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The IBM pSeries® clustered and parallel processing systems
require high-speed, low-latency communication among processor
nodes. The 2-Link Switch Network Interface and 4-Link Switch
Network Interface for the pSeries High Performance Switch are
the adapters which provide the communication infrastructure for
the pSeries p655 and p690 servers. A unique approach was used
during the functional verification of these adapters that yielded
benefits over the methodology used for the previous-generation
product—the SP™ Switch2 Adapter. The approach used on

the Switch Network Interface introduced the concept of using
microcode during the functional verification process. This paper
gives an overview of functional verification, followed by a
description of the SP Switch2 Adapter and the Switch Network
Interface. The verification methodologies used on these adapters
are described and compared. Finally, the benefits of implementing
hardware/software co-verification on the Switch Network Interface

throughout the development cycle are described.

Introduction

In clustered and parallel processing systems, high-speed,
low-latency communication among processor nodes is
essential. The hardware to support this high-performance
network for the IBM pSeries* p655 and p690 servers
consists of adapters within the node complex and external
switches. The 2-Link Switch Network Interface and the
4-Link Switch Network Interface for the pSeries High
Performance Switch (HPS) play a key role in these
systems, because they offload much of the communication
workload from the processor nodes. Each node connects
to the pSeries HPS through a Switch Network Interface
(SNI), as shown in Figure 1.

The SNI enables high-speed communication among
servers. Each server can contain multiple adapters (SNIs)
that communicate with one another over the network.
Data is transferred between servers via message-passing
protocols implemented through a combination of
hardware and software. To send information between
servers, the software issues tasks to the hardware [or,
more specifically, the Switch Interface (SI) chip on the
SNIJ, which then sends the data to the appropriate
destination server.

The SI chip is an application-specific integrated circuit
(ASIC) chip and the primary component on the SNI. A
special-purpose processor within the SI chip is driven
by microcode. This paper focuses on the chip-level
verification of the SI chip and how inclusion of the
microcode in the verification environment decreased
escapes of errors into the hardware and improved
development efficiency and overall time to market
compared with those of the previous product.

The first section of this paper is an overview of functional
verification and the techniques that are commonly used.
Next, the hardware-only functional verification of the
chips on the previous adapter is discussed. The third
section describes the architecture of the SI chip. This is
followed by a section which describes the functional
verification environment used to test this chip. The
benefits of using hardware/software co-verification for
the SI chip are summarized in the last section.

Functional verification overview

Before a chip is fabricated, many types of verification are
performed to ensure that the chip functions properly.
These include technology rules checks, timing analysis,
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and functional verification, which is the focus of this
paper. Functional verification is concerned with the
validation of all of the chip functions in normal operating
modes as well as after an error condition. If a chip or
system design contains a processor or a sequencer,
hardware/software co-verification may be used to verify
system operation before the hardware is manufactured.
In hardware/software co-verification, the verification
environment includes the software, firmware, or
microcode that executes on the processor or sequencer,
as well as the model of the chip hardware.

Functional verification may be performed at the unit,
chip, subsystem, and/or system levels. A unit is a logical
partition of the design which performs a specific function.
For example, the portion of the design which provides an
interface to an external bus might be considered a unit.
A chip comprises units and is an entity that can be
fabricated in silicon. A subsystem is a collection of two or
more chips that communicate directly with each other. In
functional verification, a system is a collection of two or
more chips including a processor chip and memory. The
focus of the testing is different at each level. In unit
verification, testing is targeted toward the function of
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an individual block. This can be accomplished through
various verification methods, including formal verification,
which can provide full proofs of functional properties;
deterministic tests, in which each separate test targets a
specific operation; random tests, in which operations are
mixed in a random manner; and biased random testing,
which allows the user to control the randomness for
better coverage. As verification moves to environments
that include more of the design hierarchy (unit to system),
the testing is targeted toward interconnections and
interactions between the smaller pieces. At the chip level,
where all of the functional blocks of the chip are
integrated, random verification is often used to create
complex test scenarios to comprehensively test the chip.
In subsystem verification, multiple chips are included in a
verification environment to test their interoperability. For
1/O chips, such as the SI chip, system-level verification
includes processors, memory, and the I/O chips [1].

For the chip-level verification of the SI chip, a biased
random transaction-based simulation environment was
used. The SI chip simulation model was built from
the Hardware Description Language (HDL) design,
and a cycle simulator was used. This is similar to the
environments used on recent pSeries [1] and zSeries*
processor chips [2] and I/O chips. The object-oriented
C-++ simulation code consists of driver code, which
presents stimuli to the chip, and monitor code, which
predicts and checks the behavior of the chip. Both the
driver and monitor code operate “on the fly,” creating
inputs and checking results every simulation cycle.
Parameters are used by the driver to bias the random
generation of the transactions that are driven into the SI
chip [3]. These parameters allow the verification engineer
to focus the testing toward required scenarios.

The SP Switch2 Adapter and its verification
environment

To better understand the advantages of the SI chip
verification methodology, it is useful to review the design
and functional verification of the previous product. The
SP Switch2 Adapter, the previous-generation message-
passing adapter, provided connectivity between nodes,
just as the Switch Network Interface does, and it fit into
the system just as the SNI does in Figure 1. The SP
Switch2 Adapter contained three special-purpose ASIC
chips, a PowerPC* microprocessor, and static random
access memory (SRAM), as shown in Figure 2. ASIC-1
served as an interface to the system processor bus.
ASIC-2 bridged the other two ASICs and provided access
to dynamic RAM (DRAM) storage on the adapter which
was used to gather the message data that was being sent
or received over the SP Switch2 network. ASIC-3
interfaced with the PowerPC microprocessor and
SRAM and provided the links to the SP Switch2
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network. In system operation, firmware running on the
microprocessor controlled the flow of message-passing
traffic between the system processor/memory complex
and the network.

In the functional verification of the SP Switch2
Adapter, each of the ASIC chips was initially tested
separately; the three chips were then combined into a
larger verification environment. Since the chips were
developed well in advance of the firmware, the chip
verification environments could not include any of the
firmware. Because there was no firmware, it was not
necessary to include the PowerPC microprocessor in the
simulation models. A C++ bus functional model was used
to emulate the behavior of the bus at the PowerPC
microprocessor interface. The simulation driver
essentially replaced the firmware function in the adapter
subsystem by randomly generating the commands needed
for message-passing operations and sending them to
ASIC-3. After the ASIC chips were fabricated and the
first SP Switch2 Adapters were built, testing began. When
the firmware became available, additional releases of the
chips were required to change the chip designs to work
better with the firmware in the system. Each chip release
required additional functional verification prior to its
release and additional testing after the chips were
manufactured. As a result of this experience, the chip
microcode was designed as an integral part of the primary
verification environment for the new SI chip.

SI chip overview

The SI chip is the new hardware that enables system
software to implement message-passing transactions
between IBM pSeries p655 and p690 servers. The
software makes requests to the hardware to send data
from one server to another. Each of these requests, which
are known as descriptors, is placed in a descriptor list
which exists in memory on the server. Multiple descriptor
lists can be processed simultaneously by the SI chip.
Descriptors can exist on the source server, on the
destination server, or on both source and destination
servers. Once the software issues an indication that
everything has been prepared for a message-passing
transaction, the SI chip at the source uses the information
in the descriptor to obtain data from system memory
and send it through the network to the SI chip in the
destination server. The destination SI chip uses a
descriptor to determine where to write the data in the
memory of the destination server. Information sent
through the network is contained in direct memory access
(DMA) packets that are constructed within the SI chip.
The DMA packets consist of two parts: The first part is a
header that provides control information to the
destination node, and the second part is the actual
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message data that is being transferred, also referred to as
payload data.

Figure 3 is a block diagram of the SI chip. The
processor bus interface logic handles the communication
between the chip and the server processor complex. Data
flow within the SI chip is controlled primarily by the
inter-partition communication (IPC) block. The IPC
is a new custom-designed block that contains a 64-bit
arithmetic and logic unit (ALU), a sequencer, and a
hardware dispatch unit. Together, these units process
instructions contained within microcode that is loaded in
an on-chip SRAM. This microcode was newly developed
specifically for the IPC. The IPC determines which data it
wishes to retrieve from the memory on the server and
sends the appropriate requests to the processor bus
interface. It then controls the construction of the DMA
packet to be sent over the link. The transport logic directs
the message to one of the two link interface ports, and the
arbiter controls the flow of data from the two transport
units to the ports. The reverse process is followed when a
message is received from the network (i.e., entering from
the right side of Figure 3).

Since most of the control functionality within the SI
chip is implemented in IPC microcode, rather than with a
hardware state machine, the SI chip provides a highly
programmable environment. This approach makes it
easier to implement functionality that would alternatively
have resulted in overly complex and inflexible hardware.
The ability to modify the microcode can be useful for
adapting to alternate message-passing protocols.

Sl chip functional verification

The verification environment for the SI chip comprises
a hardware model, the C4++ verification code, IPC
microcode, and simulation parameters. The hardware
model is a subsystem model made up of two SI chips
connected by a cable macro that allows different cable
lengths to be simulated between the chips. Figure 4
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illustrates how the verification code logically works with
the model. Each chip has a random command driver for
the processor bus interface, a service port driver, and a
chip monitor. There is also a small monitor at the link
interface which provides an additional level of internal
checking and failure isolation. The presence of the IPC in
the model is important in that this allows its microcode to
be loaded before simulation begins, permitting hardware/
software co-verification. This ability to load and run the
microcode is a key difference between this methodology
and the verification methodology used for the SP Switch2
Adapter. Finally, a set of control parameters is used to
guide the test case. The entire environment utilizes the
SimAPI programming interface [4] in conjunction with a
high-performance cycle simulator [5].

The random driver handles all interactions with the
model for both message-passing and non-message-
passing operations. The latter include actions for service
and interrupts. For message-passing operations, the
driver creates message-passing requests to be sent to an
adapter. These result in specific hardware commands
being placed on appropriate facilities in the simulation
model, initiating further processing by the chip. This in
turn leads to requests exiting the chip, which are also
handled by the driver. The chip that sends packets across
the link makes outbound requests to the driver for
descriptor data, source payload data, and address-
translation data. Address-translation data is required
when the addressing mode of a request indicates the use
of virtual addresses (instead of real addresses) for data
locations in memory. For a chip that is receiving packets,
the requests to the driver can be to supply data (e.g.,
descriptor data or address-translation data) or to write
payload data to memory. Whenever necessary, the driver
provides appropriate handshaking responses, for example
returning a “write done” acknowledgment after payload
data is written to memory.
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To complete the robust checking required in the
verification effort, two levels of checking are incorporated
in the environment. First, the driver includes code to
check all traffic over the processor bus interface in order
to ensure adherence to proper processor bus protocol.
Second, a major benefit is derived from the main chip
monitor, which examines all inputs to the chip in order to
predict and then verify that the correct output occurs.

To guide the various testing situations required, the
driver uses a large number of simulation parameters and
controls. The vast majority of these are maintained in one
base file. A set of secondary parameter files contains
overrides to the base set to produce different test
scenarios. During the early stages of development, a
number of specialized controls were added to the base
and secondary files to restrict various aspects of the
testing rather than allowing them to be completely
random. For example, special controls were put in place
to allow only one or two descriptor lists to be processed at
any one time, and to cause activity on these lists to be
serialized instead of possibly overlapping. The general
controls, which are more widely used than the special
controls, take the form of probability tables that are
used to create random biasing both within a single
test case and across many test cases. Some examples
of the probability table controls used include types of
commands, frequency of commands, and amount of
payload data.

The microcode used in the SI chip verification
environment was developed incrementally to be used for
final-release-level microcode (i.e., to be shipped with the
product). The source code written by the microcode
developers utilized the C programming context. It was
written in a macro- and function-oriented manner, and as
such does not have the outward appearance of many C
program source files. An example portion of the source
code for an error-handling routine appears in Figure 5.

When the source code is compiled, several output files
are produced. One of these is the listing file, which is a key
source of information for use in debugging microcode
and hardware problems. The listing file uses both
hexadecimal and textual representations of the actual
microcode instructions and notes where they exist in
relation to each other. The portion of a listing file
resulting from compilation of the error-handling routine
source code noted above is shown in Figure 6. The
microcode compile process also creates a model
initialization file (MIF) to be used in simulation. This
file contains the microcode instructions, along with
information about where the instructions are to be loaded
in the [IPC SRAM. The MIF is loaded into the model in a
single simulation cycle just prior to the start of testing.
Each line of the MIF contains a model SRAM facility
name, followed by array-element and bit-position
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label (R_ERR_ACTIV_TA_R);

XORIO08_B_ACTIVE_TA(D_ALU, A_GR_AF, R_ERR_TYPE_WIN_KEY, R_ERR_ACTIV_IA_R);

cmt("Update counter in GPR for the dropped packet");

win_state_tab_entry.dw = 0;

win_state_tab_entry.bit.receive_packets_dropped = ALL_ONES_LL;
ADDMODIO8_M(D_GR_AD, A_GR_AD, win_state_tab_entry.dw, 0x1);

win_state_tab_entry.dw = 0;

win_state_tab_entry.bit.key_mismatch_count = 1;

ORIO8_M_BNE(D_ALU, A_PASS_MASK_VAL, win_state_tab_entry.dw, O,

cmt("Increment key_mismatch_count");
win_state_tab_entry.dw = 0;

R_ERR_WR_BAK) ;

win_state_tab_entry.bit.key_mismatch_count = ALL_ONES_LL;
ADDMOD_M(D_GR_AD, A_GR_AD, win_state_tab_entry.dw, B_ALU);

Example of an error-handling routine in a microcode source file.

R_ERR_ACTIV_IA_R:

0361  4e38007e XORO8_B_ACTIVE_IA

//Update counter in GPR for the dropped packet
0362 5ce8107e ADDMODIO8_M

0363 46380fbe ORIO8_M_BNE D_ALU
//Increment key_mismatch_count

0364 1ce8107f ADDMOD_M

D_ALU A_GR_AF
Mask 00000000ffffffff (H =32 L = 63 n = 0)

D_GR_AD A_GR_AD
Mask 0000000100000000 (H = 31 L = 31 n
A_PASS_MASK_VALUE

R_ERR_TYPE_WIN_KEY R_ERR_ACTIV_IA_R

win_state_tab_entry.dw O0xl

0)
win_state_tab_entry.dw 0

R_ERROR_WRITE_BACK

Mask ffffffff00000000 (H = 32 L = 63 n = 1)
D_GR_AD A_GR_AD

win_state_tab_entry.dw B_ALU

Example of post-compile listing for a microcode error-handling routine.

information used to identify exactly where the data
is to be loaded. Following the SRAM and position
information is the hexadecimal microcode instruction
data.

Before providing the microcode to the SI chip
verification environment, the microcode developers used
a special model to perform some initial testing. This
model was a single SI chip with its link outputs connected
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to its link inputs, referred to as a wrapped model. The
wrapped model was also used to test the microcode
bootstrap load process. In the laboratory and customer
environments, the microcode is loaded into the SI chip
using a bootstrap process in which the microcode is sent
from system memory to the SI chip. This happens quickly
in real time, but it takes too many simulation cycles to do
this for every functional test case. In light of this, the
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bootstrap load process was verified separately from the
random functional testing for the SI chip. In the SI chip
verification environment, a shortcut process is used in
which the microcode is loaded from the MIF.

To properly stimulate the hardware and microcode, the
SI chip random driver basically emulates a portion of the
server software function. This differs from the SP Switch2
Adapter verification, since each chip in that environment
was tested with pseudo-random stimuli to the limits of
its specified function with minimal regard to how the
software might eventually drive it. Because descriptor lists
are at the heart of message-passing operations, each
instance of the SI chip driver individually handles
building and managing all aspects of its lists. In order to
implement support with this breadth, numerous variables
related to the actual processing of descriptors had to be
considered. In turn, solutions for these issues had to be
incorporated either in the code or as control parameters.
Some examples of these variables include

* Length of descriptor lists and their location in
memory.

* Amount of payload data.

* Addressing mode (real or translation) used for
descriptor list and/or payload data locations.

* Memory boundary considerations for descriptors and
payload data.

* An image of the descriptor lists and payload data
storage (must be maintained throughout a test).

e Start and end locations of descriptor lists and payload
data [must be determined and varied within the
context of adapter requests being on cache-line
(128-byte) boundaries].

e Number of descriptor lists in process at a given time.

* Frequency with which active channels make requests
to the adapter.

Several of the issues were actually multidimensional
in nature. For example, in dealing with boundary
considerations, the requirements mandate that
descriptors must start on a 16-byte boundary and lists
may not cross a page boundary, whereas payload data
can start on any boundary. Another example is the
addressing mode. If address translation is to be used, it
requires the creation of appropriate addressing schemes
along with page tables and other related support. Most
elements of this support are established prior to the start
of simulation and many remain static during the run,
while some change throughout the simulation. These
controls and descriptor list variables force the random
driver to produce valid transactions while also
allowing the monitor to perform its prediction of
results correctly.
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Aside from the base mainline test focus, additional
effort was put into exercising other situations in the
hardware. Such scenarios included exercising boundary
and stress conditions, such as causing full buffer
conditions, holding off traffic/data flow, and flooding the
device with requests. In addition to these tests, complete
support for recovery and error testing was added.

Manipulating all of the available control parameters in
a random manner drives the microcode in various ways,
which in turn causes the hardware to be utilized in
different ways. This randomization, done across literally
millions of test cases, provides the desired level of test
coverage required for this type of hardware verification
environment. While the primary goal of this simulation
effort is to remove hardware design flaws, a substantial
amount of the microcode is also exercised. This
significantly increases the chances of success when
the fabricated chip and microcode first come together
in the laboratory.

Advantages of the hardware/software
co-verification of the Sl chip

The methodology of simulating the hardware and
microcode together on the SI chip yielded advantages
over the SP Switch2 Adapter methodology. One of the
key advantages was reduced time to market. Time was
saved because it was not necessary to develop a driver
that would mimic the behavior of the microcode. This
would have been a large effort, and it would have
duplicated the work done by the microcode developers.
Also, since the driver would not be able to generate
exactly the same command sequences as the final
microcode, some hardware defects might not have been
found until late in the development cycle, when the
hardware and microcode were tested together. By using
co-verification, late releases of additional passes of the
hardware were avoided, thus improving overall time to
market. Analysis of the SI chip defect data shows that
about 38% of the 255 hardware defects identified in this
simulation environment were found as a direct result of
running with the microcode.

Microcode development was a major contributor to
total system development time. The SI chip simulation
environment found 87 microcode defects. The process of
finding many of these microcode errors was enhanced by
monitoring the current microcode address. The SI chip
monitor code used this address to derive microcode state
information. Knowing that the microcode should always
be in an idle state upon completion of a test case, the
monitor helped identify microcode defects that would
otherwise go undetected if only message-passing
transactions were monitored. Also, through the use of
current address information collected after a test-case
failure, the microcode team was given a good starting
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point to begin its debugging process, resulting in greater
efficiency. Overall, microcode development was able

to progress at a faster rate when compared with the
alternative of waiting to develop the microcode until
the hardware had been manufactured.

In addition to faster time to market, another advantage
of simulating the hardware with the microcode was
increased flexibility when deciding where to fix system
problems. For example, a microcode defect that would
have been difficult to fix in microcode was instead fixed in
hardware. Alternatively, hardware defects were either
temporarily worked around or permanently fixed by
making adjustments to the microcode. Using a microcode
fix to temporarily work around a hardware problem
allowed the verification team to make progress until a
hardware fix was available. This methodology also has
the ability to uncover architectural flaws. System function
that had mistakenly been omitted from hardware and
microcode was identified and marked for implementation
in higher-level software. An example of this type of
architectural problem involved error identification and
recovery. When errors occur on the interface between
adapters, it is possible for the source adapter, which sends
information to the destination adapter, to resend a
packet. It is the responsibility of the destination adapter
to ignore any duplicate packets that it may receive. A
defect was found in which a particular type of packet,
called a sync packet, would not be ignored by the
destination adapter if duplicate versions of this packet
were received. This resulted in duplicate information
being incorrectly written to the destination server. The
architectural description had failed to account for this
scenario, and left both the hardware and microcode
without the ability to identify duplicate sync packets.
Performance issues, which can often be difficult to remedy
in hardware late in the design cycle, were identified early
using the visibility into hardware/microcode interaction
available in the SI chip verification environment. By
simulating hardware and software together, which more
closely represented the actual manufactured system,
bring-up times for the Switch Network Interface were
reduced.

Conclusion

In contrast to the verification methodology used on
the SP Switch2 Adapter, the hardware/software co-
verification methodology developed for the SI chip
produced an environment that more closely reflected
the final product. This was accomplished by modeling
the verification environment around a system-level
architectural description of the data transfer protocol.
Taking this approach required developing driver and
monitor code for the verification environment that closely
conformed to the architecture. Using real microcode,
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instead of a simulation approximation, also brought the
verification environment closer to emulating the final
production system. The benefits realized by this approach
were decreased time to market and increased flexibility
when defects were encountered in the system before and
after manufacturing.

*Trademark or registered trademark of International Business
Machines Corporation.
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