
Operating system
exploitation of the
POWER5 system

P. Mackerras
T. S. Mathews

R. C. Swanberg

The POWER5e system incorporates several features designed to
improve performance by eliminating bottlenecks and accelerating
common functions used in operating systems. This paper discusses
how two of the supported operating systems for POWER5—AIXt
and Linuxe—make use of these features to deliver improved
system scalability and performance. In particular, the overheads
for synchronizing translation-lookaside buffer (TLB) invalidations
between processors, and for ensuring that the instruction cache is
kept coherent by software, have been removed. The POWER5
simultaneous multithreading (SMT) implementation has features
which allow operating systems to optimize the system for the kinds
of applications being executed. We discuss how the operating
systems approach the problems of scheduling tasks across the
system, of determining when to switch processors between single-
threaded (ST) and SMT mode, and of accounting accurately for
CPU usage when in the SMT mode.

Introduction

The POWER5* microprocessor [1] introduces many

innovations and improvements, in comparison with

earlier [2] PowerPC Architecture* [3] systems, which

improve the performance and scalability of operating

systems and applications. These include features such

as larger caches with lower latency, an on-chip memory

controller with lower latency to main memory, and faster

I/O buses.

These improvements require no changes in the software

running on the system in order to exploit them. However,

POWER5 also introduces a range of improvements which

do require changes to software in order to be exploited.

These include simultaneous multithreading, hardware

instruction cache coherence,1 hardware synchronization

of translation-lookaside buffer2 (TLB) invalidation

operations, and the hardware barrier synchronization

register. These new features, and the changes made to

AIX* and Linux** to exploit them, are explained in detail

below.

Simultaneous multithreading

POWER5 introduces simultaneous multithreading

(SMT) to the POWER* line of PowerPC*

implementations. With SMT, each microprocessor core

can fetch from two instruction streams concurrently, and

from the point of view of software has two complete sets

of registers. Thus, each core appears to software as two

complete logical CPUs (subject to some minor constraints

that are visible only to the kernel), which we call threads.

The POWER5 SMT implementation also allows software

to render one thread ‘‘dormant.’’ This ‘‘single-threaded’’

(ST) mode gives all of the chip resources to the remaining

thread.

Supporting SMT efficiently introduces operating

system complexities in the areas of configuration, scaling,

scheduling, hardware thread priority management, and

measurement of CPU utilization.3

Configuration

For both AIX and Linux, SMT mode is enabled or

disabled at the system image level and is enabled by

default. Using the smtctl command, AIX allows system

administrators to switch dynamically between SMT

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

1The term cache coherence refers to the protocols and mechanisms used in a
multiprocessor system to ensure that processors do not see inconsistent contents
in main memory as a result of keeping local copies of data.
2A translation-lookaside buffer is a local cache which stores recently used address
translations.

3Since 1998, i5/OS has had support for multithreading [4]; it supports SMT without
modification.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 P. MACKERRAS ET AL.

533

0018-8646/05/$5.00 ª 2005 IBM

and ST modes, or to switch modes at the next reboot.

Dynamically switching modes causes logical CPUs to

move offline or go online for the running AIX image,

dependent on the mode selected, and invokes the

Dynamic Reconfiguration Application Framework

(DRAF) to enable applications to be notified of and react

to the configuration changes.

Linux provides a global SMT enable/disable facility via

a kernel command-line option that can be specified at

boot time. Although there is no single global control

to enable or disable SMT while the system is running,

individual threads can be brought online or taken offline

at runtime. If one of the two threads in a core is taken

offline, that core is switched to single-thread mode by

the hypervisor.4

Logical CPU scaling
The first effect of SMT is that, because it doubles the

number of logical CPUs, operating systems must be

capable of supporting more logical CPUs, depending

on maximum hardware configurations.

AIX currently supports up to 128 logical CPUs. For

Linux, the maximum number of CPUs supported by the

Linux kernel is specified at compile time. This limit is set

to 128 in SUSE SLES 9,5 to 32 in the Red Hat RHEL3

QU36 release, and to 64 in the Red Hat RHEL4 release.

Affinity scheduling
SMT introduces complexities into the kernel scheduling

decisions that are somewhat akin to the complexities

of scheduling tasks on a machine with Non-Uniform

Memory Access (NUMA) characteristics. Nonuniformity

comes into play with SMT because threads on the same

core share the core Level 1 (L1) cache and TLBs. As on

NUMA machines, decisions on where best to schedule

tasks may be driven by the presence of data relevant to

the tasks in various levels of the memory hierarchy and

the nature of memory sharing among the tasks being

scheduled.

Both the AIX and Linux kernel schedulers provide

affinity scheduling to optimize for nonuniformity. This

takes two forms that are relevant to SMT. The first is

affinity domain scheduling. Affinity domains consist of

collections of nearby hardware resources (i.e., processor,

caches), as defined by the memory hierarchy. They are

hierarchical in nature, and the lowest-level affinity

domains represent hardware resources that are closest

together and comprise a single logical processor.

Preference is given in hierarchical order, lowest to

highest, to scheduling a task in the same affinity domain

as when it last ran in order to leverage the performance

of task-related data that may exist in various levels of

hardware caches or buffers. With SMT enabled, the

lowest-level affinity domains consist of a single thread.

The domains at the next level above this consist of the

threads of a single core and allow affinity domain

scheduling to exploit the sharing of the L1 cache and

TLBs between the two threads of a core.

Process-to-thread affinity is the other form of

scheduling affinity provided by AIX that is of key

importance for SMT. Process threads of the same process

share a common address space and usually share data

within this address space. Process-to-thread affinity

attempts to schedule the process threads of a process

such that shared hardware resources, such as caches,

are leveraged for performance benefit in the sharing of

process data. For SMT, process-to-thread affinity exploits

the sharing of the L1 cache and TLB between the two

threads.

Whether a partition is running in SMT or ST mode,

affinity scheduling is performed only for dedicated

processor partitions, not for shared processor partitions.

In a shared processor partition, the processors seen by the

operating system are virtualized by the hypervisor and

mapped to physical processors in a fairly dynamic fashion

that does not allow affinity scheduling. In fact, the

hardware topology information required by AIX and

Linux in order to determine the affinity domains of a

partition is provided by the POWER5 firmware only for

dedicated processor partitions. In contrast, a dedicated

processor partition has a fixed mapping of virtual

processors to physical processors, allowing the operating

system to make meaningful affinity scheduling decisions.

Thread-sensitive scheduling
Under SMT, the two threads of a core interact with each

other far more than two separate CPUs do. At the most

basic level, one thread executing instructions slows down

the other thread owing to contention for resources such

as execution units and register rename slots. More subtly,

because some resources are partitioned rather than

shared, a thread executes slightly slower in SMT mode

than it would in ST mode, even if the other thread is

running in a simple kernel idle loop.

With SMT enabled, AIX and Linux exploit the fact

that tasks run faster in ST mode and use a combination of

thread-sensitive scheduling and hypervisor interactions to

run individual CPUs in ST mode under light task load

conditions. Under these conditions, the AIX and Linux

schedulers attempt to schedule tasks so as to use only one

thread in each core. A thread which has no scheduled

tasks executes an idle loop within the kernel, where it

loops waiting for work. If no work materializes after

some period of time, the idle thread executes an H_CEDE

4The hypervisor is the layer of software that controls the access of the operating
system to processor, memory, and I/O resources. It provides the ability to run multiple
operating system instances on one machine.
5Novell; see www.novell.com.
6See www.redhat.com.

P. MACKERRAS ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

534

hypervisor call to indicate to the hypervisor that it has no

work to do. If the other thread of the core is active, the

hypervisor places the calling thread in the dormant state,

placing the processor in ST mode and allowing the other

thread to run as fast as possible.

The idle loop delays making the H_CEDE hypervisor

call in the hope that work will soon become available and

to avoid the performance overhead of unnecessarily

placing the thread in a dormant state. A dormant thread

is made active when it is presented with an interrupt or

when it is the target of an H_PROD hypervisor call

executed by another thread. The delay is tunable at boot

time for both AIX and Linux, and also at runtime under

AIX.

As the load increases on a lightly loaded system, the

AIX and Linux schedulers begin to distribute work across

all of the logical CPUs, thus scheduling tasks to

secondary threads. Internally, the AIX and Linux

schedulers maintain a queue of runnable threads for each

logical CPU, since this is more scalable than having a

single global queue and simplifies the implementation of

affinity scheduling. Distributing work across all of the

logical CPUs thus involves rebalancing these run queues;

as a result of this rebalancing, the secondary threads of

the CPUs are made active as work becomes available for

them to do.

Hardware thread priority management
SMT supports hardware thread priorities which can be

used by software to prioritize performance between the

two threads of a core. The difference in priority between

related threads dictates the ratio of processor decode slots

allotted to each of the threads. If one thread is prioritized

over the other, it is likely to run faster because it is

allocated a larger proportion of the instruction decode

slot resources. The lowest priority that can be set by the

operating system also serves as a power-saving mode.

A default normal priority is set for each thread by

the hardware at system reset and on any interrupt or

exception. AIX and Linux maintain the normal priority

setting for most execution contexts.

User programs can set their own thread priorities

within a restricted range, for which the normal priority is

the highest level. However, the thread priority is reset

whenever an interrupt occurs, and the kernel does not

save and restore the thread priority. The use of priorities

other than the normal priority is intended for short

stretches of code and for tight loops, for example when

waiting for a spinlock to become available. In these

circumstances the resetting of the priority to the normal

level on interrupts is acceptable.

AIX and Linux exploit SMT hardware thread priorities

in an effort to provide better overall system performance.

Thread priorities are lowered in places where a thread is

doing work that could be characterized as nonproductive.

This provides the sibling thread with the opportunity

to use more execution resources and obtain better

performance. AIX also raises thread priorities in order to

complete more quickly work whose duration can affect

system performance and throughput, e.g., when a high-

priority spinlock is held.

AIX and Linux both use spinlocks for serializing access

to various data structures. In its simplest form, a spinlock

consists simply of a word of memory which is non-zero

when some CPU is holding the lock, or zero when the

lock is not held by any CPU (i.e., it is unlocked). To

acquire the lock, a CPU waits until it is zero and then

performs an atomic test-and-set operation that sets the

word to a non-zero value if it is still zero at that time, as a

single atomic operation. Such atomic operations can be

implemented using the PowerPC lwarx and stwcx.
instructions.

If a thread is waiting for a spinlock to become free, it

is continually reading the lock variable, thus using up

execution resources and slowing down the other thread.

For this reason, AIX and Linux both lower the priority of

the thread waiting for a spinlock to become free, and set

the priority back to normal priority when the lock is

successfully acquired.

AIX and Linux provide a similar optimization for the

idle loop, which is executed by a thread when it has no

scheduled tasks. On AIX, the idle loop spins in a loop

continually examining the head of the thread run queue

data structure for an indication that tasks have been

scheduled to the thread. On Linux, the idle loop spins in a

loop examining a single-bit flag indicating that a task has

become runnable on that logical CPU. The priority of

the thread is lower while it is spinning in this loop; it is

restored to normal priority when the loop is exited. In

contrast to the case of spinlocks, the thread priority is

reduced to the lowest setting. Use of the lowest priority

here provides the benefit of making the largest possible

number of decode slots available to the sibling thread and

of placing the idle thread in power-saving mode. It is

likely that a relatively significant amount of time may

pass before tasks are scheduled to the thread, so slowing

down the discovery of the presence of scheduled tasks as a

result of running at the lowest priority is not of concern.

In comparison, adding latency to the discovery of free

spinlocks through the use of the lowest priority would

have a negative impact on system performance.

AIX provides spinlock primitives that raise the

hardware thread priority of the thread holding the lock.

More specifically, the thread priority is raised by the lock

primitives at the time the lock is acquired and restored to

normal priority by the unlock primitives at the time the

lock is released. These priority-boosting lock primitives

are provided for kernel locks that are in heavy contention

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 P. MACKERRAS ET AL.

535

in order to minimize lock hold times and reduce

contention of these locks. The set of locks which use

this technique is set statically in the source code.

Neither AIX nor Linux currently sets the hardware

thread priority differently for tasks with different

software-scheduling priorities; all tasks are scheduled

at the normal hardware thread priority level.

Measurement of CPU utilization
Being able to accurately measure the utilization of

resources by a particular task or group of tasks is

important in environments in which workloads are

managed. For example, it is often important to ensure

that sufficient resources are allocated to important

processes so that they complete within a certain time

or have the required level of performance. Accurate

measurement is also important when users are charged

according to the amount of computing resources used.

Both SMT and shared processors introduce

complexities into the process of measuring CPU

utilization. Historically, the CPU utilization of a process

was simply measured as the elapsed wall clock time

while the process was running, and it was sometimes

approximated by counting the number of timer interrupts

that occurred while the process was running. SMT

complicates this, because the number of instructions

executed by a thread during a given interval of time vary

depending on the activity of the other thread. In other

words, with SMT, a process cannot be considered to have

a ‘‘whole’’ CPU while it is running if the other thread

is active.

Shared processors introduce complexity because the

virtual processor is not always executing on a real

processor. Because the kernel does not know when or for

how long the virtual processor is dispatched on a real

processor, the elapsed time while the process is scheduled

on the virtual processor is not an accurate measure of the

amount of CPU resource it has received.

To help solve these problems, the POWER5 processor

includes a per-thread processor utilization of resources

register (PURR), which increments at the timebase

frequency multiplied by the fraction of cycles on which

the thread can dispatch instructions. In other words, the

PURR counts at the same rate as the timebase in single-

threaded mode; in SMT mode, if each thread has equal

priority, the PURR counts at half the rate of the timebase

register. If one thread has a higher priority than the other,

its PURR will count faster than the other thread’s, but

the sum of the PURR values will always increase at the

same rate as the timebase register. (The PURR does not

count CPU cycles, because the timebase counts at a lower

frequency than the CPU clock.)

The hypervisor virtualizes the PURR so that each

virtual processor sees a PURR value that increments only

while the virtual processor is dispatched on a real

processor. Thus, the change in the PURR value while a

process is running reflects the number of CPU cycles that

were used by the process reasonably accurately. (With

SMT, the notion of ‘‘CPU cycles’’ becomes somewhat

fuzzy, though, because the proportion of the chip’s total

execution resources used by a thread may not be exactly

equal to the proportion of cycles on which the thread

could dispatch instructions.)

AIX contains many facilities for which the accurate

measurement of CPU utilization is crucial, such as

the workload manager (WLM), software priority

management, charge-back accounting, and statistics

provided through performance tools. In the past, these

facilities have used elapsed time or timer-interrupt-based

sampling as the basis for measurement, but they have

now all been converted to use the PURR.

In fact, the AIX infrastructure for measuring CPU

utilization has been re-engineered for POWER5. The

AIX kernel now reads the PURR on each context switch,

on each interrupt/exception entry and exit, and on each

entry to and exit from user mode. This provides accurate

measurement of the CPU time used by each task in user

mode and in the kernel, and the CPU time used in

handling interrupts. The per-task information is

accumulated on a per-process and per-logical-CPU basis.

Accumulation of per-process information occurs once per

second in order to avoid the scalability problems that

would be encountered if the per-process information

were updated every time the PURR is read. Because the

per-process information could potentially be accessed

by many CPUs in the system under a multithread

application, it is important to limit the rate at which the

per-process information is updated. Otherwise, the lock

protecting access to the per-process information could

easily become subject to major contention.

The AIX facilities that depend on the measurement of

CPU utilization use this new infrastructure. For example,

AIX charge-back accounting facilities, including the

fairly standard Unix Accounting Utilities and the newly

introduced Advanced Accounting feature of AIX, use the

infrastructure to obtain per-process CPU utilization for

the purpose of accounting. Similarly, WLM uses process-

level information provided by the infrastructure in

providing share-based workload management and

managing CPU, memory, and I/O bandwidth usage for

classes of processes based upon system administrator-

defined policies.

In addition to providing value in supporting SMT, the

new AIX CPU utilization measurement infrastructure

provides more accurate CPU utilization information than

was available on AIX in the past. In many cases, timer-

interrupt-based sampling was used as the basis for

measurement. This method of measurement yields

P. MACKERRAS ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

536

information that reflects the CPU utilization but is

not an accurate measurement of it. Additionally, the new

infrastructure separately measures and accounts for CPU

utilization by interrupt handlers. This was not the case

in the past, and interrupt handler CPU utilization was

assigned to the interrupted process instead of being

treated as system overhead.

The Linux CPU utilization measurement infrastructure

is currently still using the old method of counting timer

interrupts to determine process CPU usage. The Linux

kernel reads the PURR at regular intervals and makes the

values available through a file in the procfs virtual file

system.7 This can be used to estimate how much of a real

processor each virtual processor has been allocated.

Hardware page copier
The POWER5 system has a facility that is designed for

efficient copying of memory. This hardware-based facility

efficiently copies 4,096-byte pages from source locations

to destination locations in real memory. Because the

hardware page-copy facility uses real addresses, only the

hypervisor can use it directly. Operating systems can use

the facility through a hypervisor call, which requires

the operating system to specify logical real addresses

for the source and destination pages.

AIX uses the page-copy hypervisor call in several

situations in which a whole page of memory has to be

copied—for example, when a process forks.8 (In fact, as

an optimization, the copy for each page of the process

memory is deferred until either the parent or the child

first writes to that page.)

Because AIX must specify real addresses rather than

virtual addresses for the source and destination pages,

it uses the page-copy hypervisor call only in situations

in which the real addresses for the pages to be copied

are guaranteed to remain constant over the page-

copy operation—for example, where the source and

destination pages are fixed in memory. Use of the call

is further limited to cases in which the real addresses

of the source and destination pages are readily known

and available and the real addresses do not have to be

determined through costly lookups based upon the virtual

addresses. The requirement for fixed pages with known

real addresses means that the page-copy hypervisor call is

used primarily by the AIX virtual memory manager.9

Hardware instruction cache coherence
In the PowerPC Architecture [3], implementations are

permitted to have an instruction cache that is not

automatically kept coherent with updates to memory.

Instead, instructions are provided for enforcing coherence

when necessary. In particular, the dcbst instruction is

used to write back modified cache lines from the data

cache to memory, and the icbi instruction is used to

invalidate cache lines in the instruction cache. When new

instructions have been placed in an area of memory,

either by direct memory access from an I/O device or

by store instructions executed on a CPU, software must

perform a sequence of dcbst and icbi instructions for

that area of memory before attempting to execute the new

instructions.

This is relevant to operating systems such as AIX and

Linux that demand-page executables. When a program

goes to execute an instruction from a page that is not

present, the operating system maps the page into the

process address space. If the operating system does not

currently have the page in memory, it must first read

it in from the executable file. Before making the page

accessible to the process, the kernel must ensure that the

instruction cache does not contain stale contents for that

page. (The kernel cannot expect the user process to do

this, because the user process has no way of knowing that

the page has just been read in.)

A similar situation exists when a page contains both

instructions and data and is subject to copy-on-write.

When a process executes the fork system call under Linux

or AIX, the writable pages of the process image are not

immediately copied, but instead are made read-only and

shared between the parent and the child. If either the

parent or the child attempts to write to the page, the store

causes a page fault and the kernel then copies the page

and maps the copy into the process address space. If the

page is executable, which is the default under Linux, the

kernel must once again make sure that the instruction

cache does not contain stale contents for the new page.

However, as described elsewhere in this issue, the

POWER5 microprocessor maintains coherence of the

instruction cache in hardware. The instruction cache

hardware observes all stores to memory, either by a

processor or an I/O device, and automatically invalidates

any matching lines of the instruction cache. Therefore,

the kernel does not have to do anything to ensure that the

instruction cache does not contain stale contents. This

saves time and reduces complexity in the kernel. Linux

exploits this by branching around the instruction cache

coherence code on POWER5 machines. AIX also exploits

this, but in a more indirect fashion. When AIX requests

that the hypervisor create a mapping for a page, it can

also request that the hypervisor make the page coherent

with the instruction cache. The POWER5 hypervisor is

able to ignore this request, since the coherence is

maintained by hardware.

7The procfs file system exports information about processes and other kernel
internal structures in the form of virtual files that can be accessed using the normal
open, read, and write system calls.
8The fork system call duplicates the current process, creating a new child process
which has a memory image identical to that of the parent (but which is not shared with
the parent).
9Linux does not use the page copier.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 P. MACKERRAS ET AL.

537

A similar issue arises in programs that generate

instructions at runtime, such as a Java** JIT (just-in-

time) compiler. On other PowerPC implementations, the

dcbst and icbi instructions must be used before newly

generated instructions are executed, but on POWER5

they can be omitted.

Hardware synchronization of TLB entry
invalidation
In previous PowerPC implementations such as

POWER3* and POWER4*, only one processor in a

multiprocessor system was permitted to perform a

TLB entry invalidation at any one time. (TLB entry

invalidations are performed using the tlbie instruction

and are broadcast to all processors in a multiprocessor

system so that they act on all of the TLBs in the system.)

The constraint that only one TLB entry invalidation can

occur at any one time requires software to use a global

lock variable to serialize the execution of the tlbie
instruction between processors.

POWER4 introduced a local form of the tlbie
instruction, called tlbiel, which acts only on the local

TLB and does not require synchronization. Linux uses

the tlbiel instruction on POWER4 when it is not

running on a hypervisor and when it can determine

that the mapping being invalidated has been used only

on the local processor. When Linux is running under

a hypervisor, only the hypervisor executes tlbie
instructions, because the hypervisor has control of the

virtual-to-real address mappings. On POWER5 systems,

the hypervisor need not use a global lock to serialize

tlbie instructions across the machine. This removes

one potential bottleneck from the system and simplifies

the hypervisor software. (Note that running under a

hypervisor is the only mode of operation supported

on POWER5 systems.)

Barrier synchronization registers
POWER5 introduces a set of barrier synchronization

registers (BSRs) that provide fast, lightweight barrier

synchronization between CPUs. This facility is intended

for use by application programs that are structured in a

SIMD (single-instruction multiple-data) fashion—that is,

where the CPUs are executing similar or identical

instruction streams but processing separate sets of data.

Such programs often proceed in phases, with processing

phases alternating with data communication phases.

Generally the program is required to wait at the end

of each phase until all CPUs have completed that phase.

The BSR is designed to accomplish this efficiently.

Support for the BSR facility is implemented in the

latest releases of AIX 5.2 and 5.3 at the time of writing,

and is planned for the near future for Linux. AIX and

Linux do not plan to use the BSR facility internally but

simply to expose it to applications via an interface to be

determined.

Conclusion
The POWER5 system introduces several new features

that together improve performance and scalability in

comparison with earlier POWER systems. AIX and

Linux have been modified where necessary to support

those features and make them available to applications.

Acknowledgments
David Engebretsen and his team designed and

implemented much of the architecture-specific Linux

kernel code for supporting shared processors and SMT,

and in particular the code to cede the virtual processor to

the hypervisor when idle, and the initial version of the

shared-processor spinlocks.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds or Sun
Microsystems, Inc.

References
1. R. Kalla, B. Sinharoy, and J. M. Tendler, ‘‘IBM POWER5

Chip: A Dual-Core Multithreaded Processor,’’ IEEE Micro 24,
40–47 (March–April 2004).

2. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B.
Sinharoy, ‘‘POWER4 System Microarchitecture,’’ IBM J. Res.
& Dev. 46, No. 1, 5–26 (January 2002).

3. The PowerPC Architecture: A Specification for a New Family
of RISC Processors, Second Edition, C. May, E. Silha, R.
Simpson, and H. Warren, Eds., Morgan Kaufmann Publishers,
Inc., San Francisco, 1994.

4. J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R.
Kunkel, ‘‘A Multithreaded PowerPC Processor for Commercial
Servers,’’ IBM J. Res. & Dev. 44, No. 6, 885–898 (November
2000).

Received August 19, 2004; accepted for publication
January 4,

P. MACKERRAS ET AL. IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

538

2005; Internet publication August 10, 2005

Paul Mackerras IBM Linux Technology Center OzLabs,
8 Brisbane Avenue CA03, Canberra ACT 2611 Australia
(paulus@au.ibm.com). Dr. Mackerras is a Senior Technical Staff
Member in the IBM Linux Technology Center. He received a B.Sc.
degree in mathematics and computer science and a B.E. degree in
electrical engineering with first-class honors in 1982 from the
University of Queensland, Australia, and a Ph.D. degree in
computer science from the Australian National University in 1988.
He joined IBM in 2001 at the Linux Technology Center ‘‘OzLabs’’
facility in Canberra, Australia. Dr. Mackerras has overall
responsibility for the parts of the Linux kernel that relate to
running on PowerPC-architecture machines, and is recognized
in this role by both IBM and the Linux kernel development
community.

Thomas S. Mathews IBM Systems and Technology Group,
11501 Burnet Road, Austin, Texas 78740 (tmathews@us.ibm.com).
Mr. Mathews is a Distinguished Engineer in the AIX Product
Development organization within the IBM Systems and
Technology Group. He received a B.Sc. degree in computer science
from the University of Texas at El Paso in 1984. He joined IBM
in 1985 and has been a member of the AIX development team
in Austin, Texas, for seventeen years, developing AIX product
capabilities in the areas of file systems, memory management,
system scalability, virtualization, and hardware exploitation. Mr.
Mathews is currently has overall architectural responsibility for the
AIX kernel, libraries, and commands and utilities.

Randal C. Swanberg IBM Systems and Technology Group,
11501 Burnet Road, Austin Texas 78758 (rswanber@us.ibm.com).
Mr. Swanberg is a Senior Technical Staff Member with the IBM
Systems and Technology Group in Austin, Texas. After beginning
his career working on defense navigation systems for the U.S.
Army at Fort Hood, Texas, he joined IBM in 1989 and has worked
on several operating system projects including AIX, OSF,
Monterey, and Linux. Mr. Swanberg received a bachelor’s
degree in computer science from Baylor University.

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005 P. MACKERRAS ET AL.

539

