Verification
strategy for the
Blue Gene/L
chip

The Blue Gene®/L compute chip contains two PowerPC® 440
processor cores, private L2 prefetch caches, a shared L3 cache and
double-data-rate synchronous dynamic random access memory
(DDR SDRAM) memory controller, a collective network interface,
a torus network interface, a physical network interface, an
interrupt controller, and a bridge interface to slower devices.
System-on-a-chip verification problems require a multilevel
verification strategy in which the strengths of each layer offset the
weaknesses of another layer. The verification strategy we adopted
relies on the combined strengths of random simulation, directed
simulation, and code-driven simulation at the unit and system
levels. The strengths and weaknesses of the various techniques and
our reasons for choosing them are discussed. The verification
platform is based on event simulation and cycle simulation running
on a farm of Intel-processor-based machines, several PowerPC-
processor-based machines, and the internally developed hardware
accelerator Awan. The cost/performance tradeoffs of the different
platforms are analyzed. The success of the first Blue Gene/L nodes,
which worked within days of receiving them and had only a small

M. E. Wazlowski
N. R. Adiga

D. K. Beece

R. Bellofatto

M. A. Blumrich
D. Chen

M. B. Dombrowa
A. Gara

M. E. Giampapa
R. A. Haring

P. Heidelberger
D. Hoenicke

B. J. Nathanson
M. Ohmacht

R. Sharrar

S. Singh

B. D. Steinmacher-Burow
R. B. Tremaine
M. Tsao

A. R. Umamaheshwaran
P. Vranas

number of undetected bugs (none fatal), reflects both careful
design and a comprehensive verification strategy.

Introduction
Very large chips and associated verification efforts were
formerly seen only in the domain of processor design,
such as the PowerPC* [1]. Now, system-on-a-chip (SoC)
designs can rival the complexity of processor designs, but
are designed by smaller teams of system designers. An
SoC design comprises a number of semiautonomous
subsystems that are integrated to form a single system.
Any of these subsystems can be as large and complex as
an entity that, just a few years ago, would have been
considered an entire chip in itself. While it is true that
some components in an SoC design are pre-designed and
pre-verified (e.g., an embedded processor), the complexity
of SoC designs poses a challenge to a small verification
team because of its large breadth. State-of-the-art
verification relies on a fundamental set of concepts.
Unit-level simulation is used to efficiently verify a single
component inside the chip. This allows the verification
engineer to more easily write tests targeted at the interface

of the unit under test without having to satisfy conditions
or constraints of other units. A disadvantage of unit-level
simulation is that it does not verify the interaction of the
unit with other units. Unit-level simulation is generally
much faster than system simulation because there is a
smaller runtime overhead.

System simulation is used to comprehensively verify
that the chip operates correctly in its targeted system
configurations under all stress conditions. This method
of verification complements unit-level simulation in that
it covers the interaction of the unit with its neighbors, as
unit-level simulation alone does not. There are two main
disadvantages of system simulation: First, it is often
difficult to create specific events from outside the chip at
the interface of a unit that is deep inside the chip; second,
simulations run slowly because of the large compiled
simulation image.

Whether verifying at the unit or system level, two types
of stimulus generators may be employed: deterministic
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and random. If a unit is very simple, a deterministic
(also known as directed test) stimulus should be used.
The advantage of deterministic verification is that a
verification engineer can write a suite of tests that either
enumerate all possible states or target specific scenarios
for the logic being verified, run the test suite in regression,
and verify the function. In practice, however, this can be
accomplished for only the simplest of units and requires
extensive engineering time. For these simple units, formal
verification techniques can be considered because the
state—space of these units can be verified in a relatively
short length of time with a computer containing a
moderate amount of memory.

Random simulation relies on the test environment to
generate the test scenarios in such a way that they can
be generated at machine speed indefinitely, without
intervention. We rely on directed random simulation—

a hybrid of the directed and random testing strategies.
This scheme retains the advantages of random verification
but provides control to the test engineer to focus the
random testing on a specific corner of the design

space or functionality.

Coverage metrics can be used to help quantify which
design functions have been reached by simulation. Code-
coverage metrics that determine whether each line of Very
high-speed integrated circuit Hardware Description
Language (VHDL) code has been exercised provide some
value, but they provide no means of determining the
context in which the line of VHDL was exercised. This
can lead to a false feeling of coverage. A solution is to
embed assertion statements in the VHDL that enable
specific functional coverage information to be logged—
for instance, including an assertion statement that
indicates when the L3 controller read address queue is
full. Subsequently, the number of times this event occurs
in the simulation can be counted, and the information can
be used to tailor the random simulation if the queue is full
too rarely or too often. A pitfall of this approach is that it
relies on the VHDL designer to think of coverage checks
and to code them. It is possible for a designer to miss
some of these coverage checks. In spite of their
shortcomings, it is desirable to use assertion statements,
because they are flexible and can provide better
information on what has been verified when compared
with code coverage.

Full processor models allow the use of real software
applications to run in a system-level simulation. The
software is cross-compiled and then run on the processor
model in the verification environment. A benefit of using
a full processor model in system-level simulation is that
the software team can develop system software and test it
in the simulation environment before the actual hardware
is running in the laboratory. Also, software-based stress
tests written for verification can easily migrate into the
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laboratory, and there is the additional benefit that the
behavior of the processor in the system can be observed.
This information can be used to tailor a bus-functional
processor model to more closely emulate some of the
traits of the real processor.

A bus-functional processor model provides a means to
drive transactions on the processor bus. The model does
not contain any of the internal behaviors or intelligence
of a full processor model; it simply knows how, for
example, to do reads and writes on the processor bus
when it is told to do so by the verification engineer. A
bus-functional model can be used to more strenuously
drive transactions on the processor bus because it does
not have to wait for pipeline stalls or instruction fetches,
like the full processor model. The verification engineer
can program as many reads or writes in succession as
desired.

This paper discusses the strategy and methods required
for a small verification team to verify an SoC design in
the context of Blue Gene/L (BG/L). In this paper, we
describe the BG/L compute chip (BLC) architecture and
the verification strategy, tools, and hardware platforms
used to validate the chip. The subsystem or unit
verification of the BLC network interfaces is discussed
next, followed by random system simulation and code-
driven system simulation. The paper concludes with a
discussion of the verification results and a summary.

BG/L architecture

The node architecture of BG/L is shown in Figure 1. The
BG/L design uses an SoC architecture in which each node
in the 65,536-processor supercomputer consists of one
BLC with memory ranging from 256 MB to 1 GB of
external double-data-rate synchronous dynamic random
access memory (DDR SDRAM). The BLC contains two
PowerPC 440 (PPC440) embedded cores [2]. Each of
these cores contains a double-hummer floating-point unit
(FPU), which consists of two 64-bit PowerPC FPUs
programmed with single-instruction multiple-data
(SIMD) instruction-set extensions supporting up to

5.6 gigaflops per node at 700 MHz. Each core is attached
to a private L2 prefetching cache through three separate
buses: instruction fetch, data read, and data write.
Although there is no coherence support between the L1
caches of the two cores, the L2 caches support coherence
at L2 and beyond through a “snoop” interface. The L2
interface also provides access to all memory-mapped
input/output (I/O) devices, including the torus, collective,
and global interrupt networks, a shared 16-KB static
random access memory (SRAM), and the Gigabit
Ethernet controller. A 4-MB embedded DRAM L3 cache
provides coherent interfaces to each L2 and interfaces
with the DDR controller. In addition to the memory-
mapped [/O (MMIO) interfaces, each BLC contains a set
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of device control registers (DCRs) used for configuration
and status. The torus network is used for point-to-point
communications between nodes for computation,
whereas the collective network is used for global
communications, such as broadcast and reduction.

On the BLC, there are 734 DCRs of up to 32 bits each.
Other functional units in the BLC include the interrupt
controller and the lockbox, which provides atomic
test-and-set semaphore and barrier operations between
the cores. The 440 CPUs, the double hummers, and the
Ethernet subsystem, which includes a bus bridge and a
direct memory access (DMA) controller, are off-the-shelf
cores and are shaded blue in Figure 1. All other logic—
approximately 900,000 lines of VHDL—had to be
synthesized and verified.

Strategy

The overall verification strategy for the BLC is built upon
a hierarchical approach that uses a number of different
methodologies. Each of these methodologies has specific
strengths and weaknesses, and the BLC verification
strategy uses the methodologies in a complementary
fashion to exploit strengths and compensate for inherent
weaknesses. The methodologies employed for BLC
verification are more or less standard [3] and include unit-
level, formal protocol, random system-level, and code-
driven system-level verification.

The BG/L chip unit-level strategy was to minimize the
number of bugs found at the system level. Debugging
chip failures at the system level is significantly more
difficult and costly than debugging failures at the unit
level, so we also chose to do unit-level simulation.
Verification engineers and designers of a given unit
collaborated on the unit-level verification solution. Unit
verification was performed on the L3 controller, the DDR
interface, the collective interface, the torus interface, and
many other units and subunits.

Although unit simulation is critically important in the
overall verification strategy, space constraints do not
allow us to describe them all in this paper. Only the
collective and torus unit-level testbenches are described.
The unit-level testbenches are simpler than the
system-level testbench and are thus usually available
before the system-level testbench. This strategy allows
the system-level testbench to be developed while the
unit-level tests are running.

The BG/L system verification strategy targets the
following:

* Chip correctness in a large system.

¢ Low-cost, rapid implementation.
¢ Support for logic design debug.
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e Compatibility among tools, libraries, models, and
preexisting logic code.
¢ Efficiency.

Efficiency was critical to the verification strategy, as
only six months were afforded to develop and implement
the system verification strategy and validate the chip
before fabrication. We emphasized strategic efficiency
as cycles per effective simulation event and test case per
simulation engineer hour. Effective simulation events are
defined as simulation events that actually test the design,
as opposed to simulation events that are expended to
prepare or flush the system state in response to a desired
event or scenario. Bus and interface model generators
were leveraged to maximize effective simulation events,
while a random test-case generation environment was
used to maximize test-case generation. Strategically, the
testbenches could have been written more easily in C.
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However, the aggressive schedule, preexisting models,
and support for multiple simulators led us to choose
VHDL as the language for all testbenches.

The BLC contains two PowerPC processors, but using
full processor models in every simulation would render
the system-level simulation too slow. In addition, the goal
was not to verify the processors themselves, but to verify
their interaction with the rest of the logic. The processors,
which are off-the-shelf components, had been pre-
verified. The processor bus model, written in VHDL,
replaces a full processor model and interfaces with the
memory system via the processor bus. Creating a bus-
functional model rather than using the full processor
model provided the following benefits:

e It has significantly improved verification throughput.
The bus model runs much faster than a full processor
model because it performs far less work per
simulation cycle.

* A bus-functional model can be made to appear much
more random than a full processor model.

¢ The bus-functional model provides the opportunity to
inject errors on the processor bus so that the error-
handling capabilities of the logic can be tested.

For the BLC, we chose to use assertion statements
embedded in the VHDL rather than code coverage
because, as discussed above, more sophisticated reporting
can be gained from assertions. Assertions were written for
functional coverage in every unit—L2, L3, collective,
torus, etc.—and to flag fatal error conditions. Verification
was not considered complete until all of the functional
coverage assertions were hit.

A verification aid often used in BLC verification is
the reduction of maximum queue depths or cache
associativity. Most controllers or state machines that
manage queues have special conditions for being empty
or full. With large queues or FIFOs (queues in which
access becomes available according to the first in, first out
rule) in the design, it is more difficult to cause the special
full and empty conditions to occur frequently during
simulation. In the VHDL, the simulator forces the
maximum queue depth to be a smaller number at time 0
to help exercise these conditions. This technique is used
on several queues and on the associativity of the L3
cache. The associativity of the L3 cache is randomly
reduced on some simulations from eight-way to four-way
or two-way.

Gate-level event simulation with back-annotated
timing is an essential part of the verification effort
because it can uncover uninitialized latches and dynamic
timing paths that are not found by static timing tools. The
benefits of gate-level simulation are discussed in more
detail below.
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Because of the hardware-specific programming model
for BG/L, extensive development is required in order to
produce the software that will run on the BG/L hardware.
The software includes both the operating system and
applications. To allow the development of software
before the BG/L hardware is available in the laboratory,
code-driven system simulation is employed. The code-
driven environment uses full processor models that allow
actual software binaries to be run in the simulation.

Verification platforms

Several verification platforms were selected for use in
BLC verification. We used both cycle simulators and
event simulators. If the only concern had been simulation
speed, we would have used only cycle simulation, but cost
and verifiability also entered the decision process. The
IBM internally developed cycle simulator Mesa was used
because it is an order of magnitude faster than event
simulators. Code written for cycle simulation is easily
transferred to Awan [4], the hardware accelerator, which
is an order of magnitude faster than Mesa, but at a
substantial monetary cost. However, cycle simulation
requires a different VHDL coding style than for event
simulation. Because of its nature as a cycle simulator,
Mesa requires special practices to simulate transparent
latches and subclock cycle events, e.g., analog behavior
of the chip I/O interface. A solution is to run the
fundamental clock of the cycle simulator at a higher
frequency than the actual clock required by the chip.
Unfortunately, adding more cycles to the cycle simulator
slows down the simulation. Ultimately, a cycle simulator
can never really simulate analog behavior because of the
coarse granularity of the fundamental simulator cycle,
which means that it cannot be used for gate-level
simulation with back-annotated timing information
because this requires fine-grain analog behavior.

The above shortcomings of cycle simulation adversely
affect the verifiability of the design when cycle simulation
alone is used to verify the design. Back-annotated gate-
level event simulation is required in order to find dynamic
timing issues and to find errors in scripts written to
control a static timing tool. Certain issues (such as the
simultaneous read and write of an SRAM or a static
timing tool script that declares a path to be multicycle
when it is not) cannot be detected by cycle simulation
coupled with a static timing tool.

Each of the simulators—cycle for its speed and event
for its accuracy—has its place. For the BLC, cycle
simulation running on Awan is used for code-driven
system simulation using the full processor model. The
same simulation is prohibitively slow on an event
simulator and is impractical. The event simulator is used
to simulate BLC with the processor bus-functional model
in random system simulation, including the analog
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behavior of the chip I/O interfaces. The event simulator is
also used for gate-level simulation.

The hardware platforms in use by BG/L are 32-bit
Intel-based Linux** machines, 64-bit PowerPC-based
AIX* machines, and the hardware accelerator Awan.
There are 100 Intel-based machines running Linux and
Cadence NC-VHDL which constitute the simulation
farm for the random system-level simulation. There are
tens of PowerPC machines running AIX and Mentor
Graphics ModelSim**.

Torus multinode unit-level verification testbench
A multinode torus verification testbench was developed in
VHDL to enable networks with different sizes and shapes
to be simulated under a variety of traffic patterns. This
testbench, written and maintained by one person, consists
of the torus logic, a packet generator and injection unit,
a packet reception and checker unit, links, and a global
control unit (Figure 2). This testbench does not include
the driver (receiver) units that serialize (deserialize) bytes
onto (from) the links.

The packet generator creates packets of a given
workload, where the workload consists of packet
destinations, sizes, virtual channels, etc. These workloads
can be quite flexible. For instance, they may consist of
random destinations, nearest neighbor, hot-spot,
broadcasts, and so on. There can be dependency between
consecutive destinations to model long messages. In
addition, a simulation can be flexibly configured so that
each node selects a different workload with different
parameters according to some probability distribution.
The packet generator also creates self-checking packets,
so that when a packet is received—and without additional
testbench coordination between the sender and receiver—
the packet checker can determine that the packet arrived
at the correct destination with every byte intact. The
injection unit puts these packets into the torus injection
FIFOs when space is available, but it can also insert
random delays between injections. The reception unit
checks the torus reception FIFOs for packets, reads them
out, and checks the packets for correctness, which also
includes checking that deterministically routed packets
arrive in the correct order. Delays can be inserted between
receptions, thereby allowing reception FIFOs to fill
up and cause further backlogs within the network.

The link units have the capability of either passing
bytes through (with some delay) or corrupting bytes
to test the torus error-detection mechanism and
retransmission protocol.

The error rate on each link can be flexibly controlled.
The global control unit is responsible for coordinating
termination, i.e., determining when all packets have been
received, or warning of a potential deadlock after a
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suitable timeout. Upon termination, each torus unit is

checked to make sure that it is left in a pristine, empty
state, with all FIFOs empty, all tokens accounted for,

sender link-level cyclic redundancy check (CRC) equal
to the corresponding receiver link-level CRC, etc.

Besides logic verification, this testbench was also used
for performance verification for simple communication
patterns. In particular, as described in [5], comparison
between this VHDL verification testbench and a higher-
level performance simulator caught a performance bug in
one of the torus arbiters.

This testbench runs on NC-VHDL on a subset of the
Intel-based simulation farm. A 2.6-GHz workstation
could simulate about 200K node-cycles per hour. (A
node-cycle is the number of nodes times the internal torus
cycle time, which is one-fourth that of the processor.)
Each node required approximately 30 MB of memory,
and the largest configuration simulated was a 64-node
configuration.

Assertions were placed in the torus VHDL when
certain conditions (full FIFOs, corrupted packets, etc.)
were hit. While most assertions were frequently hit,
directed tests sometimes had to be written to hit certain
assertions. In addition, after a bug was found, directed
tests were typically written to recreate many times over
the conditions that led to the bug, and the testbench
would often be modified to more frequently include
workloads that tended to create such corner cases.

The combination of thorough subunit simulation and
the use of two independently created testbenches (the
multinode and the random system-level), proved a
powerful combination: Bugs were caught by both
testbenches. When hardware arrived, a test environment
similar to multinode was created and a single-node system
(running in loop-back) and a large torus system were
subjected to many different communication patterns.
Real Message Passing Interface (MPI) applications were
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Three of the network shapes being simulated.

also run on this hardware. As mentioned above, the link
capture units can be programmed to intentionally corrupt
bytes going onto the links. This provides a hardware
capability for testing error recovery similar to that in
multinode link units. Running on real hardware, which
provides approximately six orders of magnitude more
cycles per second than can be achieved in simulation,
uncovered no logic bugs in the torus.

Collective link protocol verification

The Blue Gene/L supercomputer will combine more than
65,536 collective network routers in one large system. It is
very unlikely that simulations will hit all of the potential
situations that may occur in a system of that size and
complexity. To reduce the risk that under some strange
conditions the network does not function correctly, we
applied formal verification methods to the high-level
design of the collective communication protocol. This
effort was performed by one of the collective hardware
designers. Formal verification was not required for the
torus network because it was built on an existing
protocol.

The collective communication protocol is special
because of the usage of explicit resend requests (negative
acknowledgment, or NACK) in addition to the
mandatory timeouts. It was not obvious whether the
addition of these protocol features would cause livelocks,
or even deadlocks, because of, for example, alternating
and amplifying resend requests. Another important
condition that required verification is the guarantee that
the senders and receivers on both sides of the link are
synchronized. Synchronizing the sender and receiver
means that the sender must be informed about the correct
reception of the packets, which is required in order to
track the availability of buffer space on the receiving side
of the link. Therefore, synchronizing sender and receiver
is a precondition to not generating extra packets and not
dropping good packets.
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Since the verification of such high-level protocol
properties is extremely difficult at the register transfer
level, we use the Murphi verification tool [6] and an
abstracted description of the protocol to prove the
correctness of the protocol. The Murphi tool basically
enumerates all possible states of the abstracted protocol
description. The Murphi tool can easily check for the
reachability of harmful states (assertions) or for the
possibility to exit any loop in the state transition
matrix (livelock or deadlock). Because of the protocol
abstraction, the Murphi tool can exhaustively verify
the protocol.

The downside for the Murphi verification approach
is the level of abstraction necessary before such an
exhaustive state—space exploration can be performed
successfully. Even if 64-bit systems with 64 GB of
memory are used, only about 100-bit state-vectors
can be used before the verification fails because
of the lack of memory. Therefore, the protocol
must be abstracted. Special care must be taken to
implement the abstracted protocol exactly as defined
and verified.

The entire formal verification approach began after
a flaw in the protocol was uncovered that could have
caused a temporary livelock of a link. The problem
was initially found using a random-number-based,
self-checking testbench. The testbench, described in the
following section, had to run for several hours before the
situation occurred. Since the fix of the protocol would
have changed the dynamic behavior of the simulation, it
would not have been clear whether the protocol change
really fixed the problem or simply modified the behavior
of the simulation in such a way that it no longer hit the
problematic state. Using the Murphi tool, we were able
not only to reproduce the situation, but also to verify that
the intended correction really solved the problem and to
successfully verify the correctness of the final version of
the protocol.

Collective multinode unit-level verification
testbench
A multinode collective verification testbench, called
Forest Bench (FB), was developed in VHDL to simulate
networks of various sizes and shapes under a variety of
traffic patterns. FB, written and maintained by one
person, is similar to the torus testbench described
above. If collective logic were substituted for torus logic in
Figure 2, it would accurately depict FB. As in the torus
testbench, FB does not include the driver (receiver) units
that serialize (deserialize) bytes onto (from) the links.
Each instance of FB consists of a global control unit
(GCU) and one or more nodes. Three of the network
shapes being simulated are shown in Figure 3.
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The GCU coordinates various global phases of the
simulation. The coordination uses a daisy-chained bus
through all of the nodes. The daisy chain easily connects
an arbitrary number of nodes and, within a node,
easily connects the subunits. In all phases, the GCU
collects statistics and displays the global progress of the
simulation. The GCU also identifies a hung network or
testbench when no progress occurs over a long interval.
In a jam phase, nodes inject packets into the network but
do not remove any packets. The GCU ends the jam phase
when no node can inject any more packets. Similarly, in a
drain phase, nodes remove packets from the network but
do not inject. The GCU ends the drain phase when all
outstanding packets have been received. When not
jamming or draining, nodes inject and receive packets.
The end phase distinguishes a failed run from a successful
run, which meets all expectations and self-consistency
checks.

Each FB node consists of the collective logic, the
universal performance counter (UPC) logic, and the
following main testbench units: DCR, send, receive,
and link. In addition to other functions, the DCR
unit configures test modes, such as corrupt-packet-
capture and link-loopback, since FB makes aggressive
use of such test modes. At the end of a run, the
DCR unit also reads registers to perform collective
consistency checks. Similarly, it also configures and
checks the UPC logic. The link unit adds arbitrary
delay to the collective links between nodes and injects
errors on the links. Imitating the PPC440, the send and
receive units inject packets into and receive packets from
the network, respectively.

With the goal of covering all possible scenarios in the
collective logic, the above and other testbench actions
are driven by 95 independent pseudo-random number
generators. Each generator is seeded using the same
global seed modified by a unique local function. The
single global seed minimizes the amount of information
needed to repeat a simulation. As far as possible, a
pseudo-random number generator drives each significant
testbench action.

There is no per-packet communication between the
send and receive units within or across nodes. Instead,
the receive units replay the pseudo-random number
generators of the send units in order to obtain the
complete expectations for every bit of every packet header
and payload. For example, for a combine packet, each
receiver reproduces the contribution of each participant
and performs the arithmetic operations of the reduction.
The receiver halts the simulation when an unexpected
bit is found.

In addition to logic verification, the testbench was used
to verify the performance of some simple communication
patterns.
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Random system-level simulation

Unit-level verification targets the specific unit under test
and facilitates finding bugs within the unit, but because
the unit is just a building block, it must be tested as it
works in concert with other units of the chip. System-level
simulation verifies the chip as a whole when all units are
connected together, and it verifies the connection of

the chip to the surrounding system. In the case of

the BLC, the surrounding system is a collective network
and a torus network.

Testing randomly is an essential element of a
simulation strategy, because random tests uncover cases
that neither the designer nor verifier anticipated. For a
design with any complexity, it is simply not possible for a
verification engineer to list all of the events that should be
tested and then test them. The key to a successful random
simulation environment is to constrain the randomness
to meaningful operations, while at the same time
maximizing the potential randomness within this context.

The random system simulation (Figure 4) is controlled
by three distinct classes of drivers which include a
processor bus model, a collective interface model, and
a torus interface model. The random environment was
written and maintained by four people, two working on
the memory subsystem and one each on the torus and
collective networks. The testbench models are shaded
blue in the figure. The sum of the three drivers is
approximately ten thousand lines of VHDL. The
processor bus model emulates the traffic on the processor
bus and performs reads and writes to the memory
subsystem and to software registers. It is instantiated
three times, once for each of the two processors and once
for the Ethernet DMA controller. A single instantiation
of the collective interface model emulates an entire 64K-
node collective network, and similarly, a single torus
interface model emulates an entire torus network.

Processor bus model

In addition to having better simulation speed than a full
processor model, the bus model produces a large number
of test conditions in a comparatively short length of time.
This benefit has two sources. One is that the stimulus
can be incessant. Instruction fetches, memory latencies,
pipeline bubbles, and other obstacles force a processor to
stammer out bus operations. The bus-functional model
has no such dependencies and can start a new bus
operation as soon as the previous operation finishes. The
other quality advantage derives from randomness itself.
Almost by definition, random values are fresh and
unexpected. Given the slowness of simulation in general
and the vastness of the combinatorial space to be covered,
it is important to generate as few routine, equivalent cases
as possible. A processor tends to spend much of its bus
time repeating the same set of operations, such as loading
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testbench modules.

a code cache line. However, it is also desirable for a
random bus model to reproduce at least some of the
behavior of the processor. This implies that randomness
should be structured to a certain extent. Left completely
uncontrolled, a random bus model may not reproduce
certain multi-operation sequences because the random
space is so large.

Verifying a memory system is conceptually simple. The
verification driver writes and reads addresses; the data
read back must be the same as the data most recently
written. Checker code in the simulation maintains a
private memory that reflects all of the writes that have
completed; read data is checked against this what-to-
expect memory. In the BLC, three masters can write
to memory at once: the two processor cores and the
Ethernet DMA. Reads must return data from the
most recent write as of the time the read began. Some
simultaneous writes have an undefined result. Since badly
written software could perform these kinds of undefined
writes, the verification code performed them as well to
ensure that they did not hang or confuse the hardware
and treated the writes that resulted as undefined. A
read of that write would then be ignored.

The most challenging part of creating a random
testbench is controlling the stimulus to ensure that it is
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stressful, i.e., that it explores the entire design space and is
not overly repetitive. If read and write addresses were
allowed to be chosen completely at random, the test
would not be particularly challenging or thorough. We
added several kinds of structure to avoid this pitfall. We
walked addresses forward through memory, a behavior
for which the hardware has been optimized and which
reflects the way actual processor addresses might
typically move. We also moved them backward, a
behavior that might thwart the optimized hardware.
We used a relatively small number of addresses and
randomly made some addresses more likely to be chosen
than others—a “hot” address might be read by one core
only a cycle or two after it was written by the other, and
only a cycle or two before it was overwritten by DMA.
Moreover, the addresses were chosen to maximize
L3 contention by targeting a small number of L3
associativity classes. Randomly, we also reduced the
number of ways in the L3, for example from eight-way
to two-way, to further enhance the competition. This
reduction in set associativity allowed us to find several
bugs that would have been very difficult to find with the
full associativity.

We also emulated the behavior of the processor as it
loads and unloads packets to and from the collective and
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torus networks. Packet loading and unloading is
accomplished by a series of software register reads and
writes.

In an attempt to maintain as much randomness as
possible, we randomized the probabilities of certain
events from test to test. For example, the delay between
operations is a random range of bus cycles based on a
probability, and from run to run, the range itself is
changed, so that some runs tend to have more delay than
others.

Random tests should be reproducible in the event they
uncover a bug. The bus-functional model can completely
reproduce its behavior on the basis of a single integer seed
value.

Torus driver

The torus driver generates, checks, and injects faults in
traffic patterns and packet structure consistent with a
fully configured 64K-node system. The torus driver for
the random system simulation sends data packets into six
torus chip receiver input ports (x+, x—, y+, y—, z+, z—)
and receives data from the six corresponding chip output
ports. It also interfaces with the processor bus model via
software registers, which allow the loading and unloading
of torus packets.

The torus driver, written in VHDL, has two parts.

As a behavior model, the first part, a low-level unit,
implements the bus protocol for a pair of torus output
and input ports. The second part, a high-level unit,
maintains a data structure of inflight torus data packets.
Whenever a torus packet can be sent on any of the eight
chip ports (six x, y, z ports and two processor ports), a
packet is generated on the fly with random destinations,
routings, and payloads. When a packet is received by any
of the testbench receivers, the inflight data packets are
searched. If a packet is correctly received by the expectant
testbench receiver, it is marked so. If a packet arrives at
an unexpected receiver, an error is indicated. When an
inflight packet is received by all of the expectant testbench
receivers, it is then marked as fully received. Statistics
are gathered, and the data structure is made ready to

be used by the next inflight packet.

The torus data throughput is controlled by inserting
a random wait interval before returning the token-
acknowledge (ack) packets. For the processor interface,
the torus driver waits a random interval before reading
the next packet from the FIFOs.

However, at random intervals, the torus driver stops
these two receive operations entirely, causing the data
buffers in the chip to begin to fill up. As this happens, the
torus driver switches to a heuristic mode and generates
only new packets that can fill up any still-available buffers
in the chip. When the buffers are as full as possible, the
torus driver switches to a drain mode. At the fastest
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possible rate, the token-ack packets are returned, and the
processor receive FIFOs are read. This drains the chip
buffers at the fastest possible rate. After the buffers are
totally emptied, or nearly so, the flow control changes
back to the random interval mode.

One drawback of this method for verifying the BG/L
torus, compared with the multinode unit-level simulation
method, is that the low-level torus driver and receiver
behavior have to be written into the testbench. The unit-
based method simply hooked two torus units together,
with little new code required, which mean that the unit-
level testbench was up and running more quickly.

The major advantage of the random system simulation
torus driver is its much smaller memory size and much
faster simulation speed. For example, in the unit-level
simulation method, to simulate the torus traffic patterns
and the workload for a 64-node configuration, the unit
simulator has to instantiate 64 BG/L torus units. In
contrast, the torus driver described here requires only one
instance of the BG/L torus driver and can simulate a
64K-node configuration.

Collective driver
The random system-level testbench collective driver
component was designed to test both the collective
network protocol and the collective network adapter
implementation in the BG/L chip. The tester was
developed independently of the actual collective network
VHDL to mitigate the potential for design flaws going
undetected, a potential when common functional
elements are shared between the tester and device under
test. The collective driver generates, checks, and injects
faults in traffic patterns and the packet structure
consistent with a fully configured 64K-node system.
Each BLC is a node in the system-wide collective
network. The collective network adapter consists of four
ports, a programmable routing table, and a queuing
structure for moving traffic through the node. Traffic can
be from or to the node, or a combination of both. Each
port consists of a full-duplex two-byte-wide interface
in which three of the ports are brought out through
serialization or deserialization logic to high-speed
BLC signal contacts, and the fourth port is internally
connected to the BG/L processor for the node to send and
receive up to eight packets through in each direction. The
collective network protocol includes idle packets, sync
packets, and 256-byte payload data packets. Data packets
can be either combining or point-to-point (combining
packets can be logically or arithmetically combined
during routing). Packets are defined as either forward or
reverse through the network, where reverse packets come
back through the network (for example, after combining
packets). Packet routing and payloads are generally
pseudo-randomly generated, but can be selected from a

M. E. WAZLOWSKI ET AL.

311



312

specific list of special patterns (e.g., “sync” pattern as data
payload).

Collective network combining requires that combining
packets be generated as logically related groups with
common attributes, such as combining opcode and
routing class. When a combining packet is randomly
generated, other randomly generated packets inherit the
common attributes until all of the constituent packets
have been generated for a combining group. Combining
“reverse” packets are always generated randomly, since
they represent packets that have already been combined
and are not part of a combining group. The combined
packet is checked for the appropriate logical or arithmetic
result.

The collective function was tested by two different
testbenches; cross-coupled unit-level nodes with small
collective networks stimulated by processor-generated
traffic (the FB) and by the random testbench collective
driver. The random testbench was significantly more
efficient in terms of memory size and collective packets
per second. It discovered several protocol faults that
went undetected in the cross-coupled unit-level test
configurations.

Code-driven system simulation

Code-driven system simulation is used in the BG/L
project for logic verification, architectural validation, and
performance measurements. The work was performed by
one full-time worker and a number of part-time workers.
Our estimate of the aggregate full-time work complement
is 1.5 individuals. The BG/L advanced diagnostics
environment (ADE) [7] provides complete and flexible
access to all hardware facilities via software. BG/L
ADE consists of a lightweight multithreaded coherence-
managed kernel, runtime libraries, device drivers, system
programming interfaces, and host-based cross-compilers
and development tools. Through the use of runtime and
compiletime options, BG/L ADE has the ability to utilize
all or a subset of the hardware, ranging from a single
PPC440 core with a simple SRAM memory subsystem
VHDL model through the full 64K-node machine. This
flexibility provides four important benefits. First, it allows
functional units to be integrated into the chip simulation
environment as they are developed. Second, because full
chip simulations run at approximately three processor
clocks (pclks) per second of wall-clock time on an event
simulator and at approximately 600 pclks/s under Awan,
it allows testing of specific functional units through
directed tests without the need to initialize and configure
other units. Third, certain functional units containing
analog circuitry, such as the I/O capture units, cannot be
accurately simulated with the Awan cycle simulator and
are removed from the Awan simulation model. Fourth,
because of the differences between the event and Awan
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simulation environments, different units can become
available and ready for simulation at different times.
For example, we can simulate with the L3 cache on an
event simulator for several weeks while an Awan cycle-
simulation embedded DRAM model is being developed.
A simple BG/L ADE runtime flag disables L3
configuration, initialization, and use.

To assist software-driven system simulation, both
internal and external logic was added to the simulation
environments. Externally, the BG/L chip is enclosed
in a testbench that provides required board-level
functionality, including DDR chip models and clocks.
This testbench also wraps network connections at the
chip I/O pins, creating a 1 X 1 X 1 torus network and
externally wrapped collective links and global interrupts.
To stress these network connections, varying network
delays were added in the testbench. A version of this
testbench provides a two-node simulation environment
by enclosing two BG/L chips in a 2 X 1 X 1 torus with all
three collective links and global interrupts interconnected.
Internally, a virtual universal asynchronous receiver
transmitter (UART) serial port device is added to the
BG/L in the processor local bus (PLB) MMIO space,
which allows software to print trace, status, and debug
information to the simulation logs.

BG/L ADE is used to build a suite of hundreds of test
cases that exercise all functional units. Of these hundreds
of tests, more than 160 are incorporated into a regression
suite that is run continually during ASIC development
and verification. Versions of many of these tests are
used for hardware bring-up and are still in use as
manufacturing test and full system on-site diagnostics
test suites.

The verification environment also forms an important
component of chip bring-up when hardware arrives. Test
cases are easily moved back and forth between hardware
and simulation environments to perform root-cause
analysis of any unexpected hardware behavior. That
allows us to find work-arounds, and we have even found
the occasional subtle software bug when running at a six-
order-of-magnitude increase in performance. For this
to be effective, BG/L ADE and many of the test
cases are carefully designed to achieve cycle-accurate
reproducibility, including the ability to restart a test—or a
particular iteration of a test—from a known state of all
units, including the processors, memory system hierarchy,
and networks. Of the few bugs found during bring-up, all
had only a single-cycle window in a particular chip or
memory system state during which they could occur.

All of these are reproduced in relatively short order in
simulation where the root cause is identified and the fix
or work-around is identified and confirmed.

Test cases range from simple directed tests that focus
on the correctness of specific DCRs to performance tests
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of the full chip and to architectural studies. Directed
software tests often incorporate external tool command
language (TCL) scripts that are triggered when a
particular device state is reached by software running on
the processors. These scripts perturb that state in various
ways by injecting errors, creating unusual situations,
and verifying correct recovery in collaboration with the
kernel or test-case software. The TCL scripting language
is the interface between the user running the simulation
and the event simulators ModelSim and NC-VHDL.
SRAM, DDR, and latch bits are flipped. Network
headers and packets are corrupted. State machines are
forced into error states. Spurious device interrupts

and machine checks are asserted. Transient and
permanent errors are injected. In all of these cases,
detection and (where possible) correction are verified.

Performance and architectural studies are at the other
extreme of the test cases run under BG/L ADE in the
simulation environments. Compared with the directed
tests, which typically require several hours to complete,
several of these studies run for days, even up to a week at
a time. Performance studies measure memory system
latencies and bandwidth; effectiveness of prefetching
between L2 and L3 and between L3 and DDR; and
instruction-path lengths for network interface injection
and reception. In addition to correctness, architecture
is considered in these studies. Feedback is provided
to enhance device programming interfaces, interrupt
delivery and handling, and MMIO layout. Interaction
between the two PPC440 processors is also verified with
regard to memory system coherence beyond the processor
L1 caches, core-to-core interrupt delivery, and data and
code-path locking.

To verify and measure the new double-hummer FPUs
and their interaction with the memory system, selected
computational kernels are extracted from parallel
applications, including double-precision general matrix—
matrix multiply (DGEMM), fast Fourier transform
(FFT), and small molecular dynamics systems. Because
these tests are run early in the BG/L chip development,
there is time to design and incorporate memory system
and instruction-set enhancements without excessive
schedule impact. These tests also assist in compiler
development, debugging, and back-end optimizer
enhancements.

Results

Table 1 shows the number of fatal bugs found by each of
the testbenches. The torus subsystem of the BG/L chip
had the fewest bugs: 15 (13 4 2). The collective section
had more bugs: 26 (19 + 7). The smaller number of bugs
found in the torus design compared with the number
found in the collective design can be attributed to the fact
that subunit verification was performed on the torus and
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Table 1  Number of fatal bugs found by each testbench.

Testbench Number of
fatal bugs
found

Torus: Random unit level (multinode) 13
Torus: Random system level 2
Collective: Random unit level (FB) 19
Collective: Random system level 7
Memory subsystem: Random system level 60
Memory subsystem: Code-driven system level 12

not on the collective. The subunit verification bugs that
were found were not entered into the bug tracking system
and consequently cannot be reported here. In the cases of
both the collective and the torus, the unit-level tests found
more bugs than the system-level tests. This is desirable
because it is easier to debug failures at the unit level than
the system level, and the difference can be explained by
the unit-level tests starting earlier in the design cycle than
the system-level tests. The memory subsystem had the
most bugs, 72 (60 + 12), but this is to be expected, because
it is the largest and most complicated subsystem on the
BLC.

When BG/L hardware became available in the
laboratory, the operating system and some application
software were running within days. This is a great success
considering the complexity of the chip. However,
software running a stress test on BG/L hardware found
two bugs that simulation had failed to catch. Oddly, these
bugs were not hit by the operating system or application
software, or at least had not yet been hit. Both bugs were
in the L3 cache, and the conditions required to hit the
bugs were very tightly constrained. Concerned that there
might be more escapes, we created a random unit-level
simulation for the L3. This random unit-level simulation
allowed us to focus on the L3 without having to pass
through the L2, as in the system-level simulation. We
simulated both the original L3 design that contained the
bugs and the corrected design. Although the simulation
runs appeared to be substantially similar to the ones that
had run in the random system-level simulation, this new
simulation immediately detected the bugs in the older
design, as well as two additional minor bugs in the new
design. We did expect the L2 to have some filtering effect
on our random system-level tests, but expected that this
filtering would be overcome by the large number of
machine hours of random stimulus.

One minor collective network interface bug was found
in the laboratory relating to arithmetic logic unit (ALU)
overflow error reporting. This bug resulted in some
spurious overflow interrupts, but was easily worked
around.
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Table 2 Code-driven and random system-level cost—performance comparison.

Simulation type Simulator System Cost Wall-clock Processor S/cycles/s
(&) time cycles|s
Code-driven
Code-driven system-level ModelSim IBM RS/6000* 44P Model 270 10K 9 hours 3 3,333
with full processor model POWER3*-1I/AIX* 375 MHZ 17 minutes
Code-driven system-level Mesa IBM RS/6000 44P Model 270 10K 28 minutes 50 200
with full processor model POWERT~3-1I/AIX 375 MHz
Code-driven system-level Awan Awan 200K 2 minutes 603 332
with full processor model
Random
Random system-level NC-VHDL IBM xSeries* 305 IK 23 43

with bus functional model

Pentium** 4/Linux** 2.6 GHz

Unexpectedly, the code-driven system simulation found
two bugs in the PPC440 core and one bug in the full
processor model. This was surprising, considering that
these were supposed to be pre-verified drop-in components.

A comparison of cost as a function of performance for
the different simulators in use in the BLC running exactly
the same code-driven system-level simulation is shown in
Table 2. The major distinction between the rows of code-
driven data is the simulation engine. The cost of software
is not included in the cost column. From a project
standpoint, the cost of ModelSim, NC-VHDL, and Mesa
is an equivalent constant. The wall-clock time is large,
and the $/cycle/s metric is large. However, if Mesa instead
of ModelSim is run on the same hardware platform, the
IBM RS/6000 Model 270, the $/cycle/s metric compares
well with that of Awan. Whether one should use the Mesa
system or the Awan system would depend on whether the
increased wall-clock time of the Mesa system would be
acceptable, considering its lesser cost compared with
Awan. The software running in this simulation is a “Hello
world”! program running on top of the operating system.
If the goal is to run a substantial software application
(much more substantial than Hello world) and the budget
permits, Awan would be the preferred platform.

The cost/performance numbers for the random
system-level simulation are also shown in Table 2. The
major distinction between the code-driven and random
simulations is that they are completely different
simulations. The code-driven simulation uses a full
processor model, whereas the random simulation
uses a bus-functional model. Thus, there are far more
simulation events per cycle in the code-driven simulation
than in the random simulation, and this distinction must
be taken into account when comparing the two.

'A program written by beginning students that simply writes “Hello world” to the
screen.
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In the past we compared the performance of ModelSim
and NC-VHDL and, as one would expect, we found them
to be roughly equal. Accordingly, we ignore the different
event simulators, ModelSim and NC-VHDL. The real
interest in comparing the two types of simulations is the
cost of the xSeries 305 system compared with the RS/6000
Model 270. If one assumes the performance of these
two systems to be roughly equal, and this is not an
unreasonable approximation, and the cost of the xSeries
305 machine is substituted for the cost of the Model
270 in the table, this brings the $/cycles/s metric for
ModelSim down to 333, far better than the ModelSim
number and comparable with that of Mesa and Awan.
Making the same substitution for the Mesa system brings
the $/cycles/s metric from 200 down to 20, which is an
order of magnitude better than the $/cycle/s of the Awan
system. The Model 270 is a 64-bit system, whereas the
xSeries 305 is a 32-bit system. Comparing the approaches
also shows that the random simulation with the bus-
functional model is an order of magnitude faster than the
code-driven simulation with the full processor model, but
this is expected, for the reasons discussed above. We
also report that we encountered no problems running
any of the simulation tools on Linux.

In the future, instead of VHDL, the random system-
level testbench will be written in C++, SystemC [8], or an
equivalent IBM internally developed package. Given our
experience, it is felt that the task of writing complex
behavioral software for a testbench can be done much
more easily in C++ than VHDL, regardless of C++
simulator interface portability issues.

Summary

The complexity of system-on-a-chip logic applications
such as the BG/L chip defines the challenges that must
be met by state-of-the-art verification methodologies.
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The high development and fabrication costs of these
systems necessitate the use of sophisticated verification
methodologies to help ensure successful first-pass silicon.
To meet these challenges, we developed a verification
strategy in which different types of verification are used
together in specific ways to complement one another. This
multifaceted approach forms a robust verification of
complex systems. Our verification strategy employs
engineered directed-test cases, unit-level simulation, and
formal protocol verification to augment our core random
system simulation, in which we run prodigious numbers
of simulation cycles on a continuous stream of
automatically generated new and varied test cases. The
“art” in an effective random simulation is to direct and
control the operational focus in the test space so that
simulation cycles are not wasted, and to know when the
simulation space has been sufficiently explored. The
verification strategy described in this paper is validated
by the first-pass success of the BG/L chip.

We successfully demonstrated that verifying a large
SoC chip using a Linux-based commodity personal
computer farm is cost-effective. Our verification strategy
led other verification efforts within IBM to use Linux-
based PCs for a simulation farm.
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B.E.E. degree from the State University of New York at Stony
Brook in 1986, and M.A. and Ph.D. degrees in computer science
from Princeton University in 1991 and 1996, respectively. In 1998
he joined the IBM Research Division, where he has worked on
scalable networking for servers and the Blue Gene supercomputing
project. Dr. Blumrich is an author or coauthor of two patents and
12 technical papers.
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Dong Chen IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (chendong@us.ibm.com). Dr. Chen is a Research Staff
Member in the Exploratory Server Systems Department. He
received a B.S. degree in physics from Peking University in 1990,
and M.A., M.Phil,, and Ph.D. degrees in theoretical physics from
Columbia University in 1991, 1992, and 1996, respectively. He
continued as a postdoctoral researcher at the Massachusetts
Institute of Technology from 1996 to 1998. In 1999 he joined the
IBM Server Group, where he worked on optimizing applications
for IBM RS/6000* SP systems. In 2000 he moved to the IBM
Thomas J. Watson Research Center, where he has been working on
many areas of the Blue Gene/L supercomputer and collaborating
on the QCDOC project. Dr. Chen is an author or coauthor of more
than 30 technical journal papers.

Marc Boris Dombrowa IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (dombrowa@us.ibm.com). Mr. Dombrowa received his
Dipl.-Ing. degree in electrical engineering from the University of
Hannover, Germany, in 1997. He was a very large scale integration
(VLSI) designer at the IBM VLSI Laboratory in Boeblingen,
Germany, from 1997 to 1998, performing memory design
verification and synthesis on S/390* Enterprise memory systems.
From 1998 to 2000 he was assigned to the S/390 Server Division at
the IBM Poughkeepsie facility to perform custom circuit design.
He moved to Blue Gene/L cellular systems chip development

in 2001 and has been responsible for the high-level design,
synthesis, timing, and verification of the test interface

of the Blue Gene/L compute chips as well as design-for-testability
transformation for the entire chip, clock-tree verification, and
simulation setup for instruction program load for the chip
verification teams. Mr. Dombrowa received an IBM Outstanding
Achievement Award in 1998 for his S/390 contributions. He is
coinventor of one patent. His research interests include computer
architecture, design for test, system bring-up, diagnostics, and
ASIC design. Mr. Dombrowa is currently working on the
manufacturing diagnostic software as well as the system-level rack
diagnostic test suite and bring-up for the Blue Gene/L cluster.

Alan Gara IBM Research Division, Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(alangara@us.ibm.com). Dr. Gara is a Research Staff Member

at the IBM Thomas J. Watson Research Center. He received

his Ph.D. degree in physics from the University of Wisconsin

at Madison in 1986. In 1998, Dr. Gara received the Gordon

Bell Award for the QCDSP supercomputer in the most cost-
effective category. He is the chief architect of the Blue Gene/L
supercomputer. Dr. Gara also led the design and verification of the
Blue Gene/L compute ASIC as well as the bring-up of the Blue
Gene/L prototype system.

Mark E. Giampapa IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (giampapa@us.ibm.com). Mr. Giampapa is a Senior
Engineer in the Exploratory Server Systems Department. He
received a B.A. degree in computer science from Columbia
University. He joined the IBM Research Division in 1984 to work
in the areas of parallel and distributed processing, and has focused
his research on distributed memory and shared memory parallel
architectures and operating systems. Mr. Giampapa has received
three IBM Outstanding Technical Achievement Awards for his
work in distributed processing, simulation, and parallel operating
systems. He holds 15 patents, with several more pending, and has
published ten papers.
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Ruud A. Haring IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (ruud@us.ibm.com). Dr. Haring is a Research Staff Member
at the IBM Thomas J. Watson Research Center. He received B.S.,
M.S., and Ph.D. degrees in physics from Leyden University, the
Netherlands, in 1977, 1979, and 1984, respectively. Upon joining
IBM in 1984, he initially studied surface science aspects of plasma
processing. Beginning in 1992, he became involved in electronic
circuit design on both microprocessors and application-specific
integrated circuits (ASICs). He is currently responsible for the
synthesis, physical design, and test aspects of the Blue Gene chip
designs. Dr. Haring has received an IBM Outstanding Technical
Achievement Award for his contributions to the z900 mainframe,
and he holds several patents. His research interests include circuit
design and optimization, design for testability, and ASIC design.
Dr. Haring is a Senior Member of the IEEE.

Philip Heidelberger IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (philiph@us.ibm.com). Dr. Heidelberger received a
B.A. degree in mathematics from Oberlin College in 1974 and a
Ph.D. degree in operations research from Stanford University in
1978. He has been a Research Staff Member at the IBM Thomas J.
Watson Research Center since 1978. His research interests include
modeling and analysis of computer performance, probabilistic
aspects of discrete event simulations, parallel simulation, and
parallel computer architectures. He has authored more than 100
papers in these areas. Dr. Heidelberger has served as Editor-in-
Chief of the ACM Transactions on Modeling and Computer
Simulation. He was the general chairman of the ACM Special
Interest Group on Measurement and Evaluation (SIGMETRICS)
Performance 2001 Conference, the program co-chairman of the
ACM SIGMETRICS Performance 1992 Conference, and the
program chairman of the 1989 Winter Simulation Conference.
Dr. Heidelberger is currently the vice president of ACM
SIGMETRICS; he is a Fellow of the ACM and the IEEE.

Dirk Hoenicke IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (hoenicke@us.ibm.com). Mr. Hoenicke received a Dipl.
Inform. (M.S.) degree in computer science from the University
of Tuebingen, Germany, in 1998. Since then, he has worked on a
wide range of aspects of two prevalent processor architectures:
ESA/390 and PowerPC. He is currently a member of the Cellular
Systems Chip Development Group, where he focuses on the
architecture, design, verification, and implementation of the Blue
Gene system-on-a-chip (SoC) supercomputer family. In particular,
he was responsible for the architecture, design, and verification
effort of the collective network and defined and implemented many
other parts of the BG/L ASIC. Mr. Hoenicke’s areas of expertise
include high-performance computer systems and advanced
memory and network architectures, as well as power-, area-, and
complexity-efficient logic designs.

Ben J. Nathanson [BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bjnath@us.ibm.com). Mr. Nathanson joined the IBM
Research Division in 1985 and has worked on the parallel
computers RP3, Vulcan, SP1, SP2, and Blue Gene/L. He received
IBM Outstanding Technical Achievement Awards for hardware
contributions to SP1 and SP2 and Research Division Awards for
RP3 bring-up and verification work on memory compression
hardware. Mr. Nathanson holds M.S. and B.S. degrees in electrical
engineering from Columbia University and is a member of Tau
Beta Pi and Eta Kappa Nu. His current focus is hardware
verification.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

Martin Ohmacht IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mohmacht@us.ibm.com). Dr. Ohmacht received his
Dipl.-Ing. and Dr.-Ing. degrees in electrical engineering from the
University of Hannover, Germany, in 1994 and 2001, respectively.
He joined the IBM Research Division in 2001 and has worked on
memory subsystem architecture and implementation for the Blue
Gene project. His research interests include computer architecture,
design and verification of multiprocessor systems, and compiler
optimizations.

Robert Sharrar IBM Systems and Technology Group, 3039
Cornwallis Road, Research Triangle Park, North Carolina 27709
(rsharrar@us.ibm.com). Mr. Sharrar is a Senior Engineer in server
development. His responsibilities include work as a server farm
administrator and verification engineer. He received a B.S. degree
in electrical engineering from Lehigh University in 1984, joining
IBM that same year, and has since held several positions in
personal computer and server development. Mr. Sharrar has
received three IBM Outstanding Technical Achievement Awards
and a Division Excellence Award. He is currently working on a
PCI bridge and memory controller ASIC for storage applications.

Sarabjeet Singh 1BM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (sarabj@us.ibm.com). Mr. Singh is a Senior Research and
Development Engineer with the Engineering and Technology
Services Division of IBM, currently on assignment at the IBM
Thomas J. Watson Research Center. He received a B.Tech. degree
in electrical engineering from the Indian Institute of Technology
in 1996 and subsequently joined IBM, where he has worked on
various research projects involving all aspects of ASIC and system-
on-a-chip (SoC) design. Over the past seven years he has worked
on many CMOS technologies (Blue Gene/L in Cu-11 technology),
up to 700-MHz clock designs, asynchronous logic design, and
Small Computer System Interface (SCSI) drive controllers to HPC
systems. Mr. Singh is currently working on memory subsystem
microarchitecture for an HPC system based on the STI cell.

Burkhard D. Steinmacher-Burow [BM Research Division,
Thomas J. Watson Research Center, P.O. Box 218, Yorktown
Heights, New York 10598 (steinmac@us.ibm.com). Dr.
Steinmacher-Burow is a Research Staff Member in the Exploratory
Server Systems Department. He received a B.S. degree in physics
from the University of Waterloo in 1988, and M.S. and Ph.D.
degrees from the University of Toronto in 1990 and 1994,
respectively. He subsequently joined the Universitact Hamburg
and then the Deutsches Elektronen-Synchrotron to work in
experimental particle physics. In 2001, he joined IBM at the
Thomas J. Watson Research Center and has since worked in many
hardware and software areas of the Blue Gene research program.
Dr. Steinmacher-Burow is an author or coauthor of more than 80
technical papers.

R. Brett Tremaine IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (afton@us.ibm.com). Mr. Tremaine is a Senior Technical
Staff Member. He is responsible for commercial server and
memory hierarchy architecture, design, and ASIC implementation.
He worked at the IBM Federal Systems Division in Owego, New
York, before joining the IBM Thomas J. Watson Research Center
in 1989. Mr. Tremaine has led several server architecture and ASIC
design projects, many with interdivisional relationships, and he has
received three IBM Outstanding Technical Achievement Awards
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and several Division Excellence Awards for his contributions. He
received a B.S. degree in electrical engineering from Michigan
Technological University in 1982 and an M.S. degree in computer
engineering from Syracuse University in 1988. He holds 11 patents
and has five patents pending. Mr. Tremaine has published a
number of technical papers and is a member of the IEEE.

Michael Tsao IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mtsao@us.ibm.com). Dr. Tsao is a Research Staff Member
at the IBM Thomas J. Watson Research Center. He received
B.S.E.E, M.S.E.C.E, and Ph.D. degrees from the Electrical

and Computer Engineering Department of the Carnegie-Mellon
University in 1977, 1979, and 1983, respectively. He joined IBM at
the Thomas J. Watson Research Center in 1983 and has worked on
various multiprocessor projects including RP3, GF11, Vulcan,
SP1, SP2, MXT, and BG/L. Dr. Tsao is currently working on
cache chips for future processors.

Arun R. Umamaheshwaran IBM Engineering and
Technology Services, Golden Enclave, Airport Road,

Bangalore 560 017, India (arun_mahesh@in.ibm.com). Mr.
Umamaheshwaran is a Research and Development Engineer.

He received a B.Tech. degree in electronics and communication
engineering from the University of Calicut, India. His efforts are
directed toward the verification of ASICs; he was involved in the
verification of two high-performance SoCs and was recognized for
his efforts. Mr. Umamaheshwaran’s areas of interest include digital
system design, ASIC verification, and bus architectures.

Pavlos Vranas IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (vranasp@us.ibm.com). Dr. Vranas is a Research Staff
Member in the Deep Computing Systems Department at the IBM
Thomas J. Watson Research Center. He received his B.S. degree
in physics from the University of Athens in 1985, and his M.S.
and Ph.D. degrees in theoretical physics from the University of
California at Davis in 1987 and 1990, respectively. He continued
research in theoretical physics as a postdoctoral researcher at the
Supercomputer Computations Research Institute, Florida State
University (1990-1994), at Columbia University (1994-1998), and
at the University of Illinois at Urbana—Champaign (1998-2000). In
2000 he joined IBM at the Thomas J. Watson Research Center,
where he has worked on the architecture, design, verification, and
bring-up of the Blue Gene/L supercomputer and is continuing his
research in theoretical physics. Dr. Vranas is an author or coauthor
of 59 papers in supercomputing and theoretical physics.
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