Operating system
exploitation of the R
POWERS5 system

The POWERS™ system incorporates several features designed to
improve performance by eliminating bottlenecks and accelerating
common functions used in operating systems. This paper discusses
how two of the supported operating systems for POWER5S—AIX®
and Linux™—make use of these features to deliver improved
system scalability and performance. In particular, the overheads
for synchronizing translation-lookaside buffer (TLB) invalidations
between processors, and for ensuring that the instruction cache is
kept coherent by software, have been removed. The POWERS
simultaneous multithreading (SMT) implementation has features
which allow operating systems to optimize the system for the kinds
of applications being executed. We discuss how the operating
systems approach the problems of scheduling tasks across the
system, of determining when to switch processors between single-
threaded (ST) and SMT mode, and of accounting accurately for
CPU usage when in the SMT mode.

P. Mackerras

T. S. Mathews

C. Swanberg

Introduction

The POWERS5™* microprocessor [1] introduces many
innovations and improvements, in comparison with
earlier [2] PowerPC Architecture* [3] systems, which
improve the performance and scalability of operating
systems and applications. These include features such

as larger caches with lower latency, an on-chip memory
controller with lower latency to main memory, and faster
1/O buses.

These improvements require no changes in the software
running on the system in order to exploit them. However,
POWERS also introduces a range of improvements which
do require changes to software in order to be exploited.
These include simultaneous multithreading, hardware
instruction cache coherence,' hardware synchronization
of translation-lookaside buffer? (TLB) invalidation
operations, and the hardware barrier synchronization
register. These new features, and the changes made to
AIX* and Linux** to exploit them, are explained in detail
below.

"The term cache coherence refers to the protocols and mechanisms used in a
multiprocessor system to ensure that processors do not sce inconsistent contents
in main memory as a result of keeping local copies of data.

2A translation-lookaside buffer is a local cache which stores recently used address
translations.

Simultaneous multithreading

POWERS introduces simultaneous multithreading
(SMT) to the POWER* line of PowerPC*
implementations. With SMT, each microprocessor core
can fetch from two instruction streams concurrently, and
from the point of view of software has two complete sets
of registers. Thus, each core appears to software as two
complete logical CPUs (subject to some minor constraints
that are visible only to the kernel), which we call threads.
The POWERS SMT implementation also allows software
to render one thread “dormant.” This “single-threaded”
(ST) mode gives all of the chip resources to the remaining
thread.

Supporting SMT efficiently introduces operating
system complexities in the areas of configuration, scaling,
scheduling, hardware thread priority management, and
measurement of CPU utilization.?

Configuration

For both AIX and Linux, SMT mode is enabled or
disabled at the system image level and is enabled by
default. Using the smtctl command, AIX allows system
administrators to switch dynamically between SMT

3Since 1998, i5/OS has had support for multithreading [4]; it supports SMT without
modification.

©Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

0018-8646/05/$5.00 © 2005 IBM

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

P. MACKERRAS ET AL.

533

534

and ST modes, or to switch modes at the next reboot.
Dynamically switching modes causes logical CPUs to
move offline or go online for the running AIX image,
dependent on the mode selected, and invokes the
Dynamic Reconfiguration Application Framework
(DRAF) to enable applications to be notified of and react
to the configuration changes.

Linux provides a global SMT enable/disable facility via
a kernel command-line option that can be specified at
boot time. Although there is no single global control
to enable or disable SMT while the system is running,
individual threads can be brought online or taken offline
at runtime. If one of the two threads in a core is taken
offline, that core is switched to single-thread mode by
the hypervisor.*

Logical CPU scaling

The first effect of SMT is that, because it doubles the
number of logical CPUs, operating systems must be
capable of supporting more logical CPUs, depending
on maximum hardware configurations.

AIX currently supports up to 128 logical CPUs. For
Linux, the maximum number of CPUs supported by the
Linux kernel is specified at compile time. This limit is set
to 128 in SUSE SLES 9,° to 32 in the Red Hat RHEL3
QU36 release, and to 64 in the Red Hat RHELA4 release.

Affinity scheduling

SMT introduces complexities into the kernel scheduling
decisions that are somewhat akin to the complexities

of scheduling tasks on a machine with Non-Uniform
Memory Access (NUMA) characteristics. Nonuniformity
comes into play with SMT because threads on the same
core share the core Level 1 (L1) cache and TLBs. As on
NUMA machines, decisions on where best to schedule
tasks may be driven by the presence of data relevant to
the tasks in various levels of the memory hierarchy and
the nature of memory sharing among the tasks being
scheduled.

Both the AIX and Linux kernel schedulers provide
affinity scheduling to optimize for nonuniformity. This
takes two forms that are relevant to SMT. The first is
affinity domain scheduling. Affinity domains consist of
collections of nearby hardware resources (i.e., processor,
caches), as defined by the memory hierarchy. They are
hierarchical in nature, and the lowest-level affinity
domains represent hardware resources that are closest
together and comprise a single logical processor.
Preference is given in hierarchical order, lowest to
highest, to scheduling a task in the same affinity domain

“The hypervisor is the layer of software that controls the access of the operating
system to processor, memory, and I/O resources. It provides the ability to run multiple
operating system instances on one machine.

SNovell; see www.novell.com.

See www.redhat.com.

P. MACKERRAS ET AL.

as when it last ran in order to leverage the performance
of task-related data that may exist in various levels of
hardware caches or buffers. With SMT enabled, the
lowest-level affinity domains consist of a single thread.
The domains at the next level above this consist of the
threads of a single core and allow affinity domain
scheduling to exploit the sharing of the L1 cache and
TLBs between the two threads of a core.

Process-to-thread affinity is the other form of
scheduling affinity provided by AIX that is of key
importance for SMT. Process threads of the same process
share a common address space and usually share data
within this address space. Process-to-thread affinity
attempts to schedule the process threads of a process
such that shared hardware resources, such as caches,
are leveraged for performance benefit in the sharing of
process data. For SMT, process-to-thread affinity exploits
the sharing of the L1 cache and TLB between the two
threads.

Whether a partition is running in SMT or ST mode,
affinity scheduling is performed only for dedicated
processor partitions, not for shared processor partitions.
In a shared processor partition, the processors seen by the
operating system are virtualized by the hypervisor and
mapped to physical processors in a fairly dynamic fashion
that does not allow affinity scheduling. In fact, the
hardware topology information required by AIX and
Linux in order to determine the affinity domains of a
partition is provided by the POWERS firmware only for
dedicated processor partitions. In contrast, a dedicated
processor partition has a fixed mapping of virtual
processors to physical processors, allowing the operating
system to make meaningful affinity scheduling decisions.

Thread-sensitive scheduling

Under SMT, the two threads of a core interact with each
other far more than two separate CPUs do. At the most
basic level, one thread executing instructions slows down
the other thread owing to contention for resources such
as execution units and register rename slots. More subtly,
because some resources are partitioned rather than
shared, a thread executes slightly slower in SMT mode
than it would in ST mode, even if the other thread is
running in a simple kernel idle loop.

With SMT enabled, AIX and Linux exploit the fact
that tasks run faster in ST mode and use a combination of
thread-sensitive scheduling and hypervisor interactions to
run individual CPUs in ST mode under light task load
conditions. Under these conditions, the AIX and Linux
schedulers attempt to schedule tasks so as to use only one
thread in each core. A thread which has no scheduled
tasks executes an idle loop within the kernel, where it
loops waiting for work. If no work materializes after
some period of time, the idle thread executes an H_CEDE

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

hypervisor call to indicate to the hypervisor that it has no
work to do. If the other thread of the core is active, the
hypervisor places the calling thread in the dormant state,
placing the processor in ST mode and allowing the other
thread to run as fast as possible.

The idle loop delays making the H_CEDE hypervisor
call in the hope that work will soon become available and
to avoid the performance overhead of unnecessarily
placing the thread in a dormant state. A dormant thread
is made active when it is presented with an interrupt or
when it is the target of an H_PROD hypervisor call
executed by another thread. The delay is tunable at boot
time for both AIX and Linux, and also at runtime under
AIX.

As the load increases on a lightly loaded system, the
AIX and Linux schedulers begin to distribute work across
all of the logical CPUs, thus scheduling tasks to
secondary threads. Internally, the AIX and Linux
schedulers maintain a queue of runnable threads for each
logical CPU, since this is more scalable than having a
single global queue and simplifies the implementation of
affinity scheduling. Distributing work across all of the
logical CPUs thus involves rebalancing these run queues;
as a result of this rebalancing, the secondary threads of
the CPUs are made active as work becomes available for
them to do.

Hardware thread priority management

SMT supports hardware thread priorities which can be
used by software to prioritize performance between the
two threads of a core. The difference in priority between
related threads dictates the ratio of processor decode slots
allotted to each of the threads. If one thread is prioritized
over the other, it is likely to run faster because it is
allocated a larger proportion of the instruction decode
slot resources. The lowest priority that can be set by the
operating system also serves as a power-saving mode.

A default normal priority is set for each thread by

the hardware at system reset and on any interrupt or
exception. AIX and Linux maintain the normal priority
setting for most execution contexts.

User programs can set their own thread priorities
within a restricted range, for which the normal priority is
the highest level. However, the thread priority is reset
whenever an interrupt occurs, and the kernel does not
save and restore the thread priority. The use of priorities
other than the normal priority is intended for short
stretches of code and for tight loops, for example when
waiting for a spinlock to become available. In these
circumstances the resetting of the priority to the normal
level on interrupts is acceptable.

AIX and Linux exploit SMT hardware thread priorities
in an effort to provide better overall system performance.
Thread priorities are lowered in places where a thread is

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

doing work that could be characterized as nonproductive.
This provides the sibling thread with the opportunity

to use more execution resources and obtain better
performance. AIX also raises thread priorities in order to
complete more quickly work whose duration can affect
system performance and throughput, e.g., when a high-
priority spinlock is held.

AIX and Linux both use spinlocks for serializing access
to various data structures. In its simplest form, a spinlock
consists simply of a word of memory which is non-zero
when some CPU is holding the lock, or zero when the
lock is not held by any CPU (i.e., it is unlocked). To
acquire the lock, a CPU waits until it is zero and then
performs an atomic test-and-set operation that sets the
word to a non-zero value if it is still zero at that time, as a
single atomic operation. Such atomic operations can be
implemented using the PowerPC Twarx and stwcx.
instructions.

If a thread is waiting for a spinlock to become free, it
is continually reading the lock variable, thus using up
execution resources and slowing down the other thread.
For this reason, AIX and Linux both lower the priority of
the thread waiting for a spinlock to become free, and set
the priority back to normal priority when the lock is
successfully acquired.

AIX and Linux provide a similar optimization for the
idle loop, which is executed by a thread when it has no
scheduled tasks. On AIX, the idle loop spins in a loop
continually examining the head of the thread run queue
data structure for an indication that tasks have been
scheduled to the thread. On Linux, the idle loop spins in a
loop examining a single-bit flag indicating that a task has
become runnable on that logical CPU. The priority of
the thread is lower while it is spinning in this loop; it is
restored to normal priority when the loop is exited. In
contrast to the case of spinlocks, the thread priority is
reduced to the lowest setting. Use of the lowest priority
here provides the benefit of making the largest possible
number of decode slots available to the sibling thread and
of placing the idle thread in power-saving mode. It is
likely that a relatively significant amount of time may
pass before tasks are scheduled to the thread, so slowing
down the discovery of the presence of scheduled tasks as a
result of running at the lowest priority is not of concern.
In comparison, adding latency to the discovery of free
spinlocks through the use of the lowest priority would
have a negative impact on system performance.

AIX provides spinlock primitives that raise the
hardware thread priority of the thread holding the lock.
More specifically, the thread priority is raised by the lock
primitives at the time the lock is acquired and restored to
normal priority by the unlock primitives at the time the
lock is released. These priority-boosting lock primitives
are provided for kernel locks that are in heavy contention

P. MACKERRAS ET AL.

535

536

in order to minimize lock hold times and reduce
contention of these locks. The set of locks which use
this technique is set statically in the source code.

Neither AIX nor Linux currently sets the hardware
thread priority differently for tasks with different
software-scheduling priorities; all tasks are scheduled
at the normal hardware thread priority level.

Measurement of CPU utilization

Being able to accurately measure the utilization of
resources by a particular task or group of tasks is
important in environments in which workloads are
managed. For example, it is often important to ensure
that sufficient resources are allocated to important
processes so that they complete within a certain time
or have the required level of performance. Accurate
measurement is also important when users are charged
according to the amount of computing resources used.

Both SMT and shared processors introduce
complexities into the process of measuring CPU
utilization. Historically, the CPU utilization of a process
was simply measured as the elapsed wall clock time
while the process was running, and it was sometimes
approximated by counting the number of timer interrupts
that occurred while the process was running. SMT
complicates this, because the number of instructions
executed by a thread during a given interval of time vary
depending on the activity of the other thread. In other
words, with SMT, a process cannot be considered to have
a “whole” CPU while it is running if the other thread
is active.

Shared processors introduce complexity because the
virtual processor is not always executing on a real
processor. Because the kernel does not know when or for
how long the virtual processor is dispatched on a real
processor, the elapsed time while the process is scheduled
on the virtual processor is not an accurate measure of the
amount of CPU resource it has received.

To help solve these problems, the POWERS processor
includes a per-thread processor utilization of resources
register (PURR), which increments at the timebase
frequency multiplied by the fraction of cycles on which
the thread can dispatch instructions. In other words, the
PURR counts at the same rate as the timebase in single-
threaded mode; in SMT mode, if each thread has equal
priority, the PURR counts at half the rate of the timebase
register. If one thread has a higher priority than the other,
its PURR will count faster than the other thread’s, but
the sum of the PURR values will always increase at the
same rate as the timebase register. (The PURR does not
count CPU cycles, because the timebase counts at a lower
frequency than the CPU clock.)

The hypervisor virtualizes the PURR so that each
virtual processor sees a PURR value that increments only

P. MACKERRAS ET AL.

while the virtual processor is dispatched on a real
processor. Thus, the change in the PURR value while a
process is running reflects the number of CPU cycles that
were used by the process reasonably accurately. (With
SMT, the notion of “CPU cycles” becomes somewhat
fuzzy, though, because the proportion of the chip’s total
execution resources used by a thread may not be exactly
equal to the proportion of cycles on which the thread
could dispatch instructions.)

AIX contains many facilities for which the accurate
measurement of CPU utilization is crucial, such as
the workload manager (WLM), software priority
management, charge-back accounting, and statistics
provided through performance tools. In the past, these
facilities have used elapsed time or timer-interrupt-based
sampling as the basis for measurement, but they have
now all been converted to use the PURR.

In fact, the AIX infrastructure for measuring CPU
utilization has been re-engineered for POWERS. The
AIX kernel now reads the PURR on each context switch,
on each interrupt/exception entry and exit, and on each
entry to and exit from user mode. This provides accurate
measurement of the CPU time used by each task in user
mode and in the kernel, and the CPU time used in
handling interrupts. The per-task information is
accumulated on a per-process and per-logical-CPU basis.
Accumulation of per-process information occurs once per
second in order to avoid the scalability problems that
would be encountered if the per-process information
were updated every time the PURR is read. Because the
per-process information could potentially be accessed
by many CPUs in the system under a multithread
application, it is important to limit the rate at which the
per-process information is updated. Otherwise, the lock
protecting access to the per-process information could
easily become subject to major contention.

The AIX facilities that depend on the measurement of
CPU utilization use this new infrastructure. For example,
AIX charge-back accounting facilities, including the
fairly standard Unix Accounting Utilities and the newly
introduced Advanced Accounting feature of AIX, use the
infrastructure to obtain per-process CPU utilization for
the purpose of accounting. Similarly, WLM uses process-
level information provided by the infrastructure in
providing share-based workload management and
managing CPU, memory, and I/O bandwidth usage for
classes of processes based upon system administrator-
defined policies.

In addition to providing value in supporting SMT, the
new AIX CPU utilization measurement infrastructure
provides more accurate CPU utilization information than
was available on AIX in the past. In many cases, timer-
interrupt-based sampling was used as the basis for
measurement. This method of measurement yields

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

information that reflects the CPU utilization but is

not an accurate measurement of it. Additionally, the new
infrastructure separately measures and accounts for CPU
utilization by interrupt handlers. This was not the case
in the past, and interrupt handler CPU utilization was
assigned to the interrupted process instead of being
treated as system overhead.

The Linux CPU utilization measurement infrastructure
is currently still using the old method of counting timer
interrupts to determine process CPU usage. The Linux
kernel reads the PURR at regular intervals and makes the
values available through a file in the procfs virtual file
system.” This can be used to estimate how much of a real
processor each virtual processor has been allocated.

Hardware page copier

The POWERS system has a facility that is designed for
efficient copying of memory. This hardware-based facility
efficiently copies 4,096-byte pages from source locations
to destination locations in real memory. Because the
hardware page-copy facility uses real addresses, only the
hypervisor can use it directly. Operating systems can use
the facility through a hypervisor call, which requires

the operating system to specify logical real addresses

for the source and destination pages.

AIX uses the page-copy hypervisor call in several
situations in which a whole page of memory has to be
copied—for example, when a process forks.® (In fact, as
an optimization, the copy for each page of the process
memory is deferred until either the parent or the child
first writes to that page.)

Because AIX must specify real addresses rather than
virtual addresses for the source and destination pages,
it uses the page-copy hypervisor call only in situations
in which the real addresses for the pages to be copied
are guaranteed to remain constant over the page-
copy operation—for example, where the source and
destination pages are fixed in memory. Use of the call
is further limited to cases in which the real addresses
of the source and destination pages are readily known
and available and the real addresses do not have to be
determined through costly lookups based upon the virtual
addresses. The requirement for fixed pages with known
real addresses means that the page-copy hypervisor call is
used primarily by the AIX virtual memory manager.9

Hardware instruction cache coherence
In the PowerPC Architecture [3], implementations are
permitted to have an instruction cache that is not

"The procfs file system exports information about processes and other kernel
internal structures in the form of virtual files that can be accessed using the normal
open, read, and write system calls.

8The fork system call duplicates the current process, creating a new child process
which has a memory image identical to that of the parent (but which is not shared with
the parent).

°Linux does not use the page copier.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

automatically kept coherent with updates to memory.
Instead, instructions are provided for enforcing coherence
when necessary. In particular, the dcbst instruction is
used to write back modified cache lines from the data
cache to memory, and the icbi instruction is used to
invalidate cache lines in the instruction cache. When new
instructions have been placed in an area of memory,
either by direct memory access from an I/O device or
by store instructions executed on a CPU, software must
perform a sequence of dcbst and icbi instructions for
that area of memory before attempting to execute the new
instructions.

This is relevant to operating systems such as AIX and
Linux that demand-page executables. When a program
goes to execute an instruction from a page that is not
present, the operating system maps the page into the
process address space. If the operating system does not
currently have the page in memory, it must first read
it in from the executable file. Before making the page
accessible to the process, the kernel must ensure that the
instruction cache does not contain stale contents for that
page. (The kernel cannot expect the user process to do
this, because the user process has no way of knowing that
the page has just been read in.)

A similar situation exists when a page contains both
instructions and data and is subject to copy-on-write.
When a process executes the fork system call under Linux
or AIX, the writable pages of the process image are not
immediately copied, but instead are made read-only and
shared between the parent and the child. If either the
parent or the child attempts to write to the page, the store
causes a page fault and the kernel then copies the page
and maps the copy into the process address space. If the
page is executable, which is the default under Linux, the
kernel must once again make sure that the instruction
cache does not contain stale contents for the new page.

However, as described elsewhere in this issue, the
POWERS microprocessor maintains coherence of the
instruction cache in hardware. The instruction cache
hardware observes all stores to memory, either by a
processor or an I/O device, and automatically invalidates
any matching lines of the instruction cache. Therefore,
the kernel does not have to do anything to ensure that the
instruction cache does not contain stale contents. This
saves time and reduces complexity in the kernel. Linux
exploits this by branching around the instruction cache
coherence code on POWERS5 machines. AIX also exploits
this, but in a more indirect fashion. When AIX requests
that the hypervisor create a mapping for a page, it can
also request that the hypervisor make the page coherent
with the instruction cache. The POWERS hypervisor is
able to ignore this request, since the coherence is
maintained by hardware.

P. MACKERRAS ET AL.

537

538

A similar issue arises in programs that generate
instructions at runtime, such as a Java** JIT (just-in-
time) compiler. On other PowerPC implementations, the
dcbst and icbi instructions must be used before newly
generated instructions are executed, but on POWERS
they can be omitted.

Hardware synchronization of TLB entry
invalidation

In previous PowerPC implementations such as
POWER3* and POWER4*, only one processor in a
multiprocessor system was permitted to perform a

TLB entry invalidation at any one time. (TLB entry
invalidations are performed using the t1b1e instruction
and are broadcast to all processors in a multiprocessor
system so that they act on all of the TLBs in the system.)
The constraint that only one TLB entry invalidation can
occur at any one time requires software to use a global
lock variable to serialize the execution of the t1bie
instruction between processors.

POWER4 introduced a local form of the t1bie
instruction, called t1biel, which acts only on the local
TLB and does not require synchronization. Linux uses
the t1biel instruction on POWER4 when it is not
running on a hypervisor and when it can determine
that the mapping being invalidated has been used only
on the local processor. When Linux is running under
a hypervisor, only the hypervisor executes t1hie
instructions, because the hypervisor has control of the
virtual-to-real address mappings. On POWERS systems,
the hypervisor need not use a global lock to serialize
t1bie instructions across the machine. This removes
one potential bottleneck from the system and simplifies
the hypervisor software. (Note that running under a
hypervisor is the only mode of operation supported
on POWERS systems.)

Barrier synchronization registers
POWERS introduces a set of barrier synchronization
registers (BSRs) that provide fast, lightweight barrier
synchronization between CPUs. This facility is intended
for use by application programs that are structured in a
SIMD (single-instruction multiple-data) fashion—that is,
where the CPUs are executing similar or identical
instruction streams but processing separate sets of data.
Such programs often proceed in phases, with processing
phases alternating with data communication phases.
Generally the program is required to wait at the end
of each phase until all CPUs have completed that phase.
The BSR is designed to accomplish this efficiently.
Support for the BSR facility is implemented in the
latest releases of AIX 5.2 and 5.3 at the time of writing,
and is planned for the near future for Linux. AIX and
Linux do not plan to use the BSR facility internally but

P. MACKERRAS ET AL.

simply to expose it to applications via an interface to be
determined.

Conclusion

The POWERS system introduces several new features
that together improve performance and scalability in
comparison with earlier POWER systems. AIX and
Linux have been modified where necessary to support
those features and make them available to applications.

Acknowledgments

David Engebretsen and his team designed and
implemented much of the architecture-specific Linux
kernel code for supporting shared processors and SMT,
and in particular the code to cede the virtual processor to
the hypervisor when idle, and the initial version of the
shared-processor spinlocks.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds or Sun
Microsystems, Inc.

References

1. R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM POWERS5
Chip: A Dual-Core Multithreaded Processor,” IEEE Micro 24,
40-47 (March—April 2004).

2. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B.
Sinharoy, “POWER4 System Microarchitecture,” /BM J. Res.
& Dev. 46, No. 1, 5-26 (January 2002).

3. The PowerPC Architecture: A Specification for a New Family
of RISC Processors, Second Edition, C. May, E. Silha, R.
Simpson, and H. Warren, Eds., Morgan Kaufmann Publishers,
Inc., San Francisco, 1994.

4. J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R.
Kunkel, “A Multithreaded PowerPC Processor for Commercial
Servers,” IBM J. Res. & Dev. 44, No. 6, 885-898 (November
2000).

Received August 19, 2004, accepted for publication
January 4, 2005; Internet publication August 10, 2005

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

Paul Mackerras IBM Linux Technology Center OzLabs,

8 Brisbane Avenue CA03, Canberra ACT 2611 Australia
(paulus@au.ibm.com). Dr. Mackerras is a Senior Technical Staff
Member in the IBM Linux Technology Center. He received a B.Sc.
degree in mathematics and computer science and a B.E. degree in
electrical engineering with first-class honors in 1982 from the
University of Queensland, Australia, and a Ph.D. degree in
computer science from the Australian National University in 1988.
He joined IBM in 2001 at the Linux Technology Center “OzLabs”
facility in Canberra, Australia. Dr. Mackerras has overall
responsibility for the parts of the Linux kernel that relate to
running on PowerPC-architecture machines, and is recognized

in this role by both IBM and the Linux kernel development
community.

Thomas S. Mathews IBM Systems and Technology Group,
11501 Burnet Road, Austin, Texas 78740 (tmathews@us.ibm.com).
Mr. Mathews is a Distinguished Engineer in the AIX Product
Development organization within the IBM Systems and
Technology Group. He received a B.Sc. degree in computer science
from the University of Texas at El Paso in 1984. He joined IBM
in 1985 and has been a member of the AIX development team

in Austin, Texas, for seventeen years, developing AIX product
capabilities in the areas of file systems, memory management,
system scalability, virtualization, and hardware exploitation. Mr.
Mathews is currently has overall architectural responsibility for the
AIX kernel, libraries, and commands and utilities.

Randal C. Swanberg I1BM Systems and Technology Group,
11501 Burnet Road, Austin Texas 78758 (rswanber@us.ibm.com).
Mr. Swanberg is a Senior Technical Staff Member with the IBM
Systems and Technology Group in Austin, Texas. After beginning
his career working on defense navigation systems for the U.S.
Army at Fort Hood, Texas, he joined IBM in 1989 and has worked
on several operating system projects including AIX, OSF,
Monterey, and Linux. Mr. Swanberg received a bachelor’s
degree in computer science from Baylor University.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

P. MACKERRAS ET AL.

539

