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The IBM pSeriest clustered and parallel processing systems
require high-speed, low-latency communication among processor
nodes. The 2-Link Switch Network Interface and 4-Link Switch
Network Interface for the pSeries High Performance Switch are
the adapters which provide the communication infrastructure for
the pSeries p655 and p690 servers. A unique approach was used
during the functional verification of these adapters that yielded
benefits over the methodology used for the previous-generation
product—the SPe Switch2 Adapter. The approach used on
the Switch Network Interface introduced the concept of using
microcode during the functional verification process. This paper
gives an overview of functional verification, followed by a
description of the SP Switch2 Adapter and the Switch Network
Interface. The verification methodologies used on these adapters
are described and compared. Finally, the benefits of implementing
hardware/software co-verification on the Switch Network Interface
throughout the development cycle are described.

Introduction
In clustered and parallel processing systems, high-speed,

low-latency communication among processor nodes is

essential. The hardware to support this high-performance

network for the IBM pSeries* p655 and p690 servers

consists of adapters within the node complex and external

switches. The 2-Link Switch Network Interface and the

4-Link Switch Network Interface for the pSeries High

Performance Switch (HPS) play a key role in these

systems, because they offload much of the communication

workload from the processor nodes. Each node connects

to the pSeries HPS through a Switch Network Interface

(SNI), as shown in Figure 1.

The SNI enables high-speed communication among

servers. Each server can contain multiple adapters (SNIs)

that communicate with one another over the network.

Data is transferred between servers via message-passing

protocols implemented through a combination of

hardware and software. To send information between

servers, the software issues tasks to the hardware [or,

more specifically, the Switch Interface (SI) chip on the

SNI], which then sends the data to the appropriate

destination server.

The SI chip is an application-specific integrated circuit

(ASIC) chip and the primary component on the SNI. A

special-purpose processor within the SI chip is driven

by microcode. This paper focuses on the chip-level

verification of the SI chip and how inclusion of the

microcode in the verification environment decreased

escapes of errors into the hardware and improved

development efficiency and overall time to market

compared with those of the previous product.

The first section of this paper is an overviewof functional

verification and the techniques that are commonly used.

Next, the hardware-only functional verification of the

chips on the previous adapter is discussed. The third

section describes the architecture of the SI chip. This is

followed by a section which describes the functional

verification environment used to test this chip. The

benefits of using hardware/software co-verification for

the SI chip are summarized in the last section.

Functional verification overview
Before a chip is fabricated, many types of verification are

performed to ensure that the chip functions properly.

These include technology rules checks, timing analysis,
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and functional verification, which is the focus of this

paper. Functional verification is concerned with the

validation of all of the chip functions in normal operating

modes as well as after an error condition. If a chip or

system design contains a processor or a sequencer,

hardware/software co-verification may be used to verify

system operation before the hardware is manufactured.

In hardware/software co-verification, the verification

environment includes the software, firmware, or

microcode that executes on the processor or sequencer,

as well as the model of the chip hardware.

Functional verification may be performed at the unit,

chip, subsystem, and/or system levels. A unit is a logical

partition of the design which performs a specific function.

For example, the portion of the design which provides an

interface to an external bus might be considered a unit.

A chip comprises units and is an entity that can be

fabricated in silicon. A subsystem is a collection of two or

more chips that communicate directly with each other. In

functional verification, a system is a collection of two or

more chips including a processor chip and memory. The

focus of the testing is different at each level. In unit

verification, testing is targeted toward the function of

an individual block. This can be accomplished through

various verificationmethods, including formal verification,

which can provide full proofs of functional properties;

deterministic tests, in which each separate test targets a

specific operation; random tests, in which operations are

mixed in a random manner; and biased random testing,

which allows the user to control the randomness for

better coverage. As verification moves to environments

that include more of the design hierarchy (unit to system),

the testing is targeted toward interconnections and

interactions between the smaller pieces. At the chip level,

where all of the functional blocks of the chip are

integrated, random verification is often used to create

complex test scenarios to comprehensively test the chip.

In subsystem verification, multiple chips are included in a

verification environment to test their interoperability. For

I/O chips, such as the SI chip, system-level verification

includes processors, memory, and the I/O chips [1].

For the chip-level verification of the SI chip, a biased

random transaction-based simulation environment was

used. The SI chip simulation model was built from

the Hardware Description Language (HDL) design,

and a cycle simulator was used. This is similar to the

environments used on recent pSeries [1] and zSeries*

processor chips [2] and I/O chips. The object-oriented

Cþþ simulation code consists of driver code, which

presents stimuli to the chip, and monitor code, which

predicts and checks the behavior of the chip. Both the

driver and monitor code operate ‘‘on the fly,’’ creating

inputs and checking results every simulation cycle.

Parameters are used by the driver to bias the random

generation of the transactions that are driven into the SI

chip [3]. These parameters allow the verification engineer

to focus the testing toward required scenarios.

The SP Switch2 Adapter and its verification
environment
To better understand the advantages of the SI chip

verification methodology, it is useful to review the design

and functional verification of the previous product. The

SP Switch2 Adapter, the previous-generation message-

passing adapter, provided connectivity between nodes,

just as the Switch Network Interface does, and it fit into

the system just as the SNI does in Figure 1. The SP

Switch2 Adapter contained three special-purpose ASIC

chips, a PowerPC* microprocessor, and static random

access memory (SRAM), as shown in Figure 2. ASIC-1

served as an interface to the system processor bus.

ASIC-2 bridged the other two ASICs and provided access

to dynamic RAM (DRAM) storage on the adapter which

was used to gather the message data that was being sent

or received over the SP Switch2 network. ASIC-3

interfaced with the PowerPC microprocessor and

SRAM and provided the links to the SP Switch2

Figure 1

pSeries system view.
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Block diagram of the SP Switch2 Adapter.
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network. In system operation, firmware running on the

microprocessor controlled the flow of message-passing

traffic between the system processor/memory complex

and the network.

In the functional verification of the SP Switch2

Adapter, each of the ASIC chips was initially tested

separately; the three chips were then combined into a

larger verification environment. Since the chips were

developed well in advance of the firmware, the chip

verification environments could not include any of the

firmware. Because there was no firmware, it was not

necessary to include the PowerPC microprocessor in the

simulation models. A Cþþbus functional model was used

to emulate the behavior of the bus at the PowerPC

microprocessor interface. The simulation driver

essentially replaced the firmware function in the adapter

subsystem by randomly generating the commands needed

for message-passing operations and sending them to

ASIC-3. After the ASIC chips were fabricated and the

first SP Switch2 Adapters were built, testing began. When

the firmware became available, additional releases of the

chips were required to change the chip designs to work

better with the firmware in the system. Each chip release

required additional functional verification prior to its

release and additional testing after the chips were

manufactured. As a result of this experience, the chip

microcode was designed as an integral part of the primary

verification environment for the new SI chip.

SI chip overview

The SI chip is the new hardware that enables system

software to implement message-passing transactions

between IBM pSeries p655 and p690 servers. The

software makes requests to the hardware to send data

from one server to another. Each of these requests, which

are known as descriptors, is placed in a descriptor list

which exists in memory on the server. Multiple descriptor

lists can be processed simultaneously by the SI chip.

Descriptors can exist on the source server, on the

destination server, or on both source and destination

servers. Once the software issues an indication that

everything has been prepared for a message-passing

transaction, the SI chip at the source uses the information

in the descriptor to obtain data from system memory

and send it through the network to the SI chip in the

destination server. The destination SI chip uses a

descriptor to determine where to write the data in the

memory of the destination server. Information sent

through the network is contained in direct memory access

(DMA) packets that are constructed within the SI chip.

The DMA packets consist of two parts: The first part is a

header that provides control information to the

destination node, and the second part is the actual

message data that is being transferred, also referred to as

payload data.

Figure 3 is a block diagram of the SI chip. The

processor bus interface logic handles the communication

between the chip and the server processor complex. Data

flow within the SI chip is controlled primarily by the

inter-partition communication (IPC) block. The IPC

is a new custom-designed block that contains a 64-bit

arithmetic and logic unit (ALU), a sequencer, and a

hardware dispatch unit. Together, these units process

instructions contained within microcode that is loaded in

an on-chip SRAM. This microcode was newly developed

specifically for the IPC. The IPC determines which data it

wishes to retrieve from the memory on the server and

sends the appropriate requests to the processor bus

interface. It then controls the construction of the DMA

packet to be sent over the link. The transport logic directs

the message to one of the two link interface ports, and the

arbiter controls the flow of data from the two transport

units to the ports. The reverse process is followed when a

message is received from the network (i.e., entering from

the right side of Figure 3).

Since most of the control functionality within the SI

chip is implemented in IPC microcode, rather than with a

hardware state machine, the SI chip provides a highly

programmable environment. This approach makes it

easier to implement functionality that would alternatively

have resulted in overly complex and inflexible hardware.

The ability to modify the microcode can be useful for

adapting to alternate message-passing protocols.

SI chip functional verification
The verification environment for the SI chip comprises

a hardware model, the Cþþ verification code, IPC

microcode, and simulation parameters. The hardware

model is a subsystem model made up of two SI chips

connected by a cable macro that allows different cable

lengths to be simulated between the chips. Figure 4

Figure 3

Block diagram of the SI chip.
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illustrates how the verification code logically works with

the model. Each chip has a random command driver for

the processor bus interface, a service port driver, and a

chip monitor. There is also a small monitor at the link

interface which provides an additional level of internal

checking and failure isolation. The presence of the IPC in

the model is important in that this allows its microcode to

be loaded before simulation begins, permitting hardware/

software co-verification. This ability to load and run the

microcode is a key difference between this methodology

and the verification methodology used for the SP Switch2

Adapter. Finally, a set of control parameters is used to

guide the test case. The entire environment utilizes the

SimAPI programming interface [4] in conjunction with a

high-performance cycle simulator [5].

The random driver handles all interactions with the

model for both message-passing and non-message-

passing operations. The latter include actions for service

and interrupts. For message-passing operations, the

driver creates message-passing requests to be sent to an

adapter. These result in specific hardware commands

being placed on appropriate facilities in the simulation

model, initiating further processing by the chip. This in

turn leads to requests exiting the chip, which are also

handled by the driver. The chip that sends packets across

the link makes outbound requests to the driver for

descriptor data, source payload data, and address-

translation data. Address-translation data is required

when the addressing mode of a request indicates the use

of virtual addresses (instead of real addresses) for data

locations in memory. For a chip that is receiving packets,

the requests to the driver can be to supply data (e.g.,

descriptor data or address-translation data) or to write

payload data to memory. Whenever necessary, the driver

provides appropriate handshaking responses, for example

returning a ‘‘write done’’ acknowledgment after payload

data is written to memory.

To complete the robust checking required in the

verification effort, two levels of checking are incorporated

in the environment. First, the driver includes code to

check all traffic over the processor bus interface in order

to ensure adherence to proper processor bus protocol.

Second, a major benefit is derived from the main chip

monitor, which examines all inputs to the chip in order to

predict and then verify that the correct output occurs.

To guide the various testing situations required, the

driver uses a large number of simulation parameters and

controls. The vast majority of these are maintained in one

base file. A set of secondary parameter files contains

overrides to the base set to produce different test

scenarios. During the early stages of development, a

number of specialized controls were added to the base

and secondary files to restrict various aspects of the

testing rather than allowing them to be completely

random. For example, special controls were put in place

to allow only one or two descriptor lists to be processed at

any one time, and to cause activity on these lists to be

serialized instead of possibly overlapping. The general

controls, which are more widely used than the special

controls, take the form of probability tables that are

used to create random biasing both within a single

test case and across many test cases. Some examples

of the probability table controls used include types of

commands, frequency of commands, and amount of

payload data.

The microcode used in the SI chip verification

environment was developed incrementally to be used for

final-release-level microcode (i.e., to be shipped with the

product). The source code written by the microcode

developers utilized the C programming context. It was

written in a macro- and function-oriented manner, and as

such does not have the outward appearance of many C

program source files. An example portion of the source

code for an error-handling routine appears in Figure 5.

When the source code is compiled, several output files

are produced. One of these is the listing file, which is a key

source of information for use in debugging microcode

and hardware problems. The listing file uses both

hexadecimal and textual representations of the actual

microcode instructions and notes where they exist in

relation to each other. The portion of a listing file

resulting from compilation of the error-handling routine

source code noted above is shown in Figure 6. The

microcode compile process also creates a model

initialization file (MIF) to be used in simulation. This

file contains the microcode instructions, along with

information about where the instructions are to be loaded

in the IPC SRAM. The MIF is loaded into the model in a

single simulation cycle just prior to the start of testing.

Each line of the MIF contains a model SRAM facility

name, followed by array-element and bit-position

Figure 4

Functional simulation environment of the SI chip.
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information used to identify exactly where the data

is to be loaded. Following the SRAM and position

information is the hexadecimal microcode instruction

data.

Before providing the microcode to the SI chip

verification environment, the microcode developers used

a special model to perform some initial testing. This

model was a single SI chip with its link outputs connected

to its link inputs, referred to as a wrapped model. The

wrapped model was also used to test the microcode

bootstrap load process. In the laboratory and customer

environments, the microcode is loaded into the SI chip

using a bootstrap process in which the microcode is sent

from system memory to the SI chip. This happens quickly

in real time, but it takes too many simulation cycles to do

this for every functional test case. In light of this, the

Figure 5

Example of an error-handling routine in a microcode source file.

label(R_ERR_ACTIV_IA_R);

 XORI08_B_ACTIVE_IA(D_ALU, A_GR_AF, R_ERR_TYPE_WIN_KEY, R_ERR_ACTIV_IA_R);

  cmt("Update counter in GPR for the dropped packet");
  win_state_tab_entry.dw � 0;
  win_state_tab_entry.bit.receive_packets_dropped � ALL_ONES_LL;
 ADDMODI08_M(D_GR_AD, A_GR_AD, win_state_tab_entry.dw, 0x1);

  win_state_tab_entry.dw � 0;
  win_state_tab_entry.bit.key_mismatch_count � 1;
 ORI08_M_BNE(D_ALU, A_PASS_MASK_VAL, win_state_tab_entry.dw, 0, R_ERR_WR_BAK);

  cmt("Increment key_mismatch_count");
  win_state_tab_entry.dw � 0;
  win_state_tab_entry.bit.key_mismatch_count � ALL_ONES_LL;
 ADDMOD_M(D_GR_AD, A_GR_AD, win_state_tab_entry.dw, B_ALU);

Figure 6

Example of post-compile listing for a microcode error-handling routine.

R_ERR_ACTIV_IA_R:

 0361   4e38007e  X0R08_B_ACTIVE_IA  D_ALU  A_GR_AF  R_ERR_TYPE_WIN_KEY  R_ERR_ACTIV_IA_R

  Mask 00000000ffffffff (H � 32 L � 63 n � 0)

//Update counter in GPR for the dropped packet

 0362   5ce8107e  ADDMODI08_M D_GR_AD  A_GR_AD  win_state_tab_entry.dw  0x1

  Mask 0000000100000000 (H � 31 L � 31 n � 0)

 0363   46380fbe  ORI08_M_BNE D_ALU  A_PASS_MASK_VALUE  win_state_tab_entry.dw  0

   R_ERROR_WRITE_BACK

//Increment key_mismatch_count

  Mask ffffffff00000000 (H � 32 L � 63 n � 1)

 0364   1ce8107f  ADDMOD_M D_GR_AD  A_GR_AD  win_state_tab_entry.dw  B_ALU
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bootstrap load process was verified separately from the

random functional testing for the SI chip. In the SI chip

verification environment, a shortcut process is used in

which the microcode is loaded from the MIF.

To properly stimulate the hardware and microcode, the

SI chip random driver basically emulates a portion of the

server software function. This differs from the SP Switch2

Adapter verification, since each chip in that environment

was tested with pseudo-random stimuli to the limits of

its specified function with minimal regard to how the

software might eventually drive it. Because descriptor lists

are at the heart of message-passing operations, each

instance of the SI chip driver individually handles

building and managing all aspects of its lists. In order to

implement support with this breadth, numerous variables

related to the actual processing of descriptors had to be

considered. In turn, solutions for these issues had to be

incorporated either in the code or as control parameters.

Some examples of these variables include

� Length of descriptor lists and their location in

memory.
� Amount of payload data.
� Addressing mode (real or translation) used for

descriptor list and/or payload data locations.
� Memory boundary considerations for descriptors and

payload data.
� An image of the descriptor lists and payload data

storage (must be maintained throughout a test).
� Start and end locations of descriptor lists and payload

data [must be determined and varied within the

context of adapter requests being on cache-line

(128-byte) boundaries].
� Number of descriptor lists in process at a given time.
� Frequency with which active channels make requests

to the adapter.

Several of the issues were actually multidimensional

in nature. For example, in dealing with boundary

considerations, the requirements mandate that

descriptors must start on a 16-byte boundary and lists

may not cross a page boundary, whereas payload data

can start on any boundary. Another example is the

addressing mode. If address translation is to be used, it

requires the creation of appropriate addressing schemes

along with page tables and other related support. Most

elements of this support are established prior to the start

of simulation and many remain static during the run,

while some change throughout the simulation. These

controls and descriptor list variables force the random

driver to produce valid transactions while also

allowing the monitor to perform its prediction of

results correctly.

Aside from the base mainline test focus, additional

effort was put into exercising other situations in the

hardware. Such scenarios included exercising boundary

and stress conditions, such as causing full buffer

conditions, holding off traffic/data flow, and flooding the

device with requests. In addition to these tests, complete

support for recovery and error testing was added.

Manipulating all of the available control parameters in

a random manner drives the microcode in various ways,

which in turn causes the hardware to be utilized in

different ways. This randomization, done across literally

millions of test cases, provides the desired level of test

coverage required for this type of hardware verification

environment. While the primary goal of this simulation

effort is to remove hardware design flaws, a substantial

amount of the microcode is also exercised. This

significantly increases the chances of success when

the fabricated chip and microcode first come together

in the laboratory.

Advantages of the hardware/software
co-verification of the SI chip
The methodology of simulating the hardware and

microcode together on the SI chip yielded advantages

over the SP Switch2 Adapter methodology. One of the

key advantages was reduced time to market. Time was

saved because it was not necessary to develop a driver

that would mimic the behavior of the microcode. This

would have been a large effort, and it would have

duplicated the work done by the microcode developers.

Also, since the driver would not be able to generate

exactly the same command sequences as the final

microcode, some hardware defects might not have been

found until late in the development cycle, when the

hardware and microcode were tested together. By using

co-verification, late releases of additional passes of the

hardware were avoided, thus improving overall time to

market. Analysis of the SI chip defect data shows that

about 38% of the 255 hardware defects identified in this

simulation environment were found as a direct result of

running with the microcode.

Microcode development was a major contributor to

total system development time. The SI chip simulation

environment found 87 microcode defects. The process of

finding many of these microcode errors was enhanced by

monitoring the current microcode address. The SI chip

monitor code used this address to derive microcode state

information. Knowing that the microcode should always

be in an idle state upon completion of a test case, the

monitor helped identify microcode defects that would

otherwise go undetected if only message-passing

transactions were monitored. Also, through the use of

current address information collected after a test-case

failure, the microcode team was given a good starting
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point to begin its debugging process, resulting in greater

efficiency. Overall, microcode development was able

to progress at a faster rate when compared with the

alternative of waiting to develop the microcode until

the hardware had been manufactured.

In addition to faster time to market, another advantage

of simulating the hardware with the microcode was

increased flexibility when deciding where to fix system

problems. For example, a microcode defect that would

have been difficult to fix in microcode was instead fixed in

hardware. Alternatively, hardware defects were either

temporarily worked around or permanently fixed by

making adjustments to the microcode. Using a microcode

fix to temporarily work around a hardware problem

allowed the verification team to make progress until a

hardware fix was available. This methodology also has

the ability to uncover architectural flaws. System function

that had mistakenly been omitted from hardware and

microcode was identified and marked for implementation

in higher-level software. An example of this type of

architectural problem involved error identification and

recovery. When errors occur on the interface between

adapters, it is possible for the source adapter, which sends

information to the destination adapter, to resend a

packet. It is the responsibility of the destination adapter

to ignore any duplicate packets that it may receive. A

defect was found in which a particular type of packet,

called a sync packet, would not be ignored by the

destination adapter if duplicate versions of this packet

were received. This resulted in duplicate information

being incorrectly written to the destination server. The

architectural description had failed to account for this

scenario, and left both the hardware and microcode

without the ability to identify duplicate sync packets.

Performance issues, which can often be difficult to remedy

in hardware late in the design cycle, were identified early

using the visibility into hardware/microcode interaction

available in the SI chip verification environment. By

simulating hardware and software together, which more

closely represented the actual manufactured system,

bring-up times for the Switch Network Interface were

reduced.

Conclusion
In contrast to the verification methodology used on

the SP Switch2 Adapter, the hardware/software co-

verification methodology developed for the SI chip

produced an environment that more closely reflected

the final product. This was accomplished by modeling

the verification environment around a system-level

architectural description of the data transfer protocol.

Taking this approach required developing driver and

monitor code for the verification environment that closely

conformed to the architecture. Using real microcode,

instead of a simulation approximation, also brought the

verification environment closer to emulating the final

production system. The benefits realized by this approach

were decreased time to market and increased flexibility

when defects were encountered in the system before and

after manufacturing.

*Trademark or registered trademark of International Business
Machines Corporation.
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