Characterization
of simultaneous
multithreading
(SMT) efficiency
in POWERS5

Coarse-grained multithreading, the switching of threads to avoid
idle processor time during long-latency events, has been available on
IBM systems since 1998. Simultaneous multithreading (SMT), first
available on the POWERS™ processor, moves beyond simple thread
switching to the maintenance of two thread streams that are issued
as continuously as possible to ensure the maximum use of processor
resources. Because SMT has the potential of increasing processor
efficiency and correspondingly increasing the amount of work done
for a given time span, the reader might suppose that SMT would
exhibit a performance gain for all workloads. This is true for most
workloads, but is not true in some exceptional cases. In SM'T mode,
the processor resources—register sets, caches, queues, translation
buffers, and the system memory nest—must be shared by both
threads, and conditions can occur that degrade or even obviate
SMT performance improvement. The POWER4™ and POWERS
processors have very powerful performance monitor (PM) toolsets
that can help the user to determine what is occurring in workloads
that may not be providing expected SMT gains. In this paper, the

H. M. Mathis

A. E. Mericas

J. D. McCalpin
R. J. Eickemeyer
S. R. Kunkel

results of measured differences among workloads having large,
medium, small, and even negative SM'T performance gains are
presented along with an approach to investigating workloads to
determine the source of SMT performance gain limits.

Introduction
Over the years, the size of POWER*-based server systems
has continued to grow. From the uniprocessor systems
first shipped in 1990 to the 64-processor POWERS*
systems shipping today, the underlying computational
building block is the processor core. Major changes in the
approach to processor design have fueled this growth.
One approach to improving computational performance
was to increase the number of tireads, or independent
execution sequences, that a processor could execute
concurrently. In 1998 IBM introduced the first
multithreaded POWER processor, the RS64-11 [1, 2]. The
RS64-11 chip contains a single processor running two
threads, in what is called coarse-grain multithreading.
IBM POWER-based systems contained only single-
processor chips [1, 3] until 2001, when IBM introduced

POWER4*, the first POWER chip containing two
single-thread processors [4]. The POWERS chip [35, 6],
introduced in 2004, combines the design concepts of
multiple cores and multiple threads. Each chip contains
two processors, each running two threads, for a total of
four threads per chip. These technological changes have
been facilitated by continuously increasing transistor
densities, in addition to software improvements that
allow scaling to larger numbers of processors and threads.
To understand the multithreaded design of POWERS
better, it would be useful to examine the designs of its
predecessors, the RS64-11 and the POWER4. One
important factor in the design of the multithreaded
RS64-11 was an increasing concern over rising cache-miss
rates driven by new types of applications and languages.
At the same time miss rates were rising, the latency of

©Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/05/$5.00 © 2005 IBM

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

H. M. MATHIS ET AL.

555

556

cache misses was increasing [7]. As a result, cache misses
had begun to make up an increasingly larger portion of
execution time. To minimize the amount of processor
time wasted on cache misses, the thread mechanism in the
RS64-11 processor was designed to switch when one was
detected. In this way, cache misses could be overlapped
between the two threads, resulting in greater system
throughput. This is termed coarse-grain multithreading.
In general, multithreading can cause cache-miss rates to
increase, but the overlap is usually more than enough to
overcome this and still achieve significant increases in
throughput [8].

POWER4 introduced the basic IBM processor design
for out-of-order execution, and this design is continued
with POWERS. In this type of design, it is more difficult
to switch threads on a cache miss, because at the time of
the miss some earlier instructions may not have been
performed, while some later instructions may already
have been completed. The problem becomes where and
how to stop one thread, leaving the thread and its
resources in a state that will allow it to be restarted when
the switch is made to the other thread. Simultaneous
multithreading (SMT) is a way of implementing multiple
threads on an out-of-order processor [9—11]. In this
design, all threads are simultaneously active so that there
is no thread-switch event such as occurs in coarse-grain
multithreading. When one thread has a cache miss, the
other thread can continue to execute. Because there is
no thread-switch overhead, SMT can hide even short-
duration stalls in the execution pipeline. If, because of
pipeline latency, an instruction from one thread is delayed
waiting for a result, or if, because of the misprediction of
a branch, a portion of a thread’s instructions have been
flushed from the execution pipeline, instructions from the
other thread can continue to execute. Events such as
register dependencies frequently prevent a thread from
utilizing the entire processing pipeline to the fullest
extent. Such interludes provide an opportunity for the
other thread to execute on functional units that would
otherwise be idle during a particular cycle.

Along with improvements to POWER processor design
came improvements to the performance-monitoring
hardware. The POWERS microprocessor, like its
forerunners back to the PowerPC 604* microprocessor,
includes on-chip logic to monitor, record, and report
key performance events and latencies. The PPC604
performance monitor unit (PMU) contained two
counters, and the PPC604e added two more. The
POWER3* and POWER4 each contained eight counters.
The RS64 processor, which introduced hardware
multithreading, contained eight counters, but they had
to be shared between two threads. The POWERS
implementation of SMT extends performance-monitoring
functionality to the thread level. Each thread has a

H. M. MATHIS ET AL.

dedicated six-counter PMU that can be independently
configured to monitor more than 300 performance events
occurring on the processor or memory system.

At the same time that microprocessor architecture
has been evolving, workload characteristics have
been changing. The workload mix now includes some
traditional commercial workloads that have high cache-
miss rates, and important new workloads have been
added that have lower cache-miss rates than some of the
more traditional commercial workloads [12, 13]. Both
types of workloads usually have other pipeline stalls.
SMT provides increased throughput in the presence of
both cache misses and other pipeline stalls, thereby
benefiting multiple classes of workloads.

This paper thus focuses on the performance analysis
of thread execution in the POWERS processor and
investigates how a selection of workloads behave on an
SMT processor. We begin describing some details of the
POWERS design for SMT and describe how SMT
performance is measured. We then describe a set of
performance-monitor measurements on POWER4 and
POWERS to demonstrate SMT performance effects.
Finally, we summarize factors that affect SMT gain.

POWERS5 SMT design and performance

The POWERS design for SMT recognized that in some
cases processor execution pipeline resources that were
ample for a single-threaded environment, such as
POWER4, would not provide adequate performance for
SMT environments and thus would have to be increased
and shared or duplicated [6]. Other resources were
adequate for both environments but would have to be
split in order to make SMT work without increasing
processor chip size. Additionally, resources that would
have been suitable for POWER4 operation had to be
expanded to include bits for thread identification in order
for those resources to support SMT.

The following is a brief summary of the design changes
made to POWER4 and POWERS processor resources
to support SMT performance. The branch information
queue (BIQ) is unchanged in size but is split between the
threads. The load reorder queue (LRQ) and store reorder
queue (SRQ) are split, but extra virtual entries have
been added [6]. Register-renaming resources have been
increased to support the additional register requirements
of the second thread. The load miss queue (LMQ) is
shared, since there is no ordering information among the
entries. The global completion table (GCT) had been
shared, but since ordering must be maintained within a
thread, the design was changed. Parts of the design, such
as the branch history table (BHT), have required no
changes for SMT. Finally, the associativities of the
instruction cache, the data cache, and the data effective-
to-real address translation (ERAT) table have been

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

increased to reduce the amount of cache-line conflict
resulting from SMT operation.

Tables containing side-by-side comparisons of the
design changes are provided in the analysis sections. The
analysis sections containing these comparisons are those
on the instruction fetch unit (IFU), instruction decode
unit (IDU), instruction sequencing unit (ISU), and load
store unit (LSU).

Performance testing during the development
cycle

Two sets of assembler-like performance verification
program (PVP) test cases were first run on the POWERS
chip shortly after it was powered on in the bring-up
laboratory: one set for single-threaded (ST) mode and
one set for SMT mode. (In ST mode, only one thread is
running, and it can use many of the resources that would
normally be reserved for the second thread [6].) These test
cases were designed to determine the number of processor
cycles required to complete a fixed sequence of
instructions, and to validate that the chip operated

as specified in the design document. Test cases ranged
from as few as one instruction to tens of thousands of
instructions. The test cases had already been run on
performance models, and this testing provided proof that
both the models and the chips executed the instruction
sequences using the number of cycles specified in the
design. In addition, the results made it possible to
determine the “gain” that SMT provided over ST for each
test case. The SMT gain was calculated by the following
algorithm:

1. CPlsyt = (cyclessp/instructionssyr)-
2. CPlst = (cyclessy/instructionssr).
3. SMT gain = 1002CPIst/CPIspt) — 100.

During the early laboratory tests it became apparent
that some test cases yielded much higher SMT gain than
others. In general, the integer test cases were very simple
and yielded higher SMT gains than the floating-point test
cases, which were heavily biased toward larger, tightly
coded loops.

Although the test-case results were of interest and
were subject to considerable analysis, they did not by
themselves provide sufficient data to predict whether
or how much SMT gain could be realized from a
specific workload consisting of hundreds of billions
of instructions of all types. Performance for major
workloads had been predicted by performance models;
now it was time to see how the hardware would perform.
Once a laboratory version of Linux** could be booted up,
actual benchmarks were run in both ST and SMT modes.
Benchmark results from the earliest versions of the chip
showed that, in general, integer workloads yielded better

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

SMT gains, while floating-point-intensive workloads
yielded smaller SMT gains and even, in some cases,
negative ones. This was supported by results from earlier
PVP runs. Although some applications appeared to be
less amenable and some more amenable to SMT, it

was difficult without sufficient data to conclude which
application characteristics were favorable and which were
not, and which shared resources were most heavily
affected by SMT. At the time, however, the version of
Linux used for initial testing lacked the capability to
make use of the extensive performance-monitoring
facilities of the POWERS processor. Analysis of the
workloads had to wait until the laboratory was able to
boot AIX*, which could collect data on 127 different
groups of processor events.

AIX was booted on several different POWERS systems
once firmware and hypervisor code stabilized. A wide
variety of benchmark applications were run, both
floating-point and integer, as each new version of the
POWERS chip became available. As in the POWER2*,
POWER3, and POWER4 development processes, the
hardware performance team collected performance
measurements with a set of AIX programs whose binaries
remained constant through the bring-up period. These
programs formed the regression tests that were used to
track performance improvements as chip revisions
became available.

The inclusion of SMT capabilities in the POWERS5
chip necessitated adding ST-SMT gain measurements
to the hardware performance process. ST-SMT gain
measurements were accomplished using a two-step
process:

1. A copy of a program was bound to each of the
physical processors running in ST mode, and the
time (7'st) the programs took to complete their work
was measured.

2. The system was switched to SMT mode and a copy
of the program was bound to each of the two SMT
threads (which are also known as logical processors)
on each of the two physical processors; again, the
amount of time (TspT) it took both programs to
complete was measured. To the operating system
each thread appeared as a logical processor.

Each program does a unit of work (W) during its
processing, so in the ST case, the amount of work done
per unit time by two programs, one on each physical
processor, is 2W/Tgt; in the SMT case, the amount of
work done per unit time by four programs, one on each of
the two threads on each physical processor, is 4W/Tsyr-
The SMT gain was computed using the following
formula: 557

H. M. MATHIS ET AL.

558

Table 1 Workloads selected for the study.

Workload Computation SMT gain

type (%)
Sentence passing Integer 41.2
Data compression Integer 38.6
Programming language Integer 26.3
3D Multi-grid Solver Floating-point 21.6
Circuit Routing Integer 19.8
Seismic Wave Simulation Floating-point 15.3
Object-oriented Database Integer 12.5
Neural Network Floating-point 11.2

Gain (%) = 100[(4W/Tgy,)/(2W/ Tgp)] — 100,

where W is the number of instructions executed, syt
is W CPIsyt/P, Tst is W CPlst/P, and P is processor
frequency in cycles per second. Thus, we obtain the same
formula used earlier with PVPs:

Gain (%) = 100(2CPl . /CPl gy) — 100.

SMT)

It was observed that commercial workloads showed
higher SMT gain than the computationally intensive,
tightly looped applications often found in high-
performance computing environments.

Data collection and reduction

This paper analyzes the SMT performance of eight
workloads selected on the basis of their previously
calculated SMT gain behaviors throughout the POWERS
chip development cycle. These workloads, along with
their respective SMT gains calculated during the data
collection runs, are shown in Table 1.

The instruction streams for the three floating-point
workloads, 3D Multi-grid Solver, Seismic Wave
Simulation, and Neural Network, respectively contained
66%, 50%, and 40% floating-point instructions. The
instruction streams for two integer workloads,
Programming Language and Circuit Routing,
respectively contained 1% and 9% floating-point
instructions, and the other integer workloads had no
floating-point instructions. The hardware used in data
collection was a 1.65-GHz single-chip dual-processor
POWERS system having a 1.9-MB L2 cache, a 36-MB L3
cache, and 16 GB of memory. Each ST data collection
run was obtained by executing two copies of the same
workload concurrently, one on each of the single threads
on each processor core. Each SMT data collection run
was obtained by executing four copies of the same
workload concurrently, one on each of the two SMT
threads on each processor core. Performance monitor

H. M. MATHIS ET AL.

runs were completed for each of the workloads for each
of the 127 POWERS PMU counter event groups.

The resulting data was reduced using SAS**, a
statistical analysis program, and then entered into
spreadsheets. Results were sorted by processor event
group and by the mean value for each metric. The
POWERA4 data collection effort was exactly like that on
the POWERS system in ST mode; that is, two copies of
the same workload were run concurrently on a single-
chip, two-core POWER4 system, and data was collected
for the 63 POWER4 PMU counter event groups to
compare with that collected from the POWERS system.
The data collected from POWERS contained nearly twice
as many data points as that from POWERA4, since there
are nearly twice as many PMU counter groups for
POWERS as there are for POWER4. The POWER4 data
was reduced using SAS and entered into a spreadsheet; as
before, it was sorted by processor event group and mean
value for the metric, and then merged with the POWERS
data where possible. For many event groups, it was
readily apparent that the data values were randomly
distributed among the high-, medium-, low-, and
negative-gain applications, and had no relationship to the
SMT gain of a workload. The sorting order enabled a
quick analysis to determine when the negative-gain
workload appeared at either low or high values of a
measurement for a processor event group, making it a
good candidate for further analysis. The sorting also
enabled the same quick analysis for high-gain and
medium-gain workloads in order to narrow down quickly
the number of processor event groups to be considered.
This facilitated, for the purpose of this study effort, the
selection of data displaying only a direct or an inverse
relationship to the degree of SMT gain.

Analysis of the data

The first step in analyzing the data was to narrow down the
127 groups of POWERS and the 63 groups of POWER4
performance-counter results by eliminating groups that
did not contribute to the study. That left 53 POWER4
groups and 115 POWERS groups, and many of these, such
as counts of special-purpose instructions not used by any
of the applications, had little or no importance for this
paper. Analysis then proceeded with an examination of
processor resources, by unit, that were either duplicated
or increased in size and shared or split, and how these
resources affected POWERS SMT performance.

Instruction fetch unit (IFU)

Table 2(a) lists the changes that were made to the IFU
from POWER4 to POWERS. Instruction prefetch hit
ratios were in the range of 0.5 to 0.7. Prefetch miss rates
were less than 0.22% for all workloads, indicating the
effectiveness of instruction prefetch logic. The data

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

showed little difference between the ST and SMT modes
and provided no evidence of a relationship to SMT gain.
Since this event was not collectable on POWER4 PMU,
there was no data available to compare with the
POWERS data.

In both POWER4 and POWERS, the branch-
prediction mechanism enables speculation, which
is the execution of an instruction stream beyond an
unevaluated branch instruction. The branch instruction
is unevaluated at that temporal point because the data
required to evaluate it is not yet available. Without
speculation, execution of the instruction stream would be
stalled until it could be evaluated. Speculation permits
execution to continue on the basis of an “educated guess”
by the processor as to which branch path will be taken.
When the branch instruction is actually evaluated, it may
be the case that the wrong path was taken for speculation;
this is referred to as a branch misprediction. After a branch
misprediction is discovered, all instructions following
the branch are flushed from the execution pipeline
and execution begins again along the correct path.

Branch-misprediction flush-rate data values were low
and were not significantly different whether the system
was in ST mode or SMT mode. This indicates that for
POWERS, at least for this set of workloads, no change
was needed in the branch hit table to support SMT. Since
this event was not collectable on POWER4 PMU, there
was no POWER4 BHT data available to compare with
the POWERS data.

Instruction decode unit (IDU)
The instruction fetch buffers (IFBs) hold instructions
for group formation prior to dispatch. As shown in
Table 2(b), each POWER4 processor core contains a
single eight-entry IFB, while the POWERS processor core
contains two six-entry IFBs, one for each thread. The
data revealed that the workloads having moderate to high
SMT gain also had lower average IFB usage than those
workloads with low or negative SMT gains for both the
POWER4 and POWERS systems. POWER4 data was
available for comparison, and for both ST and SMT
modes the POWERS system had lower average IFB usage
values than the POWER4 system for all workloads except
Seismic Wave Simulation, where there was a minimal
difference. Data collected with regard to the percentage of
time the IFBs were not empty revealed that the POWER4
and POWERS ST mode behaviors were similar for these
workloads. The 3D Multi-grid Solver workload, at the
low end of moderate SMT gain and having the smallest
number of cycles per instruction for both ST and SMT
modes, had the highest utilization.

Data collected on the percentage of time that the IFB
contained six fetch groups revealed that the POWER4
and POWERS ST mode IFB behaviors were similar for

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

Table 2 Comparison of POWER4 and POWERS: (a) IFU
resources; (b) IDU resources.

POWER4 POWERS
(ST only) (ST and SMT)
resource resource

(@)

Two-way 64-KB L1 I-cache

Direct-mapped 64-KB
Level 1 instruction cache
(L1 I-cache)

Four-entry direct-mapped
prefetch buffer

Split, two-entry-per-thread
prefetch buffer

16-entry branch issue
queue (BIQ)

Split, eight-entry-per-
thread BIQ

Branch-prediction control ~ Replicated branch-prediction

control

Link stack Replicated link stack

(®)

Six-entry IFB per thread

Eight-entry instruction
fetch buffer (IFB)

Table 3 Comparison of POWER4 AND POWERS5 ISU
resources.

POWER4 POWERS
(ST only) (ST and SMT)
resource resource

20-entry first-in first-out
(FIFO) global completion
table (GCT)

20-entry linked-list GCT

120 GPR, 120 FPR
mappers

80 general-purpose register
(GPR), 72 floating-point
register (FPR) mappers used
to map virtual to real registers

32-entry condition register
(CR) mapper

40-entry CR mapper

24-entry fixed-point exception
register (XER) mapper

32-entry XER mapper

20-entry floating-point issue
queue (FPQ)

24-entry FPQ

these workloads. When the IFB contains six fetch groups,
it is full in the case of the POWERS and it is not full in the
case of the POWER4. For both systems the floating-point
workloads had the highest percentages for this metric,
and for POWERS5 the workload having negative SMT
gain had the highest percentage for this metric.

Instruction sequencing unit (ISU)

Table 3 lists resource changes for the instruction
sequencing unit from POWER4 to POWERS. In

H. M. MATHIS ET AL.

559

560

the POWERS ST mode, all twenty entries in the GCT
are used by one thread, but in SMT mode they are
dynamically shared between the two threads using a
linked list to relate entries to the thread owners. For the
workload having negative SMT gain, the POWERS GCT
was full significantly more of the time in both ST and
SMT modes. The percentage of time the GCT was full for
this workload in SMT mode was nearly double that for
ST mode, reflecting the effect of sharing the twenty
GCT entries.

The number of GPR mappers was increased from 80 in
POWER4 to 120 in POWERS, and the number of FPR
mappers was increased from 72 to 120. Rename mappers
in the instruction sequencing unit guarantee each thread
36 GPRs and 32 FPRs, and all are dynamically allocated
as required. This enables each POWERS processor in ST
mode to support more fixed-point and floating-point
instructions in flight than the POWER4 processor can.
These changes had a significant effect on the percentage
of time the GPR and FPR mappers were full compared
with the POWER4 runs. The GPR mappers were never
full during POWERS ST runs and, for seven of the eight
workloads, the POWERS5 SMT runs had lower rates of
the GPR mappers being full than the POWER4 runs. The
highest rates for the GPR mappers being full were for all
of the five integer workloads, and the lowest were for the
three floating-point workloads.

The highest rates for the FPR mappers being full were
for the three floating-point workloads, and these rates
were zero for all of the integer workloads. The POWER4
runs had higher FPR mapper full rates than the
POWERS ST runs, presumably because the POWERS in
ST mode has a much larger FPR rename pool. Somewhat
surprising was the fact that the POWER4 runs also
measured significantly higher FPR mapper full rates than
the POWERS SMT runs, a testament to the effectiveness
of POWERS register-renaming logic.

The number of condition register mappers was
increased from 32 in POWER4 to 40 in POWERS. Only
one workload, Object-oriented Database, a low-gaining
integer workload, managed to fill the CR mappers in ST
mode, and then only 1% of the time. For POWERS in
SMT mode, CR mapper utilization was very similar to
that for POWER4. For the POWERS system in SMT
mode, five workloads had CR mappers full 2% to 6%
of the time; for the POWER4 system, the same five
workloads had CR mappers full 1% to 8% of the time.

The POWERS ISU contains two 18-entry issue queues
for fixed-point and load/store instructions, two 12-entry
issue queues for floating-point instructions, one 12-entry
issue queue for branch instructions, and one 10-entry
issue queue for CR-logical instructions. The branch issue
and the condition register queues both were never full for
any of eight workloads.

H. M. MATHIS ET AL.

The fixed-point queues had highest utilizations for
fixed-point workloads and lowest utilizations for
floating-point workloads. POWER4 data was available
for fixed-point queue 0, but data for queue 1 was not
collected. The POWER4 data had slightly lower values
than both POWERS ST and SMT data except for
sentence parsing. Showing consistency, the floating-
point queues had the highest utilizations for floating-
point workloads and the lowest utilizations for fixed-
point workloads. The floating-point queues for
POWER4 and POWERS ST and SMT modes had
nearly identical data patterns.

Fixed-point execution (FXU) pipelines

The POWERS processor contains two fixed-point
execution pipelines, and both are capable of
multiplication and basic arithmetic, logical and shifting
operations. One pipeline is additionally capable of
division. Instructions are issued out of order with a bias
toward oldest operations first, and there is symmetric
forwarding between fixed-point and load/store execution
pipelines. Not surprisingly, the rates at which both FXUs
were busy for both the POWER4 and the POWERS in ST
mode were very similar in all cases. The rates for both the
POWER4 and the POWERS were highest for the five
integer workloads, and were very low or zero for the
floating-point workloads. The POWERS SMT rates
were less than half of either of those for POWER4

and POWERS ST mode for the integer workloads.

This phenomenon appears to result from the fact that
speculation is treated differently in SMT mode than in ST
mode. In SMT mode a thread does not execute as many
instructions speculatively beyond an unevaluated branch
instruction as it does in ST mode. As a result, fewer
instructions are discarded when the branch instruction is
evaluated and a branch misprediction is found, and this
makes the pipelines appear less busy in SMT mode.

Floating-point unit (FPU) pipelines

The POWERS processor contains two six-stage floating-
point execution pipelines. Both are capable of executing
the full set of floating-point instructions, and instructions
are issued out of order with a bias toward the oldest
instructions. Both IEEE and non-IEEE instruction
modes are supported. Floating-point unit utilization

is directly related to the percentage of floating-point
instructions in the instruction mix.

Floating-point queues had significantly higher rates of
being full for the negative SMT gain workload, Neural
Network, for the POWERS5 in both ST and SMT modes,
and for the POWER4, than any other of the workloads.
For Neural Network, the full rate for floating-point
queue 0 was 54% for both POWER4 and POWERS in ST
mode and 59% for POWERS in SMT mode. For floating-

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

point queue 1, the rate was respectively 23%, 26%, and
24% for the POWER4, POWERS in ST mode, and
POWERS in SMT mode, indicating a dispatch bias
toward floating-point queue 0.

Load/store unit (LSU) execution pipelines

The POWERS design provides two six-stage load/store
execution pipelines to handle load/store instructions.
Loads and stores are executed in three stages, out of
order, with a bias toward the oldest operations first.
Stores issue twice, with an address-generation operation
and a data-steering operation. Resources shown in
Table 4 are integral to the load/store function.

Data was collected on all of the above caches and
queues for each of the eight workloads. Although data
was collected from the POWERS5 system on cache
performance, no POWER4 data was available for
comparison. Data available for both POWER4 and
POWERS was available for D-ERAT performance.

The POWERS system in ST mode had lower D-ERAT
miss rates on five of the eight workloads than did the
POWERA4, equal on two of the workloads, and slightly
higher on one workload, Neural Network, the workload
with negative SMT gain. The POWERS in SMT mode
had lower D-ERAT miss rates on four of the workloads
than did the POWER4 system, equal on two and slightly
higher on two workloads, Neural Network and Circuit
Routing, a workload with moderate SMT gain.

The data collected on the percentage of time the LMQ
was full revealed that none of the workloads taxed the
LMQ capacity for either POWER4 or POWERS systems.
The data collected on the time an entry spends in the
LMQ showed a slight increase as the result of two SMT
threads sharing the LMQ. For the POWERS system in
SMT mode, the LMQ was very close to that of the
POWER4 system, although there was some variation
among the workloads. The negative-gain workload had
the greatest LMQ time for both systems and both modes.

None of the workloads significantly taxed the LRQ
capacities of either the POWER4 or POWERS systems.
For five of the eight workloads, the POWER4 LRQs were
full from 1% to 32% of the time. In ST mode, the
POWERS LRQs were never full. In SMT mode, the
LRQs were full for a short time (4% and 7% of the time),
but only for 3D Multi-grid Solver and Neural Network.
The POWERS SMT mode LRQ time behavior appeared
to have benefited from larger L2 and L3 caches, lower
cache latency, and the addition of 32 virtual LRQ entries.
It is similar to that for both POWERS in ST mode and
POWERA4. The largest value of LRQ time was measured
for the negative-gain workload on the POWERS in ST
and SMT modes as well as on the POWERA4.

Similarly, neither of the systems’ SRQ capacities was
taxed significantly by any of the eight workloads. The

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

Table 4 Comparison of POWER4 and POWERS5 LSU

resources.

POWER4
(ST only)
resource

POWERS
(ST and SMT)
resource

32-KB two-way set-associative
level-1 data cache (L1 dcache)

128-entry two-way
effective-to-real address
translation (ERAT) table

64-entry segment lookaside
buffer (SLB)

32-entry real load reorder
queue (LRQ)

32-entry real store reorder
queue (SRQ)

Eight-entry load miss queue

(LMQ)

Interrupts

1.45-MB level-2 cache (L2)
on-chip

16-MB level-3 cache (L3)

32-KB four-way set-associative
L1 dcache

128-entry fully associative
ERAT table

Replicated 64-entry SLB
per thread

16-entry real and 16-entry
virtual LRQ per thread

16-entry real and 16-entry
virtual SRQ per thread

Eight-entry LMQ with
thread control

Interrupts replicated per
thread

Replicated special-purpose
registers (SPRs) with thread ID

1.9-MB L2 on-chip

36-MB L3, directory and
controller on processor chip

POWER4 SRQ was full from 1% to 4% of the time for
seven of the eight workloads, while the POWERS SRQ
was full in ST mode 1% of the time and in SMT mode
3% of the time, but only for Seismic Wave Simulation.
The SRQ data closely paralleled that for the LRQ. The
greatest SRQ times were measured for the floating-point
workloads, particularly the workload showing negative
SMT gain, regardless of system or mode.

The data clearly showed that the LSU had higher
utilization in SMT mode. The ST and POWER4
behaviors were very similar, but the highest utilization
in all cases was for the negative-gain workload.

Branch and condition register (CR) pipeline

The POWERS branch and condition register (CR)
pipeline architecture is essentially unchanged from the
POWERA4 design; however, both threads share the CR
in SMT mode. In none of the instances were either
POWER4 or POWERS branch queues full.

The CRs for POWER4 and POWERS in SMT mode
had similar behaviors, with CRs being full a small
percentage of the time for five of the eight workloads.
The POWERS in ST mode had the CR full for only
one workload, and then for only 1% of the time.

H. M. MATHIS ET AL.

561

562

Table 5 Sources and percentages of data from each source by
workload and mode.

Workload Mode Data source
L2 L3 Main
cache cache memory
(%) (%) (%)
Sentence parsing ST 94 6 0
Sentence parsing SMT 92 8 0
Data compression ST 100 0 0
Data compression SMT 100 0 0
Programming language ST 94 5 0
Programming language SMT 97 3 0
3D Multi-grid Solver ST 95 2 3
3D Multi-grid Solver SMT 88 6 6
Circuit Routing ST 79 20 1
Circuit Routing SMT 72 27 1
Seismic Wave Simulation ST 86 6 8
Seismic Wave Simulation SMT 82 4 14
Object-oriented Database ST 85 14 1
Object-oriented Database SMT 88 11 1
Neural Network ST 50 50 0
Neural Network SMT 49 51 0

Discussion of factors affecting SMT gain

Data collected on the percentage of time the FPR
mappers were full indicated that for the floating-point
workloads, the FPR remapper resources were strained at
least some of the time. Consequently, the team examined
additional data relating to the floating-point
characteristics of these workloads. Looking for the
percentage of floating-point multiply-add (FMADD)
fused instructions in the instruction mix, the team found
that they were respectively 9%, 16%, and 17% for 3D
Multi-grid Solver, Seismic Wave Simulation, and Neural
Network. Each FMADD instruction requires four
floating-point registers. Even if the FMADD instructions
are uniformly distributed in the instruction stream, one
can expect to see a heavy use of the FPR mapper in SMT
mode for Seismic Wave Simulation and Neural Network.
They are likely to be processed in clumps, and hitting
the maximum number of renames can cause stalls.
Nonetheless, the fact that the difference in FMADD
percentages between Seismic Wave Simulation and
workload 8 were insignificant, and the fact that one had a
positive gain and the other had a negative gain appeared
to rule out FMADDs as a factor. The team decided to
take a detailed look at five of the lowest-SMT-gain
workloads: 3D Multi-grid Solver, Circuit Routing,

H. M. MATHIS ET AL.

Seismic Wave Simulation, Object-oriented Database, and
Neural Network.

The floating-point workload, 3D Multi-grid Solver,
traverses the surface and interior points of a cube that
requires 16 MB of storage. The footprint for two copies
of the workload will fit in the L2 cache. Running four
copies of the workload on two POWERS cores in SMT
mode requires double the footprint, and the data for four
copies will nearly but not completely fit in the L2 cache.
For SMT runs, this results in the workload having to
obtain data from the L3 cache and main memory, both of
which have greater latency than the L2 cache. The data
revealed that 70% of the CPI difference between ST and
SMT modes came from load/store-related activities,
mostly due to L1 data cache (dcache) misses taking
longer, approximately 50% of the extra CPI. As shown in
Table 5, the percentages of data obtained from L2, L3,
and memory in ST mode are respectively 95%, 2%, and
3% and these change to 88%, 6%, and 6% respectively
when running in SMT mode. Despite the extra load
latencies, the workload exhibits a 20.6% SMT gain.
Circuit Routing is an integer workload. For this
workload, 92% of the changes in the CPI between ST and
SMT runs result from stalls; 83% of the changes in the
CPI result from LSU activities, such as dcache misses
and ERAT misses, and 5% of the changes result from
branch misprediction. The percentages of data obtained
from L2, L3, and memory in ST mode are respectively
79%, 20%, and 1%, and these change to 72%, 27%, and
1% respectively when running in SMT mode. This
represents a shift of approximately 7% of the loads
from the L2 to the higher-latency L3, and this was
enough to reduce the SMT gain to less than 20%.

Seismic Wave Simulation is a finite-element simulation.
LSU stalls can account for 70% of the changes in the CPI
between ST and SMT modes, and 25% of the changes in
the CPI are due to FPU stalls. The percentages of data
obtained from L2, L3, and memory in ST mode are
respectively 86%, 6%, and 8%, and these change to 82%,
4%, and 14% respectively when running in SMT mode.
The additional load latencies required by the shifts of
loads to L3 and memory were enough to reduce the
SMT gain to 15.3%.

Object-oriented Database is an integer workload. Its
CPIs, both ST and SMT, were comparatively small. Stalls
account for 86% of the changes in the CPI, and 73% of
the changes in the CPI result from LSU activities; 17% of
the delta results from dcache misses, 17% from FXU
activities, 15.7% from rejects, and 3% from branch
misprediction. The percentages of data obtained from
L2, L3, and memory in ST mode are respectively 85%,
14%, and 1%, and these changed to 88%, 11%, and 1%
respectively when running in SMT mode. The percentage
of rejects due to having no GCT slots available comprises

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

11% of the changes in the CPI, the highest for any of the
eight workloads.

Neural Network is the only workload in the suite
having negative SMT gain on the final POWERS chip.
Neural Network uses a 2-MB array and employs a very
tight algorithm that takes large strides across this array.
Since the L2 cache of the POWERS chip is 1.9 MB, two
copies of the relevant parts of the array may coexist
satisfactorily in the L2, but four copies will not. The fact
that four copies of the array footprint do not fit in the L2
cache, combined with the large strides across the data,
ensures that cache lines will be replaced frequently, with
correspondingly high L1 data-cache-miss rates, L2 miss
rates, D-ERAT miss rates, and a high L3 hit rate. The
team discovered that 94% of changes in the CPI from ST
to SMT resulted from LSU activities: 73% dcache misses
and stalls, 15% rejects, mostly due to TLB misses and
increases in table walks, and 6% LSU other. The data
showed that Neural Network had a huge change in the
ERAT reject rate: 5% for ST and 71% for SMT. The
negative effects of the LSU and ERAT rejects were the
cause of the negative SMT gain. In the final analysis,
although the workload was a floating-point workload,
this had no bearing on the negative SMT gain.

Summary

The POWERS is the first IBM chip to employ
simultaneous multithreading (SMT). This feature
maintains two thread streams that are issued as
continuously as possible to ensure maximum use of
processor resources. In some instances, implementing
SMT required the provision of duplicate copies of some
resources or larger queue sizes together with modified
resource-allocation algorithms. A broad spectrum of
workloads were examined that exhibited varying degrees
of SMT gain, ranging from —11% to +41%. In all cases,
the biggest single factor affecting SMT gain was the
effect of load and store activities. Workloads having
lower values for SMT gain tended to have higher load
latencies resulting from 1) repeated invalidation and
reloading of the same lines of L2 cache memory by each
of the two programs running on a processor; 2) higher
numbers of loads and stores rejected as a result; and 3)
a significantly increased number of data loads from L3
cache and main memory because copies of the two
programs’ footprints would not fit into the L2 cache
simultaneously. However, the study showed that most
workloads, with few exceptions, benefited from
operating in SMT mode.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds or SAS
Inc.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

References

1. J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and
S. R. Kunkel, “A Multithreaded PowerPC Processor for
Commercial Servers,” IBM J. Res. & Dev. 44, No. 6, 885-898
(November 2000).

2. S. N. Storino, A. G. Aipperspach, J. M. Borkenhagen,

R. J. Eickemeyer, S. R. Kunkel, S. B. Levenstein, and G. J.
Uhlmann, “A Commercial Multithreaded RISC Processor,”
Digest of Papers, International Solid-State Circuits Conference,
San Francisco, February 1998, pp. 236-237.

3. F.P. O’Connell and S. W. White, “POWER3: The Next
Generation of PowerPC Processors,” IBM J. Res. & Dev. 44,
No. 6, 873-884 (November 2000).

4. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B.
Sinharoy, “POWER4 System Microarchitecture,” IBM J. Res.
& Dev. 46, No. 1, 5-26 (January 2002).

5. R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM Power5 Chip:
A Dual-Core Multithreaded Processor,” IEEE Micro 24, No.
2, 40-47 (March/April 2004).

6. B.Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer, and
J. B. Joyner, “POWERS System Microarchitecture,” IBM J.
Res. & Dev. 49, No. 4/5, 505-521 (2005, this issue).

7. W. A. Wulf and S. A. McKee, “Hitting the Memory Wall,
Implications of the Obvious,” Computer Architecture News 23,
No. 1, 20-24 (March 1995).

8. R. J. Eickemeyer, R. E. Johnson, S. R. Kunkel, M. S.
Squillante, and S. Liu, “Evaluation of Multithreaded
Uniprocessors for Commercial Application Environments,”
Proceedings of the 23rd Annual International Symposium on
Computer Architecture, IEEE, Philadelphia, May 1996, pp.
203-212.

9. D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism,”
Proceedings of the 22nd International Symposium on Computer
Architecture, June 1995, pp. 392-403.

10. D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo,
and R. L. Stamm, “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading
Processor,” Proceedings of the 23rd Annual International
Symposium on Computer Architecture, IEEE, Philadelphia,
May 1996, pp. 191-202.

11. N. Tuck and D. M. Tullsen, “Initial Observations of the
Simultaneous Multithreading Pentium 4 Processor,”
Proceedings of the 12th International Conference on Parallel
Architectures and Compilation Techniques, IEEE, New
Orleans, September 2003, pp. 26-35.

12. M. G. Maynard, C. M. Donnelly, and B. R. Olszewski,
“Contrasting Characteristics and Cache Performance of
Technical and Multi-User Commercial Workloads,”
Proceedings of the Sixth International Conference on
Architectural Support for Programming Languages and
Operating Systems, October 1994, pp. 145-156.

13. Z. Cventanovic and D. Bhandarkar, “Performance
Characterization of the Alpha 21164 Microprocessor Using
TP and SPEC Workloads,” Proceedings of the 21st Annual
International Symposium on Computer Architecture, April
1994, pp. 60-70.

Received May 30, 2004, accepted for publication
April 14, 2005; Internet publication August 11, 2005

563

H. M. MATHIS ET AL.

564

Harry M. Mathis 1BM Systems and Technology Group,

11400 Burnet Road, Austin, Texas 78758 (mathis@us.ibm.com).
Dr. Mathis served 21 years in the U.S. Air Force, retiring as a
Licutenant Colonel in 1985, before returning to graduate school.
He received his Ph.D. degree from Texas A&M University in 1989
and then joined IBM in Westlake, Texas, where he worked in the
datastream architecture and software performance areas until
1995. Following a two-year stint in the IBM Consulting Group
serving business intelligence customers, he joined the IBM
hardware performance team in Austin. Dr. Mathis has worked on
performance tools and on POWERS hardware bring-up; he is
currently the lead performance member on the hardware bring-up
team for a follow-on POWER-series processor.

Alex E. Mericas IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (mericas@us.ibm.com). Mr.
Mericas is a Senior Technical Staff Member in the IBM Systems
and Technology Group. He received a B.S. degree in computer
science from the University of New Orleans and a master’s degree
in computer engineering from National Technological University.
He architected the performance instrumentation on POWER4,
POWERS5, and PowerPC 970* and was team leader for hardware
performance on POWER4 and POWERS. Mr. Mericas currently
works on future performance instrumentation designs, along with
software tools to better exploit available hardware performance
data.

John D. McCalpin IBM Systems and Technology Group,
11400 Burnet Road, Austin, Texas 78758 (mccalpin@us.ibm.com).
Dr. McCalpin received a B.S. degree in physics and an M.S. degree
in physical oceanography from Texas A&M University, and a
Ph.D. degree in physical oceanography from Florida State
University. From 1990 to 1996, he was an Assistant Professor in
the College of Marine Studies at the University of Delaware, with
a focus on the applied mathematics and computational science
of large-scale climate modeling. During this time, Dr. McCalpin
developed the STREAM benchmark, which has become the

de facto industry-standard tool for measuring sustained memory
bandwidth in high-performance computers. Leaving academia for
industry in 1996, he spent three years at Silicon Graphics, Inc.,
in performance analysis and system architecture, then joined

the IBM POWER microprocessor development team in 1999.

Dr. McCalpin’s current work involves performance projection
methodologies for high-performance computing applications

and system architecture research related to cache coherence

and memory subsystem design.

Richard J. Eickemeyer [BM Systems and Technology
Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(eick@us.ibm.com) Dr. Eickemeyer is a Senior Technical Staff
Member in the IBM Systems and Technology Group. He is
currently the processor core performance team leader for the IBM
PowerPC* servers. Prior to this, he worked on performance and
architecture of several processors used in AS/400™ systems and
S/390* systems in Rochester, Minnesota and Endicott, New York.
Since joining IBM, he has received awards including a Ninth
Plateau IBM Invention Achievement Award, an IBM Outstanding
Technical Achievement Award, two IBM Outstanding Innovation
Awards, and an IBM Corporate Award. He has also been named
an IBM Master Inventor. Dr. Eickemeyer received the B.S. degree
in electrical engineering from Purdue University and the M.S.
and Ph.D. degrees from the University of Illinois at Urbana—
Champaign. His research interests are computer architecture and
performance analysis. He is a Senior Member of the IEEE.

H. M. MATHIS ET AL.

Steven R. Kunkel 1BM Systems and Technology

Group, 3605 Highway 52 N., Rochester, Minnesota 55901
(srkunkel@us.ibm.com). Dr. Kunkel received his Ph.D. degree
from the University of Wisconsin at Madison in 1987. He then
joined IBM in Endicott, New York, doing performance analysis of
a vector facility for a mid-range System/390* product. In 1989, he
moved to the IBM facility at Rochester, Minnesota, where he
currently works. During most of his years in Rochester, he did
architecture and performance analysis for AS/400 products,
including NUMA, VLIW, caches, MP cache coherency,
multithreading, and converting AS/400 to PowerPC Architecture®
processors. He is currently a Senior Technical Staff Member doing
architecture and performance analysis for iSeries™, pSeries™,
zSeries™, and xSeries® servers.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

