Advanced
virtualization
capabilities
of POWERS5
systems

IBM POWERS™ systems combine enhancements in the IBM
PowerPC™ processor architecture with greatly enhanced firmware
to significantly increase the virtualization capabilities of IBM
POWER™ servers. The POWER hypervisor, the basis of the
IBM Virtualization Engine™ technologies on POWERS systems,
delivers leading-edge mainframe virtualization technologies to the
UNIX® marketplace. In addition to being able to create computing-
intensive partitions with dedicated resources (processors, memory,
and 1/O adapters), customers can harness idle processor capacity
to configure micropartitions with virtualized resources in order to
consolidate many AIX™, i5/0OS™, and Linux® servers onto a single
platform. The POWER hypervisor provides support for virtualized
processors, an IEEE virtual local area network (VLAN)-
compatible virtual Ethernet switch, virtual small computer system
interface (VSCSI) adapters, and virtual consoles. Many of these
features are dependent upon, or take advantage of, the new facilities
provided in the POWERS processor, including the hypervisor
decrementer, a fast page mover, and simultaneous multithreading
support. The technology behind the virtualization capabilities that
are available on the POWERS servers, enabling customers to better
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utilize the industry-leading computing capacity of the POWERS

processor, is discussed in this paper.

Introduction
IBM zSeries* servers pioneered the logical partition
(LPAR). Its PR/SM* and z/VM* hypervisors' retain

leadership in transparent server virtualization technology.

The zSeries hypervisors use sophisticated processor
architecture extensions to completely and efficiently
virtualize the hardware to each logical partition so that
an operating system that runs natively on the hardware
can also run in a logical partition without any required
changes. The zSeries also introduced the concept of
optional hypervisor calls that enable a hypervisor-aware
version of an operating system (OS) to improve the
utilization of the system resources by interacting directly
with the hypervisor. An hcall instruction is a special

'The hypervisor is a platform firmware component that controls the allocation and

isolation of platform resources among the various logical partitions of the platform.

program-context-switching instruction, similar to a system
call, which gives control to the hypervisor. As is standard
documentation practice with a system call, a function
invocation made with the /call instruction is generically
termed an /call in this paper.

Most virtualization products for current Intel
platforms use a trap-and-emulate approach for privileged
instructions to provide full virtualization of the processor
and I/O so that no changes are required in the OS in
order to run in a partition. The POWER implementation
takes the approach that is sometimes referred to in the
literature as paravirtualization [1, 2]. Paravirtualization
requires a hypervisor-aware version of the operating
system that must utilize hcalls in order to run in a logical
partition. Typically, these hypervisor calls are confined to
a relatively small number of the lowest-level routines in
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the OS hardware adaptation layer. Instead of trapping,
verifying, and emulating a number of privileged
instructions required to perform a logical operation,
such as updating the partition’s virtual address translation
table, the hypervisor in iSeries* and pSeries™ platforms
provides an hcall that performs the entire logical
operation of updating the virtual address translation
table. This approach is typically much more efficient
when compared with the trap-and-emulate method
because of the reduction it provides in context-switching
and parameter-checking overhead.

Any attempt by the OS to perform operations that
would result in access to resources of another partition
or the hypervisor is prevented through a combination
of hardware and firmware design. Paravirtualization
represents a performance middle ground, at the cost of a
relatively few OS changes, between the performance loss
that is typical of the pure trap-and-emulate method and
the complexity of sophisticated processor virtualization
extensions.

Previous iSeries and pSeries systems [3], based upon
POWER4* technology [4], provided the capability of
dividing the platform’s hardware resources into disjoint
subsets. Each independent subset is controlled by its own
copy of an OS, which runs its own application programs.
Each of these divisions of the system is called a logical
partition (LPAR). In response to commands, an LPAR
may give up some of its resources and another system
LPAR may acquire free resources, thus allowing the
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system administrator” to balance the use of the platform’s
resources among its workloads over time. However,

the processing capacity of each LPAR is still usually
oversized to accommodate moment-to-moment
variations in workload in order to be responsive to
instantaneous workload peaks. As the number of
independent workloads increases, the probability that
each workload will experience an instantaneous peak at
the same time decreases. The POWERS* processor [5]
provides mechanisms to allow the platform firmware® to
instantaneously reassign an idle processor to another
LPAR, such that the platform appears to have more
processors than are physically present. These extra
processors are a virtualization of the physical resources
of the platform. Systems based upon the POWERS
processor provide significantly improved resource
utilization and partitioning capabilities when compared
with their predecessors because of the resource
virtualization ability of the POWERS processor. This
paper provides an overview of these improvements.

Partitions on POWERS systems can simultaneously
run multiple copies, in any combination, of the AIX*,
15/0S*, and Linux** [6] operating systems and VIOS.
VIOS is the virtual I/O server platform firmware
component that runs in a logical partition. VIOS provides
virtual 1/O services to one or more partitions (see the
section on POWERS I/O virtualization). A partition is
assigned a non-overlapping subset of the platform’s
resources, including one or more virtual processors,
regions of system memory, and I/O adapter bus
slots. Platform firmware communicates the resource
configuration of the partition to the OS image.
Allocatable resources are directly controlled by an OS.
Other platform resources, such as memory controllers,
interrupt controllers, and major portions of the /O
infrastructure, are controlled by the hypervisor. The
OS makes requests to use these resources via the hcall
instruction.

The POWER hypervisor is a common design for
both iSeries and pSeries servers. It builds upon many
thousands of machine years of combined field experience
accumulated by the firmware in both series. The
virtualization capabilities of the POWERS hypervisor
are further explained in the sections that follow.

Figure 1 shows a simplified diagram of a POWERS
system. The hypervisor layer is responsible for validating
OS requests to use shared platform resources, thus
ensuring the integrity and isolation of these partitioned
systems. Operational management for the platform is
performed via the Hardware Management Console
(HMC). The HMC is a set of firmware tools, optionally

The system administrator has the authority to dynamically change the amount of
resources assigned to each of the partitions on a system.
3Platform firmware is microcode embedded in the platform hardware.
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running on replicated hardware, that manages platform
resources via messages to the hypervisor and the
operating systems of the partitions. The HMC creates
the initial configuration definition, controls boot and
termination of the various partitions, and provides virtual
console support. It is the control point for dynamic
reconfiguration of the resources of the partition, platform
hardware hot-plug operations (I/O adapters and I/O
drawers"), and deferred and concurrent maintenance

of both hardware and firmware.

Loaded within the partition memory space is partition
firmware (PFW). This code is platform-architecture-
dependent. For i5/OS partitions, the partition firmware
is System Licensed Internal Code (SLIC). For AIX
and Linux partitions, the partition firmware is IEEE
1275 Boot (Initialization Configuration) Firmware [7]
and PowerPC* Microprocessor Common Hardware
Reference Platform—Run Time Abstraction Services [8].

A POWERS platform is assembled by interconnecting
basic computation blocks, each of which has its own
processing cores, cache, memory, and I/O capability. The
interconnect fabric provides virtually uniform memory
access time, but the bandwidth between the blocks can
vary. Therefore, assigning the virtual processors of the
partition to physical processors that have the greatest
affinity with the partition memory locations optimizes
system performance. The POWER hypervisor considers
computation resource affinity in several ways in its
allocation algorithms.

POWER partitioning and virtualization support
To support robust partitioning and virtualization on
POWER processors, extensions to the PowerPC
Architecture* were required. These extensions were
created in a staged approach, with the base support for
robust partitioning provided in the POWER4 family

of processors [3, 4] and the advanced support for
virtualization being delivered by the POWERS [5] family
of processors. The base support in POWER4 processors
for robust partitioning included the introduction of a new
privileged state of the processor, called hypervisor mode.
The processor must be in hypervisor mode in order

to have write access to some of the processor system
registers, such as the register that defines the location
and size of the hardware page table associated with the
partition. This relatively simple extension to the PowerPC
architecture provides the mechanism required for
complete partition isolation [9].

Also introduced in POWER4 processors was support
for a virtual address zero in each partition when address
translation is disabled. When the OS kernel is running
with address translation disabled, it can access only a

4An 1/O drawer is a package of hardware that may be attached to the basic platform to
extend the I/O capacity of the platform.
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small portion of the real memory owned by the partition
via a zero-based address; the remainder of the real
memory owned by the partition must be accessed by the
partition using a virtual address. If the partition attempts
to reference beyond the boundary of the accessible
portion of real memory when address translation is
disabled, the processor generates an exception. To
accomplish this, the new real mode region (RMR) register
was defined for the partition. This register can be accessed
only when running in hypervisor mode; it defines the
offset that is added to the zero-based address specified
by the partition when address translation is disabled to
access the physically contiguous region of real memory
that has been allocated as the RMR area for the partition.
All of the interrupt vectors for the operating system

will get control, with address translation disabled at the
architecturally defined offset into the partition’s RMR.

In POWERS processors, several very important
extensions were made to the base partitioning support
in order to efficiently support the virtualization of
processors and sharing of a physical processor by
multiple partitions. The most important extension was
the introduction of the hypervisor decrementer (HDECR)
facility, which is used for fine-grained dispatching of
multiple partitions on shared processors. The HDECR
provides the hypervisor with a guaranteed timer interrupt
regardless of the partition execution state. Unlike the
regular decrementer used by the partition for timer
interrupts, the HDECR interrupt is routed directly to the
hypervisor and uses only hypervisor resources to capture
the state of the partition. An additional assist provided by
POWERS processors for virtualization of processors is
the capability to route external interrupts to the
hypervisor (instead of the partition).

POWERS processors also introduced simultaneous
multithreading (SMT) support. Between SMT and shared
processors, support for a new register to track the cycles
consumed by a partition on each thread was required.
The processor utilization of resources register (PURR)
was added in POWERS processors so that a partition
receives a very accurate accounting of the number of
cycles executed by processor threads when it executes
on that physical processor.

The SMT support on POWERS processors also
introduced support for a dormant thread. When the
partition does not have work to dispatch on one of the
two threads of the physical processor, it can invoke an
hecall to make the thread dormant. If the other thread is
active, the hypervisor makes the invoking thread dormant
so that all of the register resources and cycles available on
the physical processor are utilized by the remaining active
thread. When an interrupt or time-out occurs for the
dormant thread, the hardware revives the thread, its state
is fully restored, and control is returned to the partition.
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Several other smaller processor extensions were made
for partitioning and virtualization, but this section has
touched on the most significant ones. The remainder
of the paper discusses the advanced virtualization
capabilities that were built upon these processor
extensions.

Virtualization of processors

A partition, which can be either a dedicated or a shared
processor partition, views its processors as virtual
processors. The virtual processor of a dedicated processor
partition has a physical processor allocated to it, while
the virtual processor of a shared processor partition
shares the physical processors of the shared processor
pool with virtual processors of other shared processor
partitions.

The configuration of a shared processor partition
requires that the system administrator specify the entitled
capacity for the partition, in addition to the number of
virtual processors that are configured for the partition.
The entitled capacity (in hundredths of a processor) is the
allocation of physical processor resources to the shared
processor partition. The physical processor allocation for
a virtual processor depends on the entitled capacity and
the number of virtual processors that are online for that
partition. The system administrator must also specify
whether the shared processor partition is capped or
uncapped. A capped partition cannot receive more cycles
than its entitled capacity. An uncapped partition will
receive processor cycles beyond its entitled capacity if
excess processor cycles are available in the shared
processor pool. The HMC allows the system
administrator to configure a partition’s uncapped weight
parameter, which represents a priority share of unused
processing capacity relative to the uncapped weight
parameters of other uncapped partitions sharing the same
processor pool. When there is contention for the excess
cycles, this parameter is used by the hypervisor to allocate
the excess cycles in the shared processor pool. Dynamic
logical partition (DLPAR) operations can dynamically
change the entitled capacity, the number of virtual
processors, and the uncapped weight of a partition.

Shared processor dispatching

The hypervisor attempts to dispatch a virtual processor
on the same physical processor where it last ran. If that
processor is not available, it attempts to find one on the
last POWERS chip used, and, failing that, one on the last
basic computation block. If the virtual processor has
not run for a long time and has therefore lost all affinity,
the virtual processor is dispatched on its some node.
The home node for a partition is the basic physical
computation block from which the majority of its
memory is allocated. Similarly, when an idle processor
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looks for work and cannot find a virtual processor with
affinity for the current physical processor, it attempts to
dispatch a virtual processor that has the current basic
computation block as its home node or a virtual
processor that has no affinity for any other basic
computation block.

Operating system optimizations

Several optimizations can be implemented by an
operating system to improve not only the performance of
its own partition, but also the overall performance of the
partitions running within the shared pool of physical
processors. The operating system first registers a virtual
processor area (VPA) for each of its assigned virtual
processors with the hypervisor. The VPA serves as a two-
way communication area between the operating system
and the hypervisor regarding details of the virtual
processor. One of the fields in the VPA is an idle flag.
Whenever the operating system enters its idle process, the
OS sets the VPA idle flag. When work becomes available
for the virtual processor, or when an interrupt is received
on the virtual processor, the OS clears the VPA idle flag.

When the OS is idle, it can cede the physical processor
back to the hypervisor by invoking the /_cede hcall,
essentially yielding the remainder of its entitlement on
that physical processor. The hypervisor can then dispatch
another virtual processor on that physical processor or
utilize the physical processor for its own purposes. Once
the virtual processor has ceded, it remains blocked until
its next interrupt occurs or until it is explicitly prodded
by another virtual processor within the same partition. If
the OS, running on another virtual processor within its
partition, determines that new work is available for one
of its idle virtual processors, the OS can prod the ceded
virtual processor by invoking the &_prod hcall. This
causes the hypervisor to unblock the prodded virtual
processor, which then becomes available for dispatch
on a physical processor. When dispatched, the virtual
processor resumes execution at the instruction following
the h_cede hcall.

Cases exist in which the operating system execution
on a virtual processor encounters a dependency on one
of its other virtual processors. Two examples of this are
spinlocks and synchronous interprocessor interrupt
communication. A spinlock is a loop executing a
nonblocking atomic serialization primitive used to
acquire a software lock, or reservation, in a symmetric
multiprocessing (SMP) system. If the lock is currently
held, the spinlock function spins in place waiting for the
lock to become available. Synchronous interprocessor
interrupt communication occurs when one processor of
an SMP system posts an interrupt for another processor
within the system and spins in place waiting for
acknowledgment of the interrupt. In these cases, the
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operating system can further optimize the utilization

of the underlying physical processor by conferring its
remaining entitlement on the virtual processor on which
it is dependent by invoking the /_confer hcall.

When the hypervisor is performing a context switch
of a virtual processor, it must save all of the architecturally
program-visible processor state. In many instances, not
all of the processor state is being used by the operating
system, so the complete state save is unnecessary. To
minimize the cost of a virtual processor context switch,
the OS can indicate to the hypervisor whether some
resources are in use. Some examples of this on the
POWERS processor are the floating-point registers,
performance monitor registers, and segment lookaside
buffer (SLB) registers. If the operating system is currently
using one of these resources, it sets the corresponding
VPA in-use field. In the case of SLB registers, the OS can
maintain a shadow copy in the VPA of all SLBs currently
in use. This allows the hypervisor to avoid having to save
the SLB registers on a virtual processor switch-out, and
allows the hypervisor to restore only the SLBs currently
in use on a virtual processor switch-in. One other aspect
of running in a shared processor partition that must
be handled by the operating system is the concept of
processor time. This is especially important when the
operating system is performing fine-grain process-level
accounting. In a dedicated processor environment, the
amount of processor time an operating system is using
must correspond directly to the elapsed time. On
PowerPC Architecture processors, the operating system
typically uses the timebase facility of the processor for this
purpose. In a shared processor environment, the elapsed
timebase ticks no longer correspond to execution time
received by the partition on a virtual processor. The
PURR (see the previous section on POWER partitioning
and virtualization support) is used to accumulate ticks
only when the virtual processor is dispatched on a
physical processor. The operating system can then tailor
its accounting and utilization algorithms to be based on
accumulated PURR cycles rather than elapsed timebase
cycles.

POWERS5 1/O virtualization

1/O partitioning provides multiple operating systems
running in a single system with their own set of 1/O

devices, such as storage adapters, network adapters,

and console devices. IBM POWERS systems support
partitions with either physical or virtual I/O devices

as well as partitions with a mixture of both types.

As in POWER4 systems, POWERS5 systems support
slot-level partitioning of physical devices. This means that
each peripheral component interconnect (PCI) slot in the
system can be individually assigned to a logical partition.
The hypervisor ensures that each logical partition can

IBM J. RES. & DEV. VOL. 49 NO. 4/5 JULY/SEPTEMBER 2005

access only the PCI slots assigned to it; it cannot access
other PCI devices, even if they are on the same bus.

In addition, POWERS systems support the definition
of virtual adapters. Virtual adapters provide capabilities
similar to those of physical adapters, but they are
implemented entirely in software and do not require
dedicated physical PCI slots. A key component of 1/O
virtualization on POWERS servers is the IBM Virtual I/O
Server (VIOS), which executes in a logical partition
explicitly created by the system administrator and
provides VSCSI and shared Ethernet adapter virtual
1/O capabilities to client logical partitions within the
POWERS system. The VIOS requires physical resources
(CPU, memory, I/O adapters) and special software that is
distributed on VIOS installation media. It takes advantage
of new POWERS platform features including Logical
Remote Direct Memory Access (LRDMA). When this
is coupled with powerful redundancy solutions such as
High Availability Cluster Multiprocessing (HACMP),
as well as multipathing options at both the VIOS and
client logical partitions, it provides the building blocks
necessary to create an enterprise-level virtualized 1/O
environment.

Virtual adapters

The virtualization of processors allows IBM POWERS
systems to support many more active partitions than
there are physical processors in the server. The ability to
support hundreds of partitions is less useful, however, if
each partition requires dedicated I/O adapter cards, such
as network and storage adapters. A key virtualization
feature of the new IBM POWERS systems is the ability to
create virtual adapter cards for an operating system. In its
most extreme example, a system could support hundreds
of operating system images with only a single real
Ethernet adapter and a single real storage adapter.

One area of operating systems that leads to complexity
is the support of I/O devices and adapters. To reduce the
complexity of the hypervisor, a design decision was made
to limit support for I/O adapters in the hypervisor itself,
delegating that function to the operating systems running
in logical partitions. This approach is designed to simplify
the hypervisor tremendously, eliminate a source of errors
that could have a potential impact on the whole system,
and eliminate the need for updates to the hypervisor
to support new I/O devices.

The decision to keep awareness of I/O adapters out
of the hypervisor significantly affects the design of I/O
virtualization. The hypervisor itself does not own real I/O
devices or provide virtualized interfaces to those devices.
Instead, all I/O devices are owned by logical partitions.
These logical partitions provide access to real hardware
to client partitions through virtual devices. The logical
partitions that own the physical resources are referred
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to as virtual I/O server partitions. The VIOS, an i5/0S
partition, and a Linux partition can all provide virtual
I/O services to other partitions.

The approach taken was to implement two sets of
operations in the hypervisor. The first set provides
support for the instantiation of virtual adapters in a
partition. This includes definitions of direct memory
access (DMA) windows, interrupts, and adapter
information similar to that required to identify a physical
adapter to a partition. The second set of operations allow
partitions to interact, in a very controlled and secure way,
such that one partition can gain access to physical I/O
resources in a different partition.

Three kinds of virtual adapters are supported—
SCSI, Ethernet, and serial/console. While the primitive
operations are slightly different for each, the concept of
allowing one partition to provide access to physical I/O
devices for one or more other partitions is similar.

Virtual adapters are created by the system
administrator as part of logical partition definition.
Virtual adapters exist in virtual 1/O slots, and the
administrator can configure the number of I/O slots
and the types of virtual adapters in those slots.

Information about virtual adapters, such as interrupt
numbers and DMA windows, is presented to the
operating system through the device tree, similarly to the
way in which information about the physical adapters
owned by the partition is presented. Specific device
drivers were written within the operating systems for each
virtual adapter type, just as would be required for a new
type of physical adapter.
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Virtualization of I/O interrupts

In order to maintain partition isolation, the hypervisor
controls the hardware interrupt management facilities.
The partition is provided controlled access to the
interrupt management facilities through a set of interrupt
management /Acalls. Furthermore, the interrupt
management facilities are virtualized such that the
facilities and the semantics of the /calls are preserved for
shared processor partitions. The same set of Acalls is used
for interrupts from real adapters as well as interrupts
from virtual sources such as VLAN, VSCSI, and virtual
console adapters. The hypervisor uses a combination

of software queues and the PowerPC interprocessor
interrupt (IPI) facilities for virtualization of the interrupt
management facilities.

Virtual SCSI support

The small computer system interface (SCSI) protocol was
chosen as the mechanism for virtualizing storage devices,
including disk, CD, and tape. The VSCSI support is
implemented as two paired virtual adapters, the virtual
SCSI client adapter and the virtual SCSI server adapter, as
shown in Figure 2. The client adapter is the SCSI initiator
and follows all of the semantics of any SCSI host bus
adapter; to the operating system that implements it, it is no
different from any other SCSI adapter. The adapters are
used only to transfer SCSI commands between partitions;
the SCSI commands themselves are generated by the
client operating system, as with any storage operation.

The server adapter, known in SCSI terminology as a
target adapter, is responsible for executing any SCSI
command received. However, it is entirely up to the
operating system owning the SCSI server adapter how the
command is executed. For instance, for some devices, the
SCSI server may simply pass all commands directly to
the real physical device. Alternatively, the SCSI server
may emulate the SCSI target device completely. A
combination of the two is also possible; this flexibility
helps ensure that operating systems using a virtual
SCSI client adapter are completely isolated from the
implementation on the server side.

The virtual SCSI function is based on two primitive
operations implemented by the hypervisor. First, there
is a message-queuing function that allows one partition
to send small messages to another partition, with an
interrupt mechanism allowing the receiving partition to
be notified when a new message arrives. All I/O requests
and responses are passed through this message-passing
facility. SCSI Remote DMA Protocol (SRP) [10] is used
to govern the rules for exchanging information between
the SCSI initiator (VSCSI client) and the SCSI target
(VSCSI server).

Second, there is the ability to issue direct memory
access (DMA) operations between partitions. While
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preserving the security and integrity of the system
requires that one partition must not be able to directly
read or write the memory of another partition, the
hypervisor provides a virtual DMA capability between
explicitly authorized partitions. These DMA operations
are designed to preserve the integrity of both sides of the
operation, since both the client and the server explicitly
inform the hypervisor of the DMA regions before the
operation takes place.

The virtual DMA capability is used to move SCSI
commands and data between partitions. When redirecting
SCSI commands to a real device, the server partition can
cause the device to transfer data (via DMA) directly to
and from the memory of the client partition, eliminating
the need to copy data between partitions.

Virtual IEEE VLAN switch

The POWER hypervisor provides a virtual Ethernet
switch which is designed to enable partitions on the same
system to quickly and securely communicate with one
another without requiring physical Ethernet adapters.
For systems that do not require a dedicated connection to
networks outside the system, the VLAN switch provides
an ideal solution without requiring the dedicated use of
the finite number of physical I/O slots available. The
switch is based on the IEEE 802.1q VLAN standard [11],
allowing for isolation of the partitions connected to the
switch on the basis of their VLAN membership.

The VLAN switch is configured by assigning virtual
Ethernet adapters to each of the partitions that are
connected to the switch. When a virtual Ethernet adapter
is assigned to a partition, the user configures the virtual
switch port to which the adapter is conceptually
connected. The ports can be configured to be IEEE
802.1g-aware or not, have a default port VLAN ID
(PVID) assigned, and be assigned membership in multiple
VLAN IDs if the port is 802.1g-aware. A simple virtual
Ethernet topology is shown in Figure 3.

Functionally, the switch performs the functions of a
typical midrange-managed Ethernet switch. Media access
control (MAC) address tables are maintained for filtering
unicast’ traffic. VLAN membership tables are maintained
to provide isolation of adapters based on VLAN IDs.
IEEE 802.1q headers and VLAN tags are transparently
inserted and removed as traffic flows between 802.1q-
aware and non-aware ports. MAC address takeover
is detected and logged. Trunk adapter® facilities are
provided to allow transparent layer-2 bridging.

From the operating system perspective, its connection
to the VLAN switch is seen as a virtual Ethernet adapter.
This adapter operates similarly to a physical Ethernet

°A unicast frame is an Ethernet frame targeted at one specific MAC address.
°A trunk adapter is a special virtual adapter that receives virtual network traffic so
that it can be bridged to a physical network.
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adapter, but without many of the complexities found

in physical adapters. Virtual Ethernet adapters are

not limited to an arbitrary maximum packet size of
1,514 bytes (or 9,014 bytes for jumbo-packet-aware
adapters) as are physical Ethernet adapters. The virtual
Ethernet adapters need not be concerned with physical
link configuration, asynchronous transmit operations,
or hardware errors. Transmit operations are performed
synchronously and are complete as soon as the Acall to
send a frame returns. Receive operations are performed
by providing a pool of buffers to the hypervisor for
receiving frames. As incoming frames are received by the
adapter, the hypervisor places the new frames on a receive
queue and informs the device driver with a virtual
interrupt. Interfaces are also provided for the device
driver to dynamically change the MAC address of the
adapter and manage the multicast’ filtering behavior and
tables.

Each virtual Ethernet adapter can also be configured to
be a trunk adapter. Virtual Ethernet adapters, like most
other physical Ethernet adapters, receive only frames with
a destination MAC address that matches their specific
MAC address. If a partition sends an Ethernet frame
to a destination MAC address that is unknown to the
hypervisor virtual switch, the hypervisor will deliver the
unknown packet to any trunk adapter defined for that
VLAN ID. This allows layer-2 bridging to a physical
adapter to be performed, extending the virtual Ethernet
network outside the system onto a physical Ethernet
network. Without trunk adapter support, bridging the
virtual Ethernet networks outside the system would
require a higher-level, more CPU-intensive bridging
method such as IP routing, network address translation,
or transparent subnets.

A multicast frame is an Ethernet frame which is delivered to multiple Ethernet
adapters using a reserved portion of the MAC address space.
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Virtual console topology.

The virtual Ethernet adapters also provide a form of
TCP/IP checksum® offload. The transmission control
protocol (TCP) requires the TCP/IP stack to calculate a
16-bit checksum over the entire user data payload of a
TCP packet, a TCP header, and a TCP pseudo-header,
which includes portions of the Internet protocol (IP)
header. The TCP checksum helps to guarantee the
integrity of the packet as it travels through the various
routers, switches, and bridges making up the physical
Ethernet. Performing the TCP checksum on POWERS5
systems can take an estimated 10% of the total CPU
processing required to send the packet, especially for
large packets. Many physical adapters provide facilities to
perform the TCP checksum while sending the packets,
offloading the host CPU.

Since the transmission of a packet on the virtual
Ethernet network does not involve any physical
networks, eliminating the TCP checksum from the
process required to transmit packets can provide huge
savings in CPU cycles consumed with no risk. Each
TCP/IP stack and device driver for the three different
operating systems providing virtual Ethernet support has
the ability to bypass the checksum calculations. The
hypervisor provides several /icalls enabling the virtual
Ethernet device driver to notify the hypervisor that the
operating system is aware that checksums need not be
calculated on the virtual Ethernet. If one partition sends
an Ethernet packet with no TCP checksum to another
that has not performed this /Acall, the hypervisor will
calculate the correct TCP checksum and place it in the
packet before finishing the virtual DMA.

8A checksum is a mathematical operation performed across a set of data that is used
to detect changes in the data and ensure data integrity across unreliable transports.
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Virtual console support
The system console is the last piece of I/O infrastructure
that is required for a full partition. Most operating
systems require a dedicated console for processes such as
installing the operating system, setting up the network, or
performing problem analysis of early boot failures. In
order to virtualize the console support, the hypervisor
provides a virtual teletype (TTY)/serial adapter with
a suite of Acalls that operate on this virtual adapter.
Depending on the specific system configuration, the
operating system console may be provided by an HMC
virtual terminal (vterm), through another partition
connected via its own virtual serial adapter, or via a
terminal emulator connected to physical serial ports on
the system service processor. Figure 4 shows the multiple
ways in which a virtual console may be provided.

Dynamic reconfiguration

Many modern systems support dynamic reconfiguration
of system hardware. This reconfiguration includes adding
or removing processors, adding or removing memory,
and adding or removing I/O devices. A common example
is the ability to replace a failing I/O adapter while the
system continues to run.

In a virtualized environment, the requirements for
dynamically reconfiguring the hardware used by an
operating system increase dramatically. Workload
changes may require that processors, memory, and I/O
adapters be moved between logical partitions. Customers
using these systems in high-availability environments
cannot tolerate rebooting operating system images to
accommodate such changes.

The POWERS hardware and firmware supports adding
and removing virtual processors, entitled processor
capacity, uncapped processor weight, memory, and 1/O
devices for logical partitions while the operating systems
are running. Such resource moves involve cooperation
between the HMC, where the moves are initiated, and
the operating systems in question. A component in the
operating system known as the dynamic reconfiguration
manager (DRMGR) communicates over a network
connection to the HMC to coordinate, execute, and
acknowledge such changes.

Cross-logical-partition workload managers can also
initiate dynamic resource changes between partitions
utilizing these same interfaces. Support of dynamic
reconfiguration required changes to the firmware as well
as to the operating systems involved. A cross-partition
workload manager manages resources in a set of
partitions on a system. The system administrator can use
the HMC to define the set of partitions that can be
managed as a group. The OS provides a set of application
programming interfaces (APIs) and the hypervisor
provides a set of hypervisor calls so that the workload
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manager running in each partition of the group can move
resources between partitions to achieve its goals. The
hypervisor is designed to ensure that the set of partitions
defined to be in a group can use only the resources that
the system administrator has assigned to the partitions in
the group.

Concluding remarks

The combination of the POWERS processor with the
POWER hypervisor provides IBM with leading-edge
virtualization and partitioning support in the latest
POWER servers. The paravirtualization, or cooperative
partitioning provided by POWERS systems in
conjunction with the AIX, i5/OS, and Linux operating
systems, results in an excellent combination of
virtualization capabilities with minimal overhead. These
features include micro-partitioning of servers through the
virtualization of processors and I/O, efficient resource
utilization through recovery of idle processing cycles,
dynamic reconfiguration of partition resources,
consolidation of multiple operating systems on a single
platform, and platform-enforced security and isolation
between partitions.
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