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This paper presents vectorization techniques tailored to meet the
specifics of the two-way single-instruction multiple-data (SIMD)
double-precision floating-point unit (FPU), which is a core element
of the node application-specific integrated circuit (ASIC) chips of
the IBM 360-teraflops Blue Genet/L supercomputer. This paper
focuses on the general-purpose basic-block vectorization and
optimization methods as they are incorporated in the Vienna MAP
vectorizer and optimizer. The innovative technologies presented
here, which have consistently delivered superior performance
and portability across a wide range of platforms, were carried
over to prototypes of Blue Gene/L and joined with the automatic
performance-tuning system known as Fastest Fourier Transform
in the West (FFTW). FFTW performance-optimization facilities
working with the compiler technologies presented in this paper are
able to produce vectorized fast Fourier transform (FFT) codes that
are tuned automatically to single Blue Gene/L processors and are
up to 80% faster than the best-performing scalar FFT codes
generated by FFTW.

Introduction
The IBM Blue Gene*/L (BG/L) supercomputer [1],

planned to be in operation in 2005, will be an order of

magnitude faster than the Earth Simulator. BG/L will

feature eight times more processors than current

massively parallel systems. To tame this vast parallelism,

new approaches and tools have had to be developed.

However, developing highly efficient numerical software

has to start with optimizing the computational kernels for

the nonstandard floating-point unit (FPU) of the BG/L

processors. This so-called double FPU provides support

for complex arithmetic as an important prerequisite to

speed up large scientific codes.

The utilization of nonstandard FPUs in computational

kernels, like fast Fourier transforms (FFTs), is by no

means straightforward. Optimization of FFT kernels

leads to complicated data dependencies of real variables

that cannot easily be mapped to the elaborate BG/L

FPU. This problem is particularly demanding in the

context of automatic performance tuning, but it must be

addressed in order to obtain high-performance FFT

implementations, which are required as major building

blocks for the large scientific codes planned to be run on

BG/L. Most of these applications require very fast one-

dimensional FFT routines to be run on a single processor

for computing relatively small transforms.

This paper introduces a new FFT library, BGL/FFTW–

GEL, that runs efficiently on the BG/L prototypes. This

library is the first numerical library for BG/L not

developed by IBM. It takes full advantage of the

double FPU by means of short-vector single-

instruction multiple-data (SIMD) vectorization.

BGL/FFTW–GEL is the result of a combination of

FFTW with special-purpose vectorization technology in

the Vienna MAP vectorizer [2–4]. FFT codes produced by

BGL/FFTW–GEL are running five times faster than

standard nonadaptive FFT libraries [2]. On the DD2

prototype, speeds up to 1.8 times greater than the

best FFT code not utilizing the special features of

the BG/L double FPU were achieved.

The Blue Gene/L supercomputer
The initial DD1 prototype of the IBM Blue Gene/L

supercomputer [1], equipped with 8,192 custom-made
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IBM PowerPC* 440 FP2 processors running at 500 MHz,

achieved a Linpack performance of Rmax= 11.7 teraflops,

i.e., 71% of its theoretical peak performance of

Rpeak = 16.4 teraflops. This performance ranks the BG/L

prototype machine at position four of the Top500 list

(June 2004) [5]. The prototype machine is roughly 1/20th

the physical size of machines of comparable compute

power—such as Linux** clusters—that exist today.

The 64K-processor BG/L machine currently being built

for the Lawrence Livermore National Laboratory

(LLNL) will be eight times larger, occupying 64

full racks. When completed in 2005, the LLNL

supercomputer—featuring 360 teraflops peak

performance—is expected to lead the Top500 list.

Compared with the fastest supercomputers of today,

it will be an order of magnitude faster, consume

1/15th of the power, and be ten times more compact.

Complex and real arithmetic

Since there are many areas of scientific computing,

such as computational electronics, in which complex

arithmetic plays an important role, its native support has

been integrated into the FPUs of computers devoted to

such applications. Nevertheless, even algorithms using

complex arithmetic may have to be reformulated in terms

of real arithmetic to allow for the application of the

inevitable optimization techniques to achieve satisfactory

performance of scientific codes: common subexpression

elimination, constant folding, and copy propagation on

the real and imaginary parts.

BG/L double FPU

The BG/L PowerPC 440 (PPC440) double floating-point

FPU (FP2) was obtained by replicating the standard

PPC440 FPU and adding crossover datapaths and sign-

change capabilities to allow the short-vector SIMD fused

multiply–add (FMA) operations to support complex

multiplication. Up to four real floating-point operations

(one SIMD FMA) can be issued every cycle, and efficient

intermixing of scalar and vector operations is possible.

The data to be processed has to be naturally aligned

on 16-byte boundaries in memory.

The PPC440 FP2 exhibits some problematic

characteristics: a single data reorder operation within

a short-vector SIMD register is as expensive as one

arithmetic two-way FMA operation, and alternatively,

either a floating-point operation or a data reorganization

instruction can be issued every cycle. Conventional

vectorization techniques are not able to deal efficiently

with these architectural shortcomings. Thus, without a

tailor-made adaptation of established short-vector SIMD

vectorization techniques to the specific features of the

BG/L double FPU, no high-performance short-vector

code can be obtained.

Blue Gene/L ISA extension

The Blue Gene/L new single-instruction, multiple-

operation, multiple-data (SIMOMD) instruction set

architecture (ISA) extension includes all well-known short-

vector SIMD-style (interoperand, parallel) instructions,

such as the ones supported by the Intel** Streaming SIMD

Extensions 2 (SSE2) or AMD 3DNow!**. This ISA

extension allows the use of the double FPU either as

a complex FPU or as a real two-way vector FPU.

When it is used as a complex FPU, programs using

complex arithmetic can be mapped to the Blue Gene/L

double FPU in a straightforward manner. The

alternative, using it as a real two-way vector FPU

where real code is presupposed, is applicable only if the

underlying algorithm allows for enough parallelism to be

extracted. Moreover, the mapping is significantly more

complicated in this case.

In the context of automatic performance-tuning

software, the GNU C compiler port for Blue Gene/L

is not suitable because it supports only 32 temporary

variables when accessing the double FPU. Thus, only

the IBM XL C compiler is a reasonable choice.

To employ the Blue Gene/L double FPU in automatic

performance-tuning software, three approaches are

possible:

1. Implement the numerical kernels in C using

proprietary directives such that the XL C compiler

vectorization possibilities prove successful.

2. Rewrite the numerical kernels in assembly language

using specific double FPU instructions.

3. Rewrite the numerical kernels utilizing the XL C

language extension to C99 that provides access to the

double FPU on the source level by means of special

data types and intrinsic functions.

This paper describes how vector code can be generated

automatically by following the third approach. Thus,

register allocation and instruction scheduling is left to the

compiler while vectorization and instruction selection is

done at the source-code level by the newly developed

approach presented in the following sections.

Self-adapting FFT software
The FFT algorithm is among the most important

computational innovations of the twentieth century and

continues to be a focus of current research. In scientific

computing, FFT algorithms are—in addition to linear

algebra algorithms—core algorithms of almost any

computationally intensive numerical software.

Accordingly, the application of FFT transforms ranges

from small-scale problems with stringent time constraints

(for instance, in real-time signal processing) up to large-

scale simulations and partial differential equation (PDE)
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solvers running on the largest supercomputers in the

world. Thus, high-performance software tailor-made

for such applications is desperately needed.

FFT algorithms are structurally complex and difficult

to efficiently map onto standard hardware. Until recently,

FFT packages required large, finely tuned, machine-

specific libraries produced by highly skilled software

developers. Therefore, these packages failed to perform

well for a variety of architectures.

In 1997, the state of the art in scientific software

production changed dramatically when automatic

software generators producing highly optimized code

entered the field. New standards were set by FFTW,

a free collection of fast C routines for computing

the discrete Fourier transform (DFT) in one or more

dimensions [6, 7]. FFTW was designed for producing

automatically tuned FFT libraries and automatically

tuned linear algebra software (ATLAS) [8] that generates

highly efficient basic linear algebra subroutines (BLAS).

Typically, FFTW produces code that runs faster than

publicly available FFT codes and compares well to

vendor libraries. A dynamic programming approach

relying on a recursive implementation of the

Cooley/Tukey FFT algorithm [9] enables the adaptation

of the FFT computation of a given size to a given target

machine at runtime. The actual computation is done

within routines called twiddle and no-twiddle codelets,

which are produced by the code generator GENFFT [10],

whose output consists of basic blocks of thousands of

lines of code that can be transformed into static single

assignment (SSA) form.

Code generated by automatic performance-tuning

software such as FFTW and ATLAS is supposed to be

translated by standard compilers to enable portability.

However, automatically generated numerical code

translated by standard compilers is often not able to

achieve satisfactory performance. To accomplish top

performance in such cases, the exploitation of special

processor features, such as short-vector SIMD or FMA

ISA extensions, is imperative.

Unfortunately, the methods used by conventional

vectorizing compilers to deal with loops or basic blocks

lead to inefficient results when applied to automatically

generated numerical codes. These inefficiencies are due,

among other things, to the inability of such compilers

to utilize domain-specific information revealing

the parallelism inherent in the codes. For instance,

conventional vectorization techniques entail unacceptably

large overhead by applying data-reordering operations

that are, in principle, nonessential.

Related work
The main topic of this paper is the automatic

vectorization of basic blocks of automatically generated

code. Besides this kind of vectorization, there are also

other ways to automatically vectorize FFT code.

Formal FFT vectorization

The formal vectorization approach [11–16] developed for

classical short-vector SIMD extensions, such as the Intel

SSE family, the AMD 3DNow! family, and the Motorola

AltiVec**, has been ported successfully to Blue Gene/L

FPUs [17]. This type of vectorization is based on

the SIMD vectorizing version of the synchronous

programming language (SPL) compiler [14] that enables

the SPIRAL system [18, 19] to automatically optimize

code targeted at the double FPUs of Blue Gene/L.

Vectorization in FFTW 3

Version 3.0.1 of FFTW supports the SIMD extensions

SSE, SSE2, 3DNow!, and AltiVec. A new algorithm is

used to compute complex DFTs by means of two-way

parallel computation of real DFTs. Porting FFTW 3.0.1

to Blue Gene/L requires the mapping of the SIMD

instructions required by FFTW to instructions that exist

on Blue Gene/L. Preliminary experiments carried out

with no-twiddle codelets show promising results.

Other vectorization techniques

Some methods for vectorizing basic blocks [20–22]

attempt to find an efficient mix of SIMD and scalar

instructions to carry out the required computation,

whereas the vectorization techniques introduced in the

next section aim at a full utilization of the power of

SIMD instructions while trying to keep the SIMD

reordering overhead reasonably small.

The vectorization method of [21] introduces more

SIMD data-reordering instructions than necessary,

because it is unable to use a representation of the

numerical scalar directed acyclic graph (DAG) as

vectorization input, and is thus deprived of this

parallelism-revealing instrument. This approach is not

a suitable choice for the efficient handling of typical

numerical codes, such as FFTs, since explicit SIMD

data-reordering operations are very expensive on

the Blue Gene/L FPU.

Vienna MAP vectorizer

The Vienna MAP vectorizer [2–4, 23] automatically

extracts two-way short-vector SIMD parallelism from

a scalar code block by adequately combining scalar

variables into SIMD variables and by joining the

corresponding scalar instructions to one or more short-

vector SIMD instructions, as illustrated in Figure 1. The

MAP vectorizer targets automatically generated code that

consists solely of arithmetic operations and read/write

array access operations involving index computation.
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Ideally, two-way vectorization transforms any pair

of scalar instructions to one SIMD instruction yielding

100% SIMD utilization (Figure 1). This maximum is

achievable only for completely parallel scalar DAGs.

For DAGs with less parallelism, SIMD reordering

instructions are required, at the cost of reduced SIMD

utilization.

Since not all combinations of scalar operations may be

joined into one SIMD instruction (as defined by the ISA

extension of the target processor), a realistic goal for the

vectorizer is to completely cover the given scalar DAG by

natively supported SIMD instructions while achieving a

satisfactory runtime performance, which is tantamount to

minimizing SIMD data reorganization. Figure 2 gives

an example of short-vector SIMD code obtained by

vectorizing straight-line complex FFT code.

The Vienna MAP vectorizer was adapted to support

Blue Gene/L FPUs. As a supplement to the MAP

vectorizer, a peephole optimizer enables the extraction

of fused multiply–add SIMD instructions.

Fundamentals of vectorization

Fusion of variables

Two scalar variables A and B can be fused either into a

SIMD variable of the form AB = (A, B) or vice versa,

BA = (B, A), where AB 6¼ BA. Moreover, no scalar

variable can be part of two different SIMD variables.

An already existing fusion AB = (A, B) is said to be

compatible with another fusion CD = (C, D) requested

in the vectorization process if and only if AB = CD or

A = D and B = C. In the first case, fusion CD does not

have to be generated, since AB can be used. In the second

case, a SIMD swap operation is required to maintain

Figure 1

Example of two-way vectorization. Ideally, two scalar instructions 
are transformed into one vector instruction to achieve optimal 
SIMD coverage.

add(A, B, C), add(D, E, F) v_add(AD, BE, CF) 

A B A D B E

C

D E

F C F

Figure 2

Vectorization of a scalar FFT of size 3. The scalar data flow in 
part (a) is computationally equivalent to the vectorized data flow 
of part (b).
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data-flow consistency when using fusion AB instead of

generating and using CD (Figure 3).

Combination of operations

Joining rules specify the allowed ways of pairwise

transforming scalar instructions into one or more

SIMD instructions. The MAP vectorizer supports

transformations of the following instruction

combinations: 1) load/load, 2) store/store,

3) unary/unary, 4) binary/binary, 5) unary/binary,

6) unary/load, and 7) load/binary.

Joining rules 1 and 2 supports the transformation

of memory operations accessing consecutive and

nonconsecutive memory locations. Rules 3 and 4

allow the pairing of instructions of only the same

type, while rules 5 to 7 also allow mixed-type pairings.

Rules of type 3 fuse the two source operands S1 and S2

for transforming two unary instructions (uop1, S1, D1)

and (uop2, S2, D2).

Rules of type 4 provide several alternatives

(Figure 4). Because they target two binary instructions

(bop1, S1, T1, D1) and (bop2, S2, T2, D2), different

possibilities arise for choosing the fusion partners among

the four source operands S1, T1, S2, and T2. Thus, three

layouts—ACC, PAR, and CHI, which define the

possibilities for fusing the operand variables for binary

instructions as shown in Figure 5—are introduced. ACC

is needed for fusing variables used as operands for SIMD

instructions of intra-operand style, whereas PAR and

CHI are meant for those of parallel style, as illustrated

in Figure 4.

Vectorization quality

To extract high-performance short-vector SIMD code

distinguished by good SIMD utilization, the joining rules

issue SIMD reorder instructions only in the unavoidable

case of a compatible fusion demanding a swap

instruction. The majority of the extracted swaps can be

removed by next applying a peephole optimization after

the vectorization process.

The vectorization engine begins by constraining all

SIMD memory operations to access consecutive locations

and by disabling the suboptimal pairing rules 5–7. If these

restrictions cause the vectorization process to fail, it is

restarted after enabling operation pairing rules 5–7 and

support for less efficient (that is, nonconsecutive) memory

access operations. Abandonment of restrictions

substantially augments the class of vectorizable codes by

allowing the extraction of some less efficient instruction

combinations.

MAP vectorization algorithm

Before the actual vectorization process is started, the

following preparatory steps are taken. First, a

Figure 3

Compatible fusion. The vectorization process requests the fusion 
CD � (C, D). The existing fusion AB � (D, C) is used as the input 
operand of a swap instruction whose output T can be used whenever 
CD is needed.

Requested Compatible

CCD AB

T

D D C

Figure 4

Vectorization alternatives. Two scalar instructions, one addition 
and one subtraction operation, are transformed into SIMD 
instructions in three different ways.

Scalar ACC PAR CHI

S1 T1 S2 T2 S1 T1 S2 T2

T1 T2 S1 T2

S1 S2 T1 S2

D1 D1D2 D2

D1 D2 D1 D2

Figure 5

Fusion layouts. Three layouts for fusing the source variables of 
the scalar instructions (op1, S1, T1, D1) and (op2, S2, T2, D2) are 
supported.

ACC PAR CHI

S1

S2

T1

T2

S1

S2

T1

T2

S1

S2

T1

T2
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dependency analysis is performed on the scalar DAG.

Then, instruction statistics are assembled which provide

instruction counts for each instruction type and

operation. Data gathered in these first two steps is used

as a heuristic to speed up the vectorization process by

avoiding futile vectorization attempts. Finally, store

instructions are combined nondeterministically by fusing

their respective source operands.

Vectorization algorithm

The MAP vectorization algorithm consists of two steps:

1. Pick I1 = (op1, s1, t1, d1) and I2 = (op2, s2, t2, d2),

i.e., two scalar instructions that have not yet been

vectorized, with (d1, d2) or (d2, d1) being an existing

fusion.

2. The two scalar operations op1 and op2 are paired

nondeterministically, yielding an equivalent sequence

of SIMD operations. This step may impose the

need for new fusions if no compatible fusions are

available. In this case, the layout for the fusion of

the respective source operands s1, t1, s2, and t2 is

mandated by the pairing rule. The vectorization

process must ensure that no scalar variable is part

of two different fusions.

The vectorizer alternately applies step 1 and step 2 until

either the vectorization succeeds (i.e., thereafter all scalar

variables are part of at most one fusion, and all scalar

operations have been paired) or the vectorization fails.

If the vectorizer succeeds, it immediately commits to

the first solution of the search process, which keeps

the vectorization runtime reasonably small. Although a

search for the solution that achieves the shortest runtime

would be desirable, it is not feasible using the current

version of the vectorizer, even for relatively small

straight-line codes.

Nondeterminism in vectorization

Nondeterminism in vectorization arises due to

vectorization alternatives such as ACC, PAR, and CHI,

for binary/binary pairings. For a fusion (d1, d2), there

may be several layouts for fusing the source operands

s1, t1, s2, and t2, depending on the pairing (op1, op2),

as illustrated in Figure 4. This kind of nondeterminism

widens the search space of the vectorizer backtracking

search engine.

The rule ranking, i.e., the order in which vectorization

alternatives are tried, may influence the order of the

solutions of the vectorization process. Because the

vectorizer always commits to the first solution, the rule

ranking is adapted such that the first solution favors

instruction sequences that are particularly well-suited for

the given target machine, taking into account the different

costs of individual instructions (Table 1).

The rule ranking has to be considered as a kind of

extraction ‘‘hint.’’ At every point of decision, the search

engine initially tries the rule that is ranked first. If this

does not succeed, i.e., does not lead to a vectorization,

later-ranked rules are also used, even if their application

effectuates the extraction of pseudo instructions that are

not supported on the target ISA. This kind of retreat is

unavoidable, as a complete vectorization is the central goal.

Realization of the vectorization engine

The MAP vectorization algorithm is implemented

using a depth-first search engine with chronological

backtracking. This backtracking capability is

indispensable when a fusion that is requested by the

Table 1 Relative costs of SIMD operations. For a selection of ISA extensions, the actual number of SIMD instructions required to

implement the respective SIMD operations is given. This data directly influences the rule ranking underlying the MAP vectorizer.

ISA

SIMD op

Basic

3DNow!

(K6-II+)

Extended

3DNow!

(K7/K8)

SSE2

(P4/K8)

SSE3

(P4e)

IA64

(Intel

Itanium**)

Double

FPU

(440 FP2)

Load/store 1 1 1 1 1 1

Uniform unpack 1 1 1 1 1 2

Mixed unpack 2 2 2 2 1 2

Uniform ACC 1 1 3 1 3 5

Mixed ACC 2 1 4 2 3 5

Uniform PAR 1 1 1 1 1 1

Mixed PAR 2 2 2 1 1 1

PAR FMA 2 2 2 2 1 1
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current vectorization alternative does not comply with

the globally existing fusions. In these cases, the search

engine backtracks to the last nondeterministic point

of decision. There, another vectorization alternative is

chosen, and corresponding fusions of different layouts

are requested and generated if necessary. If these fusions

comply with the set of existing fusions, the rule fires

and the vectorization process continues. Otherwise,

backtracking is chronologically applied repeatedly until

either a vectorization is obtained or the search space is

exhausted. In the latter case, the vectorization engine

is unable to find a valid fusion set for the given scalar

DAG.

Vienna MAP optimizer
The Vienna MAP optimizer is a rule-based local rewriting

system that implements peephole optimization on vector

DAGs. It postprocesses the output of the MAP vectorizer

and comprises two groups of rewriting rules. Finally,

the optimized output is sorted topologically in an

attempt to minimize the lifespan of variables by

improving the locality of variable accesses, using a

scheduling algorithm based on the FFTW scheduler

GENFFT [10].

General set of rules

The first group of rewriting rules consists of general

optimization rules (Figure 6) aiming at minimization of

the instruction count, elimination of redundancy and

dead code, reduction of the number of source operands

(which reduces register pressure), minimization of the

critical path length of the vector DAG, copy propagation,

and constant folding.

With target architectures that support FMAs, such as

the Blue Gene/L double FPU, the FMAs are extracted by

combining multiplications (or sign changes) with directly

dependent addition operations (or subtraction operations

or already existing FMAs) into FMAs. If this direct

combination is not possible at first, the respective

instructions are moved down in the DAG in an attempt

to fold them into other instructions.

Specific set of rules

The second group of rewriting rules is specific to target

architecture. When optimizing for the Blue Gene/L

PPC440 FP2, vector swap instructions are folded into

FMAs utilizing vector FMA instructions with crossed

datapaths, exclusively available on Blue Gene/L, using

a method similar to FMA extraction (Figure 7).

Experimental results
Numerical experiments based on one-dimensional

FFTs applied to vectors with power-of-2 lengths

N¼ 23, 24, � � �, 218¼ 262,144 and non-power-of-2

lengths N¼ 9, 12, � � �, 27,000 were carried out using

FFTW combined with the new vectorization and

optimization techniques as they are implemented in

the Vienna MAP vectorizer and optimizer.

In these experiments the new vectorization and

optimization techniques were built into BGL/FFTW–

GEL and evaluated on the Blue Gene/L DD2 prototype

using one single PowerPC 440 FP2 processor running at

700 MHz. The best-performing scalar code generated by

FFTW as well as FFTW code vectorized by the XL C

compiler is used as a performance benchmark.

The floating-point performance displayed in

Figures 8(a) and 8(b) is given in pseudo Gflops, i.e.,

5N log N/T, with N being the vector length and T

the measured runtime in nanoseconds.

Figures 8(a) and 8(b) compare different FFTW library

implementations:

� The best vectorized code obtained using all

technologies presented in this paper (BGL/FFTW–

GEL).
� The best scalar FFTW implementation (with the XL

C vectorizer and FMA extraction facility turned off).
� The best vectorized FFTW implementation obtained

with the activated vectorizer and FMA extraction

facility of the XL C compiler.

Figure 6

General optimization rule. A vector add instruction v_add(B, D, E)— 
taking the output of two sign change instructions, one on the lower 
part v_chsLo(A, B) and another on the higher part v_chsHi(C, D) of 
two different registers as its inputs—is transformed into a vector 
subtraction v_sub(A, C, D) and a subsequent vector sign change 
v_chsLo(D, E) instruction.

v_sub(A, C, D)
v_chsHi(C, D)

v_chsLo(A, B)
v_chsLo(D, E)
v_add(B, D, E)

A A1 A2 A A1 A2

B

C

DB1 B2

C1 C2 CC1 C2

D1 D2

DD1 D2

EE1 E2EE1 E2
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The impressive performance gain attainable with BGL/

FFTW–GEL over scalar code generated by FFTW is

shown in Figure 9. For power-of-2 FFTs, BGL/FFTW–

GEL yields speedup figures up to 80% with respect to the

best-performing scalar code, i.e., the scalar FFTW library

(which serves as a baseline in the diagram). For large

problem sizes, BGL/FFTW–GEL still yields a speedup of

60%. Thus, the vectorization and optimization methods

of this paper have been demonstrated to effectuate

significant performance improvements. XL C, with its

vectorization and FMA extraction facility turned on,

when applied to FFTW-generated code without taking

advantage of the techniques presented in this paper,

produces vectorized code that runs at the same speed

or slightly slower than scalar XL C code.

Conclusions and outlook
FFTs are indispensable parts of nearly every kind of

scientific computing application. Thus, efficient FFT

software is needed by Blue Gene/L scientific users.

The performance portable vectorization techniques

introduced in this paper allow timely software

optimization to be done concurrently with IBM hardware

development on Blue Gene/L.

The highly portable ViennaMAP vectorizer can be used

to automatically vectorize numerical straight-line code

generated by state-of-the-art automatic performance-

tuning software, such asFFTW, thereby helping to develop

highly efficient implementations of FFT kernels.

Performance experiments carried out on Blue Gene/L

prototypes show that the newly developed vectorization

approach in combination with state-of-the-art

performance-tuning software is able to speed up

numerical codes considerably. The vectorization

approach of this paper has been demonstrated to produce

high-performance FFT kernels for the Blue Gene/L

supercomputers that fully utilize the new double FPU.

An integral part of our current work is a compiler

back end that will be particularly well-suited for the

compilation of numerical straight-line code.
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Figure 9

Speedup achieved by the vectorization and optimization techniques 
presented in this paper, compared with scalar code. In both cases 
the XL C compiler back end was used.
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