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IBM POWER5e systems combine enhancements in the IBM
PowerPCe processor architecture with greatly enhanced firmware
to significantly increase the virtualization capabilities of IBM
POWERe servers. The POWER hypervisor, the basis of the
IBM Virtualization Enginee technologies on POWER5 systems,
delivers leading-edge mainframe virtualization technologies to the
UNIXtmarketplace. In addition to being able to create computing-
intensive partitions with dedicated resources (processors, memory,
and I/O adapters), customers can harness idle processor capacity
to configure micropartitions with virtualized resources in order to
consolidate many AIXe, i5/OSe, and Linuxt servers onto a single
platform. The POWER hypervisor provides support for virtualized
processors, an IEEE virtual local area network (VLAN)-
compatible virtual Ethernet switch, virtual small computer system
interface (VSCSI) adapters, and virtual consoles. Many of these
features are dependent upon, or take advantage of, the new facilities
provided in the POWER5 processor, including the hypervisor
decrementer, a fast page mover, and simultaneous multithreading
support. The technology behind the virtualization capabilities that
are available on the POWER5 servers, enabling customers to better
utilize the industry-leading computing capacity of the POWER5
processor, is discussed in this paper.

Introduction

IBM zSeries* servers pioneered the logical partition

(LPAR). Its PR/SM* and z/VM* hypervisors1 retain

leadership in transparent server virtualization technology.

The zSeries hypervisors use sophisticated processor

architecture extensions to completely and efficiently

virtualize the hardware to each logical partition so that

an operating system that runs natively on the hardware

can also run in a logical partition without any required

changes. The zSeries also introduced the concept of

optional hypervisor calls that enable a hypervisor-aware

version of an operating system (OS) to improve the

utilization of the system resources by interacting directly

with the hypervisor. An hcall instruction is a special

program-context-switching instruction, similar to a system

call, which gives control to the hypervisor. As is standard

documentation practice with a system call, a function

invocation made with the hcall instruction is generically

termed an hcall in this paper.

Most virtualization products for current Intel

platforms use a trap-and-emulate approach for privileged

instructions to provide full virtualization of the processor

and I/O so that no changes are required in the OS in

order to run in a partition. The POWER implementation

takes the approach that is sometimes referred to in the

literature as paravirtualization [1, 2]. Paravirtualization

requires a hypervisor-aware version of the operating

system that must utilize hcalls in order to run in a logical

partition. Typically, these hypervisor calls are confined to

a relatively small number of the lowest-level routines in
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1The hypervisor is a platform firmware component that controls the allocation and
isolation of platform resources among the various logical partitions of the platform.
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the OS hardware adaptation layer. Instead of trapping,

verifying, and emulating a number of privileged

instructions required to perform a logical operation,

such as updating the partition’s virtual address translation

table, the hypervisor in iSeries* and pSeries* platforms

provides an hcall that performs the entire logical

operation of updating the virtual address translation

table. This approach is typically much more efficient

when compared with the trap-and-emulate method

because of the reduction it provides in context-switching

and parameter-checking overhead.

Any attempt by the OS to perform operations that

would result in access to resources of another partition

or the hypervisor is prevented through a combination

of hardware and firmware design. Paravirtualization

represents a performance middle ground, at the cost of a

relatively few OS changes, between the performance loss

that is typical of the pure trap-and-emulate method and

the complexity of sophisticated processor virtualization

extensions.

Previous iSeries and pSeries systems [3], based upon

POWER4* technology [4], provided the capability of

dividing the platform’s hardware resources into disjoint

subsets. Each independent subset is controlled by its own

copy of an OS, which runs its own application programs.

Each of these divisions of the system is called a logical

partition (LPAR). In response to commands, an LPAR

may give up some of its resources and another system

LPAR may acquire free resources, thus allowing the

system administrator2 to balance the use of the platform’s

resources among its workloads over time. However,

the processing capacity of each LPAR is still usually

oversized to accommodate moment-to-moment

variations in workload in order to be responsive to

instantaneous workload peaks. As the number of

independent workloads increases, the probability that

each workload will experience an instantaneous peak at

the same time decreases. The POWER5* processor [5]

provides mechanisms to allow the platform firmware3 to

instantaneously reassign an idle processor to another

LPAR, such that the platform appears to have more

processors than are physically present. These extra

processors are a virtualization of the physical resources

of the platform. Systems based upon the POWER5

processor provide significantly improved resource

utilization and partitioning capabilities when compared

with their predecessors because of the resource

virtualization ability of the POWER5 processor. This

paper provides an overview of these improvements.

Partitions on POWER5 systems can simultaneously

run multiple copies, in any combination, of the AIX*,

i5/OS*, and Linux** [6] operating systems and VIOS.

VIOS is the virtual I/O server platform firmware

component that runs in a logical partition. VIOS provides

virtual I/O services to one or more partitions (see the

section on POWER5 I/O virtualization). A partition is

assigned a non-overlapping subset of the platform’s

resources, including one or more virtual processors,

regions of system memory, and I/O adapter bus

slots. Platform firmware communicates the resource

configuration of the partition to the OS image.

Allocatable resources are directly controlled by an OS.

Other platform resources, such as memory controllers,

interrupt controllers, and major portions of the I/O

infrastructure, are controlled by the hypervisor. The

OS makes requests to use these resources via the hcall

instruction.

The POWER hypervisor is a common design for

both iSeries and pSeries servers. It builds upon many

thousands of machine years of combined field experience

accumulated by the firmware in both series. The

virtualization capabilities of the POWER5 hypervisor

are further explained in the sections that follow.

Figure 1 shows a simplified diagram of a POWER5

system. The hypervisor layer is responsible for validating

OS requests to use shared platform resources, thus

ensuring the integrity and isolation of these partitioned

systems. Operational management for the platform is

performed via the Hardware Management Console

(HMC). The HMC is a set of firmware tools, optionally

Figure 1

POWER5 platform structure.
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2The system administrator has the authority to dynamically change the amount of
resources assigned to each of the partitions on a system.
3Platform firmware is microcode embedded in the platform hardware.
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running on replicated hardware, that manages platform

resources via messages to the hypervisor and the

operating systems of the partitions. The HMC creates

the initial configuration definition, controls boot and

termination of the various partitions, and provides virtual

console support. It is the control point for dynamic

reconfiguration of the resources of the partition, platform

hardware hot-plug operations (I/O adapters and I/O

drawers4), and deferred and concurrent maintenance

of both hardware and firmware.

Loaded within the partition memory space is partition

firmware (PFW). This code is platform-architecture-

dependent. For i5/OS partitions, the partition firmware

is System Licensed Internal Code (SLIC). For AIX

and Linux partitions, the partition firmware is IEEE

1275 Boot (Initialization Configuration) Firmware [7]

and PowerPC* Microprocessor Common Hardware

Reference Platform–Run Time Abstraction Services [8].

A POWER5 platform is assembled by interconnecting

basic computation blocks, each of which has its own

processing cores, cache, memory, and I/O capability. The

interconnect fabric provides virtually uniform memory

access time, but the bandwidth between the blocks can

vary. Therefore, assigning the virtual processors of the

partition to physical processors that have the greatest

affinity with the partition memory locations optimizes

system performance. The POWER hypervisor considers

computation resource affinity in several ways in its

allocation algorithms.

POWER partitioning and virtualization support
To support robust partitioning and virtualization on

POWER processors, extensions to the PowerPC

Architecture* were required. These extensions were

created in a staged approach, with the base support for

robust partitioning provided in the POWER4 family

of processors [3, 4] and the advanced support for

virtualization being delivered by the POWER5 [5] family

of processors. The base support in POWER4 processors

for robust partitioning included the introduction of a new

privileged state of the processor, called hypervisor mode.

The processor must be in hypervisor mode in order

to have write access to some of the processor system

registers, such as the register that defines the location

and size of the hardware page table associated with the

partition. This relatively simple extension to the PowerPC

architecture provides the mechanism required for

complete partition isolation [9].

Also introduced in POWER4 processors was support

for a virtual address zero in each partition when address

translation is disabled. When the OS kernel is running

with address translation disabled, it can access only a

small portion of the real memory owned by the partition

via a zero-based address; the remainder of the real

memory owned by the partition must be accessed by the

partition using a virtual address. If the partition attempts

to reference beyond the boundary of the accessible

portion of real memory when address translation is

disabled, the processor generates an exception. To

accomplish this, the new real mode region (RMR) register

was defined for the partition. This register can be accessed

only when running in hypervisor mode; it defines the

offset that is added to the zero-based address specified

by the partition when address translation is disabled to

access the physically contiguous region of real memory

that has been allocated as the RMR area for the partition.

All of the interrupt vectors for the operating system

will get control, with address translation disabled at the

architecturally defined offset into the partition’s RMR.

In POWER5 processors, several very important

extensions were made to the base partitioning support

in order to efficiently support the virtualization of

processors and sharing of a physical processor by

multiple partitions. The most important extension was

the introduction of the hypervisor decrementer (HDECR)

facility, which is used for fine-grained dispatching of

multiple partitions on shared processors. The HDECR

provides the hypervisor with a guaranteed timer interrupt

regardless of the partition execution state. Unlike the

regular decrementer used by the partition for timer

interrupts, the HDECR interrupt is routed directly to the

hypervisor and uses only hypervisor resources to capture

the state of the partition. An additional assist provided by

POWER5 processors for virtualization of processors is

the capability to route external interrupts to the

hypervisor (instead of the partition).

POWER5 processors also introduced simultaneous

multithreading (SMT) support. Between SMT and shared

processors, support for a new register to track the cycles

consumed by a partition on each thread was required.

The processor utilization of resources register (PURR)

was added in POWER5 processors so that a partition

receives a very accurate accounting of the number of

cycles executed by processor threads when it executes

on that physical processor.

The SMT support on POWER5 processors also

introduced support for a dormant thread. When the

partition does not have work to dispatch on one of the

two threads of the physical processor, it can invoke an

hcall to make the thread dormant. If the other thread is

active, the hypervisor makes the invoking thread dormant

so that all of the register resources and cycles available on

the physical processor are utilized by the remaining active

thread. When an interrupt or time-out occurs for the

dormant thread, the hardware revives the thread, its state

is fully restored, and control is returned to the partition.
4An I/O drawer is a package of hardware that may be attached to the basic platform to
extend the I/O capacity of the platform.
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Several other smaller processor extensions were made

for partitioning and virtualization, but this section has

touched on the most significant ones. The remainder

of the paper discusses the advanced virtualization

capabilities that were built upon these processor

extensions.

Virtualization of processors
A partition, which can be either a dedicated or a shared

processor partition, views its processors as virtual

processors. The virtual processor of a dedicated processor

partition has a physical processor allocated to it, while

the virtual processor of a shared processor partition

shares the physical processors of the shared processor

pool with virtual processors of other shared processor

partitions.

The configuration of a shared processor partition

requires that the system administrator specify the entitled

capacity for the partition, in addition to the number of

virtual processors that are configured for the partition.

The entitled capacity (in hundredths of a processor) is the

allocation of physical processor resources to the shared

processor partition. The physical processor allocation for

a virtual processor depends on the entitled capacity and

the number of virtual processors that are online for that

partition. The system administrator must also specify

whether the shared processor partition is capped or

uncapped. A capped partition cannot receive more cycles

than its entitled capacity. An uncapped partition will

receive processor cycles beyond its entitled capacity if

excess processor cycles are available in the shared

processor pool. The HMC allows the system

administrator to configure a partition’s uncapped weight

parameter, which represents a priority share of unused

processing capacity relative to the uncapped weight

parameters of other uncapped partitions sharing the same

processor pool. When there is contention for the excess

cycles, this parameter is used by the hypervisor to allocate

the excess cycles in the shared processor pool. Dynamic

logical partition (DLPAR) operations can dynamically

change the entitled capacity, the number of virtual

processors, and the uncapped weight of a partition.

Shared processor dispatching

The hypervisor attempts to dispatch a virtual processor

on the same physical processor where it last ran. If that

processor is not available, it attempts to find one on the

last POWER5 chip used, and, failing that, one on the last

basic computation block. If the virtual processor has

not run for a long time and has therefore lost all affinity,

the virtual processor is dispatched on its home node.

The home node for a partition is the basic physical

computation block from which the majority of its

memory is allocated. Similarly, when an idle processor

looks for work and cannot find a virtual processor with

affinity for the current physical processor, it attempts to

dispatch a virtual processor that has the current basic

computation block as its home node or a virtual

processor that has no affinity for any other basic

computation block.

Operating system optimizations

Several optimizations can be implemented by an

operating system to improve not only the performance of

its own partition, but also the overall performance of the

partitions running within the shared pool of physical

processors. The operating system first registers a virtual

processor area (VPA) for each of its assigned virtual

processors with the hypervisor. The VPA serves as a two-

way communication area between the operating system

and the hypervisor regarding details of the virtual

processor. One of the fields in the VPA is an idle flag.

Whenever the operating system enters its idle process, the

OS sets the VPA idle flag. When work becomes available

for the virtual processor, or when an interrupt is received

on the virtual processor, the OS clears the VPA idle flag.

When the OS is idle, it can cede the physical processor

back to the hypervisor by invoking the h_cede hcall,

essentially yielding the remainder of its entitlement on

that physical processor. The hypervisor can then dispatch

another virtual processor on that physical processor or

utilize the physical processor for its own purposes. Once

the virtual processor has ceded, it remains blocked until

its next interrupt occurs or until it is explicitly prodded

by another virtual processor within the same partition. If

the OS, running on another virtual processor within its

partition, determines that new work is available for one

of its idle virtual processors, the OS can prod the ceded

virtual processor by invoking the h_prod hcall. This

causes the hypervisor to unblock the prodded virtual

processor, which then becomes available for dispatch

on a physical processor. When dispatched, the virtual

processor resumes execution at the instruction following

the h_cede hcall.

Cases exist in which the operating system execution

on a virtual processor encounters a dependency on one

of its other virtual processors. Two examples of this are

spinlocks and synchronous interprocessor interrupt

communication. A spinlock is a loop executing a

nonblocking atomic serialization primitive used to

acquire a software lock, or reservation, in a symmetric

multiprocessing (SMP) system. If the lock is currently

held, the spinlock function spins in place waiting for the

lock to become available. Synchronous interprocessor

interrupt communication occurs when one processor of

an SMP system posts an interrupt for another processor

within the system and spins in place waiting for

acknowledgment of the interrupt. In these cases, the
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operating system can further optimize the utilization

of the underlying physical processor by conferring its

remaining entitlement on the virtual processor on which

it is dependent by invoking the h_confer hcall.

When the hypervisor is performing a context switch

of a virtual processor, it must save all of the architecturally

program-visible processor state. In many instances, not

all of the processor state is being used by the operating

system, so the complete state save is unnecessary. To

minimize the cost of a virtual processor context switch,

the OS can indicate to the hypervisor whether some

resources are in use. Some examples of this on the

POWER5 processor are the floating-point registers,

performance monitor registers, and segment lookaside

buffer (SLB) registers. If the operating system is currently

using one of these resources, it sets the corresponding

VPA in-use field. In the case of SLB registers, the OS can

maintain a shadow copy in the VPA of all SLBs currently

in use. This allows the hypervisor to avoid having to save

the SLB registers on a virtual processor switch-out, and

allows the hypervisor to restore only the SLBs currently

in use on a virtual processor switch-in. One other aspect

of running in a shared processor partition that must

be handled by the operating system is the concept of

processor time. This is especially important when the

operating system is performing fine-grain process-level

accounting. In a dedicated processor environment, the

amount of processor time an operating system is using

must correspond directly to the elapsed time. On

PowerPC Architecture processors, the operating system

typically uses the timebase facility of the processor for this

purpose. In a shared processor environment, the elapsed

timebase ticks no longer correspond to execution time

received by the partition on a virtual processor. The

PURR (see the previous section on POWER partitioning

and virtualization support) is used to accumulate ticks

only when the virtual processor is dispatched on a

physical processor. The operating system can then tailor

its accounting and utilization algorithms to be based on

accumulated PURR cycles rather than elapsed timebase

cycles.

POWER5 I/O virtualization
I/O partitioning provides multiple operating systems

running in a single system with their own set of I/O

devices, such as storage adapters, network adapters,

and console devices. IBM POWER5 systems support

partitions with either physical or virtual I/O devices

as well as partitions with a mixture of both types.

As in POWER4 systems, POWER5 systems support

slot-level partitioning of physical devices. This means that

each peripheral component interconnect (PCI) slot in the

system can be individually assigned to a logical partition.

The hypervisor ensures that each logical partition can

access only the PCI slots assigned to it; it cannot access

other PCI devices, even if they are on the same bus.

In addition, POWER5 systems support the definition

of virtual adapters. Virtual adapters provide capabilities

similar to those of physical adapters, but they are

implemented entirely in software and do not require

dedicated physical PCI slots. A key component of I/O

virtualization on POWER5 servers is the IBM Virtual I/O

Server (VIOS), which executes in a logical partition

explicitly created by the system administrator and

provides VSCSI and shared Ethernet adapter virtual

I/O capabilities to client logical partitions within the

POWER5 system. The VIOS requires physical resources

(CPU, memory, I/O adapters) and special software that is

distributed on VIOS installation media. It takes advantage

of new POWER5 platform features including Logical

Remote Direct Memory Access (LRDMA). When this

is coupled with powerful redundancy solutions such as

High Availability Cluster Multiprocessing (HACMP),

as well as multipathing options at both the VIOS and

client logical partitions, it provides the building blocks

necessary to create an enterprise-level virtualized I/O

environment.

Virtual adapters

The virtualization of processors allows IBM POWER5

systems to support many more active partitions than

there are physical processors in the server. The ability to

support hundreds of partitions is less useful, however, if

each partition requires dedicated I/O adapter cards, such

as network and storage adapters. A key virtualization

feature of the new IBM POWER5 systems is the ability to

create virtual adapter cards for an operating system. In its

most extreme example, a system could support hundreds

of operating system images with only a single real

Ethernet adapter and a single real storage adapter.

One area of operating systems that leads to complexity

is the support of I/O devices and adapters. To reduce the

complexity of the hypervisor, a design decision was made

to limit support for I/O adapters in the hypervisor itself,

delegating that function to the operating systems running

in logical partitions. This approach is designed to simplify

the hypervisor tremendously, eliminate a source of errors

that could have a potential impact on the whole system,

and eliminate the need for updates to the hypervisor

to support new I/O devices.

The decision to keep awareness of I/O adapters out

of the hypervisor significantly affects the design of I/O

virtualization. The hypervisor itself does not own real I/O

devices or provide virtualized interfaces to those devices.

Instead, all I/O devices are owned by logical partitions.

These logical partitions provide access to real hardware

to client partitions through virtual devices. The logical

partitions that own the physical resources are referred
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to as virtual I/O server partitions. The VIOS, an i5/OS

partition, and a Linux partition can all provide virtual

I/O services to other partitions.

The approach taken was to implement two sets of

operations in the hypervisor. The first set provides

support for the instantiation of virtual adapters in a

partition. This includes definitions of direct memory

access (DMA) windows, interrupts, and adapter

information similar to that required to identify a physical

adapter to a partition. The second set of operations allow

partitions to interact, in a very controlled and secure way,

such that one partition can gain access to physical I/O

resources in a different partition.

Three kinds of virtual adapters are supported—

SCSI, Ethernet, and serial/console. While the primitive

operations are slightly different for each, the concept of

allowing one partition to provide access to physical I/O

devices for one or more other partitions is similar.

Virtual adapters are created by the system

administrator as part of logical partition definition.

Virtual adapters exist in virtual I/O slots, and the

administrator can configure the number of I/O slots

and the types of virtual adapters in those slots.

Information about virtual adapters, such as interrupt

numbers and DMA windows, is presented to the

operating system through the device tree, similarly to the

way in which information about the physical adapters

owned by the partition is presented. Specific device

drivers were written within the operating systems for each

virtual adapter type, just as would be required for a new

type of physical adapter.

Virtualization of I/O interrupts

In order to maintain partition isolation, the hypervisor

controls the hardware interrupt management facilities.

The partition is provided controlled access to the

interrupt management facilities through a set of interrupt

management hcalls. Furthermore, the interrupt

management facilities are virtualized such that the

facilities and the semantics of the hcalls are preserved for

shared processor partitions. The same set of hcalls is used

for interrupts from real adapters as well as interrupts

from virtual sources such as VLAN, VSCSI, and virtual

console adapters. The hypervisor uses a combination

of software queues and the PowerPC interprocessor

interrupt (IPI) facilities for virtualization of the interrupt

management facilities.

Virtual SCSI support

The small computer system interface (SCSI) protocol was

chosen as the mechanism for virtualizing storage devices,

including disk, CD, and tape. The VSCSI support is

implemented as two paired virtual adapters, the virtual

SCSI client adapter and the virtual SCSI server adapter, as

shown in Figure 2. The client adapter is the SCSI initiator

and follows all of the semantics of any SCSI host bus

adapter; to the operating system that implements it, it is no

different from any other SCSI adapter. The adapters are

used only to transfer SCSI commands between partitions;

the SCSI commands themselves are generated by the

client operating system, as with any storage operation.

The server adapter, known in SCSI terminology as a

target adapter, is responsible for executing any SCSI

command received. However, it is entirely up to the

operating system owning the SCSI server adapter how the

command is executed. For instance, for some devices, the

SCSI server may simply pass all commands directly to

the real physical device. Alternatively, the SCSI server

may emulate the SCSI target device completely. A

combination of the two is also possible; this flexibility

helps ensure that operating systems using a virtual

SCSI client adapter are completely isolated from the

implementation on the server side.

The virtual SCSI function is based on two primitive

operations implemented by the hypervisor. First, there

is a message-queuing function that allows one partition

to send small messages to another partition, with an

interrupt mechanism allowing the receiving partition to

be notified when a new message arrives. All I/O requests

and responses are passed through this message-passing

facility. SCSI Remote DMA Protocol (SRP) [10] is used

to govern the rules for exchanging information between

the SCSI initiator (VSCSI client) and the SCSI target

(VSCSI server).

Second, there is the ability to issue direct memory

access (DMA) operations between partitions. While

Figure 2

Virtual SCSI topology.
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preserving the security and integrity of the system

requires that one partition must not be able to directly

read or write the memory of another partition, the

hypervisor provides a virtual DMA capability between

explicitly authorized partitions. These DMA operations

are designed to preserve the integrity of both sides of the

operation, since both the client and the server explicitly

inform the hypervisor of the DMA regions before the

operation takes place.

The virtual DMA capability is used to move SCSI

commands and data between partitions. When redirecting

SCSI commands to a real device, the server partition can

cause the device to transfer data (via DMA) directly to

and from the memory of the client partition, eliminating

the need to copy data between partitions.

Virtual IEEE VLAN switch

The POWER hypervisor provides a virtual Ethernet

switch which is designed to enable partitions on the same

system to quickly and securely communicate with one

another without requiring physical Ethernet adapters.

For systems that do not require a dedicated connection to

networks outside the system, the VLAN switch provides

an ideal solution without requiring the dedicated use of

the finite number of physical I/O slots available. The

switch is based on the IEEE 802.1q VLAN standard [11],

allowing for isolation of the partitions connected to the

switch on the basis of their VLAN membership.

The VLAN switch is configured by assigning virtual

Ethernet adapters to each of the partitions that are

connected to the switch. When a virtual Ethernet adapter

is assigned to a partition, the user configures the virtual

switch port to which the adapter is conceptually

connected. The ports can be configured to be IEEE

802.1q-aware or not, have a default port VLAN ID

(PVID) assigned, and be assigned membership in multiple

VLAN IDs if the port is 802.1q-aware. A simple virtual

Ethernet topology is shown in Figure 3.

Functionally, the switch performs the functions of a

typical midrange-managed Ethernet switch. Media access

control (MAC) address tables are maintained for filtering

unicast5 traffic. VLAN membership tables are maintained

to provide isolation of adapters based on VLAN IDs.

IEEE 802.1q headers and VLAN tags are transparently

inserted and removed as traffic flows between 802.1q-

aware and non-aware ports. MAC address takeover

is detected and logged. Trunk adapter6 facilities are

provided to allow transparent layer-2 bridging.

From the operating system perspective, its connection

to the VLAN switch is seen as a virtual Ethernet adapter.

This adapter operates similarly to a physical Ethernet

adapter, but without many of the complexities found

in physical adapters. Virtual Ethernet adapters are

not limited to an arbitrary maximum packet size of

1,514 bytes (or 9,014 bytes for jumbo-packet-aware

adapters) as are physical Ethernet adapters. The virtual

Ethernet adapters need not be concerned with physical

link configuration, asynchronous transmit operations,

or hardware errors. Transmit operations are performed

synchronously and are complete as soon as the hcall to

send a frame returns. Receive operations are performed

by providing a pool of buffers to the hypervisor for

receiving frames. As incoming frames are received by the

adapter, the hypervisor places the new frames on a receive

queue and informs the device driver with a virtual

interrupt. Interfaces are also provided for the device

driver to dynamically change the MAC address of the

adapter and manage the multicast7 filtering behavior and

tables.

Each virtual Ethernet adapter can also be configured to

be a trunk adapter. Virtual Ethernet adapters, like most

other physical Ethernet adapters, receive only frames with

a destination MAC address that matches their specific

MAC address. If a partition sends an Ethernet frame

to a destination MAC address that is unknown to the

hypervisor virtual switch, the hypervisor will deliver the

unknown packet to any trunk adapter defined for that

VLAN ID. This allows layer-2 bridging to a physical

adapter to be performed, extending the virtual Ethernet

network outside the system onto a physical Ethernet

network. Without trunk adapter support, bridging the

virtual Ethernet networks outside the system would

require a higher-level, more CPU-intensive bridging

method such as IP routing, network address translation,

or transparent subnets.

Figure 3

Virtual Ethernet topology.
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5A unicast frame is an Ethernet frame targeted at one specific MAC address.
6A trunk adapter is a special virtual adapter that receives virtual network traffic so
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7A multicast frame is an Ethernet frame which is delivered to multiple Ethernet
adapters using a reserved portion of the MAC address space.
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The virtual Ethernet adapters also provide a form of

TCP/IP checksum8 offload. The transmission control

protocol (TCP) requires the TCP/IP stack to calculate a

16-bit checksum over the entire user data payload of a

TCP packet, a TCP header, and a TCP pseudo-header,

which includes portions of the Internet protocol (IP)

header. The TCP checksum helps to guarantee the

integrity of the packet as it travels through the various

routers, switches, and bridges making up the physical

Ethernet. Performing the TCP checksum on POWER5

systems can take an estimated 10% of the total CPU

processing required to send the packet, especially for

large packets. Many physical adapters provide facilities to

perform the TCP checksum while sending the packets,

offloading the host CPU.

Since the transmission of a packet on the virtual

Ethernet network does not involve any physical

networks, eliminating the TCP checksum from the

process required to transmit packets can provide huge

savings in CPU cycles consumed with no risk. Each

TCP/IP stack and device driver for the three different

operating systems providing virtual Ethernet support has

the ability to bypass the checksum calculations. The

hypervisor provides several hcalls enabling the virtual

Ethernet device driver to notify the hypervisor that the

operating system is aware that checksums need not be

calculated on the virtual Ethernet. If one partition sends

an Ethernet packet with no TCP checksum to another

that has not performed this hcall, the hypervisor will

calculate the correct TCP checksum and place it in the

packet before finishing the virtual DMA.

Virtual console support

The system console is the last piece of I/O infrastructure

that is required for a full partition. Most operating

systems require a dedicated console for processes such as

installing the operating system, setting up the network, or

performing problem analysis of early boot failures. In

order to virtualize the console support, the hypervisor

provides a virtual teletype (TTY)/serial adapter with

a suite of hcalls that operate on this virtual adapter.

Depending on the specific system configuration, the

operating system console may be provided by an HMC

virtual terminal (vterm), through another partition

connected via its own virtual serial adapter, or via a

terminal emulator connected to physical serial ports on

the system service processor. Figure 4 shows the multiple

ways in which a virtual console may be provided.

Dynamic reconfiguration
Many modern systems support dynamic reconfiguration

of system hardware. This reconfiguration includes adding

or removing processors, adding or removing memory,

and adding or removing I/O devices. A common example

is the ability to replace a failing I/O adapter while the

system continues to run.

In a virtualized environment, the requirements for

dynamically reconfiguring the hardware used by an

operating system increase dramatically. Workload

changes may require that processors, memory, and I/O

adapters be moved between logical partitions. Customers

using these systems in high-availability environments

cannot tolerate rebooting operating system images to

accommodate such changes.

The POWER5 hardware and firmware supports adding

and removing virtual processors, entitled processor

capacity, uncapped processor weight, memory, and I/O

devices for logical partitions while the operating systems

are running. Such resource moves involve cooperation

between the HMC, where the moves are initiated, and

the operating systems in question. A component in the

operating system known as the dynamic reconfiguration

manager (DRMGR) communicates over a network

connection to the HMC to coordinate, execute, and

acknowledge such changes.

Cross-logical-partition workload managers can also

initiate dynamic resource changes between partitions

utilizing these same interfaces. Support of dynamic

reconfiguration required changes to the firmware as well

as to the operating systems involved. A cross-partition

workload manager manages resources in a set of

partitions on a system. The system administrator can use

the HMC to define the set of partitions that can be

managed as a group. The OS provides a set of application

programming interfaces (APIs) and the hypervisor

provides a set of hypervisor calls so that the workload

Figure 4

Virtual console topology.
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manager running in each partition of the group can move

resources between partitions to achieve its goals. The

hypervisor is designed to ensure that the set of partitions

defined to be in a group can use only the resources that

the system administrator has assigned to the partitions in

the group.

Concluding remarks

The combination of the POWER5 processor with the

POWER hypervisor provides IBM with leading-edge

virtualization and partitioning support in the latest

POWER servers. The paravirtualization, or cooperative

partitioning provided by POWER5 systems in

conjunction with the AIX, i5/OS, and Linux operating

systems, results in an excellent combination of

virtualization capabilities with minimal overhead. These

features include micro-partitioning of servers through the

virtualization of processors and I/O, efficient resource

utilization through recovery of idle processing cycles,

dynamic reconfiguration of partition resources,

consolidation of multiple operating systems on a single

platform, and platform-enforced security and isolation

between partitions.
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