
Characterization
of simultaneous
multithreading
(SMT) efficiency
in POWER5

H. M. Mathis
A. E. Mericas

J. D. McCalpin
R. J. Eickemeyer

S. R. Kunkel

Coarse-grained multithreading, the switching of threads to avoid
idle processor time during long-latency events, has been available on
IBM systems since 1998. Simultaneous multithreading (SMT), first
available on the POWER5e processor, moves beyond simple thread
switching to the maintenance of two thread streams that are issued
as continuously as possible to ensure the maximum use of processor
resources. Because SMT has the potential of increasing processor
efficiency and correspondingly increasing the amount of work done
for a given time span, the reader might suppose that SMT would
exhibit a performance gain for all workloads. This is true for most
workloads, but is not true in some exceptional cases. In SMT mode,
the processor resources—register sets, caches, queues, translation
buffers, and the system memory nest—must be shared by both
threads, and conditions can occur that degrade or even obviate
SMT performance improvement. The POWER4e and POWER5
processors have very powerful performance monitor (PM) toolsets
that can help the user to determine what is occurring in workloads
that may not be providing expected SMT gains. In this paper, the
results of measured differences among workloads having large,
medium, small, and even negative SMT performance gains are
presented along with an approach to investigating workloads to
determine the source of SMT performance gain limits.

Introduction

Over the years, the size of POWER*-based server systems

has continued to grow. From the uniprocessor systems

first shipped in 1990 to the 64-processor POWER5*

systems shipping today, the underlying computational

building block is the processor core. Major changes in the

approach to processor design have fueled this growth.

One approach to improving computational performance

was to increase the number of threads, or independent

execution sequences, that a processor could execute

concurrently. In 1998 IBM introduced the first

multithreaded POWER processor, the RS64-II [1, 2]. The

RS64-II chip contains a single processor running two

threads, in what is called coarse-grain multithreading.

IBM POWER-based systems contained only single-

processor chips [1, 3] until 2001, when IBM introduced

POWER4*, the first POWER chip containing two

single-thread processors [4]. The POWER5 chip [5, 6],

introduced in 2004, combines the design concepts of

multiple cores and multiple threads. Each chip contains

two processors, each running two threads, for a total of

four threads per chip. These technological changes have

been facilitated by continuously increasing transistor

densities, in addition to software improvements that

allow scaling to larger numbers of processors and threads.

To understand the multithreaded design of POWER5

better, it would be useful to examine the designs of its

predecessors, the RS64-II and the POWER4. One

important factor in the design of the multithreaded

RS64-II was an increasing concern over rising cache-miss

rates driven by new types of applications and languages.

At the same time miss rates were rising, the latency of
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cache misses was increasing [7]. As a result, cache misses

had begun to make up an increasingly larger portion of

execution time. To minimize the amount of processor

time wasted on cache misses, the thread mechanism in the

RS64-II processor was designed to switch when one was

detected. In this way, cache misses could be overlapped

between the two threads, resulting in greater system

throughput. This is termed coarse-grain multithreading.

In general, multithreading can cause cache-miss rates to

increase, but the overlap is usually more than enough to

overcome this and still achieve significant increases in

throughput [8].

POWER4 introduced the basic IBM processor design

for out-of-order execution, and this design is continued

with POWER5. In this type of design, it is more difficult

to switch threads on a cache miss, because at the time of

the miss some earlier instructions may not have been

performed, while some later instructions may already

have been completed. The problem becomes where and

how to stop one thread, leaving the thread and its

resources in a state that will allow it to be restarted when

the switch is made to the other thread. Simultaneous

multithreading (SMT) is a way of implementing multiple

threads on an out-of-order processor [9–11]. In this

design, all threads are simultaneously active so that there

is no thread-switch event such as occurs in coarse-grain

multithreading. When one thread has a cache miss, the

other thread can continue to execute. Because there is

no thread-switch overhead, SMT can hide even short-

duration stalls in the execution pipeline. If, because of

pipeline latency, an instruction from one thread is delayed

waiting for a result, or if, because of the misprediction of

a branch, a portion of a thread’s instructions have been

flushed from the execution pipeline, instructions from the

other thread can continue to execute. Events such as

register dependencies frequently prevent a thread from

utilizing the entire processing pipeline to the fullest

extent. Such interludes provide an opportunity for the

other thread to execute on functional units that would

otherwise be idle during a particular cycle.

Along with improvements to POWER processor design

came improvements to the performance-monitoring

hardware. The POWER5 microprocessor, like its

forerunners back to the PowerPC 604* microprocessor,

includes on-chip logic to monitor, record, and report

key performance events and latencies. The PPC604

performance monitor unit (PMU) contained two

counters, and the PPC604e added two more. The

POWER3* and POWER4 each contained eight counters.

The RS64 processor, which introduced hardware

multithreading, contained eight counters, but they had

to be shared between two threads. The POWER5

implementation of SMT extends performance-monitoring

functionality to the thread level. Each thread has a

dedicated six-counter PMU that can be independently

configured to monitor more than 300 performance events

occurring on the processor or memory system.

At the same time that microprocessor architecture

has been evolving, workload characteristics have

been changing. The workload mix now includes some

traditional commercial workloads that have high cache-

miss rates, and important new workloads have been

added that have lower cache-miss rates than some of the

more traditional commercial workloads [12, 13]. Both

types of workloads usually have other pipeline stalls.

SMT provides increased throughput in the presence of

both cache misses and other pipeline stalls, thereby

benefiting multiple classes of workloads.

This paper thus focuses on the performance analysis

of thread execution in the POWER5 processor and

investigates how a selection of workloads behave on an

SMT processor. We begin describing some details of the

POWER5 design for SMT and describe how SMT

performance is measured. We then describe a set of

performance-monitor measurements on POWER4 and

POWER5 to demonstrate SMT performance effects.

Finally, we summarize factors that affect SMT gain.

POWER5 SMT design and performance
The POWER5 design for SMT recognized that in some

cases processor execution pipeline resources that were

ample for a single-threaded environment, such as

POWER4, would not provide adequate performance for

SMT environments and thus would have to be increased

and shared or duplicated [6]. Other resources were

adequate for both environments but would have to be

split in order to make SMT work without increasing

processor chip size. Additionally, resources that would

have been suitable for POWER4 operation had to be

expanded to include bits for thread identification in order

for those resources to support SMT.

The following is a brief summary of the design changes

made to POWER4 and POWER5 processor resources

to support SMT performance. The branch information

queue (BIQ) is unchanged in size but is split between the

threads. The load reorder queue (LRQ) and store reorder

queue (SRQ) are split, but extra virtual entries have

been added [6]. Register-renaming resources have been

increased to support the additional register requirements

of the second thread. The load miss queue (LMQ) is

shared, since there is no ordering information among the

entries. The global completion table (GCT) had been

shared, but since ordering must be maintained within a

thread, the design was changed. Parts of the design, such

as the branch history table (BHT), have required no

changes for SMT. Finally, the associativities of the

instruction cache, the data cache, and the data effective-

to-real address translation (ERAT) table have been
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increased to reduce the amount of cache-line conflict

resulting from SMT operation.

Tables containing side-by-side comparisons of the

design changes are provided in the analysis sections. The

analysis sections containing these comparisons are those

on the instruction fetch unit (IFU), instruction decode

unit (IDU), instruction sequencing unit (ISU), and load

store unit (LSU).

Performance testing during the development
cycle
Two sets of assembler-like performance verification

program (PVP) test cases were first run on the POWER5

chip shortly after it was powered on in the bring-up

laboratory: one set for single-threaded (ST) mode and

one set for SMT mode. (In ST mode, only one thread is

running, and it can use many of the resources that would

normally be reserved for the second thread [6].) These test

cases were designed to determine the number of processor

cycles required to complete a fixed sequence of

instructions, and to validate that the chip operated

as specified in the design document. Test cases ranged

from as few as one instruction to tens of thousands of

instructions. The test cases had already been run on

performance models, and this testing provided proof that

both the models and the chips executed the instruction

sequences using the number of cycles specified in the

design. In addition, the results made it possible to

determine the ‘‘gain’’ that SMT provided over ST for each

test case. The SMT gain was calculated by the following

algorithm:

1. CPISMT = (cyclesSMT/instructionsSMT).

2. CPIST = (cyclesST/instructionsST).

3. SMT gain = 100(2CPIST/CPISMT)� 100.

During the early laboratory tests it became apparent

that some test cases yielded much higher SMT gain than

others. In general, the integer test cases were very simple

and yielded higher SMT gains than the floating-point test

cases, which were heavily biased toward larger, tightly

coded loops.

Although the test-case results were of interest and

were subject to considerable analysis, they did not by

themselves provide sufficient data to predict whether

or how much SMT gain could be realized from a

specific workload consisting of hundreds of billions

of instructions of all types. Performance for major

workloads had been predicted by performance models;

now it was time to see how the hardware would perform.

Once a laboratory version of Linux** could be booted up,

actual benchmarks were run in both ST and SMT modes.

Benchmark results from the earliest versions of the chip

showed that, in general, integer workloads yielded better

SMT gains, while floating-point-intensive workloads

yielded smaller SMT gains and even, in some cases,

negative ones. This was supported by results from earlier

PVP runs. Although some applications appeared to be

less amenable and some more amenable to SMT, it

was difficult without sufficient data to conclude which

application characteristics were favorable and which were

not, and which shared resources were most heavily

affected by SMT. At the time, however, the version of

Linux used for initial testing lacked the capability to

make use of the extensive performance-monitoring

facilities of the POWER5 processor. Analysis of the

workloads had to wait until the laboratory was able to

boot AIX*, which could collect data on 127 different

groups of processor events.

AIX was booted on several different POWER5 systems

once firmware and hypervisor code stabilized. A wide

variety of benchmark applications were run, both

floating-point and integer, as each new version of the

POWER5 chip became available. As in the POWER2*,

POWER3, and POWER4 development processes, the

hardware performance team collected performance

measurements with a set of AIX programs whose binaries

remained constant through the bring-up period. These

programs formed the regression tests that were used to

track performance improvements as chip revisions

became available.

The inclusion of SMT capabilities in the POWER5

chip necessitated adding ST–SMT gain measurements

to the hardware performance process. ST–SMT gain

measurements were accomplished using a two-step

process:

1. A copy of a program was bound to each of the

physical processors running in ST mode, and the

time (TST) the programs took to complete their work

was measured.

2. The system was switched to SMT mode and a copy

of the program was bound to each of the two SMT

threads (which are also known as logical processors)

on each of the two physical processors; again, the

amount of time (TSMT) it took both programs to

complete was measured. To the operating system

each thread appeared as a logical processor.

Each program does a unit of work (W ) during its

processing, so in the ST case, the amount of work done

per unit time by two programs, one on each physical

processor, is 2W/TST; in the SMT case, the amount of

work done per unit time by four programs, one on each of

the two threads on each physical processor, is 4W/TSMT.

The SMT gain was computed using the following

formula:
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Gain ð%Þ ¼ 100½ð4W=T
SMT

Þ=ð2W=T
ST
Þ� � 100;

where W is the number of instructions executed, TSMT

is WCPISMT/P, TST is WCPIST/P, and P is processor

frequency in cycles per second. Thus, we obtain the same

formula used earlier with PVPs:

Gain ð%Þ ¼ 100ð2CPI
ST
=CPI

SMT
Þ � 100:

It was observed that commercial workloads showed

higher SMT gain than the computationally intensive,

tightly looped applications often found in high-

performance computing environments.

Data collection and reduction
This paper analyzes the SMT performance of eight

workloads selected on the basis of their previously

calculated SMT gain behaviors throughout the POWER5

chip development cycle. These workloads, along with

their respective SMT gains calculated during the data

collection runs, are shown in Table 1.

The instruction streams for the three floating-point

workloads, 3D Multi-grid Solver, Seismic Wave

Simulation, and Neural Network, respectively contained

66%, 50%, and 40% floating-point instructions. The

instruction streams for two integer workloads,

Programming Language and Circuit Routing,

respectively contained 1% and 9% floating-point

instructions, and the other integer workloads had no

floating-point instructions. The hardware used in data

collection was a 1.65-GHz single-chip dual-processor

POWER5 system having a 1.9-MB L2 cache, a 36-MB L3

cache, and 16 GB of memory. Each ST data collection

run was obtained by executing two copies of the same

workload concurrently, one on each of the single threads

on each processor core. Each SMT data collection run

was obtained by executing four copies of the same

workload concurrently, one on each of the two SMT

threads on each processor core. Performance monitor

runs were completed for each of the workloads for each

of the 127 POWER5 PMU counter event groups.

The resulting data was reduced using SAS**, a

statistical analysis program, and then entered into

spreadsheets. Results were sorted by processor event

group and by the mean value for each metric. The

POWER4 data collection effort was exactly like that on

the POWER5 system in ST mode; that is, two copies of

the same workload were run concurrently on a single-

chip, two-core POWER4 system, and data was collected

for the 63 POWER4 PMU counter event groups to

compare with that collected from the POWER5 system.

The data collected from POWER5 contained nearly twice

as many data points as that from POWER4, since there

are nearly twice as many PMU counter groups for

POWER5 as there are for POWER4. The POWER4 data

was reduced using SAS and entered into a spreadsheet; as

before, it was sorted by processor event group and mean

value for the metric, and then merged with the POWER5

data where possible. For many event groups, it was

readily apparent that the data values were randomly

distributed among the high-, medium-, low-, and

negative-gain applications, and had no relationship to the

SMT gain of a workload. The sorting order enabled a

quick analysis to determine when the negative-gain

workload appeared at either low or high values of a

measurement for a processor event group, making it a

good candidate for further analysis. The sorting also

enabled the same quick analysis for high-gain and

medium-gain workloads in order to narrow down quickly

the number of processor event groups to be considered.

This facilitated, for the purpose of this study effort, the

selection of data displaying only a direct or an inverse

relationship to the degree of SMT gain.

Analysis of the data
The first step in analyzing the data was to narrow down the

127 groups of POWER5 and the 63 groups of POWER4

performance-counter results by eliminating groups that

did not contribute to the study. That left 53 POWER4

groups and 115 POWER5 groups, andmany of these, such

as counts of special-purpose instructions not used by any

of the applications, had little or no importance for this

paper. Analysis then proceeded with an examination of

processor resources, by unit, that were either duplicated

or increased in size and shared or split, and how these

resources affected POWER5 SMT performance.

Instruction fetch unit (IFU)

Table 2(a) lists the changes that were made to the IFU

from POWER4 to POWER5. Instruction prefetch hit

ratios were in the range of 0.5 to 0.7. Prefetch miss rates

were less than 0.22% for all workloads, indicating the

effectiveness of instruction prefetch logic. The data

Table 1 Workloads selected for the study.

Workload Computation

type

SMT gain

(%)

Sentence passing Integer 41.2

Data compression Integer 38.6

Programming language Integer 26.3

3D Multi-grid Solver Floating-point 21.6

Circuit Routing Integer 19.8

Seismic Wave Simulation Floating-point 15.3

Object-oriented Database Integer 12.5

Neural Network Floating-point 11.2
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showed little difference between the ST and SMT modes

and provided no evidence of a relationship to SMT gain.

Since this event was not collectable on POWER4 PMU,

there was no data available to compare with the

POWER5 data.

In both POWER4 and POWER5, the branch-

prediction mechanism enables speculation, which

is the execution of an instruction stream beyond an

unevaluated branch instruction. The branch instruction

is unevaluated at that temporal point because the data

required to evaluate it is not yet available. Without

speculation, execution of the instruction stream would be

stalled until it could be evaluated. Speculation permits

execution to continue on the basis of an ‘‘educated guess’’

by the processor as to which branch path will be taken.

When the branch instruction is actually evaluated, it may

be the case that the wrong path was taken for speculation;

this is referred to as a branchmisprediction. After a branch

misprediction is discovered, all instructions following

the branch are flushed from the execution pipeline

and execution begins again along the correct path.

Branch-misprediction flush-rate data values were low

and were not significantly different whether the system

was in ST mode or SMT mode. This indicates that for

POWER5, at least for this set of workloads, no change

was needed in the branch hit table to support SMT. Since

this event was not collectable on POWER4 PMU, there

was no POWER4 BHT data available to compare with

the POWER5 data.

Instruction decode unit (IDU)

The instruction fetch buffers (IFBs) hold instructions

for group formation prior to dispatch. As shown in

Table 2(b), each POWER4 processor core contains a

single eight-entry IFB, while the POWER5 processor core

contains two six-entry IFBs, one for each thread. The

data revealed that the workloads having moderate to high

SMT gain also had lower average IFB usage than those

workloads with low or negative SMT gains for both the

POWER4 and POWER5 systems. POWER4 data was

available for comparison, and for both ST and SMT

modes the POWER5 system had lower average IFB usage

values than the POWER4 system for all workloads except

Seismic Wave Simulation, where there was a minimal

difference. Data collected with regard to the percentage of

time the IFBs were not empty revealed that the POWER4

and POWER5 ST mode behaviors were similar for these

workloads. The 3D Multi-grid Solver workload, at the

low end of moderate SMT gain and having the smallest

number of cycles per instruction for both ST and SMT

modes, had the highest utilization.

Data collected on the percentage of time that the IFB

contained six fetch groups revealed that the POWER4

and POWER5 ST mode IFB behaviors were similar for

these workloads. When the IFB contains six fetch groups,

it is full in the case of the POWER5 and it is not full in the

case of the POWER4. For both systems the floating-point

workloads had the highest percentages for this metric,

and for POWER5 the workload having negative SMT

gain had the highest percentage for this metric.

Instruction sequencing unit (ISU)

Table 3 lists resource changes for the instruction

sequencing unit from POWER4 to POWER5. In

Table 2 Comparison of POWER4 and POWER5: (a) IFU

resources; (b) IDU resources.

POWER4

(ST only)

resource

POWER5

(ST and SMT)

resource

(a)

Direct-mapped 64-KB

Level 1 instruction cache

(L1 I-cache)

Two-way 64-KB L1 I-cache

Four-entry direct-mapped

prefetch buffer

Split, two-entry-per-thread

prefetch buffer

16-entry branch issue

queue (BIQ)

Split, eight-entry-per-

thread BIQ

Branch-prediction control Replicated branch-prediction

control

Link stack Replicated link stack

(b)

Eight-entry instruction

fetch buffer (IFB)

Six-entry IFB per thread

Table 3 Comparison of POWER4 AND POWER5 ISU

resources.

POWER4

(ST only)

resource

POWER5

(ST and SMT)

resource

20-entry first-in first-out

(FIFO) global completion

table (GCT)

20-entry linked-list GCT

80 general-purpose register

(GPR), 72 floating-point

register (FPR) mappers used

to map virtual to real registers

120 GPR, 120 FPR

mappers

32-entry condition register

(CR) mapper

40-entry CR mapper

24-entry fixed-point exception

register (XER) mapper

32-entry XER mapper

20-entry floating-point issue

queue (FPQ)

24-entry FPQ
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the POWER5 ST mode, all twenty entries in the GCT

are used by one thread, but in SMT mode they are

dynamically shared between the two threads using a

linked list to relate entries to the thread owners. For the

workload having negative SMT gain, the POWER5 GCT

was full significantly more of the time in both ST and

SMT modes. The percentage of time the GCT was full for

this workload in SMT mode was nearly double that for

ST mode, reflecting the effect of sharing the twenty

GCT entries.

The number of GPR mappers was increased from 80 in

POWER4 to 120 in POWER5, and the number of FPR

mappers was increased from 72 to 120. Rename mappers

in the instruction sequencing unit guarantee each thread

36 GPRs and 32 FPRs, and all are dynamically allocated

as required. This enables each POWER5 processor in ST

mode to support more fixed-point and floating-point

instructions in flight than the POWER4 processor can.

These changes had a significant effect on the percentage

of time the GPR and FPR mappers were full compared

with the POWER4 runs. The GPR mappers were never

full during POWER5 ST runs and, for seven of the eight

workloads, the POWER5 SMT runs had lower rates of

the GPR mappers being full than the POWER4 runs. The

highest rates for the GPR mappers being full were for all

of the five integer workloads, and the lowest were for the

three floating-point workloads.

The highest rates for the FPR mappers being full were

for the three floating-point workloads, and these rates

were zero for all of the integer workloads. The POWER4

runs had higher FPR mapper full rates than the

POWER5 ST runs, presumably because the POWER5 in

ST mode has a much larger FPR rename pool. Somewhat

surprising was the fact that the POWER4 runs also

measured significantly higher FPR mapper full rates than

the POWER5 SMT runs, a testament to the effectiveness

of POWER5 register-renaming logic.

The number of condition register mappers was

increased from 32 in POWER4 to 40 in POWER5. Only

one workload, Object-oriented Database, a low-gaining

integer workload, managed to fill the CR mappers in ST

mode, and then only 1% of the time. For POWER5 in

SMT mode, CR mapper utilization was very similar to

that for POWER4. For the POWER5 system in SMT

mode, five workloads had CR mappers full 2% to 6%

of the time; for the POWER4 system, the same five

workloads had CR mappers full 1% to 8% of the time.

The POWER5 ISU contains two 18-entry issue queues

for fixed-point and load/store instructions, two 12-entry

issue queues for floating-point instructions, one 12-entry

issue queue for branch instructions, and one 10-entry

issue queue for CR-logical instructions. The branch issue

and the condition register queues both were never full for

any of eight workloads.

The fixed-point queues had highest utilizations for

fixed-point workloads and lowest utilizations for

floating-point workloads. POWER4 data was available

for fixed-point queue 0, but data for queue 1 was not

collected. The POWER4 data had slightly lower values

than both POWER5 ST and SMT data except for

sentence parsing. Showing consistency, the floating-

point queues had the highest utilizations for floating-

point workloads and the lowest utilizations for fixed-

point workloads. The floating-point queues for

POWER4 and POWER5 ST and SMT modes had

nearly identical data patterns.

Fixed-point execution (FXU) pipelines

The POWER5 processor contains two fixed-point

execution pipelines, and both are capable of

multiplication and basic arithmetic, logical and shifting

operations. One pipeline is additionally capable of

division. Instructions are issued out of order with a bias

toward oldest operations first, and there is symmetric

forwarding between fixed-point and load/store execution

pipelines. Not surprisingly, the rates at which both FXUs

were busy for both the POWER4 and the POWER5 in ST

mode were very similar in all cases. The rates for both the

POWER4 and the POWER5 were highest for the five

integer workloads, and were very low or zero for the

floating-point workloads. The POWER5 SMT rates

were less than half of either of those for POWER4

and POWER5 ST mode for the integer workloads.

This phenomenon appears to result from the fact that

speculation is treated differently in SMT mode than in ST

mode. In SMT mode a thread does not execute as many

instructions speculatively beyond an unevaluated branch

instruction as it does in ST mode. As a result, fewer

instructions are discarded when the branch instruction is

evaluated and a branch misprediction is found, and this

makes the pipelines appear less busy in SMT mode.

Floating-point unit (FPU) pipelines

The POWER5 processor contains two six-stage floating-

point execution pipelines. Both are capable of executing

the full set of floating-point instructions, and instructions

are issued out of order with a bias toward the oldest

instructions. Both IEEE and non-IEEE instruction

modes are supported. Floating-point unit utilization

is directly related to the percentage of floating-point

instructions in the instruction mix.

Floating-point queues had significantly higher rates of

being full for the negative SMT gain workload, Neural

Network, for the POWER5 in both ST and SMT modes,

and for the POWER4, than any other of the workloads.

For Neural Network, the full rate for floating-point

queue 0 was 54% for both POWER4 and POWER5 in ST

mode and 59% for POWER5 in SMT mode. For floating-
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point queue 1, the rate was respectively 23%, 26%, and

24% for the POWER4, POWER5 in ST mode, and

POWER5 in SMT mode, indicating a dispatch bias

toward floating-point queue 0.

Load/store unit (LSU) execution pipelines

The POWER5 design provides two six-stage load/store

execution pipelines to handle load/store instructions.

Loads and stores are executed in three stages, out of

order, with a bias toward the oldest operations first.

Stores issue twice, with an address-generation operation

and a data-steering operation. Resources shown in

Table 4 are integral to the load/store function.

Data was collected on all of the above caches and

queues for each of the eight workloads. Although data

was collected from the POWER5 system on cache

performance, no POWER4 data was available for

comparison. Data available for both POWER4 and

POWER5 was available for D-ERAT performance.

The POWER5 system in ST mode had lower D-ERAT

miss rates on five of the eight workloads than did the

POWER4, equal on two of the workloads, and slightly

higher on one workload, Neural Network, the workload

with negative SMT gain. The POWER5 in SMT mode

had lower D-ERAT miss rates on four of the workloads

than did the POWER4 system, equal on two and slightly

higher on two workloads, Neural Network and Circuit

Routing, a workload with moderate SMT gain.

The data collected on the percentage of time the LMQ

was full revealed that none of the workloads taxed the

LMQ capacity for either POWER4 or POWER5 systems.

The data collected on the time an entry spends in the

LMQ showed a slight increase as the result of two SMT

threads sharing the LMQ. For the POWER5 system in

SMT mode, the LMQ was very close to that of the

POWER4 system, although there was some variation

among the workloads. The negative-gain workload had

the greatest LMQ time for both systems and both modes.

None of the workloads significantly taxed the LRQ

capacities of either the POWER4 or POWER5 systems.

For five of the eight workloads, the POWER4 LRQs were

full from 1% to 32% of the time. In ST mode, the

POWER5 LRQs were never full. In SMT mode, the

LRQs were full for a short time (4% and 7% of the time),

but only for 3D Multi-grid Solver and Neural Network.

The POWER5 SMT mode LRQ time behavior appeared

to have benefited from larger L2 and L3 caches, lower

cache latency, and the addition of 32 virtual LRQ entries.

It is similar to that for both POWER5 in ST mode and

POWER4. The largest value of LRQ time was measured

for the negative-gain workload on the POWER5 in ST

and SMT modes as well as on the POWER4.

Similarly, neither of the systems’ SRQ capacities was

taxed significantly by any of the eight workloads. The

POWER4 SRQ was full from 1% to 4% of the time for

seven of the eight workloads, while the POWER5 SRQ

was full in ST mode 1% of the time and in SMT mode

3% of the time, but only for Seismic Wave Simulation.

The SRQ data closely paralleled that for the LRQ. The

greatest SRQ times were measured for the floating-point

workloads, particularly the workload showing negative

SMT gain, regardless of system or mode.

The data clearly showed that the LSU had higher

utilization in SMT mode. The ST and POWER4

behaviors were very similar, but the highest utilization

in all cases was for the negative-gain workload.

Branch and condition register (CR) pipeline

The POWER5 branch and condition register (CR)

pipeline architecture is essentially unchanged from the

POWER4 design; however, both threads share the CR

in SMT mode. In none of the instances were either

POWER4 or POWER5 branch queues full.

The CRs for POWER4 and POWER5 in SMT mode

had similar behaviors, with CRs being full a small

percentage of the time for five of the eight workloads.

The POWER5 in ST mode had the CR full for only

one workload, and then for only 1% of the time.

Table 4 Comparison of POWER4 and POWER5 LSU

resources.

POWER4

(ST only)

resource

POWER5

(ST and SMT)

resource

32-KB two-way set-associative

level-1 data cache (L1 dcache)

32-KB four-way set-associative

L1 dcache

128-entry two-way

effective-to-real address

translation (ERAT) table

128-entry fully associative

ERAT table

64-entry segment lookaside

buffer (SLB)

Replicated 64-entry SLB

per thread

32-entry real load reorder

queue (LRQ)

16-entry real and 16-entry

virtual LRQ per thread

32-entry real store reorder

queue (SRQ)

16-entry real and 16-entry

virtual SRQ per thread

Eight-entry load miss queue

(LMQ)

Eight-entry LMQ with

thread control

Interrupts Interrupts replicated per

thread

Replicated special-purpose

registers (SPRs) with thread ID

1.45-MB level-2 cache (L2)

on-chip

1.9-MB L2 on-chip

16-MB level-3 cache (L3) 36-MB L3, directory and

controller on processor chip
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Discussion of factors affecting SMT gain
Data collected on the percentage of time the FPR

mappers were full indicated that for the floating-point

workloads, the FPR remapper resources were strained at

least some of the time. Consequently, the team examined

additional data relating to the floating-point

characteristics of these workloads. Looking for the

percentage of floating-point multiply–add (FMADD)

fused instructions in the instruction mix, the team found

that they were respectively 9%, 16%, and 17% for 3D

Multi-grid Solver, Seismic Wave Simulation, and Neural

Network. Each FMADD instruction requires four

floating-point registers. Even if the FMADD instructions

are uniformly distributed in the instruction stream, one

can expect to see a heavy use of the FPR mapper in SMT

mode for Seismic Wave Simulation and Neural Network.

They are likely to be processed in clumps, and hitting

the maximum number of renames can cause stalls.

Nonetheless, the fact that the difference in FMADD

percentages between Seismic Wave Simulation and

workload 8 were insignificant, and the fact that one had a

positive gain and the other had a negative gain appeared

to rule out FMADDs as a factor. The team decided to

take a detailed look at five of the lowest-SMT-gain

workloads: 3D Multi-grid Solver, Circuit Routing,

Seismic Wave Simulation, Object-oriented Database, and

Neural Network.

The floating-point workload, 3D Multi-grid Solver,

traverses the surface and interior points of a cube that

requires 16 MB of storage. The footprint for two copies

of the workload will fit in the L2 cache. Running four

copies of the workload on two POWER5 cores in SMT

mode requires double the footprint, and the data for four

copies will nearly but not completely fit in the L2 cache.

For SMT runs, this results in the workload having to

obtain data from the L3 cache and main memory, both of

which have greater latency than the L2 cache. The data

revealed that 70% of the CPI difference between ST and

SMT modes came from load/store-related activities,

mostly due to L1 data cache (dcache) misses taking

longer, approximately 50% of the extra CPI. As shown in

Table 5, the percentages of data obtained from L2, L3,

and memory in ST mode are respectively 95%, 2%, and

3% and these change to 88%, 6%, and 6% respectively

when running in SMT mode. Despite the extra load

latencies, the workload exhibits a 20.6% SMT gain.

Circuit Routing is an integer workload. For this

workload, 92% of the changes in the CPI between ST and

SMT runs result from stalls; 83% of the changes in the

CPI result from LSU activities, such as dcache misses

and ERAT misses, and 5% of the changes result from

branch misprediction. The percentages of data obtained

from L2, L3, and memory in ST mode are respectively

79%, 20%, and 1%, and these change to 72%, 27%, and

1% respectively when running in SMT mode. This

represents a shift of approximately 7% of the loads

from the L2 to the higher-latency L3, and this was

enough to reduce the SMT gain to less than 20%.

Seismic Wave Simulation is a finite-element simulation.

LSU stalls can account for 70% of the changes in the CPI

between ST and SMT modes, and 25% of the changes in

the CPI are due to FPU stalls. The percentages of data

obtained from L2, L3, and memory in ST mode are

respectively 86%, 6%, and 8%, and these change to 82%,

4%, and 14% respectively when running in SMT mode.

The additional load latencies required by the shifts of

loads to L3 and memory were enough to reduce the

SMT gain to 15.3%.

Object-oriented Database is an integer workload. Its

CPIs, both ST and SMT, were comparatively small. Stalls

account for 86% of the changes in the CPI, and 73% of

the changes in the CPI result from LSU activities; 17% of

the delta results from dcache misses, 17% from FXU

activities, 15.7% from rejects, and 3% from branch

misprediction. The percentages of data obtained from

L2, L3, and memory in ST mode are respectively 85%,

14%, and 1%, and these changed to 88%, 11%, and 1%

respectively when running in SMT mode. The percentage

of rejects due to having no GCT slots available comprises

Table 5 Sources and percentages of data from each source by

workload and mode.

Workload Mode Data source

L2

cache

(%)

L3

cache

(%)

Main

memory

(%)

Sentence parsing ST 94 6 0

Sentence parsing SMT 92 8 0

Data compression ST 100 0 0

Data compression SMT 100 0 0

Programming language ST 94 5 0

Programming language SMT 97 3 0

3D Multi-grid Solver ST 95 2 3

3D Multi-grid Solver SMT 88 6 6

Circuit Routing ST 79 20 1

Circuit Routing SMT 72 27 1

Seismic Wave Simulation ST 86 6 8

Seismic Wave Simulation SMT 82 4 14

Object-oriented Database ST 85 14 1

Object-oriented Database SMT 88 11 1

Neural Network ST 50 50 0

Neural Network SMT 49 51 0
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11% of the changes in the CPI, the highest for any of the

eight workloads.

Neural Network is the only workload in the suite

having negative SMT gain on the final POWER5 chip.

Neural Network uses a 2-MB array and employs a very

tight algorithm that takes large strides across this array.

Since the L2 cache of the POWER5 chip is 1.9 MB, two

copies of the relevant parts of the array may coexist

satisfactorily in the L2, but four copies will not. The fact

that four copies of the array footprint do not fit in the L2

cache, combined with the large strides across the data,

ensures that cache lines will be replaced frequently, with

correspondingly high L1 data-cache-miss rates, L2 miss

rates, D-ERAT miss rates, and a high L3 hit rate. The

team discovered that 94% of changes in the CPI from ST

to SMT resulted from LSU activities: 73% dcache misses

and stalls, 15% rejects, mostly due to TLB misses and

increases in table walks, and 6% LSU other. The data

showed that Neural Network had a huge change in the

ERAT reject rate: 5% for ST and 71% for SMT. The

negative effects of the LSU and ERAT rejects were the

cause of the negative SMT gain. In the final analysis,

although the workload was a floating-point workload,

this had no bearing on the negative SMT gain.

Summary
The POWER5 is the first IBM chip to employ

simultaneous multithreading (SMT). This feature

maintains two thread streams that are issued as

continuously as possible to ensure maximum use of

processor resources. In some instances, implementing

SMT required the provision of duplicate copies of some

resources or larger queue sizes together with modified

resource-allocation algorithms. A broad spectrum of

workloads were examined that exhibited varying degrees

of SMT gain, ranging from �11% to þ41%. In all cases,

the biggest single factor affecting SMT gain was the

effect of load and store activities. Workloads having

lower values for SMT gain tended to have higher load

latencies resulting from 1) repeated invalidation and

reloading of the same lines of L2 cache memory by each

of the two programs running on a processor; 2) higher

numbers of loads and stores rejected as a result; and 3)

a significantly increased number of data loads from L3

cache and main memory because copies of the two

programs’ footprints would not fit into the L2 cache

simultaneously. However, the study showed that most

workloads, with few exceptions, benefited from

operating in SMT mode.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds or SAS
Inc.
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