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The Blue Genet/L compute chip contains two PowerPCt 440
processor cores, private L2 prefetch caches, a shared L3 cache and
double-data-rate synchronous dynamic random access memory
(DDR SDRAM) memory controller, a collective network interface,
a torus network interface, a physical network interface, an
interrupt controller, and a bridge interface to slower devices.
System-on-a-chip verification problems require a multilevel
verification strategy in which the strengths of each layer offset the
weaknesses of another layer. The verification strategy we adopted
relies on the combined strengths of random simulation, directed
simulation, and code-driven simulation at the unit and system
levels. The strengths and weaknesses of the various techniques and
our reasons for choosing them are discussed. The verification
platform is based on event simulation and cycle simulation running
on a farm of Intel-processor-based machines, several PowerPC-
processor-based machines, and the internally developed hardware
accelerator Awan. The cost/performance tradeoffs of the different
platforms are analyzed. The success of the first Blue Gene/L nodes,
which worked within days of receiving them and had only a small
number of undetected bugs (none fatal), reflects both careful
design and a comprehensive verification strategy.

Introduction

Very large chips and associated verification efforts were

formerly seen only in the domain of processor design,

such as the PowerPC* [1]. Now, system-on-a-chip (SoC)

designs can rival the complexity of processor designs, but

are designed by smaller teams of system designers. An

SoC design comprises a number of semiautonomous

subsystems that are integrated to form a single system.

Any of these subsystems can be as large and complex as

an entity that, just a few years ago, would have been

considered an entire chip in itself. While it is true that

some components in an SoC design are pre-designed and

pre-verified (e.g., an embedded processor), the complexity

of SoC designs poses a challenge to a small verification

team because of its large breadth. State-of-the-art

verification relies on a fundamental set of concepts.

Unit-level simulation is used to efficiently verify a single

component inside the chip. This allows the verification

engineer to more easily write tests targeted at the interface

of the unit under test without having to satisfy conditions

or constraints of other units. A disadvantage of unit-level

simulation is that it does not verify the interaction of the

unit with other units. Unit-level simulation is generally

much faster than system simulation because there is a

smaller runtime overhead.

System simulation is used to comprehensively verify

that the chip operates correctly in its targeted system

configurations under all stress conditions. This method

of verification complements unit-level simulation in that

it covers the interaction of the unit with its neighbors, as

unit-level simulation alone does not. There are two main

disadvantages of system simulation: First, it is often

difficult to create specific events from outside the chip at

the interface of a unit that is deep inside the chip; second,

simulations run slowly because of the large compiled

simulation image.

Whether verifying at the unit or system level, two types

of stimulus generators may be employed: deterministic
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and random. If a unit is very simple, a deterministic

(also known as directed test) stimulus should be used.

The advantage of deterministic verification is that a

verification engineer can write a suite of tests that either

enumerate all possible states or target specific scenarios

for the logic being verified, run the test suite in regression,

and verify the function. In practice, however, this can be

accomplished for only the simplest of units and requires

extensive engineering time. For these simple units, formal

verification techniques can be considered because the

state–space of these units can be verified in a relatively

short length of time with a computer containing a

moderate amount of memory.

Random simulation relies on the test environment to

generate the test scenarios in such a way that they can

be generated at machine speed indefinitely, without

intervention. We rely on directed random simulation—

a hybrid of the directed and random testing strategies.

This scheme retains the advantages of random verification

but provides control to the test engineer to focus the

random testing on a specific corner of the design

space or functionality.

Coverage metrics can be used to help quantify which

design functions have been reached by simulation. Code-

coverage metrics that determine whether each line of Very

high-speed integrated circuit Hardware Description

Language (VHDL) code has been exercised provide some

value, but they provide no means of determining the

context in which the line of VHDL was exercised. This

can lead to a false feeling of coverage. A solution is to

embed assertion statements in the VHDL that enable

specific functional coverage information to be logged—

for instance, including an assertion statement that

indicates when the L3 controller read address queue is

full. Subsequently, the number of times this event occurs

in the simulation can be counted, and the information can

be used to tailor the random simulation if the queue is full

too rarely or too often. A pitfall of this approach is that it

relies on the VHDL designer to think of coverage checks

and to code them. It is possible for a designer to miss

some of these coverage checks. In spite of their

shortcomings, it is desirable to use assertion statements,

because they are flexible and can provide better

information on what has been verified when compared

with code coverage.

Full processor models allow the use of real software

applications to run in a system-level simulation. The

software is cross-compiled and then run on the processor

model in the verification environment. A benefit of using

a full processor model in system-level simulation is that

the software team can develop system software and test it

in the simulation environment before the actual hardware

is running in the laboratory. Also, software-based stress

tests written for verification can easily migrate into the

laboratory, and there is the additional benefit that the

behavior of the processor in the system can be observed.

This information can be used to tailor a bus-functional

processor model to more closely emulate some of the

traits of the real processor.

A bus-functional processor model provides a means to

drive transactions on the processor bus. The model does

not contain any of the internal behaviors or intelligence

of a full processor model; it simply knows how, for

example, to do reads and writes on the processor bus

when it is told to do so by the verification engineer. A

bus-functional model can be used to more strenuously

drive transactions on the processor bus because it does

not have to wait for pipeline stalls or instruction fetches,

like the full processor model. The verification engineer

can program as many reads or writes in succession as

desired.

This paper discusses the strategy and methods required

for a small verification team to verify an SoC design in

the context of Blue Gene/L (BG/L). In this paper, we

describe the BG/L compute chip (BLC) architecture and

the verification strategy, tools, and hardware platforms

used to validate the chip. The subsystem or unit

verification of the BLC network interfaces is discussed

next, followed by random system simulation and code-

driven system simulation. The paper concludes with a

discussion of the verification results and a summary.

BG/L architecture
The node architecture of BG/L is shown in Figure 1. The

BG/L design uses an SoC architecture in which each node

in the 65,536-processor supercomputer consists of one

BLC with memory ranging from 256 MB to 1 GB of

external double-data-rate synchronous dynamic random

access memory (DDR SDRAM). The BLC contains two

PowerPC 440 (PPC440) embedded cores [2]. Each of

these cores contains a double-hummer floating-point unit

(FPU), which consists of two 64-bit PowerPC FPUs

programmed with single-instruction multiple-data

(SIMD) instruction-set extensions supporting up to

5.6 gigaflops per node at 700 MHz. Each core is attached

to a private L2 prefetching cache through three separate

buses: instruction fetch, data read, and data write.

Although there is no coherence support between the L1

caches of the two cores, the L2 caches support coherence

at L2 and beyond through a ‘‘snoop’’ interface. The L2

interface also provides access to all memory-mapped

input/output (I/O) devices, including the torus, collective,

and global interrupt networks, a shared 16-KB static

random access memory (SRAM), and the Gigabit

Ethernet controller. A 4-MB embedded DRAM L3 cache

provides coherent interfaces to each L2 and interfaces

with the DDR controller. In addition to the memory-

mapped I/O (MMIO) interfaces, each BLC contains a set
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of device control registers (DCRs) used for configuration

and status. The torus network is used for point-to-point

communications between nodes for computation,

whereas the collective network is used for global

communications, such as broadcast and reduction.

On the BLC, there are 734 DCRs of up to 32 bits each.

Other functional units in the BLC include the interrupt

controller and the lockbox, which provides atomic

test-and-set semaphore and barrier operations between

the cores. The 440 CPUs, the double hummers, and the

Ethernet subsystem, which includes a bus bridge and a

direct memory access (DMA) controller, are off-the-shelf

cores and are shaded blue in Figure 1. All other logic—

approximately 900,000 lines of VHDL—had to be

synthesized and verified.

Strategy

The overall verification strategy for the BLC is built upon

a hierarchical approach that uses a number of different

methodologies. Each of these methodologies has specific

strengths and weaknesses, and the BLC verification

strategy uses the methodologies in a complementary

fashion to exploit strengths and compensate for inherent

weaknesses. The methodologies employed for BLC

verification are more or less standard [3] and include unit-

level, formal protocol, random system-level, and code-

driven system-level verification.

The BG/L chip unit-level strategy was to minimize the

number of bugs found at the system level. Debugging

chip failures at the system level is significantly more

difficult and costly than debugging failures at the unit

level, so we also chose to do unit-level simulation.

Verification engineers and designers of a given unit

collaborated on the unit-level verification solution. Unit

verification was performed on the L3 controller, the DDR

interface, the collective interface, the torus interface, and

many other units and subunits.

Although unit simulation is critically important in the

overall verification strategy, space constraints do not

allow us to describe them all in this paper. Only the

collective and torus unit-level testbenches are described.

The unit-level testbenches are simpler than the

system-level testbench and are thus usually available

before the system-level testbench. This strategy allows

the system-level testbench to be developed while the

unit-level tests are running.

The BG/L system verification strategy targets the

following:

� Chip correctness in a large system.
� Low-cost, rapid implementation.
� Support for logic design debug.

� Compatibility among tools, libraries, models, and

preexisting logic code.

� Efficiency.

Efficiency was critical to the verification strategy, as

only six months were afforded to develop and implement

the system verification strategy and validate the chip

before fabrication. We emphasized strategic efficiency

as cycles per effective simulation event and test case per

simulation engineer hour. Effective simulation events are

defined as simulation events that actually test the design,

as opposed to simulation events that are expended to

prepare or flush the system state in response to a desired

event or scenario. Bus and interface model generators

were leveraged to maximize effective simulation events,

while a random test-case generation environment was

used to maximize test-case generation. Strategically, the

testbenches could have been written more easily in C.

Figure 1

Blue Gene/L compute (BLC) chip architecture. Blue shading 
indicates off-the-shelf cores. ©2002 IEEE. Reprinted with 
permission from G. Almasi et al., “Cellular Supercomputing with 
System-on-a-Chip,” Digest of Technical Papers, 2002 IEEE 
International Solid-State Circuits Conference. 
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However, the aggressive schedule, preexisting models,

and support for multiple simulators led us to choose

VHDL as the language for all testbenches.

The BLC contains two PowerPC processors, but using

full processor models in every simulation would render

the system-level simulation too slow. In addition, the goal

was not to verify the processors themselves, but to verify

their interaction with the rest of the logic. The processors,

which are off-the-shelf components, had been pre-

verified. The processor bus model, written in VHDL,

replaces a full processor model and interfaces with the

memory system via the processor bus. Creating a bus-

functional model rather than using the full processor

model provided the following benefits:

� It has significantly improved verification throughput.

The bus model runs much faster than a full processor

model because it performs far less work per

simulation cycle.
� A bus-functional model can be made to appear much

more random than a full processor model.
� The bus-functional model provides the opportunity to

inject errors on the processor bus so that the error-

handling capabilities of the logic can be tested.

For the BLC, we chose to use assertion statements

embedded in the VHDL rather than code coverage

because, as discussed above, more sophisticated reporting

can be gained from assertions. Assertions were written for

functional coverage in every unit—L2, L3, collective,

torus, etc.—and to flag fatal error conditions. Verification

was not considered complete until all of the functional

coverage assertions were hit.

A verification aid often used in BLC verification is

the reduction of maximum queue depths or cache

associativity. Most controllers or state machines that

manage queues have special conditions for being empty

or full. With large queues or FIFOs (queues in which

access becomes available according to the first in, first out

rule) in the design, it is more difficult to cause the special

full and empty conditions to occur frequently during

simulation. In the VHDL, the simulator forces the

maximum queue depth to be a smaller number at time 0

to help exercise these conditions. This technique is used

on several queues and on the associativity of the L3

cache. The associativity of the L3 cache is randomly

reduced on some simulations from eight-way to four-way

or two-way.

Gate-level event simulation with back-annotated

timing is an essential part of the verification effort

because it can uncover uninitialized latches and dynamic

timing paths that are not found by static timing tools. The

benefits of gate-level simulation are discussed in more

detail below.

Because of the hardware-specific programming model

for BG/L, extensive development is required in order to

produce the software that will run on the BG/L hardware.

The software includes both the operating system and

applications. To allow the development of software

before the BG/L hardware is available in the laboratory,

code-driven system simulation is employed. The code-

driven environment uses full processor models that allow

actual software binaries to be run in the simulation.

Verification platforms
Several verification platforms were selected for use in

BLC verification. We used both cycle simulators and

event simulators. If the only concern had been simulation

speed, we would have used only cycle simulation, but cost

and verifiability also entered the decision process. The

IBM internally developed cycle simulator Mesa was used

because it is an order of magnitude faster than event

simulators. Code written for cycle simulation is easily

transferred to Awan [4], the hardware accelerator, which

is an order of magnitude faster than Mesa, but at a

substantial monetary cost. However, cycle simulation

requires a different VHDL coding style than for event

simulation. Because of its nature as a cycle simulator,

Mesa requires special practices to simulate transparent

latches and subclock cycle events, e.g., analog behavior

of the chip I/O interface. A solution is to run the

fundamental clock of the cycle simulator at a higher

frequency than the actual clock required by the chip.

Unfortunately, adding more cycles to the cycle simulator

slows down the simulation. Ultimately, a cycle simulator

can never really simulate analog behavior because of the

coarse granularity of the fundamental simulator cycle,

which means that it cannot be used for gate-level

simulation with back-annotated timing information

because this requires fine-grain analog behavior.

The above shortcomings of cycle simulation adversely

affect the verifiability of the design when cycle simulation

alone is used to verify the design. Back-annotated gate-

level event simulation is required in order to find dynamic

timing issues and to find errors in scripts written to

control a static timing tool. Certain issues (such as the

simultaneous read and write of an SRAM or a static

timing tool script that declares a path to be multicycle

when it is not) cannot be detected by cycle simulation

coupled with a static timing tool.

Each of the simulators—cycle for its speed and event

for its accuracy—has its place. For the BLC, cycle

simulation running on Awan is used for code-driven

system simulation using the full processor model. The

same simulation is prohibitively slow on an event

simulator and is impractical. The event simulator is used

to simulate BLC with the processor bus-functional model

in random system simulation, including the analog
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behavior of the chip I/O interfaces. The event simulator is

also used for gate-level simulation.

The hardware platforms in use by BG/L are 32-bit

Intel-based Linux** machines, 64-bit PowerPC-based

AIX* machines, and the hardware accelerator Awan.

There are 100 Intel-based machines running Linux and

Cadence NC-VHDL which constitute the simulation

farm for the random system-level simulation. There are

tens of PowerPC machines running AIX and Mentor

Graphics ModelSim**.

Torus multinode unit-level verification testbench

A multinode torus verification testbench was developed in

VHDL to enable networks with different sizes and shapes

to be simulated under a variety of traffic patterns. This

testbench, written and maintained by one person, consists

of the torus logic, a packet generator and injection unit,

a packet reception and checker unit, links, and a global

control unit (Figure 2). This testbench does not include

the driver (receiver) units that serialize (deserialize) bytes

onto (from) the links.

The packet generator creates packets of a given

workload, where the workload consists of packet

destinations, sizes, virtual channels, etc. These workloads

can be quite flexible. For instance, they may consist of

random destinations, nearest neighbor, hot-spot,

broadcasts, and so on. There can be dependency between

consecutive destinations to model long messages. In

addition, a simulation can be flexibly configured so that

each node selects a different workload with different

parameters according to some probability distribution.

The packet generator also creates self-checking packets,

so that when a packet is received—and without additional

testbench coordination between the sender and receiver—

the packet checker can determine that the packet arrived

at the correct destination with every byte intact. The

injection unit puts these packets into the torus injection

FIFOs when space is available, but it can also insert

random delays between injections. The reception unit

checks the torus reception FIFOs for packets, reads them

out, and checks the packets for correctness, which also

includes checking that deterministically routed packets

arrive in the correct order. Delays can be inserted between

receptions, thereby allowing reception FIFOs to fill

up and cause further backlogs within the network.

The link units have the capability of either passing

bytes through (with some delay) or corrupting bytes

to test the torus error-detection mechanism and

retransmission protocol.

The error rate on each link can be flexibly controlled.

The global control unit is responsible for coordinating

termination, i.e., determining when all packets have been

received, or warning of a potential deadlock after a

suitable timeout. Upon termination, each torus unit is

checked to make sure that it is left in a pristine, empty

state, with all FIFOs empty, all tokens accounted for,

sender link-level cyclic redundancy check (CRC) equal

to the corresponding receiver link-level CRC, etc.

Besides logic verification, this testbench was also used

for performance verification for simple communication

patterns. In particular, as described in [5], comparison

between this VHDL verification testbench and a higher-

level performance simulator caught a performance bug in

one of the torus arbiters.

This testbench runs on NC-VHDL on a subset of the

Intel-based simulation farm. A 2.6-GHz workstation

could simulate about 200K node-cycles per hour. (A

node-cycle is the number of nodes times the internal torus

cycle time, which is one-fourth that of the processor.)

Each node required approximately 30 MB of memory,

and the largest configuration simulated was a 64-node

configuration.

Assertions were placed in the torus VHDL when

certain conditions (full FIFOs, corrupted packets, etc.)

were hit. While most assertions were frequently hit,

directed tests sometimes had to be written to hit certain

assertions. In addition, after a bug was found, directed

tests were typically written to recreate many times over

the conditions that led to the bug, and the testbench

would often be modified to more frequently include

workloads that tended to create such corner cases.

The combination of thorough subunit simulation and

the use of two independently created testbenches (the

multinode and the random system-level), proved a

powerful combination: Bugs were caught by both

testbenches. When hardware arrived, a test environment

similar to multinode was created and a single-node system

(running in loop-back) and a large torus system were

subjected to many different communication patterns.

Real Message Passing Interface (MPI) applications were

Figure 2

Multinode torus verification testbench.
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also run on this hardware. As mentioned above, the link

capture units can be programmed to intentionally corrupt

bytes going onto the links. This provides a hardware

capability for testing error recovery similar to that in

multinode link units. Running on real hardware, which

provides approximately six orders of magnitude more

cycles per second than can be achieved in simulation,

uncovered no logic bugs in the torus.

Collective link protocol verification
The Blue Gene/L supercomputer will combine more than

65,536 collective network routers in one large system. It is

very unlikely that simulations will hit all of the potential

situations that may occur in a system of that size and

complexity. To reduce the risk that under some strange

conditions the network does not function correctly, we

applied formal verification methods to the high-level

design of the collective communication protocol. This

effort was performed by one of the collective hardware

designers. Formal verification was not required for the

torus network because it was built on an existing

protocol.

The collective communication protocol is special

because of the usage of explicit resend requests (negative

acknowledgment, or NACK) in addition to the

mandatory timeouts. It was not obvious whether the

addition of these protocol features would cause livelocks,

or even deadlocks, because of, for example, alternating

and amplifying resend requests. Another important

condition that required verification is the guarantee that

the senders and receivers on both sides of the link are

synchronized. Synchronizing the sender and receiver

means that the sender must be informed about the correct

reception of the packets, which is required in order to

track the availability of buffer space on the receiving side

of the link. Therefore, synchronizing sender and receiver

is a precondition to not generating extra packets and not

dropping good packets.

Since the verification of such high-level protocol

properties is extremely difficult at the register transfer

level, we use the Murphi verification tool [6] and an

abstracted description of the protocol to prove the

correctness of the protocol. The Murphi tool basically

enumerates all possible states of the abstracted protocol

description. The Murphi tool can easily check for the

reachability of harmful states (assertions) or for the

possibility to exit any loop in the state transition

matrix (livelock or deadlock). Because of the protocol

abstraction, the Murphi tool can exhaustively verify

the protocol.

The downside for the Murphi verification approach

is the level of abstraction necessary before such an

exhaustive state–space exploration can be performed

successfully. Even if 64-bit systems with 64 GB of

memory are used, only about 100-bit state-vectors

can be used before the verification fails because

of the lack of memory. Therefore, the protocol

must be abstracted. Special care must be taken to

implement the abstracted protocol exactly as defined

and verified.

The entire formal verification approach began after

a flaw in the protocol was uncovered that could have

caused a temporary livelock of a link. The problem

was initially found using a random-number-based,

self-checking testbench. The testbench, described in the

following section, had to run for several hours before the

situation occurred. Since the fix of the protocol would

have changed the dynamic behavior of the simulation, it

would not have been clear whether the protocol change

really fixed the problem or simply modified the behavior

of the simulation in such a way that it no longer hit the

problematic state. Using the Murphi tool, we were able

not only to reproduce the situation, but also to verify that

the intended correction really solved the problem and to

successfully verify the correctness of the final version of

the protocol.

Collective multinode unit-level verification
testbench

A multinode collective verification testbench, called

Forest Bench (FB), was developed in VHDL to simulate

networks of various sizes and shapes under a variety of

traffic patterns. FB, written and maintained by one

person, is similar to the torus testbench described

above. If collective logic were substituted for torus logic in

Figure 2, it would accurately depict FB. As in the torus

testbench, FB does not include the driver (receiver) units

that serialize (deserialize) bytes onto (from) the links.

Each instance of FB consists of a global control unit

(GCU) and one or more nodes. Three of the network

shapes being simulated are shown in Figure 3.

Figure 3

Three of the network shapes being simulated.
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The GCU coordinates various global phases of the

simulation. The coordination uses a daisy-chained bus

through all of the nodes. The daisy chain easily connects

an arbitrary number of nodes and, within a node,

easily connects the subunits. In all phases, the GCU

collects statistics and displays the global progress of the

simulation. The GCU also identifies a hung network or

testbench when no progress occurs over a long interval.

In a jam phase, nodes inject packets into the network but

do not remove any packets. The GCU ends the jam phase

when no node can inject any more packets. Similarly, in a

drain phase, nodes remove packets from the network but

do not inject. The GCU ends the drain phase when all

outstanding packets have been received. When not

jamming or draining, nodes inject and receive packets.

The end phase distinguishes a failed run from a successful

run, which meets all expectations and self-consistency

checks.

Each FB node consists of the collective logic, the

universal performance counter (UPC) logic, and the

following main testbench units: DCR, send, receive,

and link. In addition to other functions, the DCR

unit configures test modes, such as corrupt-packet-

capture and link-loopback, since FB makes aggressive

use of such test modes. At the end of a run, the

DCR unit also reads registers to perform collective

consistency checks. Similarly, it also configures and

checks the UPC logic. The link unit adds arbitrary

delay to the collective links between nodes and injects

errors on the links. Imitating the PPC440, the send and

receive units inject packets into and receive packets from

the network, respectively.

With the goal of covering all possible scenarios in the

collective logic, the above and other testbench actions

are driven by 95 independent pseudo-random number

generators. Each generator is seeded using the same

global seed modified by a unique local function. The

single global seed minimizes the amount of information

needed to repeat a simulation. As far as possible, a

pseudo-random number generator drives each significant

testbench action.

There is no per-packet communication between the

send and receive units within or across nodes. Instead,

the receive units replay the pseudo-random number

generators of the send units in order to obtain the

complete expectations for every bit of every packet header

and payload. For example, for a combine packet, each

receiver reproduces the contribution of each participant

and performs the arithmetic operations of the reduction.

The receiver halts the simulation when an unexpected

bit is found.

In addition to logic verification, the testbench was used

to verify the performance of some simple communication

patterns.

Random system-level simulation
Unit-level verification targets the specific unit under test

and facilitates finding bugs within the unit, but because

the unit is just a building block, it must be tested as it

works in concert with other units of the chip. System-level

simulation verifies the chip as a whole when all units are

connected together, and it verifies the connection of

the chip to the surrounding system. In the case of

the BLC, the surrounding system is a collective network

and a torus network.

Testing randomly is an essential element of a

simulation strategy, because random tests uncover cases

that neither the designer nor verifier anticipated. For a

design with any complexity, it is simply not possible for a

verification engineer to list all of the events that should be

tested and then test them. The key to a successful random

simulation environment is to constrain the randomness

to meaningful operations, while at the same time

maximizing the potential randomness within this context.

The random system simulation (Figure 4) is controlled

by three distinct classes of drivers which include a

processor bus model, a collective interface model, and

a torus interface model. The random environment was

written and maintained by four people, two working on

the memory subsystem and one each on the torus and

collective networks. The testbench models are shaded

blue in the figure. The sum of the three drivers is

approximately ten thousand lines of VHDL. The

processor bus model emulates the traffic on the processor

bus and performs reads and writes to the memory

subsystem and to software registers. It is instantiated

three times, once for each of the two processors and once

for the Ethernet DMA controller. A single instantiation

of the collective interface model emulates an entire 64K-

node collective network, and similarly, a single torus

interface model emulates an entire torus network.

Processor bus model

In addition to having better simulation speed than a full

processor model, the bus model produces a large number

of test conditions in a comparatively short length of time.

This benefit has two sources. One is that the stimulus

can be incessant. Instruction fetches, memory latencies,

pipeline bubbles, and other obstacles force a processor to

stammer out bus operations. The bus-functional model

has no such dependencies and can start a new bus

operation as soon as the previous operation finishes. The

other quality advantage derives from randomness itself.

Almost by definition, random values are fresh and

unexpected. Given the slowness of simulation in general

and the vastness of the combinatorial space to be covered,

it is important to generate as few routine, equivalent cases

as possible. A processor tends to spend much of its bus

time repeating the same set of operations, such as loading
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a code cache line. However, it is also desirable for a

random bus model to reproduce at least some of the

behavior of the processor. This implies that randomness

should be structured to a certain extent. Left completely

uncontrolled, a random bus model may not reproduce

certain multi-operation sequences because the random

space is so large.

Verifying a memory system is conceptually simple. The

verification driver writes and reads addresses; the data

read back must be the same as the data most recently

written. Checker code in the simulation maintains a

private memory that reflects all of the writes that have

completed; read data is checked against this what-to-

expect memory. In the BLC, three masters can write

to memory at once: the two processor cores and the

Ethernet DMA. Reads must return data from the

most recent write as of the time the read began. Some

simultaneous writes have an undefined result. Since badly

written software could perform these kinds of undefined

writes, the verification code performed them as well to

ensure that they did not hang or confuse the hardware

and treated the writes that resulted as undefined. A

read of that write would then be ignored.

The most challenging part of creating a random

testbench is controlling the stimulus to ensure that it is

stressful, i.e., that it explores the entire design space and is

not overly repetitive. If read and write addresses were

allowed to be chosen completely at random, the test

would not be particularly challenging or thorough. We

added several kinds of structure to avoid this pitfall. We

walked addresses forward through memory, a behavior

for which the hardware has been optimized and which

reflects the way actual processor addresses might

typically move. We also moved them backward, a

behavior that might thwart the optimized hardware.

We used a relatively small number of addresses and

randomly made some addresses more likely to be chosen

than others—a ‘‘hot’’ address might be read by one core

only a cycle or two after it was written by the other, and

only a cycle or two before it was overwritten by DMA.

Moreover, the addresses were chosen to maximize

L3 contention by targeting a small number of L3

associativity classes. Randomly, we also reduced the

number of ways in the L3, for example from eight-way

to two-way, to further enhance the competition. This

reduction in set associativity allowed us to find several

bugs that would have been very difficult to find with the

full associativity.

We also emulated the behavior of the processor as it

loads and unloads packets to and from the collective and

Figure 4

BLC random system simulation testbench. Testbench models are shaded blue. Blue lines indicate communication between the different 
testbench modules.
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torus networks. Packet loading and unloading is

accomplished by a series of software register reads and

writes.

In an attempt to maintain as much randomness as

possible, we randomized the probabilities of certain

events from test to test. For example, the delay between

operations is a random range of bus cycles based on a

probability, and from run to run, the range itself is

changed, so that some runs tend to have more delay than

others.

Random tests should be reproducible in the event they

uncover a bug. The bus-functional model can completely

reproduce its behavior on the basis of a single integer seed

value.

Torus driver

The torus driver generates, checks, and injects faults in

traffic patterns and packet structure consistent with a

fully configured 64K-node system. The torus driver for

the random system simulation sends data packets into six

torus chip receiver input ports (xþ, x�, yþ, y�, zþ, z�)
and receives data from the six corresponding chip output

ports. It also interfaces with the processor bus model via

software registers, which allow the loading and unloading

of torus packets.

The torus driver, written in VHDL, has two parts.

As a behavior model, the first part, a low-level unit,

implements the bus protocol for a pair of torus output

and input ports. The second part, a high-level unit,

maintains a data structure of inflight torus data packets.

Whenever a torus packet can be sent on any of the eight

chip ports (six x, y, z ports and two processor ports), a

packet is generated on the fly with random destinations,

routings, and payloads. When a packet is received by any

of the testbench receivers, the inflight data packets are

searched. If a packet is correctly received by the expectant

testbench receiver, it is marked so. If a packet arrives at

an unexpected receiver, an error is indicated. When an

inflight packet is received by all of the expectant testbench

receivers, it is then marked as fully received. Statistics

are gathered, and the data structure is made ready to

be used by the next inflight packet.

The torus data throughput is controlled by inserting

a random wait interval before returning the token-

acknowledge (ack) packets. For the processor interface,

the torus driver waits a random interval before reading

the next packet from the FIFOs.

However, at random intervals, the torus driver stops

these two receive operations entirely, causing the data

buffers in the chip to begin to fill up. As this happens, the

torus driver switches to a heuristic mode and generates

only new packets that can fill up any still-available buffers

in the chip. When the buffers are as full as possible, the

torus driver switches to a drain mode. At the fastest

possible rate, the token-ack packets are returned, and the

processor receive FIFOs are read. This drains the chip

buffers at the fastest possible rate. After the buffers are

totally emptied, or nearly so, the flow control changes

back to the random interval mode.

One drawback of this method for verifying the BG/L

torus, compared with the multinode unit-level simulation

method, is that the low-level torus driver and receiver

behavior have to be written into the testbench. The unit-

based method simply hooked two torus units together,

with little new code required, which mean that the unit-

level testbench was up and running more quickly.

The major advantage of the random system simulation

torus driver is its much smaller memory size and much

faster simulation speed. For example, in the unit-level

simulation method, to simulate the torus traffic patterns

and the workload for a 64-node configuration, the unit

simulator has to instantiate 64 BG/L torus units. In

contrast, the torus driver described here requires only one

instance of the BG/L torus driver and can simulate a

64K-node configuration.

Collective driver

The random system-level testbench collective driver

component was designed to test both the collective

network protocol and the collective network adapter

implementation in the BG/L chip. The tester was

developed independently of the actual collective network

VHDL to mitigate the potential for design flaws going

undetected, a potential when common functional

elements are shared between the tester and device under

test. The collective driver generates, checks, and injects

faults in traffic patterns and the packet structure

consistent with a fully configured 64K-node system.

Each BLC is a node in the system-wide collective

network. The collective network adapter consists of four

ports, a programmable routing table, and a queuing

structure for moving traffic through the node. Traffic can

be from or to the node, or a combination of both. Each

port consists of a full-duplex two-byte-wide interface

in which three of the ports are brought out through

serialization or deserialization logic to high-speed

BLC signal contacts, and the fourth port is internally

connected to the BG/L processor for the node to send and

receive up to eight packets through in each direction. The

collective network protocol includes idle packets, sync

packets, and 256-byte payload data packets. Data packets

can be either combining or point-to-point (combining

packets can be logically or arithmetically combined

during routing). Packets are defined as either forward or

reverse through the network, where reverse packets come

back through the network (for example, after combining

packets). Packet routing and payloads are generally

pseudo-randomly generated, but can be selected from a
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specific list of special patterns (e.g., ‘‘sync’’ pattern as data

payload).

Collective network combining requires that combining

packets be generated as logically related groups with

common attributes, such as combining opcode and

routing class. When a combining packet is randomly

generated, other randomly generated packets inherit the

common attributes until all of the constituent packets

have been generated for a combining group. Combining

‘‘reverse’’ packets are always generated randomly, since

they represent packets that have already been combined

and are not part of a combining group. The combined

packet is checked for the appropriate logical or arithmetic

result.

The collective function was tested by two different

testbenches; cross-coupled unit-level nodes with small

collective networks stimulated by processor-generated

traffic (the FB) and by the random testbench collective

driver. The random testbench was significantly more

efficient in terms of memory size and collective packets

per second. It discovered several protocol faults that

went undetected in the cross-coupled unit-level test

configurations.

Code-driven system simulation
Code-driven system simulation is used in the BG/L

project for logic verification, architectural validation, and

performance measurements. The work was performed by

one full-time worker and a number of part-time workers.

Our estimate of the aggregate full-time work complement

is 1.5 individuals. The BG/L advanced diagnostics

environment (ADE) [7] provides complete and flexible

access to all hardware facilities via software. BG/L

ADE consists of a lightweight multithreaded coherence-

managed kernel, runtime libraries, device drivers, system

programming interfaces, and host-based cross-compilers

and development tools. Through the use of runtime and

compiletime options, BG/L ADE has the ability to utilize

all or a subset of the hardware, ranging from a single

PPC440 core with a simple SRAM memory subsystem

VHDL model through the full 64K-node machine. This

flexibility provides four important benefits. First, it allows

functional units to be integrated into the chip simulation

environment as they are developed. Second, because full

chip simulations run at approximately three processor

clocks (pclks) per second of wall-clock time on an event

simulator and at approximately 600 pclks/s under Awan,

it allows testing of specific functional units through

directed tests without the need to initialize and configure

other units. Third, certain functional units containing

analog circuitry, such as the I/O capture units, cannot be

accurately simulated with the Awan cycle simulator and

are removed from the Awan simulation model. Fourth,

because of the differences between the event and Awan

simulation environments, different units can become

available and ready for simulation at different times.

For example, we can simulate with the L3 cache on an

event simulator for several weeks while an Awan cycle-

simulation embedded DRAM model is being developed.

A simple BG/L ADE runtime flag disables L3

configuration, initialization, and use.

To assist software-driven system simulation, both

internal and external logic was added to the simulation

environments. Externally, the BG/L chip is enclosed

in a testbench that provides required board-level

functionality, including DDR chip models and clocks.

This testbench also wraps network connections at the

chip I/O pins, creating a 13 13 1 torus network and

externally wrapped collective links and global interrupts.

To stress these network connections, varying network

delays were added in the testbench. A version of this

testbench provides a two-node simulation environment

by enclosing two BG/L chips in a 23 13 1 torus with all

three collective links and global interrupts interconnected.

Internally, a virtual universal asynchronous receiver

transmitter (UART) serial port device is added to the

BG/L in the processor local bus (PLB) MMIO space,

which allows software to print trace, status, and debug

information to the simulation logs.

BG/L ADE is used to build a suite of hundreds of test

cases that exercise all functional units. Of these hundreds

of tests, more than 160 are incorporated into a regression

suite that is run continually during ASIC development

and verification. Versions of many of these tests are

used for hardware bring-up and are still in use as

manufacturing test and full system on-site diagnostics

test suites.

The verification environment also forms an important

component of chip bring-up when hardware arrives. Test

cases are easily moved back and forth between hardware

and simulation environments to perform root-cause

analysis of any unexpected hardware behavior. That

allows us to find work-arounds, and we have even found

the occasional subtle software bug when running at a six-

order-of-magnitude increase in performance. For this

to be effective, BG/L ADE and many of the test

cases are carefully designed to achieve cycle-accurate

reproducibility, including the ability to restart a test—or a

particular iteration of a test—from a known state of all

units, including the processors, memory system hierarchy,

and networks. Of the few bugs found during bring-up, all

had only a single-cycle window in a particular chip or

memory system state during which they could occur.

All of these are reproduced in relatively short order in

simulation where the root cause is identified and the fix

or work-around is identified and confirmed.

Test cases range from simple directed tests that focus

on the correctness of specific DCRs to performance tests
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of the full chip and to architectural studies. Directed

software tests often incorporate external tool command

language (TCL) scripts that are triggered when a

particular device state is reached by software running on

the processors. These scripts perturb that state in various

ways by injecting errors, creating unusual situations,

and verifying correct recovery in collaboration with the

kernel or test-case software. The TCL scripting language

is the interface between the user running the simulation

and the event simulators ModelSim and NC-VHDL.

SRAM, DDR, and latch bits are flipped. Network

headers and packets are corrupted. State machines are

forced into error states. Spurious device interrupts

and machine checks are asserted. Transient and

permanent errors are injected. In all of these cases,

detection and (where possible) correction are verified.

Performance and architectural studies are at the other

extreme of the test cases run under BG/L ADE in the

simulation environments. Compared with the directed

tests, which typically require several hours to complete,

several of these studies run for days, even up to a week at

a time. Performance studies measure memory system

latencies and bandwidth; effectiveness of prefetching

between L2 and L3 and between L3 and DDR; and

instruction-path lengths for network interface injection

and reception. In addition to correctness, architecture

is considered in these studies. Feedback is provided

to enhance device programming interfaces, interrupt

delivery and handling, and MMIO layout. Interaction

between the two PPC440 processors is also verified with

regard to memory system coherence beyond the processor

L1 caches, core-to-core interrupt delivery, and data and

code-path locking.

To verify and measure the new double-hummer FPUs

and their interaction with the memory system, selected

computational kernels are extracted from parallel

applications, including double-precision general matrix–

matrix multiply (DGEMM), fast Fourier transform

(FFT), and small molecular dynamics systems. Because

these tests are run early in the BG/L chip development,

there is time to design and incorporate memory system

and instruction-set enhancements without excessive

schedule impact. These tests also assist in compiler

development, debugging, and back-end optimizer

enhancements.

Results
Table 1 shows the number of fatal bugs found by each of

the testbenches. The torus subsystem of the BG/L chip

had the fewest bugs: 15 (13 þ 2). The collective section

had more bugs: 26 (19þ 7). The smaller number of bugs

found in the torus design compared with the number

found in the collective design can be attributed to the fact

that subunit verification was performed on the torus and

not on the collective. The subunit verification bugs that

were found were not entered into the bug tracking system

and consequently cannot be reported here. In the cases of

both the collective and the torus, the unit-level tests found

more bugs than the system-level tests. This is desirable

because it is easier to debug failures at the unit level than

the system level, and the difference can be explained by

the unit-level tests starting earlier in the design cycle than

the system-level tests. The memory subsystem had the

most bugs, 72 (60þ12), but this is to be expected, because

it is the largest and most complicated subsystem on the

BLC.

When BG/L hardware became available in the

laboratory, the operating system and some application

software were running within days. This is a great success

considering the complexity of the chip. However,

software running a stress test on BG/L hardware found

two bugs that simulation had failed to catch. Oddly, these

bugs were not hit by the operating system or application

software, or at least had not yet been hit. Both bugs were

in the L3 cache, and the conditions required to hit the

bugs were very tightly constrained. Concerned that there

might be more escapes, we created a random unit-level

simulation for the L3. This random unit-level simulation

allowed us to focus on the L3 without having to pass

through the L2, as in the system-level simulation. We

simulated both the original L3 design that contained the

bugs and the corrected design. Although the simulation

runs appeared to be substantially similar to the ones that

had run in the random system-level simulation, this new

simulation immediately detected the bugs in the older

design, as well as two additional minor bugs in the new

design. We did expect the L2 to have some filtering effect

on our random system-level tests, but expected that this

filtering would be overcome by the large number of

machine hours of random stimulus.

One minor collective network interface bug was found

in the laboratory relating to arithmetic logic unit (ALU)

overflow error reporting. This bug resulted in some

spurious overflow interrupts, but was easily worked

around.

Table 1 Number of fatal bugs found by each testbench.

Testbench Number of

fatal bugs

found

Torus: Random unit level (multinode) 13

Torus: Random system level 2

Collective: Random unit level (FB) 19

Collective: Random system level 7

Memory subsystem: Random system level 60

Memory subsystem: Code-driven system level 12
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Unexpectedly, the code-driven system simulation found

two bugs in the PPC440 core and one bug in the full

processor model. This was surprising, considering that

thesewere supposed tobe pre-verifieddrop-in components.

A comparison of cost as a function of performance for

the different simulators in use in the BLC running exactly

the same code-driven system-level simulation is shown in

Table 2. The major distinction between the rows of code-

driven data is the simulation engine. The cost of software

is not included in the cost column. From a project

standpoint, the cost of ModelSim, NC-VHDL, and Mesa

is an equivalent constant. The wall-clock time is large,

and the $/cycle/s metric is large. However, if Mesa instead

of ModelSim is run on the same hardware platform, the

IBM RS/6000 Model 270, the $/cycle/s metric compares

well with that of Awan. Whether one should use the Mesa

system or the Awan system would depend on whether the

increased wall-clock time of the Mesa system would be

acceptable, considering its lesser cost compared with

Awan. The software running in this simulation is a ‘‘Hello

world’’1 program running on top of the operating system.

If the goal is to run a substantial software application

(much more substantial than Hello world) and the budget

permits, Awan would be the preferred platform.

The cost/performance numbers for the random

system-level simulation are also shown in Table 2. The

major distinction between the code-driven and random

simulations is that they are completely different

simulations. The code-driven simulation uses a full

processor model, whereas the random simulation

uses a bus-functional model. Thus, there are far more

simulation events per cycle in the code-driven simulation

than in the random simulation, and this distinction must

be taken into account when comparing the two.

In the past we compared the performance of ModelSim

and NC-VHDL and, as one would expect, we found them

to be roughly equal. Accordingly, we ignore the different

event simulators, ModelSim and NC-VHDL. The real

interest in comparing the two types of simulations is the

cost of the xSeries 305 system compared with the RS/6000

Model 270. If one assumes the performance of these

two systems to be roughly equal, and this is not an

unreasonable approximation, and the cost of the xSeries

305 machine is substituted for the cost of the Model

270 in the table, this brings the $/cycles/s metric for

ModelSim down to 333, far better than the ModelSim

number and comparable with that of Mesa and Awan.

Making the same substitution for the Mesa system brings

the $/cycles/s metric from 200 down to 20, which is an

order of magnitude better than the $/cycle/s of the Awan

system. The Model 270 is a 64-bit system, whereas the

xSeries 305 is a 32-bit system. Comparing the approaches

also shows that the random simulation with the bus-

functional model is an order of magnitude faster than the

code-driven simulation with the full processor model, but

this is expected, for the reasons discussed above. We

also report that we encountered no problems running

any of the simulation tools on Linux.

In the future, instead of VHDL, the random system-

level testbench will be written in Cþþ, SystemC [8], or an

equivalent IBM internally developed package. Given our

experience, it is felt that the task of writing complex

behavioral software for a testbench can be done much

more easily in Cþþ than VHDL, regardless of Cþþ
simulator interface portability issues.

Summary

The complexity of system-on-a-chip logic applications

such as the BG/L chip defines the challenges that must

be met by state-of-the-art verification methodologies.

Table 2 Code-driven and random system-level cost–performance comparison.

Simulation type Simulator System Cost

($)

Wall-clock

time

Processor

cycles/s

$/cycles/s

Code-driven

Code-driven system-level

with full processor model

ModelSim IBM RS/6000* 44P Model 270

POWER3*-II/AIX* 375 MHZ

10K 9 hours

17 minutes

3 3,333

Code-driven system-level

with full processor model

Mesa IBM RS/6000 44P Model 270

POWERr3-II/AIX 375 MHz

10K 28 minutes 50 200

Code-driven system-level

with full processor model

Awan Awan 200K 2 minutes 603 332

Random

Random system-level

with bus functional model

NC-VHDL IBM xSeries* 305

Pentium** 4/Linux** 2.6 GHz

1K 23 43

1A program written by beginning students that simply writes ‘‘Hello world’’ to the
screen.
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The high development and fabrication costs of these

systems necessitate the use of sophisticated verification

methodologies to help ensure successful first-pass silicon.

To meet these challenges, we developed a verification

strategy in which different types of verification are used

together in specific ways to complement one another. This

multifaceted approach forms a robust verification of

complex systems. Our verification strategy employs

engineered directed-test cases, unit-level simulation, and

formal protocol verification to augment our core random

system simulation, in which we run prodigious numbers

of simulation cycles on a continuous stream of

automatically generated new and varied test cases. The

‘‘art’’ in an effective random simulation is to direct and

control the operational focus in the test space so that

simulation cycles are not wasted, and to know when the

simulation space has been sufficiently explored. The

verification strategy described in this paper is validated

by the first-pass success of the BG/L chip.

We successfully demonstrated that verifying a large

SoC chip using a Linux-based commodity personal

computer farm is cost-effective. Our verification strategy

led other verification efforts within IBM to use Linux-

based PCs for a simulation farm.
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