appendix A. For

the purpose of discussing hsadelta, it is important to

remember that the suffix array allows for quick searching.

The array is essentially a set of indices in the hash value

array such that the hash substring starting at an index

given early in the suffix array is lexicographically lower

than a hash substring starting at an index given later in

the array. This is consistent with the definition provided

by Manber and Myers [16].

The purpose of the quick index array is to serve as an

early exit mechanism if a hash value is not present in the

hash table. Use of the quick index array is important

because there are 261 possible hash values given the prime

number used in our hash computation. The number of

distinct hash values is always less than the number of

blocks, or l, which is typically less than 224. This means

that our hash table is about 73 10�12% populated. Thus,

it is to our advantage to design data structures that take

advantage of the sparsity of the hash table. The size of the

quick index array can be described as a tradeoff between

storage and the efficiency of our early exit scheme. It is an

array of bits that contains 2t bits or 2t�3 bytes (see the

section on preliminaries for variable definitions) and is

initialized to contain all 0s.

The quick index array is formed by a single pass on the

suffix array. For each hash value in the suffix array, we

extract the first t bits (t¼ dlog2 le þ 5) of the hash value.

We use those bits to index the location in the quick index

array and place a 1 in that bit location. Thus, if a hash

value is present in the suffix array (and thus in the hash

value array), there will be a 1 present in the location

indexed by the first t bits of the hash value. If a hash value

is not present in the suffix array, there could be either a 1

or a 0 in the location indexed by the first t bits of the hash

value, depending on whether there is another hash value

present with the same leading t bits. Thus, the quick index

array serves as an early exit mechanism if the hash value

we are searching for is not in the hash table.

We decided on the number of bits to use by the

following reasoning: Since there are at most l different

hash values, at most l of the 2t bits in the hash table are

1s. Thus, for a random hash value that is not present in

the hash value array, the probability of finding a 1 in the

quick index array is less than 2�5. As can be seen, that

quick index array is a special case of a Bloom filter [19],

for which k (the number of hash functions) is 1 and m/n

(where m is the table size and n is the number of keys)

is 32 in hsadelta. This gives us a 97% rejection rate of

version file hash values. Increasing k to 2 or more can

reduce the filter size at the cost of a proportional increase

in the number of cache misses. For a quick index array

that does not fit in the cache, the cost of checking a hash

value in the array is k cache misses. The cost of one cache/

TLB miss is approximately 500 cycles on our machine.

This affects the performance of the algorithm with an

improvement of only 2% in the rejection ratio. Since

we make only one pass on the suffix array, our data

structure takes O(l ) time to construct, where l is the

number of hash values in the hash array.

Our second data structure is the block hash table,

as illustrated in Figure 2. In the block hash table,

we organize our reference file hash values for efficient

matching. The block hash table is implemented as an

array. The even locations in the array contain the (29-bit)

high-order hash values in the same order as they appear

in the suffix array, and in the odd locations we have either

Figure 2

Block hash table illustrating how we access a value in the pointer 
array using the first s bits of the version file hash value. This 
value in turn produces an index to the table. A few typical entries 
are shown.
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an index to hash value array or a hash value count. We

also want to distinguish between unique hash values and

hash values that are replicated, since we need to know

whether we should perform binary search to find the

longest match. Since our hash values are 61 bits

and we use 29 high-order bits, we have three free bits

available. We use the highest bit to distinguish between

unique and duplicate hash values. The leading bit is a 1 if

the hash value is unique and a 0 if the hash value is not

unique. The remaining bits contain the high-order 29 bits

of the hash value H(r), where r is a pointer in the

reference file. If H(r) is unique, the odd location contains

its index r in the hash value array. If H(r) is not unique,

the first odd location contains the count, or total number

of occurrences of this hash value in the suffix array. The

first pair after the hash value and count represents the

lowest-ranked substring that starts with H(r), and the last

pair represents the highest-ranked substring that starts

with H(r). In the example of Figure 2, ptr1 to ptr7 entries

are indices of the hash value array. In the figure, the hash

value string at ptr2 is the lexicographically lowest string

starting with H(ptr2), and the hash value string at ptr6 is

the lexicographically highest string starting with H(ptr2).

All of the substrings are ordered as they are in the suffix

array, since the block hash table was created by a single

pass of the suffix array. Thus, every hash substring

starting with H(r) is in its lexicographic order. Each pair

consists of a pointer to the hash value array in the odd

locations, and the corresponding even positions contain

the high-order 29 bits of the hash value corresponding to

the next block after the pointer. This provides immediate

access to high-order hash values for comparisons in a

binary search. However, we need to access the hash value

array to find the exact matches and perform a search in

case high-order values match. Unique and duplicate hash

values are represented as indicated in the figure.

The final data structure is the pointer array. The

pointer array is an array of indices to the block hash table

that is indexed by the first s, or dlog2 le � 2, bits of the

hash value. This location contains a pointer to the

smallest reference file hash value with the same leading

s bits. If there is no reference file hash value with the

same leading s bits, the location contains the next lowest

reference file hash value. Thus, the pointer array reduces

the number of hash values we must process in order to

determine whether a match exists.

We decided on the number of bits to use by the

following reasoning: There are at most l different hash

values in the hash table; if we use s bits, each pointer in the

pointer array, on average, will map to approximately four

distinct hash values in the block hash table, assuming that

we have a good hash function. The pointer array and

block hash table combination serves as a two-dimensional

table of hash values. The new hash function is the choice

of leading s bits. Given a good first-61-bit hash function,

we expect that the hash value bits are also random with

good uniform distribution. We should expect no more

collisions through choosing first s bits than by any

other s-bit hash computation on the hash values.

These three data structures are used for efficient

matching between the version file hash values and the

reference file hash values. This matching algorithm is

shown in Figure 3. The matching is done as follows: After

each hash value computation in the version file, we extract

the first t bits and check the quick index array. If it is a 0,

we quit because there is no match in the hash value array.

If it is a 1, we check the pointer array. The first s bits of the

version file hash value give us an index in the block hash

table. If the high part (high-order 29 bits) of the hash value

to which it points in the block hash table is greater than

the high part of our version file hash value, we know that

the version file hash value is not in the block hash table.

We exit, since we do not have a match. If the high part

matches, we obtain the full hash value from the block hash

array index pointed to from the block hash table. If this

hash value is greater than the version file hash value, we

quit. If the hash value is equal to the version file hash

value, we check to see whether the match is unique. If the

match is unique, we return the match. If the match is not

unique, we perform a binary search to see which of the

matches provides the longest match.

The nature of the suffix array allows us to perform

binary search, since the hash substrings with the greatest

number of block matches are grouped together. After we

have found the longest match, we return it. If the high

part of the hash value to which the pointer array points

is less than our current high part of the hash value, we

sequentially traverse other hash values in the array to see

whether we have a match. If the hash values that we

process sequentially are repeated hash values, we use the

count in the odd entries to skip over the next count pair

of values. As mentioned earlier, we have approximately

four distinct hash values mapped to one pointer; thus,

the sequential processing of hash values is not a time-

consuming step. Also, if we have repeated hash values,

this does not affect the complexity of the sequential

processing of hash values, since the count value allows

us to skip over the repeated hash values. These data

structures are illustrated in Figure 2. If we encounter a

hash value that is larger than our desired hash value while

processing the block hash table sequentially, we quit. If

we encounter a match on the high part, we follow the

same matching procedure as described above for the

complete hash value. As one can see, the quick index

array, the pointer array, and block hash table

substantially reduce the amount of time spent searching

for the desired hash substring. In the absence of these

data structures, for all version file hash values generated,
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we have to perform binary search on the entire suffix

array, which contains l values.

Algorithm pseudo-code

The main differential compression algorithm is shown in

Figure 4. The specific binary search method (hereafter

designated simply as binary search) that we use on the

suffixes in the block hash table is shown in Figure 5. This

binary search method is similar to that presented in the

work of Manber and Myers [16]; it is a modification

of the familiar binary search method. We maintain a

lowRankPtr and a highRankPtr, which are pointers that

index the block hash table. In the example given in

Figure 2, the lowRankPtr is initially set to the row

containing ptr2 and the highRankPtr is set to the row

containing ptr6.

Note that we can reduce the number of hash value

comparisons in our binary search method by keeping

track of min(jlcp(low, w)j, jlcp(w, high)j), where low

is the string in the hash value array corresponding to

lowRankPtr and high is the string in the hash value array

corresponding to highRankPtr. This binary search

method exploits a property of suffix arrays in which,

when searching for a particular string w in a suffix array,

if the length of the longest common prefix is x blocks in

Figure 4

Main differential compression algorithm.

Input: reference file string, version file string: 

 1. (a) initialize rc � 0. 

  (b) while (rc  <  m � p) 

   i. compute H(rc) and store in the hash value array 

   ii. increment rc by p 

 2. Call  suffix-array-construction with hash value array as input.

 3. In a single pass of the suffix array, create the quick index array,
  the pointer array, and the block hash table as described in the
  section on important data structures. 

 4. Initialize vc � 0 and vprev � 0.

 5. While (vc < n � p) 

  (a) initialize best-seen-match to null 

  (b) compute H(vc) 

  (c) call best-match-algorithm as described in Figure 3 with H(vc)
   as input 

  (d) if matching algorithm returns null 

   i. increment pointer vc by 1 

      (e) else (we have a match) 

   i. store match in the best-seen-match variable 

   ii. vtemp � vc 

   iii. for (vc � vtemp � 1 to vc � vtemp � p � 1) 

     • compute H(vc) and call the best-match-algorithm
      with H(vc) as input 

     • if matching algorithm returns a match and it is longer
      than the best-seen-match 

      - update the best-seen-match variable to contain the
           current match 

   iv. check the validity of the best-seen-match and extend it as
    far left and right as possible and finally encode the match
    as a copy command 

   v. encode the information starting at vprev to the start of the
        match as an insert command 

   vi. update the vc and vprev pointers to the end of the match 

    6. Encode the last bit of information from vprev to the end of the
  file as an insert command.

Postcondition: delta encoding with copy and insert commands and
new information to be encoded.

Figure 3

Best-match algorithm—Finds the best match for a particular 
version file hash value in the hash table.

Input: hash value H(vc) that we are seeking to match:

 1. if [the corresponding entry to H(vc) in the quick index array is 0] 

  (a) return a null value since H(vc) is not in the hash table 

 2. else 

  (a) use the corresponding entry in the pointer array to get a hash
       value in the block hash table 

  (b) if [high part (hash value) in the block hash table > high
        part H(vc)] 

   i. return a null value since H(vc) is not in the table 

  (c) else if high parts are equal 

   i. get the hash value from the hash value array pointed to by
       the block hash table 

   ii. if [the hash value > H(vc)] 

    A. return a null value since H(vc) is not in the table 

   iii. else 

    A. now sequentially process the values in the block hash
         table (high part and low part from the hash value array)
         until we either find an entry equal to H(vc) or we find
         the first entry that is larger than H(vc) 

    B. if the latter case is true 

     • return a null value because H(vc) is not in the table 

    C. else (we have a match) 

     • if the match is unique, indicated by the leading bit of
       the 32-bit entry in the block hash table 

      - return the match 

     • else (the match is not unique) 

      - perform binary-search-for-suffixes as described
       in Figure 5 to find the longest match where the
       initial range is count number of values 

      - return the longest match 

  (d) else 

   i. do as in (c)iii [in this case high part of the hash value in
       the block hash table < high part of H(vc)] 

Output: the best match for the input hash value, H(vc), if it exists
and a null value otherwise.

IBM J. RES. & DEV. VOL. 50 NO. 1 JANUARY 2006 R. C. AGARWAL ET AL.

155



length, all suffixes that match w to x blocks will be

adjacent to one another in the array. For the in-

memory implementation of the algorithm, we have the

optimization that rather than extending the best seen

match after examining all the offsets of a given block, as

described in Step 5(e)iv of Figure 4, we check the validity

of the match for each offset and then extend the match on

either side in Step 5(e)iii. Since our data is all in memory,

this step is not expensive. The step may give us a longer

match, up to two blocks in length. Also, after the

binary search, the best match for that offset is compared

against the best seen match, on the basis of the total

length of the match.

Time and space analysis

In this section, we analyze the time and space

requirements of the hsadelta algorithm. It then becomes

obvious that depending on how we pick our block size,

we have either a linear-time constant-space algorithm or

an approximation to the greedy algorithm that requires

less space and time.

Space analysis

The main data structures in the algorithm that require

space proportional to the number of blocks in the

reference file are the hash value array, the suffix array, the

rank array in the suffix array construction routine, the

quick index array, the pointer array, and the block hash

table. It is important to mention that the block hash table

is created in place using the space occupied by the suffix

array and the rank array. The hash value array contains

l hash values, each an eight-byte value. The suffix array

contains l indices in the odd locations and l hash values

(high part only) in the even locations, each a four-byte

value. As mentioned in the section on important data

structures, the quick index array contains 2dlog2 l eþ5 bits

or 2dlog2 l eþ2 bytes, and the pointer array contains

2dlog2 l e�2 entries or 2dlog2 l e bytes. The block hash table

contains 2 � l entries if all of the hash values are unique.

When the hash values are not unique, the block hash

table contains at most 3 � l values. This happens when all

hash values occur exactly twice. In this situation, we have

one row indicating the count, followed by the two rows

corresponding to the hash values. The rank array in the

suffix array construction routine contains l indices, each

of which is a four-byte value. All other variables and

arrays require O(1) space. The hsadelta algorithm is

structured such that the block hash table shares memory

with the suffix array and the rank array. Thus, the worst-

case memory requirement is only 30 � l bytes. The space

requirements of the algorithm are summarized in Table 1.

As can be seen, the space requirements are always less

than or equal to 30 � l bytes. Note that the requirements

for the block hash table are not included in the total, since

it uses the space of existing data structures.

The space requirements for the greedy algorithm are

simply those of the hash table. However, since the greedy

algorithm hashes on every offset of the reference file, there

are n � p þ 1 hash values in the hash table. The space

requirements for the greedy algorithm are approximately

3 � n, since the greedy algorithm as implemented by Ajtai

et al. [7] uses a three-byte hash value. Hence, if we choose

our block size to be greater than ten bytes (we typically

do so in practice), hsadelta requires less space than the

greedy algorithm. Note that if we increase block size, or p,

as the reference file size increases, hsadelta requires

constant space, because l is constant. In this situation,

however, the greedy algorithm is still a linear space

algorithm.

Time analysis

We consider a simplified version of hsadelta when

performing a time analysis. Rather than using the quick

index array, the pointer array, and the block hash table in

our time analysis, we simply consider matching to be

done as a binary search on the entire suffix array. This

is reasonable, since the quick index array, pointer array,

and block hash table are simply implemented to make the

matching process more efficient; hence, we know that the

Figure 5

Binary search among sorted suffixes.

Precondition: We have a range of suffixes that match our version
file hash value string in the first block. Let the first block of the
version file hash value be H(vc). 

 1. Initialize our lowRankPtr to point to the lexicographically lowest
  reference file hash substring starting with H(vc) (the first pair of
  values after H(vc) and its count; this is the row containing ptr2 in
  the example given in Figure 2) and highRankPtr to point to the
  lexicographically highest reference file hash substring starting
  with H(vc) (count pair of values after H(vc) and its count; this is
  the row containing ptr6 in the example given in Figure 2). Let w
  be the string of hash values that we seek to match. 

 2. While (highRankPtr � lowRankPtr > 1) 

   (a) midRankPtr � (highRankPtr � lowRankPtr)/2 

   (b) Ptr         the pointer stored in the odd location of the
    midRankPtr row of the block hash table 

   (c) if the string of hash values starting at hash value
    array[Ptr] > w then 

     i. highRankPtr � midRankPtr 

   (d) else 

     i. lowRankPtr � midRankPtr 

 3. Compare |lcp(low, w)| and |lcp(w, high)| where low is the string
  in the hash value array corresponding to lowRankPtr and high is
  the string in the hash value array corresponding to highRankPtr
  to find whether low or high is the longer match.

 4. Return the longer of the matches from the previous step 

Postcondition: We have a single suffix that matches the version file
hash value string in the maximum number of blocks.
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algorithm performs at least as well as its simplified

version. However, we have included the creation of

these data structures in its complexity analysis. Another

assumption we make is that there are no spurious multi-

block matches, that is, instances in which two or more

consecutive hash values match but the blocks themselves

do not match. This is reasonable, since the probability of

having a spurious multi-block match is very low.

During the time analysis, we refer to Figure 4.

Although the analysis pertains to a simplified model

of our differential compression algorithm, the steps

in Figure 4 remain the same. However, the matching

algorithm described in Figure 3 is simplified to a binary

search on the entire suffix array. The single pass of the

reference file and the hash computation in Step 1 of

Figure 4 require O(m) time, since the hash computation

requires the use of every byte in the reference file. The

creation of the suffix array requires O(l log l ) time, as

described in Appendix A. The single pass of the suffix

array to create the quick index array, the pointer array,

and the block hash table requires O(l ) time. Now let us

consider Step 5 of Figure 4, processing of the version file.

In Step 5(b), we could compute hash values at every offset

of the version file, a process that has complexity O(n).

This argument relies on a property of the Karp–Rabin

hash computation [18], which requires O(1) computation

on H(x) to produce H(x þ 1). The binary search routine

described in Figure 5, used in the processing of the

version file, has complexity O(d þ log l ), where d is the

depth of the longest match in terms of blocks, as shown in

the work of Manber and Myers [16]. We consider two

separate cases. The first case is Step 5(d) in Figure 4, in

which there is no match to the hash value of a version file

offset. In this case the depth is 0, so d¼ 0. Thus, for each

version file offset for which there is no match, the

complexity is simply the cost of performing a binary

search, or O(log l ). In the case in which there is a

match [Step 5(e) of Figure 4], we check the matches

corresponding to the next p� 1 offsets; in other words, we

perform a binary search for the hash value generated for

each version file offset in this block. This is Step 5(e)iii

of Figure 4. Since we must perform a binary search,

for each offset within a block, the complexity is

O[p � (dmax þ log l )], where dmax is the largest value

of d for any offset in the entire block. This results in a

match of size p � dmax bytes. Amortized per byte of the

match, the complexity is O[(p � dmax þ p log l )/(p � dmax)]

or O[1 þ (1/dmax) log l ]. Since dmax is at least 1, this is

bounded by O(1 þ log l ), or O(log l ). Thus, the worst-

case complexity of processing the version file amortized

to each byte, regardless of whether or not there is a

match, is O(log l ); hence, processing the entire version

file takes O(n log l ). The time requirements for the

hsadelta algorithm are summarized in Table 2.

As one can see, the total complexity of the algorithm is

O(mþ l log lþnþn log l ), which can be reduced to simply

O(mþ l log lþ n log l ). This can also be written as

O[mþ (m/p) log (m/p)þ n log (m/p)]. If p remains

constant as m increases, the complexity can be simplified

to O(mþm log mþ n log m) or just O[(mþ n) log m].

When we consider the algorithm as an approximation

to the greedy algorithm by fixing the block size, it

clearly has a better asymptotic complexity with similar

compression performance, as shown in the next section.

In the case in which p increases proportionally with m,

(m/p) or l is a constant. Thus, the complexity reduces

to O(mþ n), and if we increase p proportionally with m

(that is, fix l ), the algorithm becomes a linear-time

constant-space algorithm.

In practice, however, we obtain much better running

time than the asymptotic complexity derived above

because of the creation of the quick index array, the

pointer array and the block hash table, which narrow the

scope of our binary search and the matching procedure.

Performance compared to that of the greedy algorithm

The compression performance of the hsadelta algorithm is

equivalent to the performance of the greedy algorithm for

the following reasons. In the greedy algorithm, hash

values are computed on the reference string for all offsets.

Thus, it can find matching substrings that are at least one

block long. The hsadelta algorithm computes hash values

only on the block boundaries of the reference file. Thus, it

Table 1 Space requirements of each data structure in the

hsadelta algorithm.

Data

structure

Space

(bytes)

Hash value array 8 � l
Suffix array 8 � l
Rank array 4 � l
Quick index array Between 4 � l and 8 � l
Pointer array Between l and 2 � l
Block hash table Between 8 � l and 12 � l

Total Between 25 � l and 30 � l

Table 2 Complexity of each step of the hsadelta algorithm.

Step Complexity

Hashing on reference file O(m)

Suffix array construction O(l log l )

Creation of data structures O(l )

Hashing on the version file O(n )

Processing the version file O(n log l )

Total O(m þ l log l þ n log l )
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will miss matches that are longer than a block but do not

contain a full reference block, or, in other words, if the

common substring straddles two blocks. This is because

there is no single reference file hash value that represents

the information in this match. However, we are sure to

find any match that is at least two blocks long, because, in

this case, the match contains at least one complete block

of the reference file, for which we have computed the hash

value. Thus, we can obtain results equivalent to those

for the greedy algorithm if we choose our block size to be

half of the block size used by the greedy algorithm. As

described by Ajtai et al., the greedy algorithm requires

storing n � p þ 1 hash values (approximately n hash

values), where n is the length of the reference string. The

hsadelta algorithm requires the use of only (2�n/p) hash
values, where p is the block size used by the greedy

algorithm. In this step, our algorithm reduces the space

requirement by approximately p/2 without giving up any

capability for finding small matches.

When there are multiple matches for a given offset

of the version file, the greedy algorithm performs

an exhaustive search to find the best match. This is

very expensive if hash collisions are frequent. In our

algorithm, we perform a binary search, as described

in Figure 5, to find the best match with the granularity

of a block size. Here our algorithm cannot discriminate

between two matches which have same number of full

blocks but fractional blocks of different sizes on either

side of the match. Other than this flaw, the algorithm is

essentially a more efficient implementation of the greedy

algorithm. We can circumvent this flaw by modifying the

algorithm as follows: After a binary search, we conclude

that the longest matching substrings match to a depth of

d blocks. We should consider all matches that match at a

depth of d blocks as well as those that match at a depth of

d� 1 blocks. For all of these hash substrings, we look at

one block at both ends of the string to find the longest

overall match. This is still much more efficient than the

greedy algorithm, since we have narrowed down the

number of matches for which we perform full string

matching. For example, consider the scenario in which

there are 100 matches having the same hash values and

only four matches that match at a depth of 9 or 10 blocks.

The greedy algorithm examines all 100 matches, and each

of these examinations may be potentially up to 10 blocks

long. In our algorithm, we look at only the four longest

matches, and for each of these matches, we have to

examine only one block on either side. Note that we have

to examine the hash substrings that match at a depth of

d � 1, since the match may be extended to an additional

fractional block on either side to give a match that is

longer than d blocks. In other words, with the scenario

given above, it is possible that the matches at a depth of

10 match in a length of exactly 10 blocks, and a match at

a depth of 9 matches at a depth of almost 11 complete

blocks, since the strings could match up to an additional

block on either side of the match. However, we do not

know this until we actually examine the matches. Thus, it

is necessary to explore not only the matches that match in

the longest depth, but also those that match in the longest

depth minus 1. Our implementation of the differential

compression algorithm does not include this

optimization.

Experimental results
We compare hsadelta with xdelta, vcdiff, and zdelta on a

data set ranging in size from 1.3 MB to 1.3 GB. We were

not able to compare with the results of the algorithm

by Ajtai et al. [7] because the code provided to us did

not scale to such large data sets. The data-set corpus is

composed of real-world data sets and artificially created

data sets in order to demonstrate various aspects of the

algorithm. The data-set corpus and the experiments are

based on the recommendations of Hunt et al. [5].

We divide the version file into fixed-size buffers (no

greater than 20 Mb) and process the buffers as separate

files. This method also helps us to optimize for I/O, since

we can read in the next version buffer while compressing

the first one. The hsadelta algorithm uses a runtime test to

check the need to compress the data with the second-level

bzip2 compression. If the delta information stream is

more than 1 MB in size, we compress the first 1 MB and

check whether we have a reduction greater than 5%. If we

do, we run bzip2 on the rest of the buffer. This is done for

the delta stream of each version buffer. The process is

used to save time for the cases in which a buffer contains

encrypted data or already compressed data on which

lossless self-compression techniques such as bzip2 will

not provide further compression. If the delta has to be

computed on two .tar files,1 the files are considered as one

large file and used as such for the input to the various

delta algorithms.

All of the experiments were run on an IBM

Intellistation* Model M Pro computer running the

Red Hat Linux** v9.0 operating system, with an Intel

Pentium** 4 3-GHz processor and 2 GB of RAM. All

results were obtained after ensuring that the cache was

warm. The timing results were averaged over ten

simulations of each compression algorithm after the

cache had been warmed up. We ensured that the

compression program was the only user-executed

program on the CPU, trying to homogenize the

environment for running the simulations.

The real-world data set of Table 3 comprises large

software distributions such as linux kernels, gcc, and

1 A .tar file is a tape archive file; it keeps related files together, thus facilitating the
transfer of multiple files between computers. The files in a .tar archive must be
extracted before they can be used.
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linux OS. The ‘‘netscape’’ distribution is an example of

pure object binaries; ‘‘gentoo’’ is a combination of source

and object (lisp) files; and ‘‘potpourri’’ is a concatenated

tar file of gcc, samba, linux, and gentoo versions. The

‘‘potpourri’’ distribution was created to obtain large files

and also to find deltas within distributions. In the table,

we compare the compression results. In each set the first

file is used as the reference file and the second file is used

as the version file. For ‘‘samba’’ we report the result of

delta generation from a newer version to an older version;

we obtain a 28% higher compression than xdelta and an

approximately 63% improvement over zdelta. Delta

compression values between ‘‘linux-2.4.26’’ and ‘‘linux-

2.6.7’’ versions are far apart, with significant file size

difference. The hsadelta algorithm shows 44% better

results than xdelta. For other gcc and linux results, we see

that hsadelta outperforms xdelta by approximately 80%

in compression sizes.

In Table 4 we report the pristine results of the delta

algorithms (i.e., no use of second-level bzip- or gzip-type

compression schemes). As soon as the file size grows

beyond few megabytes, the vcdiff algorithm quickly

degenerates because it fails to find long-distance matches.

The hsadelta algorithm adaptively selects the block size

and the maximum memory used, depending on the

available memory in the system or specified by the user

and the file size. It never exceeds the 500-Mb memory

limit for the experiments. Block size is the smallest match

that can be found. The xdelta algorithm uses a fixed block

size of 16 and the maximum memory available. For

medium-sized files (file sizes up to approximately

300 MB), the hsadelta results are approximately 30%

better than those for xdelta. The ‘‘potpourri’’ results

demonstrate that if hsadelta uses a larger block size to

work within the given memory size constraint, a larger

pristine output is generated. However, it more than

makes up for those losses in the final result by using bzip2

on the pristine output, as indicated in Table 3.

Table 5 compares the delta and pristine results for

hsadelta by changing the memory constraint. The pristine

output improves by approximately 40% with the increase

in memory. The decrease in block size helps hsadelta to

pick up many small-size matches; however, it does not

always translate to better final output because of the

generation of a large number of tokens that are not bzip2-

compressible. The decrease in block size fragments the

Table 3 Comparison of compression performance of hsadelta vs. several other differential compression algorithms for a real-world data

set of files. For each entry, the top row gives the size of the delta file in bytes; the lower row gives the compression ratio (version file size/delta

size). Missing entries indicate that the algorithm failed to complete or aborted prematurely.

File set File size hsadelta xdelta zdelta vcdiff

netscape-4.78 13,795,752 1,855,840 2,138,632 1,544,408 1,576,305

netscape-4.79 13,800,136 7.44 6.45 8.94 8.75

samba-3.0.4.tar 35,573,760 3,206,433 4,121,002 5,253,316 13,060,041

samba-2.2.9.tar 22,794,240 7.11 5.53 4.34 1.75

gcc-3.3.4.tar 152,770,560 9,323,081 14,944,614 35,483,375 53,727,573

gcc-3.4.0.tar 191,467,520 20.54 12.81 5.40 3.56

gcc-3.4.0.tar 191,467,520 1,376,608 2,896,636 31,633,029 6,244,998

gcc-3.4.1.tar 190,003,200 138.02 65.59 6.01 30.42

linux-2.4.26.tar 172,001,280 14,352,755 20,745,449 43,489,818 89,258,640

linux-2.6.7.tar 197,888,000 13.79 9.54 4.55 2.22

linux-2.6.7.tar 197,888,000 1,859,561 3,256,524 43,530,507 17,387,095

linux-2.6.8.tar 200,847,360 108.01 61.68 4.61 11.55

linux-2.6.8.tar 200,847,360 1,849,226 3,180,391 44,522,144 19,835,278

linux-2.6.9.tar 204,615,680 110.65 64.34 4.60 10.32

gentoo-stage2-x86-2004.1.tar 145,111,040 12,921,779 14,640,011 48,475,530 46,499,676

gentoo-stage2-x86-2004.2.tar 147,281,920 11.40 10.06 3.04 3.17

gentoo-stage3-x86-2004.1.tar 286,556,160 22,787,474 26,264,924 105,214,160 111,180,033

gentoo-stage3-x86-2004.2.tar 293,949,440 12.90 11.19 2.79 2.64

install-x86-universal-2004.0.iso 721,184,768 609,168,451 605,070,346 616,700,030

install-x86-universal-2004.1.iso 706,514,944 1.16 1.17 1.15

potpourri.tar.reference 1,449,656,320 121,207,197 133,135,549 456,428,504

potpourri.tar.version 1,541,416,960 12.72 11.58 3.38

Average compression ratio 40.37 23.63 4.92 7.17
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buffer window of the secondary compression algorithms

(zlib/bzip2) which, up to a limit, perform better on bigger

windows. Thus, we need a minimum block size above

which both delta compression and bzip2 compression can

perform well.

Table 6 shows the performance of hsadelta in terms of

speed of compression and reconstruction of the data sets.

Compression speed is the time taken by the algorithm

to compress the version file, so it is version file size

divided by time to compress. The ‘‘install-x86*.iso’’ files

demonstrate the adaptive capability of hsadelta in which

it decides against second-level compression (bzip2) and

shows nearly a factor of 2 improvement in speed over

xdelta without significantly affecting delta size. The linux

and gcc data set provide examples in which hsadelta was

able to pick up a large number of matches across the file,

helping to reduce the delta size and also improve the

speed of compression. The last row gives the average

compression and reconstruction speeds for various

algorithms. We note that hsadelta is comparable to xdelta

in speed. Both of these algorithms are significantly faster

than other algorithms, particularly for compressing large

files.

Table 7 shows the compression results for jigsaw files.

Jigsaw files are created by generating move instructions

of random lengths and random source and destination

Table 4 Comparison of pristine output (output without second level of compression).

File set File size hsadelta xdelta vcdiff

netscape-4.78 13,795,752 3,152,688 4,074,012 1,637,594

netscape-4.79 13,800,136 4.38 3.39 8.43

samba-3.0.4.tar 35,573,760 10,780,947 11,991,996 17,102,081

samba-2.2.9.tar 22,794,240 2.11 1.90 1.33

gcc-3.3.4.tar 152,770,560 34,153,687 44,032,927 112,341,720

gcc-3.4.0.tar 191,467,520 5.61 4.35 1.70

gcc-3.4.0.tar 191,467,520 2,961,812 6,237,463 85,568,046

gcc-3.4.1.tar 190,003,200 64.15 30.46 2.22

linux-2.4.26.tar 172,001,280 43,484,522 53,978,787 119,241,803

linux-2.6.7.tar 197,888,000 4.55 3.67 1.66

linux-2.6.7.tar 197,888,000 4,538,719 7,010,935 118,652,057

linux-2.6.8.tar 200,847,360 44.25 28.64 1.69

gentoo-stage3-x86-2004.1.tar 286,556,160 41,130,998 47,822,564 225,373,687

gentoo-stage3-x86-2004.2.tar 293,949,440 7.15 6.15 1.30

potpourri.tar.reference 1,449,656,320 311,582,836 280,352,480 1,105,258,077

potpourri.tar.version 1,541,416,960 4.95 5.50 1.39

Table 5 Comparison of delta and pristine output for several amounts of memory. For each entry, the upper row shows delta output and

the lower row shows pristine output. Results are in bytes.

File set File size 200 Mb 300 Mb 500 Mb

linux-2.4.26.tar 172,001,280 12,921,956 13,686,018 14,352,755

linux-2.6.7.tar 197,888,000 57,234,571 47,756,733 43,484,522

gcc-3.3.4.tar 190,003,200 1,089,494 1,055,198 1,037,190

gcc-3.4.0.tar 191,467,520 3,630,070 3,168,238 2,797,990

gcc-3.4.0.tar 191,467,520 1,413,966 1,381,971 1,376,608

gcc-3.4.1.tar 190,003,200 3,676,793 3,305,645 2,961,812

gentoo-all-stages.1.tar 478,945,280 47,742,049 45,131,635 42,177,936

gentoo-all-stages.2.tar 485,242,880 108,641,860 98,391,567 86,566,329

potpourri.tar.reference 1,449,656,320 128,205,826 123,302,192 121,207,197

potpourri.tar.version 1,541,416,960 383,018,822 355,456,960 311,582,836

Total reference 2,482,073,600 191,373,291 184,557,014 180,151,686

Total version 2,606,018,560 556,202,116 508,079,143 447,393,489
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offsets within the source file. No new data is inserted,

no data is deleted, and no segment of the source file is

repeated. This means that the source and target file

lengths are same. The number of move instructions

ranges from 200 to 2,500, depending on file size. The

pristine outputs for all but the zdelta algorithm are shown

(zdelta does not provide a mechanism to obtain pristine

output). Ideally the target file should be encoded as move

(copy/add) instructions only.

Table 8 gives the details of the artificially created

longest common subsequence (LCS) data sets. The

performance of the delta algorithm is dependent on the

size difference between the pairs of files and the file sizes.

LCS files are constructed by first performing a set of

deletes at random offsets and of randomly chosen lengths.

This is followed by insertions of random lengths at

random offsets, which are composed of data that cannot

be compressed further. We can see in Table 9 that the

hsadelta output closely tracks the difference between the

pairs of files, which means that we were able to encode

most of the LCS as copy tokens. Table 10 shows the

hsadelta compression time and compression speed for

two unrelated random files.

We have explored the use of hsadelta as a self-

compression algorithm. It can take advantage of the long-

range redundancies in large files, which are missed by gzip

or bzip2 because of their limited buffer of 32 KB. The

algorithm is a two-pass algorithm. In the first pass we

Table 6 Comparison of compression time and reconstruction time. For each entry, the upper row shows compression time and the lower

row shows reconstruction time.

File set File size hsadelta xdelta zdelta vcdiff

netscape-4.78 13,795,752 0 m 3 s 0 m 3 s 0 m 7 s 0 m 10 s

netscape-4.79 13,800,136 0 m 1 s 0 m 0 s 0 m 0 s 0 m 0 s

samba-2.2.9.tar 22,794,240 0 m 19 s 0 m 20 s 0 m 35 s 1 m 10 s

samba-3.0.4.tar 35,573,760 0 m 8 s 0 m 11 s 0 m 11 s 0 m 28 s

linux-2.4.26.tar 172,001,280 2 m 1 s 2 m 22 s 5 m 5 s 12 m 40 s

linux-2.6.7.tar 197,888,000 1 m 3 s 1 m 30 s 1 m 3 s 1 m 28 s

linux-2.6.7.tar 197,888,000 1 m 24 s 2 m 7 s 7 m 30 s 11 m 38 s

linux-2.6.8.tar 200,847,360 0 m 59 s 1 m 28 s 1 m 13 s 1 m 8 s

gcc-3.3.4.tar 152,770,560 2 m 4 s 2 m 17 s 6 m 11 s 12 m 14 s

gcc-3.4.0.tar 191,467,520 1 m 2 s 1 m 27 s 0 m 55 s 0 m 58 s

gcc-3.4.0.tar 191,467,520 1 m 28 s 2 m 15 s 7 m 6 s 7 m 19 s

gcc-3.4.1.tar 190,003,200 1 m 3 s 1 m 37 s 1 m 18 s 1 m 16 s

gentoo-stage2-x86-2004.1.tar 145,111,040 0 m 56 s 0 m 35 s 5 m 53 s 9 m 40 s

gentoo-stage2-x86-2004.2.tar 147,281,920 0 m 16 s 0 m 15 s 0 m 10 s 0 m 25 s

gentoo-stage3-x86-2004.1.tar 286,556,160 1 m 48 s 1 m 19 s 8 m 1 s 24 m 16 s

gentoo-stage3-x86-2004.2.tar 293,949,440 0 m 31 s 0 m 36 s 0 m 29 s 0 m 49 s

install-x86-universal-2004.0.iso 721,184,768 5 m 06 s 9 m 49 s 106 m 40 s

install-x86-universal-2004.1.iso 706,514,944 0 m 50 s 0 m 43 s 0 m 50 s

potpourri.tar.reference 1,449,656,320 11 m 9 s 8 m 42 s 331 m 12 s

potpourri.tar.version 1,541,416,960 3 m 0 s 2 m 52 s 3 m 16 s

Average compression speed 2.52 Mb/s 2.53 Mb/s 0.72 Mb/s 0.42 Mb/s

Average decompression speed 6.89 Mb/s 6.60 Mb/s 6.4 Mb/s 5.71 Mb/s

Table 7 Comparison of delta sizes for jigsaw file examples. Size is shown in bytes.

File set File size hsadelta xdelta zdelta vcdiff

j1 20,971,520 1,349 2,367 12,746,463 13,807,839

j2 41,943,040 2,415 4,028 25,546,779 27,970,833

j3 83,886,080 4,591 8,090 50,908,745 56,059,744

j4 167,772,160 8,991 15,352 102,237,075 112,265,689

j5 335,544,320 18,291 42,121 204,450,572 224,606,798
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build the suffix array, and in the second pass we find the

matches. The matches are restricted to the blocks that

have offset values lower than the current offset value. This

restricts the algorithm from being used in streaming

input/output mode. Finding matching substrings within a

file is like computing an auto-correlation on the file, and

it provides useful insights into the structure of large files.

The leading algorithm in this space is rzip [20], which

demonstrates the advantages of delta compression on

a single very large file.

Concluding remarks
We have presented hsadelta, a differential compression

algorithm that finds the optimal matches between a

reference file and a version file at the granularity of a

certain block size. We have shown that the algorithm

operates in linear time and constant space when we

increase the block size in proportion to the reference file

size, and we have shown empirically that this algorithm

provides better compression than xdelta, vcdiff, and zdelta

in almost all cases investigated. On the whole, the speed

of hsadelta is comparable to that of xdelta, and it is

significantly faster than vcdiff and zdelta. We regard the

main contribution of this work to be the use of a suffix

array on hash values to find the longest matches—an

approach which is computationally relatively efficient and

practical, given memory constraints. Previously, hashing

was used on raw data to speed up searches, and suffix

arrays/trees were used on raw data to find the longest

matches. However, to the best of our knowledge, no

previous work has combined these two approaches in a

novel way. We expect that our method of finding longest

matching strings will be used not only in compression

applications but also as a general string-matching

technique for web searching and in computational biology.

Appendix A: Suffix array construction
In our differential compression algorithm, we use a suffix

array construction algorithm similar to that of Manber

and Myers [16]. By means of construction, we form a

suffix array of the hash values computed on the reference

string. The initial array of hash values is called the hash

value array.

Sorting algorithm

Before we present our suffix array construction algorithm,

it is necessary to describe our sorting algorithm, which is

used as a part of our suffix array construction algorithm.

Our hash values are eight-byte values, and we sort them

four bytes at a time. For four-byte hash values (high

part), we can sort the hash values in linear time by

making five passes over the array of hash values. We

call this sorting algorithm four-byte integer-sort.

The algorithm requires the use of three data structures:

a primary array, a work array, and four count arrays. We

begin with an array that we call the primary array. It

contains 2 � l total values, where l is the number of hash

values computed on the reference file and each value

equals four bytes. We store the index of each hash value

in the hash value array in the odd locations, and the hash

values themselves in the even locations. We require four

count arrays, one for each byte position; each array

contains 256 values to store the number of occurrences

for each possible byte value. We also have a work array,

which contains 2 � l values much like the primary array,

Table 8 Details of LCS file sets. The designations 10 and 30

indicate the approximate percentage of difference between version

file size and LCS file size. The headings ‘‘Insert tokens’’ and

‘‘Delete tokens’’ refer to the number of insert/delete operations

performed on the reference file to create the version file.

File ID Ref. file size

Ver. file size

Insert tokens

Delete tokens

LCS

Difference

lcs-1–10 3,010,560 2,005 2,709,387

3,008,223 2,185 298,836

lcs-1–30 3,010,560 5,905 2,107,361

2,988,514 7,610 881,153

lcs-2–10 145,111,040 1,979 130,590,673

144,821,600 2,109 14,230,927

lcs-2–30 145,111,040 5,962 101,576,270

144,967,694 7,674 43,391,424

lcs-3–10 601,096,192 2,028 540,980,917

600,880,556 2,163 59,899,639

lcs-3–30 601,096,192 5,983 420,765,717

600,162,815 7,511 179,397,098

Table 9 Comparison of delta algorithms on LCS data sets.

File set hsadelta xdelta vcdiff zdelta

lcs-1–10 314,710 376,700 710,881 517,802

lcs-1–30 924,223 999,280 1,393,938 1,102,254

lcs-2–10 14,250,639 14,338,245 104,989,252 33,560,351

lcs-2–30 43,478,357 43,690,205 121,008,877 69,042,863

lcs-3–10 60,649,460 60,929,690 542,596,966 334,196,106

lcs-3–30 179,458,488 179,992,872 554,146,670 387,507,858

Table 10 Random file processing; files were not compressible

and were not related to one another.

Reference file size 419,430,400

Version file size 629,145,600

Compressed file size 629,146,032

Compression time 2 m 47 s

Compression speed 3.6 Mb/s
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but is uninitialized at the beginning of four-byte integer-

sort. The algorithm is presented in Figure 6.

Since four-byte integer-sort requires five passes on the

array, its time complexity is five times the size of the array

plus a constant amount of time required to allocate the

data structures used. It requires space of two times the

size of the array plus the size of the count arrays, which is

4 � 256 integers, or 4,096 bytes. Note that the four-byte

integer-sort routine is an order-preserving sort algorithm.

This is a necessary feature for the construction of suffix

arrays.

Theorem A.1

At the (nþ 1)th pass of four-byte integer-sort, the data is

sorted by the lowest-order n bytes.

Proof

We prove this fact by induction.

Base case

Note that the first pass is used to count the occurrence

of various byte values. On the second pass of four-byte

integer-sort, the values are placed in buckets on the basis

of their lowest-order byte. The count array tells us how

large each bucket has to be, progressing from the smallest

byte to the largest byte. Thus, the values are sorted on

their lowest-order byte.

Inductive step

We assume that on the nth pass of four-byte integer-sort,

the data is sorted by the lowest-order n� 1 bytes. We next

consider the (nþ 1)th pass of the algorithm and consider

two hash values in the array, ci and cj. Without loss of

generality, let ci �n cj, where �n respects ordering only to

the last n bytes. We first consider the two cases in which ci
and cj are not equal. Let ci[n] be the nth-order byte of ci.

Case 1

ci [n] ¼ cj [n] ! ci ,n�1 cj. Thus, after the nth pass, ci
appears before cj in the partially sorted array. In the

(nþ 1)th pass of the algorithm, ci and cj are to be placed

in the same bucket. However, in the (nþ 1)th pass of the

algorithm, ci is encountered before cj, and it is placed in

the bucket before cj. Thus, ci appears before cj after the

(n þ 1)th pass is complete.

Case 2

ci [n] , ci [n]. This means that on the (nþ 1)th pass, ci is to

be placed in a bucket of smaller value than cj. Thus, ci
appears before cj after the (n þ 1)th pass is complete.

Case 3

We now consider the case in which ci ¼n cj. The (nþ 1)th

pass of the algorithm seeks to place ci and cj in the same

bucket. After the nth pass of the algorithm, if there are

values ck that are between ci and cj in the partially sorted

array, ci ¼n�1 ck ¼n�1 cj for all such ck. Thus, when this

array is sequentially processed in the (n þ 1)th pass, ci is

placed in the bucket corresponding to its nth byte, the ck

are placed in the bucket corresponding to their nth byte,

and cj is placed in the bucket corresponding to its nth

byte. Hence, if there are values between ci and cj after the

(nþ 1)th pass of the algorithm, they must equal ci and cj

in the lowest n-order bytes.

At the end of four-byte integer-sort, the high-order

four bytes of the hash value array have been sorted. We

scan the values to determine whether there are duplicates.

Then, for each set of duplicate values as a group, we again

sort on the basis of their lower four-byte values by using

the above four-byte integer sort. u

Figure 6

Four-byte integer-sort algorithm.

Input: an array (the primary array) with hash values in the even 
locations and the corresponding pointers to the hash value array in 
the odd locations.

1. First we construct the four count arrays, one for each byte position  
 to be sorted.  In the first pass, we count the number of occurrences  
 of each byte value, which will be anywhere from 0 to 255.  Thus  
 we have created four arrays with 256 values each that contain the  
 number of occurrences of each byte value.  This step takes O(l )  
 time. From now on we refer to the lowest-order byte as byte 1, the  
 next byte 2, etc. until the highest-order byte is byte 4.

2. We sequentially process the primary array and copy values into the  
 work array using the count array. The count array for byte 1 tells  
 us exactly where each hash value (along with its index in the hash  
 value array stored in the odd location) should be placed when  
 sorting on the lowest-order byte. After completion of this step, the  
 work array is sorted on the lowest-order byte of hash values by  
 Theorem A.1. This step takes O(l ) time.

3. Now we sort on the next low-order byte (byte 2), using the array  
 work array and the count array for byte 2. We sequentially process  
 the work array and place the hash values (with their indices in the  
 odd locations) in their correct places in the primary array. We use  
 the count array which tells us where the hash values should go. At  
 the completion of this step, the primary array has the hash values  
 sorted on the last two bytes by Theorem A.1. This step takes O(l )  
 time.

4. Now we sort based on the next low-order byte. We sequentially  
 process the primary array, and each hash value is stored in its  
 correct location using the count array for byte 3. At the conclusion  
 of this step, the work array has the hash values sorted on the last  
 three bytes by Theorem A.1. This step takes O(l ) time.

5. Finally we sort based on the highest-order byte, using the same  
 process as described in step 3. At the conclusion of this step, the  
 primary array has the hash values sorted on all four bytes by  
 Theorem A.1. This step takes O(l ) time.

Output: an array with sorted hash values stored in the even locations 
and the corresponding pointers to the hash value array in the odd 
locations.
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Suffix array construction algorithm

At the start of the suffix array construction algorithm, we

sort the eight-byte hash values as described above. At the

end of this process, if the hash values are distinct, we have

the suffix array. If the hash values are not distinct, for

each group of duplicate hash values, we must look at the

subsequent hash values in the hash value array until the

strings of hash values are distinct.

We create a data structure called the rank array that

allows us to access the suffix array position (or the rank)

for any location in the hash value array. As we transform

the primary array into the suffix array of hash values, the

rank array is continually updated. Thus, we index the

rank array by the index of the original hash value array,

and the rank array value is its location in the suffix array.

Our suffix array construction algorithm is described in

Figure 7. We know that our suffix array construction

terminates, because no two strings are the same in the

hash value array. Our suffix array construction takes

O(l log d) time, where l is the number of hash values

(or blocks) and d is the length of the longest matching

substring (in blocks) in the reference file.

Appendix B: Encoding scheme
We divide the version file into fixed-size buffers that can

be brought into memory for compression. The size of

these buffers is decided on the basis of the maximum

memory available for compression with the limit of

20 Mb. In order to have a compact representation of

these version file buffers, we have developed an encoding

scheme that we believe is not only compact but is further

compressible, since all of the delta substrings are

concatenated as a single string.

Our encoding scheme, depicted in Figure 8, is described

below. We first describe the information we must

represent in our delta file. We describe matching

substrings between two files as tokens. We have two kinds

of tokens, reference file tokens and delta file tokens. The

reference file tokens must store the length of the match

and the location of the start of the match in the reference

file. This is equivalent to the copy command term used in

other work. The delta file tokens must store the length

of the new substring to be added. This is equivalent to

an add command in other work. Thus, we have three

different streams of data, the token information stream

(which gives us information about whether we have a

delta file token or a reference file token along with the

length of the token), the reference file offset stream (which

tells us where the matching substring starts in the

reference file), and the delta stream (the substrings that

must be added). The separation of token streams helps us

to separate metadata information from the deltas. Thus,

by just bringing the metadata information into memory,

we are able to reconstruct only a portion of the file, which

can be useful for keeping previous deltas in version

control systems.

The token information stream is stored as follows:

The first bit denotes whether the token is a delta file

Figure 7

Suffix array construction algorithm.

Input:  array with hash values (high part) in the even locations and
corresponding pointers in the odd locations. 

1. Sort the hash values as described in Appendix A. At the end of this  
 step, we have sorted the hash values, with the high part stored in  
 even locations of the array. The corresponding pointers in the odd  
 locations have been moved with the hash values as they were  
 sorted; thus, each hash value is still adjacent to its pointer. This is  
 our preliminary suffix array. 

2. If all hash values are distinct, the hash values are sorted and we are  
 done. If the hash values are not distinct, we construct and initially  
 populate the rank array. The rank array is initially populated by a  
 single scan on the preliminary suffix array. If a hash value is  
 unique, it has a unique rank value.  However, if the hash value is
 not unique, all identical hash values share the same rank. We now  
 define a group to be the set of identical hash values. Note that each  
 group shares the same rank.

3. Initialize the depth of sorting variable to 1.

4. For each group, we perform the following procedure:

 (a) We sort on the ranks corresponding to the location that is equal  
  to the current location plus the depth of sorting. These ranks are  
  obtained from the rank array. The sorting is done using the  
  four-byte integer-sort described in Figure 6.

 (b) Then we update the ranks in our rank array.

5. At the conclusion of step 4, the hash values are sorted at twice the  
 depth of sorting before step 4. Therefore, we double the depth of  
 the sorting variable.

6. If there are still unresolved ranks, go to step 4.  Otherwise, exit.

Output: suffix array that contains the indices corresponding to the 
sorted suffixes. In other words, string of hash values starting at suffix
[ i ] � string of hash values starting at suffix [ i �1] �i.

Figure 8

Encoding scheme and post-processing steps.

Token information
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Token information
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Header
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token or a reference file token. The next six bits contains

the length. If six bits is not enough information to store

the length of the match, we terminate the byte with a 1

in the last bit. If six bits is sufficient, we terminate the

byte with a 0 in the last bit. If we need to use the next

byte, the first seven bits is used for length (which gives

a total of 13 bits for length) and the last bit tells us

whether we have used the next byte or the token has

been terminated. We know that the token terminates

when the last bit of a byte is a 0. Thus, the length of the

token contains a certain number of complete bytes. The

rationale behind this scheme is that most tokens can be

represented with only one byte. In rare cases, we need

to use two or more bytes to represent the length. Also,

we want to represent tokens of small length compactly

in order to maximize the reduction in space.

The reference file offset stream is stored using a fixed

number of bits per token, namely dlog2 me, since it is the
maximum possible offset value. The total length of the

reference file offset stream is d(k/8) � dlog2 mee, where k is

the number of reference file tokens. Finally, the delta

information stream contains all of the new information

to be added in one contiguous stream.

In order to reduce the amount of information to be

stored, we try using bzip2 on the token information

stream and the delta information stream. If the delta

information stream is greater than 1 MB, we compress

the first 1 MB and ascertain whether we have achieved

more than a 5% reduction. If we have, we run bzip2 on

the rest of the data stream. If not, we realize that running

bzip2 does not help, and we do not continue. If the delta

information stream is less than 1 MB, we run bzip2 on the

stream. Note that if the compressed stream is larger than

the original stream, we use the original stream for the

token information stream and the delta information

stream, as the case may be. Since we have found that the

reference file offset stream is generally not compressible,

we do not try to run bzip2 on it. Thus, for each version file

buffer we have a token buffer stream with token header

encoding the length of the stream and bzip2 status. The

other two streams also have similar headers. Then there is

the main header, which has the hsadelta magic number,

the number of version file buffers, and the offsets of

version file compressed buffers.
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