Subject index for papers in Volume 49

Each index entry below is accompanied by an author's name and a page number; the author index contains the title of the paper and the names of coauthors, if any.

Subject	Author	Page	Computer applications	_	0.54
Adhesion science			BladeCenter solutions BladeCenter systems management	Fore	861
Effects of mechanical stress and moisture on packaging interfaces	Buchwalter	663	software	Pruett	963
Algorithms Exploring the limits of prefetching	Emma	127	Computer architecture BladeCenter chassis management BladeCenter midplane and media	Brey	941
Alloys Microstructure and mechanical			interface card BladeCenter processor blades, I/O	Hughes	823
properties of lead-free solders and solder joints used in microelectronic applications	Kang	607	expansion adapters, and units BladeCenter system overview Overview of the Blue Gene/L system	Hughes Desai	837 809
Recent developments in high-moment electroplated materials for recording	Kang	007	architecture	Gara	195
heads	Cooper	103	Computer organization and design Organization and implementation of the		
Analytical models BladeCenter thermal diagnostics	Piazza	977	register-renaming mapper for out-of- order IBM POWER4 processors	Buti	167
Arithmetic and logical unit design Design and exploitation of a high- performance SIMD floating-point			Controlled-collapse chip connection (C-4) to Low-cost wafer bumping	echnology Gruber	621
unit for Blue Gene/L IBM PowerPC 440 FPU with complex-	Chatterjee	377	Cooling BladeCenter packaging, power, and		
arithmetic extensions Vectorization techniques for the Blue	Wait	249	cooling	Crippen	887
Gene/L double FPU	Lorenz	437	Challenges of data center thermal management	Schmidt	709
ASICs			Mixing, rheology, and stability of highly filled thermal pastes	Feger	699
Blue Gene/L compute chip: Synthesis, timing, and physical design	Bright	277	Packaging the Blue Gene/L supercomputer	Coteus	213
Biology and biomedical studies Overview of molecular dynamics techniques and early scientific results from the Blue Gene project	Suits	475	Copper Electrochemical planarization of interconnect metallization Multiscale simulations of copper	West	37
Circuit and device technology Design and exploitation of a high-			electrodeposition onto a resistive substrate	Drews	49
performance SIMD floating-point unit for Blue Gene/L	Chatterjee	377	Superconformal film growth: Mechanism and quantification The chemistry of additives in damascene	Moffat	19
Clocking Blue Gene/L compute chip: Synthesis,			copper plating	Vereecken	3
timing, and physical design	Bright	277	Damascene process The chemistry of additives in damascene copper plating	Vereecken	3
Embedded DRAM: Technology platform for the Blue Gene/L chip	Iyer	333	Design verification		
Communications and communication networ Design and implementation of message- passing services for the Blue Gene/L	·ks		Blue Gene/L advanced diagnostics environment Functional formal verification on	Giampapa	319
supercomputer Computation	Almási	393	designs of pSeries microprocessors and communication subsystems Functional verification of the POWER5	Gott R5	565
Exploring the limits of prefetching Organization and implementation of the register-renaming mapper for out-of-	Emma	127	microprocessor and POWER5 multiprocessor systems Using microcode in the functional	Victor	541
order IBM POWER4 processors	Buti	167	verification of an I/O chip	Goldman	581

D : 1 :					
Device design Introduction to the Cell multiprocessor Organization and implementation of the	Kahle	589	Interconnection technology Blue Gene/L torus interconnection network	Adiga	265
register-renaming mapper for out-of- order IBM POWER4 processors	Buti	167	Development of next-generation system-on-package (SOP) technology based on silicon carriers with fine-		
Electrochemistry Design and modeling of equipment used			pitch chip interconnection Exploitation of optical interconnects in	Knickerbocker	725
in electrochemical processes for microelectronics	Ritzdorf	65	future server architectures Latent defect screening for high-	Benner	755
Electrochemical planarization of interconnect metallization	West	37	reliability glass-ceramic multichip module copper interconnects	Yarmchuk	677
Electrodeposition Multiscale simulations of copper electrodeposition onto a resistive		5,	Low-cost wafer bumping Microstructure and mechanical properties of lead-free solders and	Gruber	621
substrate Recent developments in high-moment	Drews	49	solder joints used in microelectronic applications The chemistry of additives in damascene	Kang	607
electroplated materials for recording heads	Cooper	103	copper plating	Vereecken	3
Superconformal film growth:	Соорег	103	Interfaces		
Mechanism and quantification Tuning the properties of magnetic	Moffat	19	Design and implementation of message- passing services for the Blue Gene/L	Almási	202
nanowires	Sun	79	supercomputer Effects of mechanical stress and		393
Electroless plating Design and modeling of equipment used in electrochemical processes for	D: 1 0		moisture on packaging interfaces Microstructure and mechanical properties of lead-free solders and solder joints used in microelectronic	Buchwalter	663
microelectronics Etching	Ritzdorf	65	applications Mixing, rheology, and stability of highly	Kang	607
Design and modeling of equipment used in electrochemical processes for			filled thermal pastes	Feger	699
microelectronics	Ritzdorf	65	Lead Microstructure and mechanical		
Fluids and fluid dynamics Challenges of data center thermal management	Schmidt	709	properties of lead-free solders and solder joints used in microelectronic applications	Kang	607
Fourier transforms Scalable framework for 3D FFTs on the Blue Gene/L supercomputer: Implementation and early			Magnetics—studies and structures Recent developments in high-moment electroplated materials for recording heads	Cooper	103
performance measurements	Eleftheriou	457	Tuning the properties of magnetic nanowires	Sun	79
Vectorization techniques for the Blue Gene/L double FPU	Lorenz	437	Manufacturing	Sun	19
IBM POWER5 system Advanced virtualization capabilities of			Design and modeling of equipment used in electrochemical processes for	DV 1 0	
POWER5 systems Characterization of simultaneous	Armstrong	523	microelectronics Development of next-generation system-on-package (SOP) technology	Ritzdorf	65
multithreading (SMT) efficiency in POWER5 Functional formal verification on	Mathis	555	based on silicon carriers with fine- pitch chip interconnection Low-cost wafer bumping	Knickerbocker Gruber	725 621
designs of pSeries microprocessors and communication subsystems Functional verification of the POWER5	Gott	565	Markov process analysis Optimizing task layout on the Blue Gene/L supercomputer	Bhanot	489
microprocessor and POWER5 multiprocessor systems	Victor	541	Materials	Bilanot	409
Operating system exploitation of the POWER5 system POWER5 system microarchitecture	Mackerras Sinharoy	533 505	Mixing, rheology, and stability of highly filled thermal pastes	Feger	699
Information technology BladeCenter systems management software	Pruett	963	Materials technology Mixing, rheology, and stability of highly filled thermal pastes Recent developments in high-moment electroplated materials for recording	Feger	699
Integrated circuit design Logic-based eDRAM: Origins and			heads The evolution of build-up package	Cooper	103
rationale for use Microminiature packaging and	Matick	145	technology and its design challenges	Blackshear	641
integrated circuitry: The work of E. F. Rent, with an application to on-chip interconnection requirements	Lanzerotti	777	Mathematical functions and techniques Custom math functions for molecular dynamics	Enenkel	465

Vectorization techniques for the Blue Gene/L double FPU	Lorenz	437	Development of next-generation system-on-package (SOP) technology		
Memory (computer) design and technology Blue Gene/L compute chip: Memory			based on silicon carriers with fine- pitch chip interconnection Effects of mechanical stress and	Knickerbocker	725
and Ethernet subsystem Embedded DRAM: Technology platform for the Blue Gene/L chip	Ohmacht Iyer	255 333	moisture on packaging interfaces Microminiature packaging and	Buchwalter	663
Memory, cache Logic-based eDRAM: Origins and	1,01	333	integrated circuitry: The work of E. F. Rent, with an application to on-chip interconnection requirements	Lanzerotti	777
rationale for use	Matick	145	Mixing, rheology, and stability of highly filled thermal pastes	Feger	699
Metallurgy Microstructure and mechanical properties of lead-free solders and			Packaging the Blue Gene/L supercomputer	Coteus	213
solder joints used in microelectronic applications	Kang	607	The evolution of build-up package technology and its design challenges	Blackshear	641
Microprocessor systems and applications			Parallel processing		
Introduction to the Cell multiprocessor	Kahle	589	Blue Gene/L compute chip: Memory and Ethernet subsystem	Ohmacht	255
POWER5 system microarchitecture	Sinharoy	505	Blue Gene/L performance tools	Martorell	407
Models and modeling			Blue Gene/L programming and		
BladeCenter thermal diagnostics	Piazza	977	operating environment	Moreira	367
Electrochemical planarization of			Custom math functions for molecular	Enenkel	465
interconnect metallization Superconformal film growth:	West	37	dynamics Design and exploitation of a high-	Ellelikei	403
Mechanism and quantification	Moffat	19	performance SIMD floating-point		
•			unit for Blue Gene/L	Chatterjee	377
Monte Carlo methods Multiscale simulations of copper			Early performance data on the Blue		
electrodeposition onto a resistive			Matter molecular simulation framework	Germain	447
substrate	Drews	49	IBM PowerPC 440 FPU with complex-	Germani	447
Optimizing task layout on the Blue	DI .	400	arithmetic extensions	Wait	249
Gene/L supercomputer	Bhanot	489	Optimizing task layout on the Blue	70.4	
Multichip modules (MCMs)			Gene/L supercomputer Overview of molecular dynamics	Bhanot	489
High-speed electrical testing of	Managa	(07	techniques and early scientific results		
multichip ceramic modules	Manzer	687	from the Blue Gene project	Suits	475
Multilayers			Overview of the Blue Gene/L system		
The evolution of build-up package	Disababas	C 4.1	architecture	Gara	195
technology and its design challenges	Blackshear	641	Overview of the QCDSP and QCDOC computers	Boyle	351
Multiprocessors	** **		Packaging the Blue Gene/L	Doyle	331
Introduction to the Cell multiprocessor	Kahle	589	supercomputer	Coteus	213
Nanoscale structures and devices			Resource allocation and utilization in		40.5
Tuning the properties of magnetic	C	70	the Blue Gene/L supercomputer Scalable framework for 3D FFTs on	Aridor	425
nanowires	Sun	79	the Blue Gene/L supercomputer:		
Networks			Implementation and early		
BladeCenter networking BladeCenter storage	Hunter Holland	905 921	performance measurements	Eleftheriou	457
BladeCenter T system for the	Honand	921	Vectorization techniques for the Blue Gene/L double FPU	Lorenz	437
telecommunications industry	Vanderlinden	873	,	Lorenz	437
Blue Gene/L torus interconnection	A 1	265	Performance analysis		
network	Adiga	265	Blue Gene/L compute chip: Control, test, and bring-up infrastructure	Haring	289
Operating systems			Blue Gene/L performance tools	Martorell	407
Advanced virtualization capabilities of POWER5 systems	Armstrong	523	Characterization of simultaneous		
Blue Gene/L programming and	Affilistiong	343	multithreading (SMT) efficiency in	3.6.4.	
operating environment	Moreira	367	POWER5 Early performance data on the Blue	Mathis	555
Operating system exploitation of the	N. 1	522	Matter molecular simulation		
POWER5 system	Mackerras	533	framework	Germain	447
Optical interconnections			Exploring the limits of prefetching	Emma	127
Exploitation of optical interconnects in	Damman	755	Resource allocation and utilization in the Blue Gene/L supercomputer	Aridor	425
future server architectures	Benner	755	, , ,	ATIUUI	723
Packaging			Power management		
BladeCenter packaging, power, and cooling	Crippen	887	BladeCenter packaging, power, and cooling	Crippen	887
Challenges of data center thermal	Спррсп	007	BladeCenter processor blades, I/O	Спррсп	007
management	Schmidt	709	expansion adapters, and units	Hughes	837

Packaging the Blue Gene/L supercomputer	Coteus	213	Solder ball connect (SBC) technology Low-cost wafer bumping	Gruber	621
POWER5 system microarchitecture Process control and development	Sinharoy	505	Storage (computer) devices and systems BladeCenter storage	Holland	921
The evolution of build-up package technology and its design challenges	Blackshear	641	Storage hierarchies Logic-based eDRAM: Origins and		
Programming, programs, and programming Blue Gene/L programming and			rationale for use	Matick	145
operating environment Protein folding	Moreira	367	Supercomputing Blue Gene/L compute chip: Memory and Ethernet subsystem	Ohmacht	255
Custom math functions for molecular dynamics Overview of molecular dynamics	Enenkel	465	Blue Gene/L performance tools Blue Gene/L programming and operating environment	Martorell	407 367
techniques and early scientific results from the Blue Gene project	Suits	475	Custom math functions for molecular dynamics	Moreira Enenkel	465
Quantum theory and effects Overview of the QCDSP and QCDOC			Design and exploitation of a high- performance SIMD floating-point	Chattaria	277
computers Reliability	Boyle	351	unit for Blue Gene/L Early performance data on the Blue Matter molecular simulation	Chatterjee	377
High-speed electrical testing of multichip ceramic modules	Manzer	687	framework IBM PowerPC 440 FPU with complex-	Germain	447
Latent defect screening for high- reliability glass-ceramic multichip			arithmetic extensions Overview of molecular dynamics techniques and early scientific results	Wait	249
module copper interconnects Robotics	Yarmchuk	677	from the Blue Gene project Overview of the Blue Gene/L system	Suits	475
High-speed electrical testing of multichip ceramic modules	Manzer	687	architecture Packaging the Blue Gene/L	Gara	195
Servers BladeCenter chassis management	Brey	941	supercomputer Scalable framework for 3D FFTs on the Blue Gene/L supercomputer:	Coteus	213
BladeCenter midplane and media interface card	Hughes	823 905	Implementation and early performance measurements	Eleftheriou	457
BladeCenter networking BladeCenter processor blades, I/O expansion adapters, and units	Hunter Hughes	837	Surface effects Effects of mechanical stress and		
BladeCenter solutions BladeCenter storage	Fore Holland	861 921	moisture on packaging interfaces	Buchwalter	663
BladeCenter system overview BladeCenter systems management	Desai	809	System-on-a-chip (SoC) Blue Gene/L compute chip: Memory and Ethernet subsystem	Ohmacht	255
software BladeCenter T system for the telecommunications industry	Pruett Vanderlinden	963 873	Design and exploitation of a high- performance SIMD floating-point	Omnacht	233
BladeCenter thermal diagnostics Exploitation of optical interconnects in	Piazza	977	unit for Blue Gene/L Embedded DRAM: Technology	Chatterjee	377
future server architectures Silicon	Benner	755	platform for the Blue Gene/L chip Verification strategy for the Blue Gene/L chip	Iyer Wazlowski	333
Development of next-generation system-on-package (SOP) technology			Telephony	waziowski	303
based on silicon carriers with fine- pitch chip interconnection	Knickerbocker	725	BladeCenter T system for the telecommunications industry	Vanderlinden	873
Simulation Early performance data on the Blue Matter molecular simulation framework	Germain	447	Testing Blue Gene/L advanced diagnostics environment Characterization of simultaneous	Giampapa	319
Functional verification of the POWER5 microprocessor and POWER5			multithreading (SMT) efficiency in POWER5	Mathis	555
multiprocessor systems Overview of molecular dynamics techniques and early scientific results	Victor	541	Functional formal verification on designs of pSeries microprocessors and communication subsystems	Gott	565
from the Blue Gene project Simultaneous multithreading (SMT)	Suits	475	Latent defect screening for high- reliability glass-ceramic multichip module copper interconnects	Yarmchuk	677
Characterization of simultaneous multithreading (SMT) efficiency in POWER5	Mathis	555	Using microcode in the functional verification of an I/O chip	Goldman	581
Operating system exploitation of the POWER5 system POWER5 system microarchitecture	Mackerras Sinharoy	533 505	Testing, chip Blue Gene/L compute chip: Control, test, and bring-up infrastructure	Haring	289

High-speed electrical testing of multichip ceramic modules	Manzer	687
Verification		
Functional formal verification on designs of pSeries microprocessors		
and communication subsystems	Gott	565
Functional verification of the POWER5 microprocessor and POWER5		
multiprocessor systems	Victor	541
Using microcode in the functional verification of an I/O chip Verification strategy for the Blue	Goldman	581
Gene/L chip	Wazlowski	303
Virtual machines Advanced virtualization capabilities of POWER5 systems	Armstrong	523
VLSI		
Microminiature packaging and integrated circuitry: The work of E. F. Rent, with an application to on-chip		
interconnection requirements	Lanzerotti	777

Errata

In the paper "Characterization of Simultaneous Multithreading (SMT) Efficiency in POWER5" by H. M. Mathis et al. in the *IBM Journal of Research and Development*, Volume 49, No. 4/5, July/September 2005, the last entry in the SMT gain column of Table 1 (p. 558) should represent a negative percentage, i.e., -11.2.

The names S. A. Cordes and J. L. Speidell were erroneously omitted from the author list of the paper entitled "Low-Cost Wafer Bumping" by P. A. Gruber, L. Bélanger, G. P. Brouillette, D. H. Danovitch, J.-L. Landreville, D. T. Naugle, V. A. Oberson, D.-Y. Shih, C. L. Tessler, and M. R. Turgeon in the *IBM Journal of Research and Development*, Volume 49, No. 4/5, July/September 2005. Their biographies follow.

Steven A. Cordes IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (scordes@us.ibm.com). Mr. Cordes is a Senior Engineer and Manager at the IBM Thomas J. Watson Research Center. He joined IBM in 1988 after receiving a B.S. degree in electrical engineering from Manhattan College, New York. From 1988 to 2000, his work was focused on developing microfabrication processing techniques and building novel microelectronic devices—e.g., injection molding of solder, microelectromechanical systems, or MEMS, and applying silicon micromachining for various membrane applications. Since 2000 he has managed the Central Scientific Services Microfabrication Department. Mr. Cordes is a co-inventor on 26 U.S. patents.

James L. Speidell IBM Research Division. Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (speidel@us.ibm.com). Mr. Speidell is a Senior Technical Staff Member and Senior Manager at the IBM Thomas J. Watson Research Center. He joined IBM in 1977, receiving A.A.S. degrees in electrical technology and engineering science from Westchester Community College in 1977 and a B.S. degree in electrical engineering from Manhattan College. From 1977 to 2000, Mr. Speidell's work was focused on developing microfabrication processing techniques and building novel microelectronic devices such as field-effect transistors with submicron channel widths and high-speed photodiodes and applying silicon micromachining to building mechanical structures such as grids for ion sources and energy analyzers. During this same period, Mr. Speidell was heavily involved with photomask technology, building a highspeed laser-based mask writer to support the photomask demands of the Research Division. He was also the co-inventor of dielectric mask technology used in laser ablation processing. Since 2000, Mr. Speidell has been the Senior Manager for the Central Scientific Services (CSS) Department and also the functional manager of the CSS electronics team. He has received 14 IBM Invention Achievement Awards and two IBM Outstanding Technical Achievement Awards.