Functional verification of the
POWERS5 microprocessor
and POWERS5
multiprocessor systems

This paper describes the methods and simulation techniques used to
verify the functional correctness and performance attributes of the
IBM POWERS™ microprocessor and the eServer™ p5 systems
based on it. The approaches used were based on migrating the best
practices that had been used to verify the POWER4™ chip. The
POWERS chip design posed new challenges to the simulation team
with the addition of simultaneous multithreading (SMT) and
dynamic power management (DPM). In addition, there was
further integration of cache and memory subsystem function onto
the POWERS chip. Since the design complexity had increased
from the POWER4 design, the use of test plan coverage tools and
techniques was expanded to ensure the maximum effectiveness of
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each simulation cycle run. A new toolset was also employed to
improve the utilization of the large pool of computers used

to run batch simulation jobs and to provide more efficient fail
reproduction and bug fix management. For the system-level
verification, a new test-case-generation tool was utilized which
allowed for more targeted testing through a deeper knowledge
of the system topology. In parallel with the mainline functional
validation, verification of reliability functions and performance
attributes also had increased focus for the POWERS design.

1. Introduction

Architectural and functional verification of the
POWERS5 multiprocessor

The initial POWER4* high-end eServer* systems were
introduced by IBM in late 2001. Since that time,
POWER4 and POWER4+* microprocessors have
continued to serve as the engines for not only the high-
end iSeries® and pSeries* machines, but also have been
introduced in the midrange and low-end iSeries and
pSeries spaces [1]. The POWERS microprocessor is the
next generation in this processor family [2]. Much of the
verification team, methodologies, and guiding principles
that were brought to bear on the verification of POWER4
[3] design were deployed in an evolutionary way in the
POWERS verification effort. The fundamental goal of the
verification team was to effectively validate the POWERS
chip utilizing the lessons learned from the POWER4
verification experience. To this end, the team not only

added efficiencies to the overall verification process, but
enhanced the tools and strategies deployed to meet the
unique challenges introduced in the POWERS design.

POWERY5 design changes

This paper presents the verification strategy used to verify
features unique to the POWERS design. While the
POWERS design point maintains both binary and
structural compatibility with the POWER4 design,
allowing existing executable files to continue to execute
properly and application optimizations to advance,
enhanced performance and functionality was introduced
in the POWERS processor and system design. New
features of the POWERS processor design that required
a novel approach by the verification team included
simultaneous multithreading (SMT) and dynamic

power management. Beyond these new design features,
functional enhancements introduced in the POWERS
chip include 1) greater virtualization; 2) better reliability,
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availability, and serviceability (RAS) characteristics
of the chip and system; 3) improved elastic interface
characteristics; 4) enhanced memory tracing; and 5)
introduction of the GX+ bus. Each of these changes
provided unique challenges to the verification effort.

Virtualization

The POWER4 processor was the first implementation of
the POWER™ logical partitioning (LPAR) architecture.
This capability allowed a single system to be divided into
multiple logical partitions such that each partition could
run a different operating system. POWER4 LPARs
required each processor to be placed in a single partition
when the system was powered on. The POWERS
processor extended the idea of logical partitioning
capabilities to a feature called micropartitioning. In the
POWERS design, a single processor can service multiple
partitions. Using this capability, each LPAR is now
allocated a certain amount of time on each processor, and
this allocation can be dynamically adjusted to satisfy
changing workload demands. A single POWERS
processor is capable of servicing up to ten partitions with
this new capability. The hardware functions to enable
such a feature are distributed throughout the processor,
requiring strong expertise in the verification community
to ensure a comprehensive test plan. This function is
implemented in the POWERS design by a combination
of hardware and hypervisor functions which minimize
changes required to the various operating systems in
order to support micropartitioning and several other
unique hardware configuration aspects. A detailed
explanation of the enhanced partitioning architecture

is given by Armstrong et al. [4] in this journal issue.

Simultaneous multithreading and dynamic thread switching
In contrast to the POWER4 processor, which was
capable of executing only a single instruction stream per
processor core, each POWERS processor core supports
the execution of two instruction streams, or threads. This
capability is referred to as simultaneous multithreading
(SMT). This design point provides the ability to fetch
instructions from one or two threads per processor core
and schedule instructions for execution from both threads
concurrently. Each processor core dynamically adjusts to
the environment, allowing for possible execution of
instructions from both threads and for preferential
treatment of one thread if the other thread encounters
long-latency events. A significant challenge in the
verification of such a design is to ensure effective stressing
of contention for shared resources between each thread.
Additionally, verification of dynamic thread switching,
which is the transition from simultaneous multithreading
to single-threading (or the reverse), introduced new and
unique challenges into the verification environment.
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Power savings

Chip power has become an extremely important

design parameter with current CMOS technologies.
Simultaneous multithreading leads to better execution
unit utilization and thus further magnifies the problem of
keeping the chips cool. POWERS chips use fine-grained
dynamic clock-gating mechanisms extensively throughout
the chip. In addition, the POWERS design also has a low-
power mode that significantly reduces the switching
power on the chip. A new methodology was brought

to bear in the verification environment to verify this
dynamic power management.

New tools and methodologies

The POWERS verification effort benefited from
improvements made to existing tools and methodologies
as well as the introduction of new, powerful tools. The
architectural test-case generator used in the POWERS
chip verification, Genesys-Pro [3], was significantly
upgraded from that used in the POWER4 timeframe.

A full programming language was introduced to allow a
more intuitive construction of test cases to be generated
by the verification engineer. These tests were developed
with portability in mind: Not only could they be used in
multiple levels of the verification hierarchy on a given
program, but they could be transported to other Power
Architecture® designs under test. Coverage metrics were
used to measure the completeness of the verification effort
as well as to ensure effective use of simulation resources.
A new paradigm for test plan coverage was used in the
POWERS verification effort. Whereas the POWER4
verification effort used coverage analysis to gauge
effectiveness of a fairly generic test plan, the POWERS
effort employed a coverage-directed test plan constructed
jointly by the design and verification lead engineers.
Additionally, the internally developed IBM semiformal
verification tool, SixthSense [5], was used to assist in the
coverage analysis. SixthSense was also deployed as a
powerful bug finder in the POWERS microprocessor
verification effort [6].

This paper describes how the team built on the success
of the POWER4/POWER4+ processor and enhanced the
verification arsenal to deal with these unique design
additions to the POWERS processor and system. The
paper is organized into four major sections that follow.
Section 2 addresses the verification challenges that are
specific to the POWERS design points, such as dynamic
power management. Section 3 describes the system
simulation configuration and methodology. Section 4
details the coverage analysis deployed to gauge the
completeness of the testing. Finally, Section 5 describes
the overall results of the verification effort and offers
concluding remarks.
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2. Unique POWERS5 verification challenges
Shared resource pool management

Verification of processor resources shared between threads
One of the main challenges of verifying a simultaneous
multithreaded processor such as the POWERS processor
is to effectively stress the contention for shared resources
between threads. There are two types of such shared
resources: those which involve the memory hierarchy and
those which functionally are completely internal to the
processor core. Resources involving the memory
hierarchy include the following:

e L2 cache.

e Memory.

e Page (translation) tables.

¢ Semaphores (software lock reservations).

e Effective to real address translations (ERATS)
(first-level translation caches).

e L1 data and instruction caches.

Resources that are functionally internal to the
processor core include the following:

e Rename register pools for general-purpose registers
(GPRs) and floating-point registers (FPRs).

* [ssue queues.

e Branch instruction queue (BIQ).

e Load miss queue (LMQ).

e Load reorder queue (LRQ).

e Store reorder queue (SRQ).

* Global completion table (GCT).

Verification of shared resources involving the memory
hierarchy in an SMT processor such as the POWERS
processor is quite similar to true multiprocessor (MP)
verification, with one primary difference: The creation of
contentions for shared resources can now occur with only
a single processor core running in SMT mode. The typical
method of verifying these resources involves testing
contentions involving the same cache lines, cache
congruence classes, or page-table entries. This is
accomplished by constraining the memory addresses that
are requested by each processor to be the same or to have
similar properties (i.e., to target the same congruence
class). While this approach lends itself to verifying L1
instruction and data caches and the ERATS, it is not
directly applicable to verifying shared resources internal
to the processor core, since the means for addressing
these resources are, in general, less straightforward.
Verification of these internal resources at the processor
core level requires extra measures.
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For example, in the POWERS design, there are 120
physical GPRs and another 120 physical FPRs that are
respectively renamed, or mapped, to one of 32 architected
GPRs or FPRs on a per-thread basis. Since this register
pool is completely shared between the threads (and is not
directly addressable), once all of these registers are in use,
neither thread can dispatch additional instructions until a
group of instructions on one of the threads “completes,”
thereby freeing up one or more physical registers for
the next dispatch group of instructions (which could be
for the same or the other thread). Running randomly
generated instruction sequences, as was frequently done
on both the POWER4 and POWER4+ designs, would
typically not stress these resource pools to the point at
which all 120 registers were fully mapped. Therefore, in
order to exhaust these registers, special test templates
were constructed using the Genesys-Pro test generator to
create sequences consisting of a long-latency instruction
followed by several instructions requiring one or more
GPRs or FPRs. In some cases, the long-latency
instruction would delay completion of a group by a
programmable number of simulation cycles (i.e., longer
than would normally occur). Employing this approach, it
is possible to create tests in which both threads are able to
exhaust these resources on a much more frequent basis,
thereby verifying the design integrity under otherwise
unusual circumstances.

The register rename pools described above and the
GCT are examples of dynamically shared resources
whose thread allocation is determined by the
requirements of each thread and is indirectly controlled
by thread priority logic. Several other resources, however,
are always shared equally between the two threads (in
SMT mode). To stress equally shared resources, special
tests were constructed to target the particular resource in
both single-threaded and multithreaded modes by simply
changing parameters in the test templates on the basis of
the number of threads in the output test case. (This was
accomplished automatically by the test generator.) Again,
using long-latency instructions to delay completion of a
particular thread was an approach commonly used to
target “queue full” conditions for both threads separately
or simultaneously. An added advantage of being able to
utilize the same test templates for both single-threaded
and multithreaded modes was that the same set of
directives which targets the shared resource on one thread
in single-threaded mode was utilized to target the same
resource on both threads in SMT mode. Additionally, a
“smart asynchronous flush” irritator' was used to delay
injection of random flushes or interrupts into the design
until key times such as the above “queue full” conditions.
This was necessary in order to allow the full conditions

'The term irritator refers to the stimulus applied to the interface; this term is used
interchangeably with the term driver. 543
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to occur near or on the same cycle in which the flush was
injected.

Special tests were also developed that targeted the L1
instruction cache (I-cache) and ERAT in SMT mode.
These tests targeted scenarios in which both threads
access the same instruction stream with either the same or
different “effective address” to “real address” translation
mappings, instruction streams that use the same effective
address on both threads but mapped to different
instruction streams, and instruction streams in which
both threads access the same congruence classes in either
the L1 I-cache or the -ERATS to cause thrashing to
occur.

All of the checking which was utilized for the
POWER4 design was enhanced to handle the
simultaneous multithreading mode in the POWERS
design. This included the instruction-by-instruction
checking® of register results and instruction execution on
a per-thread basis. Additionally, since SMT essentially
turns each processor core into two logical processors, it
was necessary to bring the portable coherency monitor
(SPECTOR) into the processor core level of simulation.
SPECTOR provides a framework for architectural-level
checking of rules such as coherence and sequential load
execution; its use is described in detail in Section 3. In the
POWER4 verification effort, this type of coherency
checking was employed for only the chip-level models
(i.e., two-processor cores) and above (N-way system-level
models). SPECTOR combined with other runtime and
end-of-test checking code uncovered all memory-
consistency and atomicity violations that resulted from
collisions between loads and stores from the two threads
prior to first-pass hardware fabrication.

Dynamic thread switching in the POWERS5 processor

Simultaneous multithreading

As stated previously, the POWERS processor contains
a maximum of two threads per core, with dedicated
program counters per thread, pools of rename registers
including 120 general-purpose registers (GPRs) and 120
floating-point registers (FPRs), and support for two
modes of operation: simultaneous multithreaded (SMT)
and single-threaded (ST) [2]. In SMT mode, instruction
fetches alternate cycles for each thread, and physical
register files, both GPR and FPR, are dynamically shared
by both threads. SMT mode increases the efficiency of
applications that regularly encounter long-latency events
such as cache misses and I/O accesses; however, by

its very nature, SMT mode can be less efficient for

2Instruction-by-instruction results checking is achieved by comparing the architected
results of each instruction as they appear in the Architectural Verification Program
(AVP or test case) against the VHDL model as each instruction executes. (VHDL =
VHSIC Hardware Description Language, where VHSIC = Very High Speed
Integrated Circuits.)
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applications that utilize the higher instruction-level
parallelism offered by POWERS. For example, some
technical computing applications are structured to
effectively utilize the data prefetching capabilities of
POWER4 and POWERS to minimize cache misses and
fully consume the execution pipelines, especially the
floating-point units. These applications perform better
when running in ST mode, since they have complete
access to the entire queue depth and all 120 physical
FPRs. In SMT mode, since the depth of most queues and
the number of rename registers available to each thread
are reduced, the overall throughput of these applications
can in some cases also be reduced when running in SMT
mode. Therefore, POWERS supports a second mode of
operation with only one active thread in which it behaves
more like its predecessor, the POWER4 processor, while
still taking advantage of the additional physical registers
added for POWERS to support SMT mode.

Dynamic thread switching

A processor is typically configured for either SMT or
ST mode, but the POWERS system gives software the
flexibility of dynamically switching between modes in
order to enhance performance. Dynamic thread switching
has two fundamental transitions: SMT — ST and ST —
SMT. The SMT — ST transition is by far the more
straightforward. This transition essentially puts one of
the two active threads into an inactive state and can be
initiated only by hypervisor software [4] running on the
thread in transition. More specifically, the hypervisor
software executes an instruction sequence which resets the
appropriate “thread enabled” bit in the control register
(CTRL). Once the CTRL is updated, the POWERS5
processor shuts down instruction fetching for the thread
in transition and reallocates all of its internal resources to
the remaining active thread. The reallocation of resources
results in the loss of the architected state except for state
common to both threads and, if appropriately enabled,
the decrementer of the inactive thread. Hypervisor
software must save all required state information prior to
initiating the transition. Only one thread can be inactive
at a time, and the remaining active thread is not allowed
to make this transition until both threads are active
again and back in SMT mode.

The processor remains in ST mode until an external
event dynamically forces it to enter the ST — SMT
transition. The dormant thread can be reactivated by one
of the following events:

* Hypervisor software running on the remaining active
thread of the same core.

e System reset interrupt (SRI).

* Decrementer interrupt.

e External interrupt.
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Once the transition is initiated by any one of these
events, the inactive thread begins an initialization
sequence that reallocates the shared internal resources to
the thread in transition and then initiates an instruction
fetch from the system reset interrupt vector located at
effective address 0x0000000000000100. In addition, the
machine state register (MSR) and the save restore register 1
(SRR1) are loaded with the state information required for
the hypervisor software to restore the thread to its
proper state.

Scope of verification

The capability of dynamically switching between ST and
SMT modes introduced new challenges to the POWERS
verification team beyond those already addressed for
standalone SMT testing. The first challenge was the
integration of these scenarios into a random environment
based on implementation verification programs (IVPs)
with predetermined architectural results. In contrast to
the random testing of asynchronous interrupts, which is
generally transparent to the IVP, these scenarios required
the test case to be consistent with the new transitions.
Additionally, since the architected state is lost during the
transition, a method of saving and then restoring state
information was required.

The second challenge was to establish methods of
detecting problems that can occur during the transition.
For instance, we added checking to detect problems that
occur when a thread is deactivated and subtle problems
that can occur during the initialization of the instruction
stream after a thread is restarted. We also enhanced our
capabilities to introduce asynchronous events into the
simulation environment for targeting interesting windows
during the transition between modes.

The team agreed that the leading consideration was to
adapt the substantial verification building blocks already
in place. The synergy of the instruction sequencing unit
(ISU) unit-level and the core-level simulation efforts was
instrumental in developing new techniques for testing
dynamic thread switching. The team developed new unit-
level checkers, new unit-level irritators, and new IVPs for
use with the model-based test generator, Genesys-Pro.
The new unit checkers and irritators and the Genesys-Pro
IVPs were installed and activated on both the ISU unit
model and the core model. Once we had dynamic thread
switching running consistently at the core level, we
installed and activated the new checkers, irritators, and
IVPs on the chip level to confirm that the behavior
remained consistent in the chip environment.

Random test-case generation

The POWERS project is the first project to use Genesys-
Pro exclusively. Genesys-Pro, the “next-generation”
model-based test generator, contains capabilities above
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Thread 0 Thread 1
All architected No architected
Initial state initialized state
state
Thread enabled Thread disabled

Thread wakes up
Fetching from system
Reset interrupt vector

'

Random
instructions
Random Write *
instructions CTRL(TE1) = 1 Write
I CTRL(TE1) = 0
Final Normal finish :
state Thread enabled Thread disabled

Example of the Dynamic Thread Switching Irritator (DTSI) proto-
type.

and beyond those of legacy test-generation tools [3].
More specifically, Genesys-Pro provides the capability to
write advanced test-case scenarios that would previously
have been impossible to write and maintain. For dynamic
thread switching, two new prototype IVPs using Genesys-
Pro were developed. The first prototype, known as the
Dynamic Thread Switching Irritator (DTSI), provided
an effective vehicle for initially verifying both thread-
switching transitions. The basic premise was to generate
single-threaded IVPs that contained a built-in thread-
switching irritator. The irritator is a relatively simple
subroutine appended to the IVP that is invoked to handle
the thread-switching transitions. Figure 1 depicts the
flowchart for the DTSI prototype. As shown in the figure,
the initially inactive thread has passed through multiple
transitions by the time the test case finishes.

The second prototype, known as Dynamic Thread
Switching (DTS), was complex to develop but more
closely resembled the scenarios that actual hypervisor
software would require in order to invoke a dynamic
thread switch. To make this prototype work, routines
that could be randomly inserted into the IVP, including
reentrant save and restore algorithms that could be used
by both threads simultaneously, had to be developed. The
initial SMT — ST transition was incorporated into the
system call interrupt handler at 0x0000000000000C00.
The system call interrupt can be randomly invoked by

D. W. VICTOR ET AL.
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Thread 0 Thread 1
Initial All architected All architected
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itself Witz (TEO)
CTRL(TEO) = 0
A
Wake up thread . Randgm
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architected state
Final Normal finish Normal finish
RLLS Thread enabled Thread enabled

Example of the Dynamic Thread Switching (DTS) prototype.

any IVP running in any mode using the system call (sc)
instruction. Multiple entry points into the system call
handler to support the two transitions were added,
namely “SC_Wake_Thread” and “SC_Thread_Kill.” The
wake routine reactivates a thread if it is currently inactive,
similarly to the sequence used in the DTSI prototype. The
kill routine deactivates a thread after executing the save
algorithm. Once all of the necessary state information

is safely stored in memory, the “kill” routine deactivates
the current thread.

RTX? drivers and checkers

As illustrated in Figure 1 and Figure 2, verification of
thread-switching transitions requires additional checkers
to confirm that the transitions have correctly allocated
resources and placed threads in their proper states. The
RTX unit, which received significant updates to support
the new SMT mode, was also enhanced to handle
dynamic thread switching. New checkers were added

to confirm that the entire register rename mapper state
information is correct when a thread is deactivated and
correctly reassigned when a thread is reactivated. Many
existing checkers were also enhanced to make them aware
of dynamic thread switching. For instance, updates to
the asynchronous interrupt checkers were required for

3The acronym RTX stands for “runtime executable.” It stands for the simulation code
(C/C++) written by the user for a particular testbench.
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system reset interrupts to detect problems unique to these
transitions, such as detecting the correct type of SRI and
verifying that the reset type posted to software matches.
Unique updates were also necessary for detecting hang
and end-of-test conditions.

Taking the scenarios illustrated by the previous
examples to the next level also required enhancements for
the irritators used to inject asynchronous interrupts into
the simulation environment. Recall that asynchronous
events (including system reset interrupts, external
interrupts, and decrementer interrupts) can be used to
initiate the ST — SMT-mode transition, in addition
to the software initiation of a dynamic thread switch.
Therefore, the irritators were enhanced to detect thread-
switch transitions followed by the injection of multiple
random asynchronous events into critical timing windows
associated with the transition.

With the basic testing complete, the team continued to
introduce new elements into the simulation environment
to increase the robustness of the testing. Both unit and
core simulation environments enabled existing unit
irritators to cause these new tests to run under more
extreme conditions. For instance, we continued to enable
all of the various types of asynchronous events as well
as combinations of internal modes.

Dynamic power management (DPM)

Overview

Power consumption and the resulting system cooling
requirements are becoming a more significant limit to the
performance and maximum configuration size of each
successive generation of computer systems. The increased
utilization of processing resources in the multithreaded
POWERS processor places additional stress on power
and cooling requirements. To reduce the impact of power
consumption, POWERS systems implement a DPM
scheme not present in the previous POWER4 series

of processors.

The POWERS DPM design approach relied on
dynamically gating the functional clocks to logical
subsections of the design that were not currently being
used by the executing instruction streams. To simplify
the implementation, the clock gating was implemented
for functional subunits rather than focusing on
independently gating clocks of every individual group of
latches in the design. For example, the translation table-
walk logic has to be clocked only when a translation
lookaside buffer (TLB) miss occurs; at all other times, the
clocks to this logical subunit can be stopped without
affecting function or performance. With this scheme,
clock gating and power management are controlled by
hardware, with no assistance required from the system
firmware or software.
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Verification

The goal for functional verification of DPM was to
ensure that the clock gating logic did not introduce errors
into the function or the performance of the POWERS
processor. The basic verification methodology was
applied to all levels of POWERS verification. DPM
functional verification focused on logical correctness, not
the actual power-saving results. DPM logic was enabled
and verified at the unit, core, nest, chip, and system levels
of the verification hierarchy. Functional and performance
verification tests were performed while testing the clock-
gating functions. In addition to typical verification
techniques, several tasks were focused specifically on
power management clock gating.

An effort was made to provide a simulation check for
each local clock-gating control. The goal was to write an
abstract model of each clock-gating control and check the
actual simulation result against the abstract model on
each simulation cycle.

The design goal of providing cycle-level performance
accuracy between clock-gating-enabled and clock-gating-
disabled conditions helped to reduce the potential
increase in state space introduced by clock gating. To
verify this design goal, a subset of the directed random
simulation was run twice: In the first run, all clock gating
was enabled; in the second run, some or all of the clock
gating was disabled. The simulation execution time and
event time of key events could be compared to verify that
cycle-level performance equivalence was maintained
between the two runs.

As noted, DPM functional verification did not verify
the actual power-saving results. However, data collected
from functional simulation was fed into the tools used for
power estimation to measure clock-gating effectiveness.
The methods and results of that analysis are beyond
the scope of this paper.

Elastic interface

Given the bus transfer speeds and the length of wires
between chips, certain areas exist in which information
cannot travel from one logical block to another in one
cycle even if there are no logical gates on that path. In
some cases it takes several clock cycles for the signal to be
received. Thus, there can be more than one logical value
in transit at any given time. In a cycle simulator, wires
present no delay. Using a time-based simulator, one can
specify a delay on a wire, but only one logical value can
be on the wire at a time. The problem is additionally
compounded by the fact that the bus speed is not
constant, thus changing the number of logical values that
can be in flight at any given point in time.* To accurately

“In POWERS5 systems (as in POWERA4 systems), buses operate at a sub-multiple of the
processor speed. Because POWERS5 systems ship at multiple frequencies, the buses
must also operate at corresponding multiple frequencies.
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model the variable number of logical values in transit,
the simulation model was modified by inserting a
programmable delay block on the long wires. This delay
block was then configured by the test case to provide the
required number of bits in flight to accurately model the
wire. Wires that are long in relation to clock frequency
present the phenomenon of differential arrival times. This
is because two adjacent wires may be slightly different in
length or molecular composition. IBM POWER4 systems
introduced a method of realigning the common bits on
an interface using the elastic interface (EI), depicted in
Figure 3. The basic function of the elastic interface is to
sample each data bit on a bus at the optimal time and
then delay the presentation of the data until all of the
data on the bus has been captured, so that the logic
that interprets the data sees a fully synchronized bus
transfer image.

Since the electrical characteristics of a bus change with
temperature and average workload, the POWERS system
architecture had to improve upon the original POWER4
EI implementation. The POWERS EI implementation
not only determines the optimal sample points at system
boot time, but also recalculates the sample points during
system operation. The recalibration process can be
initiated by direct service processor operations, at
periodic timer intervals, and when an error is detected
on the interface. In verifying the elastic interface, we
were able to show that by selectively configuring the
programmable wire delay blocks, the elastic interface
selects the optimal sampling point and realigns the data
as designed. Additionally, the selected delays can be
modified during simulation, and the act of recalibrating
the interface again adjusts the sample points and properly
aligns the data output.

Memory tracing
Overview
The enhanced memory-tracing feature was implemented

for performance-tuning reasons. On every POWERS
chip, there exists a tracing macro that collects instruction

D. W. VICTOR ET AL.
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trace information and stores it directly in memory. When
this tracing macro is enabled to capture data, the entire
address space mapped to that chip’s memory controller
is devoted to either core or fabric tracing. The trace
provides a means for the performance group to determine
how code streams actually present themselves on the
fabric or in the core.

In the core trace mode, the memory tracer generates
a trace for every instruction executed and stores
information such as effective instruction address,
instruction image, and effective data address. When the
memory tracer nears the end of its allocated memory
buffers, it sends a signal to the core that stalls the core
until the memory tracer can allocate more write buffers.
This mechanism ensures that trace packets are not
dropped in this mode.

When the tracer is running in fabric trace mode,
packets can be dropped, because there is no feasible way
to halt system traffic. The Tracer counts the number of
dropped packets and records this information along
with fabric trace information as soon as write buffers
are allocated. In this trace mode, the tracer can be
programmed to collect snoop address and response
information on all/even/odd fabric cycles. Selection of
snoop traffic sources is also configurable. The data
collected in this mode has already been used in the
laboratory during bring-up to help with debugging, since
it gives users the ability to look at a snapshot of what is
happening inside the chip, much as a logic analyzer
would.

Triggering on an event during trace collection is also
available and configurable. The tracer can store a
centered post-trigger image, a full post-trigger image, or
an image that traces until the trigger event is reached. The
size of the image that is stored depends on the size of
memory configured behind the memory controller. The
tracer supports memory sizes ranging from 256 MB to
2,048 GB.

Verification

Testing of this logic was done at the FBC unit level
and the chip level. In any given test case, one or more
POWERS chips in the system would be randomly chosen
to enable memory tracing on chip and would be set in
either core or fabric trace mode. The memory spaces on
these selected chips were designated as memory trace
addresses, so random address generation for mainline-
cacheable operations did not include any lines in these
address ranges. Checkers were written to monitor the
interactions from the core to the tracer and from the
fabric to the tracer. Trace packets written to memory
were compared to what was expected by the checkers

in order to verify proper recording of trace events.

D. W. VICTOR ET AL.

To test the core stall feedback mechanism, a core-to-
tracer driver was written to flood the tracer with data for
collection. We also ran heavy system traffic in fabric trace
mode to verify the proper recording of drop stamps. In
both modes, the tracer could be set to store timestamps
marking the number of idle cycles between events. When
this mode was enabled, checkers verified that these
timestamps were written to memory with the correct
value.

The biggest challenge faced in verifying the memory
tracing logic was testing the wraparound conditions when
the tracer reached the end of memory space. Because of
the massive number of cache-line writes that would have
to be executed before reaching the end of memory, the
design team implemented a special simulation mode in
which the memory size could be set to just 256 cache lines.
Without this special mode, it would take millions of
simulation cycles in a single test case to see the overlap
occur. We ran predominantly in this special mode, but
eventually tested the other memory sizes by overriding
internal address counters to effectively skip to the end
of memory in manual test cases.

3. System verification
System simulation is hierarchically the highest level of
pre-chip hardware verification. The main objective for
system simulation is to verify interactions between chips
using actual chip VHDL for the processor, memory, and
1/O chips in system configurations similar to the ones that
will be shipped. For interfaces to the real world, such as
I/O, drivers are used to generate traffic into the system.
Building a full 64-way POWERS system using VHDL
is neither practical, because of model size, nor the best
approach to verify a system, because of relatively slow
simulation throughput. Thus, the system simulation
challenge was to define several different smaller model
configurations that effectively represented the 64-way
structure without the complete 64-way model. The 64-
way system structure consists of four books connected
using a book-to-book bus interconnect. Internally, each
book contains two MCMs connected by a vertical bus
interconnect. Each MCM contains four POWERS chips
interconnected with a chip-to-chip bus structure. With the
addition of SMT, a 64-way system effectively becomes
a 128-way system. Each POWERS chip also contains
memory and I/O buses providing connections to L3
cache, memory redrive chips, and I/O chips. Three
categories of models were used, each containing different
subsets of the system bus structure.

The majority of system simulation cycles were run
on eight-way models (with and without I/O). As in the
POWER4 system effort, the RTX checkers written for
lower levels of verification were moved up and used in the
system verification environment. Additional code was
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developed to support the I/O chips and memory redrive
chips at the system level.

System verification test generation and checking
Test-case generators and system-level checkers are the
primary components in system-level verification. Two
internally developed IBM test generators were used in the
POWERS system simulation: the MultiProcessor Test
Generator (MPTQG) [3] and X-Gen [7]. MPTG was the
primary test generator for the POWER4 system-level
verification, and it was enhanced for POWERS systems
to support SMT mode. X-Gen, developed by the IBM
Haifa Research Laboratory, is capable of generating
comprehensive system-level test cases, including 1/O.
The X-Gen framework includes sophisticated testing
knowledge of the system and complex constraint-solving
algorithms. X-Gen was the only test-case generator in
system simulation that was used to test some of the new
POWERS design features, including hardware locks

and the barrier synchronization register (BSR).

In the area of system-level checking, the original
portable coherency monitor used during POWER4
verification was rearchitected to make it easier for users
to write new system-level checkers. This new version of
the coherency monitor, called SPECTOR (for System-
wide Portable Environment for Comprehensive Testing
of Operational Rules), also integrated coverage modeling
and event calculation. SPECTOR, an internally
developed IBM tool, provides a verification framework
targeted specifically at the system level of simulation. It
consists of an application programming interface (API)
for development and execution of checkers, a graphical
simulation debugger, a coverage data-generation engine,
and several hundred portable system-level checkers.
SPECTOR relies on external interface monitors for input
simulation data. These tracers typically monitor well-
defined interfaces throughout the system and report
transaction-level events in a generic format defined by
the SPECTOR framework. Additionally, SPECTOR
was used to dynamically check the X-Gen test results.

Several hundred system-level checkers, implemented
in terms of the above verification API, are included in
the SPECTOR framework. The SPECTOR framework
provides efficient checkers for architectural-level checking
of rules such as coherence, sequential load execution,
locking, DMA observation, and cache consistency.
Architectural checkers have a number of advantages over
the more common implementation checks. One important
advantage is that it is possible for these checkers to catch
errors in design specification as well as implementation.
Additionally, this class of checkers is not subject to
the possibility of overlooking subtle but important
implementation details. Such advantages have allowed
SPECTOR to be useful in the core and chip simulation
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environments as well as at the system level. SPECTOR
proved to be effective in finding design problems that all
other methods had missed.

N-way system simulation testing

N-way testing was performed on multiprocessor (MP)
models without I/O. Many of the MPTG tests written for
previous POWER N-way systems were ported so that
they could be used to verify the POWERS system design.
Owing to the new system architecture, a large number of
MPTG and X-Gen tests were created. Tests were written
to stress new areas such as the L2/L3 cache hierarchy, on-
chip memory controller, SMT/ST, instruction and data
prefetching, the instruction cache block invalidate (icbi),
lockless TLB invalidate entry (tlbie), crossing of cache-
line and page boundaries, LPAR, BSR, and hardware
locks.

The basic philosophy for verifying an N-way MP
system is to have two or more processors access the same
memory word or cache line during a test. The POWERS
N-way tests were created to select the memory addresses
in a controlled manner so that all interesting
combinations of processors and targeted memory
controllers could be exercised. Processor transactions
were chosen randomly on the basis of weights in MPTG
test cases. Specific tests had to be written for each system
configuration, since the mapping of address to memory
varied depending on the physical topology of number
of chips, MCMs, and books with the system model.
Corresponding tests were also written with X-Gen to
validate the new test generator. Since X-Gen has
knowledge of the physical topology of the chip, including
the memory map and cache structure of the system, only
one set of X-Gen request files were written, and the test
cases were effectively run on each of the system models.
X-Gen was the only test-case generator used to test
timebase, LPAR, and I/O clustering in system simulation.

I/O system simulation testing
As with POWER4 systems, simulation of the I/O chips
was done in a system model. Several N-way models were
built, each containing different system bus connections,
and I/O chips were added to the models. Four remote 1/O
hub chips were added to the N-way models connected to
the POWERS chips through the GX+ bus. A varying
number (one to four) of RIO ports were used to attach
PCI-X bus bridge chips, limiting the number of these
chips in the system to eight in order to keep the model size
down and still stress remote I/O hub chips. Attached
to the PCI-X bus bridge chips were one to four PCI-X
bus driver/behaviorals on each of the PCI-X ports.

The PCI-X bus bridge chip uses the same RIO-bus-
to-PCI-X-bus bridge chip as in POWER4+ systems.
The GX+ to RIO I/O hub chip was a new chip, but the
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design was derived from the comparable chip used on
POWERA4+ systems. It was modified in several ways for
the POWERS system. The GX bus interface was replaced
with a GX+ bus interface. The major changes to the GX+
bus were in the areas of reliability, availability, and
serviceability, performance, and function.

4. Coverage analysis

Methodology changes

As hardware designs become increasingly complex,

it is essential to have a mechanism to evaluate the
thoroughness of the testing. Establishing methods to
measure the completeness of a verification effort for
such complex systems is an industry-wide challenge

[8]. Meaningful coverage metrics help to gauge the
completeness of the verification effort and to ensure
effective use of simulation resources. Further, they
indicate which portions of the design may have to be
tested more rigorously. The coverage approach for the
POWER4 microprocessor relied on a large number

of automatically generated coverage events. In the
POWERS verification effort, the methodology shifted to
deliberate consideration and implementation of coverage
events. The coverage events used in the POWER4
verification effort remained applicable to the POWERS
design, and the fact that there was working POWER4
hardware gave higher confidence to the common points
between the two designs. Thus, while there remained
value in the POWER4 coverage events, the team focused
on coverage events to target function unique to the
POWERS design. A priority-naming convention was
developed to mark the level of importance of the coverage
event. The label “Priorityl” indicated that the event
was being tracked for completion for release to
manufacturing. If a Priorityl event was not hit, a risk
assessment was completed. In general, the new events
developed for the POWERS design were given Priorityl
status, and the bulk of POWER4 events that were reused
in the POWERS effort were given Priority2 status. The
priority-naming convention allowed the team to monitor
the old events while concentrating on new ones.

Implementation

Reviews attended by verification engineers, design
engineers, and the chief architect were held for each
unit to establish which areas to cover within the new
POWERS functions. Additionally, a few areas within
the POWER4 function were identified for improved
coverage. Both the new POWERS functions and the
POWER4 functions identified for increased coverage
were given Priorityl status. The POWERS strategy was to
create a manageable set of well-crafted test templates that
targeted the events pseudo-randomly. The team reasoned
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that in hitting this set of meaningful events a significant
number of times in a random environment, the
surrounding logic was inherently covered. That is,
points that had to be traversed to reach the coverage
events did not have to be specified as separate events.

After the new events were added to the simulation
model, monitoring began. All 35,000 test-case templates
(consisting of a Genesys-Pro definition file and a set
of simulation environment runtime parameters) were
allowed to run for approximately one month. During this
time a trend began to emerge that led to eliminating all
but approximately 2,000 test templates. To eliminate the
large number of test templates, a history was kept of the
templates that contributed most to covering “hard-to-hit”
events (i.e., the list of Priorityl events that were hit at
least once but not more than ten times). After this
coverage data had been collected for six weeks, the test
templates that were not contributing were eliminated.
Removal of the noncontributing test templates allowed
the overall coverage to increase and significantly reduced
the time required to hit the same number of Priorityl
events.

There were approximately 4,500 Priorityl events, of
which 4,000 were covered very quickly. The remaining
500 events proved to be a challenge. All Priorityl events
were constantly monitored to ensure that they could be
hit consistently. All events were given an age-out® time
period of 25 days. If an event “aged out,” a report was
automatically generated that showed not only which test
templates hit the event, but also how many times that
template hit the event. Using this information, another
report was generated that indicated when the test
template was last run and how many test cases it took
to hit the event for the first time. This information
was valuable in determining simulation job submission
weights for each of the 2,000 test templates to maintain
continuous Priorityl event coverage.

In covering the last 500 events, deficiencies in both the
Genesys-Pro generator and the test plan were revealed.
More significantly, several logic bugs were discovered in
covering these remaining events, and the overall size of
the test suite was significantly reduced by improving test
quality [9]. A novel use of the semiformal tool SixthSense
was deployed to assist in analyzing a number of these
remaining coverage events, which proved difficult to hit
in a random or directed simulation environment. The
coverage team passed the events that had never been hit
in simulation over to the formal verification team for
analysis. SixthSense was used to prove the coverage
events reachable or unreachable, providing valuable
feedback for the coverage team. For events that were

“The term age-out is defined as the time period set by the user over which the coverage
event is monitored. If a coverage event is not hit within its age-out period, it is flagged.
If the event is hit, the age-out counter is reset.
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proven unreachable, the coverage team evaluated a
portion of the checks to be invalid, while the remainder
were evaluated to be “not written as intended.” The
invalid checks were eliminated, and the incorrect checks
were appropriately modified. For coverage events that did
prove reachable by SixthSense, the coverage team gained
the knowledge that these were valid checks, worthy of
their continued attention. In these cases, the SixthSense-
produced traces demonstrating a path to hit the coverage
events were additionally used to provide insight into how
to tune the simulation environments to expose such rare
conditions.

The initial coverage reviews yielded a set of very
difficult events that required targeting of multiple random
resistant scenarios in combination with one another to
achieve the desired coverage goals. The suite of test
templates derived from this coverage analysis now forms
the basis of a portable test library which is employed by
all PowerPC* processor projects currently in development
within IBM, ranging from game systems and desktop
computers to follow-on server products.

System-level coverage analysis

The SPECTOR framework, described previously, was
used for system-level coverage analysis. Users of the
framework can specify temporal cross-product coverage
models. The coverage-generation engine analyzes the
input trace files and reports coverage events for all tuples
of events that correspond to valid cross products for each
model. The coverage events are sent to the internally
developed IBM coverage database tool, Meteor, for
analysis and tracking. SPECTOR/Meteor were used to
evaluate whether the system-level tests were hitting all of
the desired sequences. New coverage models were written
for the eServer p5 system to ensure that the SMT function
was being adequately tested. Additional tests were written
to hit the scenarios that did not occur with the initial
tests.

5. Results and concluding remarks

If the quality of verification is measured by the number of

defects found during hardware bring-up, the verification

of the POWERS processor was quite successful. The team

delivered first-pass hardware capable of booting all three

of the supported operating systems (AIX*, Linux**,

and 15/0S*) in simultaneous multithreading mode with

dynamic power management enabled, and this first-pass

hardware was capable of running all three operating

systems simultaneously on a single POWERS chip.
There were, of course, some design defects found in the

hardware laboratory running test exercisers. However,

the POWERS team identified approximately 95% of

all design problems prior to the release of the chip

to manufacturing, and less than 1% of the problems
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would have a serious impact on the bring-up of hardware
in the laboratory. The high-impact design defects were
of such a nature that they did not impede progress in
the laboratory. The hardware bring-up team was able
to circumvent all of the high-impact problems with
temporary hardware or, in some cases, with firmware
workarounds.

Many of the enhancements to the POWERS design
were extremely difficult to verify. The design and
verification teams were aware of most problematic areas
from the early stages of the project on the basis of their
previous experience with the POWER3* and POWER4
projects. To minimize hardware defect transfer to the
bring-up laboratory, tradeoffs and design enhancements
were made that would minimize the likelihood of transfer
of design defects and enhance our ability to work around
potential problems encountered in the laboratory. The
emphasis on hitting high-priority coverage events for all
of our new mainline features so that we could gauge
the effectiveness of test-case development and target
simulation resource was to be critical to our success.
We also added well-thought-out programmable switches
to the design that would allow us to either reduce
complexity (and thus performance) to work around
problems or stress components more heavily than normal
to aid in more rapid discovery of defects in areas of
concern. Finally, we added a new workaround capability
in the POWERS design, called workaround triggering, or
WAT, which allowed us to detect trigger conditions
and act on them by manipulating the behavior of the
logic to avoid a problem.

With the support of these new debugging and
workaround capabilities on the POWERS chip, we were
able to sustain our progress in the laboratory and work
around difficult situations that would otherwise have
caused delays. Ultimately, the actions that we took in
verification as well as the new and improved debugging
and workaround features in the POWERS design resulted
in a product with excellent quality which took less time to
deliver.

In examining the trends of current microprocessor
designs, we fully expect that future designs will embrace
more of the same features exemplified in the POWERS
processor:

* Qut-of-order execution.

e Multithreading for each core.

* Dynamic power management.

® Increasing virtualization and partitioning capabilities.
e Multiple processor cores for each chip.

¢ Enhanced reliability, availability, and serviceability.

The methodology employed by the POWER4 team and
the enhancements added by the POWERS team have
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proven to be solid. They will provide a sound foundation
for building verification methodologies for future
processors within IBM and likely for the industry in
general. Any changes to this methodology will probably
be evolutionary, applying innovation on an as-needed
basis to meet new design and architecture requirements.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark of registered trademark of Linus Torvalds or Intel
Corporation.
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