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This paper describes the methods and simulation techniques used to
verify the functional correctness and performance attributes of the
IBM POWER5e microprocessor and the eServere p5 systems
based on it. The approaches used were based on migrating the best
practices that had been used to verify the POWER4e chip. The
POWER5 chip design posed new challenges to the simulation team
with the addition of simultaneous multithreading (SMT) and
dynamic power management (DPM). In addition, there was
further integration of cache and memory subsystem function onto
the POWER5 chip. Since the design complexity had increased
from the POWER4 design, the use of test plan coverage tools and
techniques was expanded to ensure the maximum effectiveness of
each simulation cycle run. A new toolset was also employed to
improve the utilization of the large pool of computers used
to run batch simulation jobs and to provide more efficient fail
reproduction and bug fix management. For the system-level
verification, a new test-case-generation tool was utilized which
allowed for more targeted testing through a deeper knowledge
of the system topology. In parallel with the mainline functional
validation, verification of reliability functions and performance
attributes also had increased focus for the POWER5 design.

1. Introduction

Architectural and functional verification of the

POWER5 multiprocessor

The initial POWER4* high-end eServer* systems were

introduced by IBM in late 2001. Since that time,

POWER4 and POWER4þ* microprocessors have

continued to serve as the engines for not only the high-

end iSeries* and pSeries* machines, but also have been

introduced in the midrange and low-end iSeries and

pSeries spaces [1]. The POWER5 microprocessor is the

next generation in this processor family [2]. Much of the

verification team, methodologies, and guiding principles

that were brought to bear on the verification of POWER4

[3] design were deployed in an evolutionary way in the

POWER5 verification effort. The fundamental goal of the

verification team was to effectively validate the POWER5

chip utilizing the lessons learned from the POWER4

verification experience. To this end, the team not only

added efficiencies to the overall verification process, but

enhanced the tools and strategies deployed to meet the

unique challenges introduced in the POWER5 design.

POWER5 design changes

This paper presents the verification strategy used to verify

features unique to the POWER5 design. While the

POWER5 design point maintains both binary and

structural compatibility with the POWER4 design,

allowing existing executable files to continue to execute

properly and application optimizations to advance,

enhanced performance and functionality was introduced

in the POWER5 processor and system design. New

features of the POWER5 processor design that required

a novel approach by the verification team included

simultaneous multithreading (SMT) and dynamic

power management. Beyond these new design features,

functional enhancements introduced in the POWER5

chip include 1) greater virtualization; 2) better reliability,
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availability, and serviceability (RAS) characteristics

of the chip and system; 3) improved elastic interface

characteristics; 4) enhanced memory tracing; and 5)

introduction of the GXþ bus. Each of these changes

provided unique challenges to the verification effort.

Virtualization

The POWER4 processor was the first implementation of

the POWER* logical partitioning (LPAR) architecture.

This capability allowed a single system to be divided into

multiple logical partitions such that each partition could

run a different operating system. POWER4 LPARs

required each processor to be placed in a single partition

when the system was powered on. The POWER5

processor extended the idea of logical partitioning

capabilities to a feature called micropartitioning. In the

POWER5 design, a single processor can service multiple

partitions. Using this capability, each LPAR is now

allocated a certain amount of time on each processor, and

this allocation can be dynamically adjusted to satisfy

changing workload demands. A single POWER5

processor is capable of servicing up to ten partitions with

this new capability. The hardware functions to enable

such a feature are distributed throughout the processor,

requiring strong expertise in the verification community

to ensure a comprehensive test plan. This function is

implemented in the POWER5 design by a combination

of hardware and hypervisor functions which minimize

changes required to the various operating systems in

order to support micropartitioning and several other

unique hardware configuration aspects. A detailed

explanation of the enhanced partitioning architecture

is given by Armstrong et al. [4] in this journal issue.

Simultaneous multithreading and dynamic thread switching

In contrast to the POWER4 processor, which was

capable of executing only a single instruction stream per

processor core, each POWER5 processor core supports

the execution of two instruction streams, or threads. This

capability is referred to as simultaneous multithreading

(SMT). This design point provides the ability to fetch

instructions from one or two threads per processor core

and schedule instructions for execution from both threads

concurrently. Each processor core dynamically adjusts to

the environment, allowing for possible execution of

instructions from both threads and for preferential

treatment of one thread if the other thread encounters

long-latency events. A significant challenge in the

verification of such a design is to ensure effective stressing

of contention for shared resources between each thread.

Additionally, verification of dynamic thread switching,

which is the transition from simultaneous multithreading

to single-threading (or the reverse), introduced new and

unique challenges into the verification environment.

Power savings

Chip power has become an extremely important

design parameter with current CMOS technologies.

Simultaneous multithreading leads to better execution

unit utilization and thus further magnifies the problem of

keeping the chips cool. POWER5 chips use fine-grained

dynamic clock-gating mechanisms extensively throughout

the chip. In addition, the POWER5 design also has a low-

power mode that significantly reduces the switching

power on the chip. A new methodology was brought

to bear in the verification environment to verify this

dynamic power management.

New tools and methodologies

The POWER5 verification effort benefited from

improvements made to existing tools and methodologies

as well as the introduction of new, powerful tools. The

architectural test-case generator used in the POWER5

chip verification, Genesys-Pro [3], was significantly

upgraded from that used in the POWER4 timeframe.

A full programming language was introduced to allow a

more intuitive construction of test cases to be generated

by the verification engineer. These tests were developed

with portability in mind: Not only could they be used in

multiple levels of the verification hierarchy on a given

program, but they could be transported to other Power

Architecture* designs under test. Coverage metrics were

used to measure the completeness of the verification effort

as well as to ensure effective use of simulation resources.

A new paradigm for test plan coverage was used in the

POWER5 verification effort. Whereas the POWER4

verification effort used coverage analysis to gauge

effectiveness of a fairly generic test plan, the POWER5

effort employed a coverage-directed test plan constructed

jointly by the design and verification lead engineers.

Additionally, the internally developed IBM semiformal

verification tool, SixthSense [5], was used to assist in the

coverage analysis. SixthSense was also deployed as a

powerful bug finder in the POWER5 microprocessor

verification effort [6].

This paper describes how the team built on the success

of the POWER4/POWER4þ processor and enhanced the

verification arsenal to deal with these unique design

additions to the POWER5 processor and system. The

paper is organized into four major sections that follow.

Section 2 addresses the verification challenges that are

specific to the POWER5 design points, such as dynamic

power management. Section 3 describes the system

simulation configuration and methodology. Section 4

details the coverage analysis deployed to gauge the

completeness of the testing. Finally, Section 5 describes

the overall results of the verification effort and offers

concluding remarks.
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2. Unique POWER5 verification challenges

Shared resource pool management

Verification of processor resources shared between threads

One of the main challenges of verifying a simultaneous

multithreaded processor such as the POWER5 processor

is to effectively stress the contention for shared resources

between threads. There are two types of such shared

resources: those which involve the memory hierarchy and

those which functionally are completely internal to the

processor core. Resources involving the memory

hierarchy include the following:

� L2 cache.
� Memory.
� Page (translation) tables.
� Semaphores (software lock reservations).
� Effective to real address translations (ERATs)

(first-level translation caches).
� L1 data and instruction caches.

Resources that are functionally internal to the

processor core include the following:

� Rename register pools for general-purpose registers

(GPRs) and floating-point registers (FPRs).
� Issue queues.
� Branch instruction queue (BIQ).
� Load miss queue (LMQ).
� Load reorder queue (LRQ).
� Store reorder queue (SRQ).
� Global completion table (GCT).

Verification of shared resources involving the memory

hierarchy in an SMT processor such as the POWER5

processor is quite similar to true multiprocessor (MP)

verification, with one primary difference: The creation of

contentions for shared resources can now occur with only

a single processor core running in SMT mode. The typical

method of verifying these resources involves testing

contentions involving the same cache lines, cache

congruence classes, or page-table entries. This is

accomplished by constraining the memory addresses that

are requested by each processor to be the same or to have

similar properties (i.e., to target the same congruence

class). While this approach lends itself to verifying L1

instruction and data caches and the ERATs, it is not

directly applicable to verifying shared resources internal

to the processor core, since the means for addressing

these resources are, in general, less straightforward.

Verification of these internal resources at the processor

core level requires extra measures.

For example, in the POWER5 design, there are 120

physical GPRs and another 120 physical FPRs that are

respectively renamed, or mapped, to one of 32 architected

GPRs or FPRs on a per-thread basis. Since this register

pool is completely shared between the threads (and is not

directly addressable), once all of these registers are in use,

neither thread can dispatch additional instructions until a

group of instructions on one of the threads ‘‘completes,’’

thereby freeing up one or more physical registers for

the next dispatch group of instructions (which could be

for the same or the other thread). Running randomly

generated instruction sequences, as was frequently done

on both the POWER4 and POWER4þ designs, would

typically not stress these resource pools to the point at

which all 120 registers were fully mapped. Therefore, in

order to exhaust these registers, special test templates

were constructed using the Genesys-Pro test generator to

create sequences consisting of a long-latency instruction

followed by several instructions requiring one or more

GPRs or FPRs. In some cases, the long-latency

instruction would delay completion of a group by a

programmable number of simulation cycles (i.e., longer

than would normally occur). Employing this approach, it

is possible to create tests in which both threads are able to

exhaust these resources on a much more frequent basis,

thereby verifying the design integrity under otherwise

unusual circumstances.

The register rename pools described above and the

GCT are examples of dynamically shared resources

whose thread allocation is determined by the

requirements of each thread and is indirectly controlled

by thread priority logic. Several other resources, however,

are always shared equally between the two threads (in

SMT mode). To stress equally shared resources, special

tests were constructed to target the particular resource in

both single-threaded and multithreaded modes by simply

changing parameters in the test templates on the basis of

the number of threads in the output test case. (This was

accomplished automatically by the test generator.) Again,

using long-latency instructions to delay completion of a

particular thread was an approach commonly used to

target ‘‘queue full’’ conditions for both threads separately

or simultaneously. An added advantage of being able to

utilize the same test templates for both single-threaded

and multithreaded modes was that the same set of

directives which targets the shared resource on one thread

in single-threaded mode was utilized to target the same

resource on both threads in SMT mode. Additionally, a

‘‘smart asynchronous flush’’ irritator1 was used to delay

injection of random flushes or interrupts into the design

until key times such as the above ‘‘queue full’’ conditions.

This was necessary in order to allow the full conditions

1The term irritator refers to the stimulus applied to the interface; this term is used
interchangeably with the term driver.
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to occur near or on the same cycle in which the flush was

injected.

Special tests were also developed that targeted the L1

instruction cache (I-cache) and ERAT in SMT mode.

These tests targeted scenarios in which both threads

access the same instruction stream with either the same or

different ‘‘effective address’’ to ‘‘real address’’ translation

mappings, instruction streams that use the same effective

address on both threads but mapped to different

instruction streams, and instruction streams in which

both threads access the same congruence classes in either

the L1 I-cache or the I-ERATs to cause thrashing to

occur.

All of the checking which was utilized for the

POWER4 design was enhanced to handle the

simultaneous multithreading mode in the POWER5

design. This included the instruction-by-instruction

checking2 of register results and instruction execution on

a per-thread basis. Additionally, since SMT essentially

turns each processor core into two logical processors, it

was necessary to bring the portable coherency monitor

(SPECTOR) into the processor core level of simulation.

SPECTOR provides a framework for architectural-level

checking of rules such as coherence and sequential load

execution; its use is described in detail in Section 3. In the

POWER4 verification effort, this type of coherency

checking was employed for only the chip-level models

(i.e., two-processor cores) and above (N-way system-level

models). SPECTOR combined with other runtime and

end-of-test checking code uncovered all memory-

consistency and atomicity violations that resulted from

collisions between loads and stores from the two threads

prior to first-pass hardware fabrication.

Dynamic thread switching in the POWER5 processor

Simultaneous multithreading

As stated previously, the POWER5 processor contains

a maximum of two threads per core, with dedicated

program counters per thread, pools of rename registers

including 120 general-purpose registers (GPRs) and 120

floating-point registers (FPRs), and support for two

modes of operation: simultaneous multithreaded (SMT)

and single-threaded (ST) [2]. In SMT mode, instruction

fetches alternate cycles for each thread, and physical

register files, both GPR and FPR, are dynamically shared

by both threads. SMT mode increases the efficiency of

applications that regularly encounter long-latency events

such as cache misses and I/O accesses; however, by

its very nature, SMT mode can be less efficient for

applications that utilize the higher instruction-level

parallelism offered by POWER5. For example, some

technical computing applications are structured to

effectively utilize the data prefetching capabilities of

POWER4 and POWER5 to minimize cache misses and

fully consume the execution pipelines, especially the

floating-point units. These applications perform better

when running in ST mode, since they have complete

access to the entire queue depth and all 120 physical

FPRs. In SMT mode, since the depth of most queues and

the number of rename registers available to each thread

are reduced, the overall throughput of these applications

can in some cases also be reduced when running in SMT

mode. Therefore, POWER5 supports a second mode of

operation with only one active thread in which it behaves

more like its predecessor, the POWER4 processor, while

still taking advantage of the additional physical registers

added for POWER5 to support SMT mode.

Dynamic thread switching

A processor is typically configured for either SMT or

ST mode, but the POWER5 system gives software the

flexibility of dynamically switching between modes in

order to enhance performance. Dynamic thread switching

has two fundamental transitions: SMT ! ST and ST !
SMT. The SMT ! ST transition is by far the more

straightforward. This transition essentially puts one of

the two active threads into an inactive state and can be

initiated only by hypervisor software [4] running on the

thread in transition. More specifically, the hypervisor

software executes an instruction sequence which resets the

appropriate ‘‘thread enabled’’ bit in the control register

(CTRL). Once the CTRL is updated, the POWER5

processor shuts down instruction fetching for the thread

in transition and reallocates all of its internal resources to

the remaining active thread. The reallocation of resources

results in the loss of the architected state except for state

common to both threads and, if appropriately enabled,

the decrementer of the inactive thread. Hypervisor

software must save all required state information prior to

initiating the transition. Only one thread can be inactive

at a time, and the remaining active thread is not allowed

to make this transition until both threads are active

again and back in SMT mode.

The processor remains in ST mode until an external

event dynamically forces it to enter the ST ! SMT

transition. The dormant thread can be reactivated by one

of the following events:

� Hypervisor software running on the remaining active

thread of the same core.
� System reset interrupt (SRI).
� Decrementer interrupt.
� External interrupt.

2Instruction-by-instruction results checking is achieved by comparing the architected
results of each instruction as they appear in the Architectural Verification Program
(AVP or test case) against the VHDL model as each instruction executes. (VHDL =
VHSIC Hardware Description Language, where VHSIC = Very High Speed
Integrated Circuits.)
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Once the transition is initiated by any one of these

events, the inactive thread begins an initialization

sequence that reallocates the shared internal resources to

the thread in transition and then initiates an instruction

fetch from the system reset interrupt vector located at

effective address 0x0000000000000100. In addition, the

machine state register (MSR) and the save restore register 1

(SRR1) are loaded with the state information required for

the hypervisor software to restore the thread to its

proper state.

Scope of verification

The capability of dynamically switching between ST and

SMT modes introduced new challenges to the POWER5

verification team beyond those already addressed for

standalone SMT testing. The first challenge was the

integration of these scenarios into a random environment

based on implementation verification programs (IVPs)

with predetermined architectural results. In contrast to

the random testing of asynchronous interrupts, which is

generally transparent to the IVP, these scenarios required

the test case to be consistent with the new transitions.

Additionally, since the architected state is lost during the

transition, a method of saving and then restoring state

information was required.

The second challenge was to establish methods of

detecting problems that can occur during the transition.

For instance, we added checking to detect problems that

occur when a thread is deactivated and subtle problems

that can occur during the initialization of the instruction

stream after a thread is restarted. We also enhanced our

capabilities to introduce asynchronous events into the

simulation environment for targeting interesting windows

during the transition between modes.

The team agreed that the leading consideration was to

adapt the substantial verification building blocks already

in place. The synergy of the instruction sequencing unit

(ISU) unit-level and the core-level simulation efforts was

instrumental in developing new techniques for testing

dynamic thread switching. The team developed new unit-

level checkers, new unit-level irritators, and new IVPs for

use with the model-based test generator, Genesys-Pro.

The new unit checkers and irritators and the Genesys-Pro

IVPs were installed and activated on both the ISU unit

model and the core model. Once we had dynamic thread

switching running consistently at the core level, we

installed and activated the new checkers, irritators, and

IVPs on the chip level to confirm that the behavior

remained consistent in the chip environment.

Random test-case generation

The POWER5 project is the first project to use Genesys-

Pro exclusively. Genesys-Pro, the ‘‘next-generation’’

model-based test generator, contains capabilities above

and beyond those of legacy test-generation tools [3].

More specifically, Genesys-Pro provides the capability to

write advanced test-case scenarios that would previously

have been impossible to write and maintain. For dynamic

thread switching, two new prototype IVPs using Genesys-

Pro were developed. The first prototype, known as the

Dynamic Thread Switching Irritator (DTSI), provided

an effective vehicle for initially verifying both thread-

switching transitions. The basic premise was to generate

single-threaded IVPs that contained a built-in thread-

switching irritator. The irritator is a relatively simple

subroutine appended to the IVP that is invoked to handle

the thread-switching transitions. Figure 1 depicts the

flowchart for the DTSI prototype. As shown in the figure,

the initially inactive thread has passed through multiple

transitions by the time the test case finishes.

The second prototype, known as Dynamic Thread

Switching (DTS), was complex to develop but more

closely resembled the scenarios that actual hypervisor

software would require in order to invoke a dynamic

thread switch. To make this prototype work, routines

that could be randomly inserted into the IVP, including

reentrant save and restore algorithms that could be used

by both threads simultaneously, had to be developed. The

initial SMT ! ST transition was incorporated into the

system call interrupt handler at 0x0000000000000C00.

The system call interrupt can be randomly invoked by

Figure 1

Example of the Dynamic Thread Switching Irritator (DTSI) proto-
type.

Thread 0                                              Thread 1 

Wake
up thread

1 ?

N times

All architected
state initialized

Thread enabled

Random
instructions 

Write
CTRL(TE1) � 1

No architected
state

  
Thread disabled

Thread wakes up
Fetching from system
Reset interrupt vector 

Random
instructions

Write
CTRL(TE1) � 0

Initial
state

Final
state

Normal finish
Thread enabled

Thread disabled

Run
state 

No Yes
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any IVP running in any mode using the system call (sc)

instruction. Multiple entry points into the system call

handler to support the two transitions were added,

namely ‘‘SC_Wake_Thread’’ and ‘‘SC_Thread_Kill.’’ The

wake routine reactivates a thread if it is currently inactive,

similarly to the sequence used in the DTSI prototype. The

kill routine deactivates a thread after executing the save

algorithm. Once all of the necessary state information

is safely stored in memory, the ‘‘kill’’ routine deactivates

the current thread.

RTX3 drivers and checkers

As illustrated in Figure 1 and Figure 2, verification of

thread-switching transitions requires additional checkers

to confirm that the transitions have correctly allocated

resources and placed threads in their proper states. The

RTX unit, which received significant updates to support

the new SMT mode, was also enhanced to handle

dynamic thread switching. New checkers were added

to confirm that the entire register rename mapper state

information is correct when a thread is deactivated and

correctly reassigned when a thread is reactivated. Many

existing checkers were also enhanced to make them aware

of dynamic thread switching. For instance, updates to

the asynchronous interrupt checkers were required for

system reset interrupts to detect problems unique to these

transitions, such as detecting the correct type of SRI and

verifying that the reset type posted to software matches.

Unique updates were also necessary for detecting hang

and end-of-test conditions.

Taking the scenarios illustrated by the previous

examples to the next level also required enhancements for

the irritators used to inject asynchronous interrupts into

the simulation environment. Recall that asynchronous

events (including system reset interrupts, external

interrupts, and decrementer interrupts) can be used to

initiate the ST ! SMT-mode transition, in addition

to the software initiation of a dynamic thread switch.

Therefore, the irritators were enhanced to detect thread-

switch transitions followed by the injection of multiple

random asynchronous events into critical timing windows

associated with the transition.

With the basic testing complete, the team continued to

introduce new elements into the simulation environment

to increase the robustness of the testing. Both unit and

core simulation environments enabled existing unit

irritators to cause these new tests to run under more

extreme conditions. For instance, we continued to enable

all of the various types of asynchronous events as well

as combinations of internal modes.

Dynamic power management (DPM)

Overview

Power consumption and the resulting system cooling

requirements are becoming a more significant limit to the

performance and maximum configuration size of each

successive generation of computer systems. The increased

utilization of processing resources in the multithreaded

POWER5 processor places additional stress on power

and cooling requirements. To reduce the impact of power

consumption, POWER5 systems implement a DPM

scheme not present in the previous POWER4 series

of processors.

The POWER5 DPM design approach relied on

dynamically gating the functional clocks to logical

subsections of the design that were not currently being

used by the executing instruction streams. To simplify

the implementation, the clock gating was implemented

for functional subunits rather than focusing on

independently gating clocks of every individual group of

latches in the design. For example, the translation table-

walk logic has to be clocked only when a translation

lookaside buffer (TLB) miss occurs; at all other times, the

clocks to this logical subunit can be stopped without

affecting function or performance. With this scheme,

clock gating and power management are controlled by

hardware, with no assistance required from the system

firmware or software.

Figure 2

Example of the Dynamic Thread Switching (DTS) prototype.

Thread 0                                      Thread 1 

All architected
state initialized

Thread enabled

All architected
state initialized

Thread enabled

Random
instructions

Random
instructions

Save
architected state

Wake up thread
Restore

architected state

Write
CTRL(TE0) � 0

Initial
state

Final
state

Normal finish
Thread enabled

Normal finish
Thread enabled

Run
state 

Random
instructions

Thread
terminates
itself

Write
CTRL(TE0) � 1

3The acronym RTX stands for ‘‘runtime executable.’’ It stands for the simulation code
(C/Cþþ) written by the user for a particular testbench.
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Verification

The goal for functional verification of DPM was to

ensure that the clock gating logic did not introduce errors

into the function or the performance of the POWER5

processor. The basic verification methodology was

applied to all levels of POWER5 verification. DPM

functional verification focused on logical correctness, not

the actual power-saving results. DPM logic was enabled

and verified at the unit, core, nest, chip, and system levels

of the verification hierarchy. Functional and performance

verification tests were performed while testing the clock-

gating functions. In addition to typical verification

techniques, several tasks were focused specifically on

power management clock gating.

An effort was made to provide a simulation check for

each local clock-gating control. The goal was to write an

abstract model of each clock-gating control and check the

actual simulation result against the abstract model on

each simulation cycle.

The design goal of providing cycle-level performance

accuracy between clock-gating-enabled and clock-gating-

disabled conditions helped to reduce the potential

increase in state space introduced by clock gating. To

verify this design goal, a subset of the directed random

simulation was run twice: In the first run, all clock gating

was enabled; in the second run, some or all of the clock

gating was disabled. The simulation execution time and

event time of key events could be compared to verify that

cycle-level performance equivalence was maintained

between the two runs.

As noted, DPM functional verification did not verify

the actual power-saving results. However, data collected

from functional simulation was fed into the tools used for

power estimation to measure clock-gating effectiveness.

The methods and results of that analysis are beyond

the scope of this paper.

Elastic interface

Given the bus transfer speeds and the length of wires

between chips, certain areas exist in which information

cannot travel from one logical block to another in one

cycle even if there are no logical gates on that path. In

some cases it takes several clock cycles for the signal to be

received. Thus, there can be more than one logical value

in transit at any given time. In a cycle simulator, wires

present no delay. Using a time-based simulator, one can

specify a delay on a wire, but only one logical value can

be on the wire at a time. The problem is additionally

compounded by the fact that the bus speed is not

constant, thus changing the number of logical values that

can be in flight at any given point in time.4 To accurately

model the variable number of logical values in transit,

the simulation model was modified by inserting a

programmable delay block on the long wires. This delay

block was then configured by the test case to provide the

required number of bits in flight to accurately model the

wire. Wires that are long in relation to clock frequency

present the phenomenon of differential arrival times. This

is because two adjacent wires may be slightly different in

length or molecular composition. IBM POWER4 systems

introduced a method of realigning the common bits on

an interface using the elastic interface (EI), depicted in

Figure 3. The basic function of the elastic interface is to

sample each data bit on a bus at the optimal time and

then delay the presentation of the data until all of the

data on the bus has been captured, so that the logic

that interprets the data sees a fully synchronized bus

transfer image.

Since the electrical characteristics of a bus change with

temperature and average workload, the POWER5 system

architecture had to improve upon the original POWER4

EI implementation. The POWER5 EI implementation

not only determines the optimal sample points at system

boot time, but also recalculates the sample points during

system operation. The recalibration process can be

initiated by direct service processor operations, at

periodic timer intervals, and when an error is detected

on the interface. In verifying the elastic interface, we

were able to show that by selectively configuring the

programmable wire delay blocks, the elastic interface

selects the optimal sampling point and realigns the data

as designed. Additionally, the selected delays can be

modified during simulation, and the act of recalibrating

the interface again adjusts the sample points and properly

aligns the data output.

Memory tracing

Overview

The enhanced memory-tracing feature was implemented

for performance-tuning reasons. On every POWER5

chip, there exists a tracing macro that collects instruction

Figure 3

Illustration of elastic interface.

Elastic
interface

Bit sample points Synchronous
output 

4In POWER5 systems (as in POWER4 systems), buses operate at a sub-multiple of the
processor speed. Because POWER5 systems ship at multiple frequencies, the buses
must also operate at corresponding multiple frequencies.
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trace information and stores it directly in memory. When

this tracing macro is enabled to capture data, the entire

address space mapped to that chip’s memory controller

is devoted to either core or fabric tracing. The trace

provides a means for the performance group to determine

how code streams actually present themselves on the

fabric or in the core.

In the core trace mode, the memory tracer generates

a trace for every instruction executed and stores

information such as effective instruction address,

instruction image, and effective data address. When the

memory tracer nears the end of its allocated memory

buffers, it sends a signal to the core that stalls the core

until the memory tracer can allocate more write buffers.

This mechanism ensures that trace packets are not

dropped in this mode.

When the tracer is running in fabric trace mode,

packets can be dropped, because there is no feasible way

to halt system traffic. The Tracer counts the number of

dropped packets and records this information along

with fabric trace information as soon as write buffers

are allocated. In this trace mode, the tracer can be

programmed to collect snoop address and response

information on all/even/odd fabric cycles. Selection of

snoop traffic sources is also configurable. The data

collected in this mode has already been used in the

laboratory during bring-up to help with debugging, since

it gives users the ability to look at a snapshot of what is

happening inside the chip, much as a logic analyzer

would.

Triggering on an event during trace collection is also

available and configurable. The tracer can store a

centered post-trigger image, a full post-trigger image, or

an image that traces until the trigger event is reached. The

size of the image that is stored depends on the size of

memory configured behind the memory controller. The

tracer supports memory sizes ranging from 256 MB to

2,048 GB.

Verification

Testing of this logic was done at the FBC unit level

and the chip level. In any given test case, one or more

POWER5 chips in the system would be randomly chosen

to enable memory tracing on chip and would be set in

either core or fabric trace mode. The memory spaces on

these selected chips were designated as memory trace

addresses, so random address generation for mainline-

cacheable operations did not include any lines in these

address ranges. Checkers were written to monitor the

interactions from the core to the tracer and from the

fabric to the tracer. Trace packets written to memory

were compared to what was expected by the checkers

in order to verify proper recording of trace events.

To test the core stall feedback mechanism, a core-to-

tracer driver was written to flood the tracer with data for

collection. We also ran heavy system traffic in fabric trace

mode to verify the proper recording of drop stamps. In

both modes, the tracer could be set to store timestamps

marking the number of idle cycles between events. When

this mode was enabled, checkers verified that these

timestamps were written to memory with the correct

value.

The biggest challenge faced in verifying the memory

tracing logic was testing the wraparound conditions when

the tracer reached the end of memory space. Because of

the massive number of cache-line writes that would have

to be executed before reaching the end of memory, the

design team implemented a special simulation mode in

which the memory size could be set to just 256 cache lines.

Without this special mode, it would take millions of

simulation cycles in a single test case to see the overlap

occur. We ran predominantly in this special mode, but

eventually tested the other memory sizes by overriding

internal address counters to effectively skip to the end

of memory in manual test cases.

3. System verification
System simulation is hierarchically the highest level of

pre-chip hardware verification. The main objective for

system simulation is to verify interactions between chips

using actual chip VHDL for the processor, memory, and

I/O chips in system configurations similar to the ones that

will be shipped. For interfaces to the real world, such as

I/O, drivers are used to generate traffic into the system.

Building a full 64-way POWER5 system using VHDL

is neither practical, because of model size, nor the best

approach to verify a system, because of relatively slow

simulation throughput. Thus, the system simulation

challenge was to define several different smaller model

configurations that effectively represented the 64-way

structure without the complete 64-way model. The 64-

way system structure consists of four books connected

using a book-to-book bus interconnect. Internally, each

book contains two MCMs connected by a vertical bus

interconnect. Each MCM contains four POWER5 chips

interconnected with a chip-to-chip bus structure. With the

addition of SMT, a 64-way system effectively becomes

a 128-way system. Each POWER5 chip also contains

memory and I/O buses providing connections to L3

cache, memory redrive chips, and I/O chips. Three

categories of models were used, each containing different

subsets of the system bus structure.

The majority of system simulation cycles were run

on eight-way models (with and without I/O). As in the

POWER4 system effort, the RTX checkers written for

lower levels of verification were moved up and used in the

system verification environment. Additional code was
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developed to support the I/O chips and memory redrive

chips at the system level.

System verification test generation and checking

Test-case generators and system-level checkers are the

primary components in system-level verification. Two

internally developed IBM test generators were used in the

POWER5 system simulation: the MultiProcessor Test

Generator (MPTG) [3] and X-Gen [7]. MPTG was the

primary test generator for the POWER4 system-level

verification, and it was enhanced for POWER5 systems

to support SMT mode. X-Gen, developed by the IBM

Haifa Research Laboratory, is capable of generating

comprehensive system-level test cases, including I/O.

The X-Gen framework includes sophisticated testing

knowledge of the system and complex constraint-solving

algorithms. X-Gen was the only test-case generator in

system simulation that was used to test some of the new

POWER5 design features, including hardware locks

and the barrier synchronization register (BSR).

In the area of system-level checking, the original

portable coherency monitor used during POWER4

verification was rearchitected to make it easier for users

to write new system-level checkers. This new version of

the coherency monitor, called SPECTOR (for System-

wide Portable Environment for Comprehensive Testing

of Operational Rules), also integrated coverage modeling

and event calculation. SPECTOR, an internally

developed IBM tool, provides a verification framework

targeted specifically at the system level of simulation. It

consists of an application programming interface (API)

for development and execution of checkers, a graphical

simulation debugger, a coverage data-generation engine,

and several hundred portable system-level checkers.

SPECTOR relies on external interface monitors for input

simulation data. These tracers typically monitor well-

defined interfaces throughout the system and report

transaction-level events in a generic format defined by

the SPECTOR framework. Additionally, SPECTOR

was used to dynamically check the X-Gen test results.

Several hundred system-level checkers, implemented

in terms of the above verification API, are included in

the SPECTOR framework. The SPECTOR framework

provides efficient checkers for architectural-level checking

of rules such as coherence, sequential load execution,

locking, DMA observation, and cache consistency.

Architectural checkers have a number of advantages over

the more common implementation checks. One important

advantage is that it is possible for these checkers to catch

errors in design specification as well as implementation.

Additionally, this class of checkers is not subject to

the possibility of overlooking subtle but important

implementation details. Such advantages have allowed

SPECTOR to be useful in the core and chip simulation

environments as well as at the system level. SPECTOR

proved to be effective in finding design problems that all

other methods had missed.

N-way system simulation testing

N-way testing was performed on multiprocessor (MP)

models without I/O. Many of the MPTG tests written for

previous POWER N-way systems were ported so that

they could be used to verify the POWER5 system design.

Owing to the new system architecture, a large number of

MPTG and X-Gen tests were created. Tests were written

to stress new areas such as the L2/L3 cache hierarchy, on-

chip memory controller, SMT/ST, instruction and data

prefetching, the instruction cache block invalidate (icbi),

lockless TLB invalidate entry (tlbie), crossing of cache-

line and page boundaries, LPAR, BSR, and hardware

locks.

The basic philosophy for verifying an N-way MP

system is to have two or more processors access the same

memory word or cache line during a test. The POWER5

N-way tests were created to select the memory addresses

in a controlled manner so that all interesting

combinations of processors and targeted memory

controllers could be exercised. Processor transactions

were chosen randomly on the basis of weights in MPTG

test cases. Specific tests had to be written for each system

configuration, since the mapping of address to memory

varied depending on the physical topology of number

of chips, MCMs, and books with the system model.

Corresponding tests were also written with X-Gen to

validate the new test generator. Since X-Gen has

knowledge of the physical topology of the chip, including

the memory map and cache structure of the system, only

one set of X-Gen request files were written, and the test

cases were effectively run on each of the system models.

X-Gen was the only test-case generator used to test

timebase, LPAR, and I/O clustering in system simulation.

I/O system simulation testing

As with POWER4 systems, simulation of the I/O chips

was done in a system model. Several N-way models were

built, each containing different system bus connections,

and I/O chips were added to the models. Four remote I/O

hub chips were added to the N-way models connected to

the POWER5 chips through the GXþ bus. A varying

number (one to four) of RIO ports were used to attach

PCI-X bus bridge chips, limiting the number of these

chips in the system to eight in order to keep the model size

down and still stress remote I/O hub chips. Attached

to the PCI-X bus bridge chips were one to four PCI-X

bus driver/behaviorals on each of the PCI-X ports.

The PCI-X bus bridge chip uses the same RIO-bus-

to-PCI-X-bus bridge chip as in POWER4þ systems.

The GXþ to RIO I/O hub chip was a new chip, but the
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design was derived from the comparable chip used on

POWER4þ systems. It was modified in several ways for

the POWER5 system. The GX bus interface was replaced

with a GXþ bus interface. The major changes to the GXþ
bus were in the areas of reliability, availability, and

serviceability, performance, and function.

4. Coverage analysis

Methodology changes

As hardware designs become increasingly complex,

it is essential to have a mechanism to evaluate the

thoroughness of the testing. Establishing methods to

measure the completeness of a verification effort for

such complex systems is an industry-wide challenge

[8]. Meaningful coverage metrics help to gauge the

completeness of the verification effort and to ensure

effective use of simulation resources. Further, they

indicate which portions of the design may have to be

tested more rigorously. The coverage approach for the

POWER4 microprocessor relied on a large number

of automatically generated coverage events. In the

POWER5 verification effort, the methodology shifted to

deliberate consideration and implementation of coverage

events. The coverage events used in the POWER4

verification effort remained applicable to the POWER5

design, and the fact that there was working POWER4

hardware gave higher confidence to the common points

between the two designs. Thus, while there remained

value in the POWER4 coverage events, the team focused

on coverage events to target function unique to the

POWER5 design. A priority-naming convention was

developed to mark the level of importance of the coverage

event. The label ‘‘Priority1’’ indicated that the event

was being tracked for completion for release to

manufacturing. If a Priority1 event was not hit, a risk

assessment was completed. In general, the new events

developed for the POWER5 design were given Priority1

status, and the bulk of POWER4 events that were reused

in the POWER5 effort were given Priority2 status. The

priority-naming convention allowed the team to monitor

the old events while concentrating on new ones.

Implementation

Reviews attended by verification engineers, design

engineers, and the chief architect were held for each

unit to establish which areas to cover within the new

POWER5 functions. Additionally, a few areas within

the POWER4 function were identified for improved

coverage. Both the new POWER5 functions and the

POWER4 functions identified for increased coverage

were given Priority1 status. The POWER5 strategy was to

create a manageable set of well-crafted test templates that

targeted the events pseudo-randomly. The team reasoned

that in hitting this set of meaningful events a significant

number of times in a random environment, the

surrounding logic was inherently covered. That is,

points that had to be traversed to reach the coverage

events did not have to be specified as separate events.

After the new events were added to the simulation

model, monitoring began. All 35,000 test-case templates

(consisting of a Genesys-Pro definition file and a set

of simulation environment runtime parameters) were

allowed to run for approximately one month. During this

time a trend began to emerge that led to eliminating all

but approximately 2,000 test templates. To eliminate the

large number of test templates, a history was kept of the

templates that contributed most to covering ‘‘hard-to-hit’’

events (i.e., the list of Priority1 events that were hit at

least once but not more than ten times). After this

coverage data had been collected for six weeks, the test

templates that were not contributing were eliminated.

Removal of the noncontributing test templates allowed

the overall coverage to increase and significantly reduced

the time required to hit the same number of Priority1

events.

There were approximately 4,500 Priority1 events, of

which 4,000 were covered very quickly. The remaining

500 events proved to be a challenge. All Priority1 events

were constantly monitored to ensure that they could be

hit consistently. All events were given an age-out5 time

period of 25 days. If an event ‘‘aged out,’’ a report was

automatically generated that showed not only which test

templates hit the event, but also how many times that

template hit the event. Using this information, another

report was generated that indicated when the test

template was last run and how many test cases it took

to hit the event for the first time. This information

was valuable in determining simulation job submission

weights for each of the 2,000 test templates to maintain

continuous Priority1 event coverage.

In covering the last 500 events, deficiencies in both the

Genesys-Pro generator and the test plan were revealed.

More significantly, several logic bugs were discovered in

covering these remaining events, and the overall size of

the test suite was significantly reduced by improving test

quality [9]. A novel use of the semiformal tool SixthSense

was deployed to assist in analyzing a number of these

remaining coverage events, which proved difficult to hit

in a random or directed simulation environment. The

coverage team passed the events that had never been hit

in simulation over to the formal verification team for

analysis. SixthSense was used to prove the coverage

events reachable or unreachable, providing valuable

feedback for the coverage team. For events that were

5The term age-out is defined as the time period set by the user over which the coverage
event is monitored. If a coverage event is not hit within its age-out period, it is flagged.
If the event is hit, the age-out counter is reset.
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proven unreachable, the coverage team evaluated a

portion of the checks to be invalid, while the remainder

were evaluated to be ‘‘not written as intended.’’ The

invalid checks were eliminated, and the incorrect checks

were appropriately modified. For coverage events that did

prove reachable by SixthSense, the coverage team gained

the knowledge that these were valid checks, worthy of

their continued attention. In these cases, the SixthSense-

produced traces demonstrating a path to hit the coverage

events were additionally used to provide insight into how

to tune the simulation environments to expose such rare

conditions.

The initial coverage reviews yielded a set of very

difficult events that required targeting of multiple random

resistant scenarios in combination with one another to

achieve the desired coverage goals. The suite of test

templates derived from this coverage analysis now forms

the basis of a portable test library which is employed by

all PowerPC* processor projects currently in development

within IBM, ranging from game systems and desktop

computers to follow-on server products.

System-level coverage analysis

The SPECTOR framework, described previously, was

used for system-level coverage analysis. Users of the

framework can specify temporal cross-product coverage

models. The coverage-generation engine analyzes the

input trace files and reports coverage events for all tuples

of events that correspond to valid cross products for each

model. The coverage events are sent to the internally

developed IBM coverage database tool, Meteor, for

analysis and tracking. SPECTOR/Meteor were used to

evaluate whether the system-level tests were hitting all of

the desired sequences. New coverage models were written

for the eServer p5 system to ensure that the SMT function

was being adequately tested. Additional tests were written

to hit the scenarios that did not occur with the initial

tests.

5. Results and concluding remarks
If the quality of verification is measured by the number of

defects found during hardware bring-up, the verification

of the POWER5 processor was quite successful. The team

delivered first-pass hardware capable of booting all three

of the supported operating systems (AIX*, Linux**,

and i5/OS*) in simultaneous multithreading mode with

dynamic power management enabled, and this first-pass

hardware was capable of running all three operating

systems simultaneously on a single POWER5 chip.

There were, of course, some design defects found in the

hardware laboratory running test exercisers. However,

the POWER5 team identified approximately 95% of

all design problems prior to the release of the chip

to manufacturing, and less than 1% of the problems

would have a serious impact on the bring-up of hardware

in the laboratory. The high-impact design defects were

of such a nature that they did not impede progress in

the laboratory. The hardware bring-up team was able

to circumvent all of the high-impact problems with

temporary hardware or, in some cases, with firmware

workarounds.

Many of the enhancements to the POWER5 design

were extremely difficult to verify. The design and

verification teams were aware of most problematic areas

from the early stages of the project on the basis of their

previous experience with the POWER3* and POWER4

projects. To minimize hardware defect transfer to the

bring-up laboratory, tradeoffs and design enhancements

were made that would minimize the likelihood of transfer

of design defects and enhance our ability to work around

potential problems encountered in the laboratory. The

emphasis on hitting high-priority coverage events for all

of our new mainline features so that we could gauge

the effectiveness of test-case development and target

simulation resource was to be critical to our success.

We also added well-thought-out programmable switches

to the design that would allow us to either reduce

complexity (and thus performance) to work around

problems or stress components more heavily than normal

to aid in more rapid discovery of defects in areas of

concern. Finally, we added a new workaround capability

in the POWER5 design, called workaround triggering, or

WAT, which allowed us to detect trigger conditions

and act on them by manipulating the behavior of the

logic to avoid a problem.

With the support of these new debugging and

workaround capabilities on the POWER5 chip, we were

able to sustain our progress in the laboratory and work

around difficult situations that would otherwise have

caused delays. Ultimately, the actions that we took in

verification as well as the new and improved debugging

and workaround features in the POWER5 design resulted

in a product with excellent quality which took less time to

deliver.

In examining the trends of current microprocessor

designs, we fully expect that future designs will embrace

more of the same features exemplified in the POWER5

processor:

� Out-of-order execution.
� Multithreading for each core.
� Dynamic power management.
� Increasing virtualization and partitioning capabilities.
� Multiple processor cores for each chip.
� Enhanced reliability, availability, and serviceability.

The methodology employed by the POWER4 team and

the enhancements added by the POWER5 team have

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 D. W. VICTOR ET AL.

551



proven to be solid. They will provide a sound foundation

for building verification methodologies for future

processors within IBM and likely for the industry in

general. Any changes to this methodology will probably

be evolutionary, applying innovation on an as-needed

basis to meet new design and architecture requirements.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark of registered trademark of Linus Torvalds or Intel
Corporation.
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