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This paper presents vectorization techniques tailored to meet the
specifics of the two-way single-instruction multiple-data (SIMD)
double-precision floating-point unit (FPU), which is a core element
of the node application-specific integrated circuit (ASIC) chips of
the IBM 360-teraflops Blue Gene®/L supercomputer. This paper
focuses on the general-purpose basic-block vectorization and
optimization methods as they are incorporated in the Vienna MAP
vectorizer and optimizer. The innovative technologies presented
here, which have consistently delivered superior performance

and portability across a wide range of platforms, were carried
over to prototypes of Blue Gene/L and joined with the automatic
performance-tuning system known as Fastest Fourier Transform
in the West (FFTW). FFTW performance-optimization facilities
working with the compiler technologies presented in this paper are
able to produce vectorized fast Fourier transform (FFT) codes that
are tuned automatically to single Blue Gene/L processors and are

up to 80% faster than the best-performing scalar FFT codes

generated by FFTW.
-

Introduction

The IBM Blue Gene*/L (BG/L) supercomputer [1],
planned to be in operation in 2005, will be an order of
magnitude faster than the Earth Simulator. BG/L will
feature eight times more processors than current
massively parallel systems. To tame this vast parallelism,
new approaches and tools have had to be developed.
However, developing highly efficient numerical software
has to start with optimizing the computational kernels for
the nonstandard floating-point unit (FPU) of the BG/L
processors. This so-called double FPU provides support
for complex arithmetic as an important prerequisite to
speed up large scientific codes.

The utilization of nonstandard FPUs in computational
kernels, like fast Fourier transforms (FFTs), is by no
means straightforward. Optimization of FFT kernels
leads to complicated data dependencies of real variables
that cannot easily be mapped to the elaborate BG/L
FPU. This problem is particularly demanding in the
context of automatic performance tuning, but it must be
addressed in order to obtain high-performance FFT
implementations, which are required as major building

blocks for the large scientific codes planned to be run on
BG/L. Most of these applications require very fast one-
dimensional FFT routines to be run on a single processor
for computing relatively small transforms.

This paper introduces a new FFT library, BGL/FFTW-
GEL, that runs efficiently on the BG/L prototypes. This
library is the first numerical library for BG/L not
developed by IBM. It takes full advantage of the
double FPU by means of short-vector single-
instruction multiple-data (SIMD) vectorization.

BGL/FFTW-GEL is the result of a combination of
FFTW with special-purpose vectorization technology in
the Vienna MAP vectorizer [2-4]. FFT codes produced by
BGL/FFTW-GEL are running five times faster than
standard nonadaptive FFT libraries [2]. On the DD2
prototype, speeds up to 1.8 times greater than the
best FFT code not utilizing the special features of
the BG/L double FPU were achieved.

The Blue Gene/L supercomputer
The initial DD1 prototype of the IBM Blue Gene/L
supercomputer [1], equipped with 8,192 custom-made
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IBM PowerPC* 440 FP2 processors running at 500 MHz,
achieved a Linpack performance of R,,,x = 11.7 teraflops,
i.e., 71% of its theoretical peak performance of

Rpcax = 16.4 teraflops. This performance ranks the BG/L
prototype machine at position four of the Top500 list
(June 2004) [5]. The prototype machine is roughly 1/20th
the physical size of machines of comparable compute
power—such as Linux** clusters—that exist today.

The 64K-processor BG/L machine currently being built
for the Lawrence Livermore National Laboratory
(LLNL) will be eight times larger, occupying 64
full racks. When completed in 2005, the LLNL
supercomputer—featuring 360 teraflops peak
performance—is expected to lead the Top500 list.
Compared with the fastest supercomputers of today,
it will be an order of magnitude faster, consume
1/15th of the power, and be ten times more compact.

Complex and real arithmetic

Since there are many areas of scientific computing,

such as computational electronics, in which complex
arithmetic plays an important role, its native support has
been integrated into the FPUs of computers devoted to
such applications. Nevertheless, even algorithms using
complex arithmetic may have to be reformulated in terms
of real arithmetic to allow for the application of the
inevitable optimization techniques to achieve satisfactory
performance of scientific codes: common subexpression
elimination, constant folding, and copy propagation on
the real and imaginary parts.

BG/L double FPU
The BG/L PowerPC 440 (PPC440) double floating-point
FPU (FP2) was obtained by replicating the standard
PPC440 FPU and adding crossover datapaths and sign-
change capabilities to allow the short-vector SIMD fused
multiply—add (FMA) operations to support complex
multiplication. Up to four real floating-point operations
(one SIMD FMA) can be issued every cycle, and efficient
intermixing of scalar and vector operations is possible.
The data to be processed has to be naturally aligned
on 16-byte boundaries in memory.

The PPC440 FP2 exhibits some problematic
characteristics: a single data reorder operation within
a short-vector SIMD register is as expensive as one
arithmetic two-way FMA operation, and alternatively,
either a floating-point operation or a data reorganization
instruction can be issued every cycle. Conventional
vectorization techniques are not able to deal efficiently
with these architectural shortcomings. Thus, without a
tailor-made adaptation of established short-vector SIMD
vectorization techniques to the specific features of the
BG/L double FPU, no high-performance short-vector
code can be obtained.
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Blue Gene/L ISA extension

The Blue Gene/L new single-instruction, multiple-
operation, multiple-data (SIMOMD) instruction set
architecture (ISA) extension includes all well-known short-
vector SIMD-style (interoperand, parallel) instructions,
such as the ones supported by the Intel** Streaming SIMD
Extensions 2 (SSE2) or AMD 3DNow!**. This ISA
extension allows the use of the double FPU either as

a complex FPU or as a real two-way vector FPU.

When it is used as a complex FPU, programs using
complex arithmetic can be mapped to the Blue Gene/L
double FPU in a straightforward manner. The
alternative, using it as a real two-way vector FPU
where real code is presupposed, is applicable only if the
underlying algorithm allows for enough parallelism to be
extracted. Moreover, the mapping is significantly more
complicated in this case.

In the context of automatic performance-tuning
software, the GNU C compiler port for Blue Gene/L
is not suitable because it supports only 32 temporary
variables when accessing the double FPU. Thus, only
the IBM XL C compiler is a reasonable choice.

To employ the Blue Gene/L double FPU in automatic
performance-tuning software, three approaches are
possible:

1. Implement the numerical kernels in C using
proprietary directives such that the XL C compiler
vectorization possibilities prove successful.

2. Rewrite the numerical kernels in assembly language
using specific double FPU instructions.

3. Rewrite the numerical kernels utilizing the XL C
language extension to C99 that provides access to the
double FPU on the source level by means of special
data types and intrinsic functions.

This paper describes how vector code can be generated
automatically by following the third approach. Thus,
register allocation and instruction scheduling is left to the
compiler while vectorization and instruction selection is
done at the source-code level by the newly developed
approach presented in the following sections.

Self-adapting FFT software

The FFT algorithm is among the most important
computational innovations of the twentieth century and
continues to be a focus of current research. In scientific
computing, FFT algorithms are—in addition to linear
algebra algorithms—core algorithms of almost any
computationally intensive numerical software.
Accordingly, the application of FFT transforms ranges
from small-scale problems with stringent time constraints
(for instance, in real-time signal processing) up to large-
scale simulations and partial differential equation (PDE)
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solvers running on the largest supercomputers in the
world. Thus, high-performance software tailor-made
for such applications is desperately needed.

FFT algorithms are structurally complex and difficult
to efficiently map onto standard hardware. Until recently,
FFT packages required large, finely tuned, machine-
specific libraries produced by highly skilled software
developers. Therefore, these packages failed to perform
well for a variety of architectures.

In 1997, the state of the art in scientific software
production changed dramatically when automatic
software generators producing highly optimized code
entered the field. New standards were set by FFTW,

a free collection of fast C routines for computing

the discrete Fourier transform (DFT) in one or more
dimensions [6, 7]. FFTW was designed for producing
automatically tuned FFT libraries and automatically
tuned linear algebra software (ATLAS) [8] that generates
highly efficient basic linear algebra subroutines (BLAS).

Typically, FFTW produces code that runs faster than
publicly available FFT codes and compares well to
vendor libraries. A dynamic programming approach
relying on a recursive implementation of the
Cooley/Tukey FFT algorithm [9] enables the adaptation
of the FFT computation of a given size to a given target
machine at runtime. The actual computation is done
within routines called twiddle and no-twiddle codelets,
which are produced by the code generator GENFFT [10],
whose output consists of basic blocks of thousands of
lines of code that can be transformed into static single
assignment (SSA) form.

Code generated by automatic performance-tuning
software such as FFTW and ATLAS is supposed to be
translated by standard compilers to enable portability.
However, automatically generated numerical code
translated by standard compilers is often not able to
achieve satisfactory performance. To accomplish top
performance in such cases, the exploitation of special
processor features, such as short-vector SIMD or FMA
ISA extensions, is imperative.

Unfortunately, the methods used by conventional
vectorizing compilers to deal with loops or basic blocks
lead to inefficient results when applied to automatically
generated numerical codes. These inefficiencies are due,
among other things, to the inability of such compilers
to utilize domain-specific information revealing
the parallelism inherent in the codes. For instance,
conventional vectorization techniques entail unacceptably
large overhead by applying data-reordering operations
that are, in principle, nonessential.

Related work

The main topic of this paper is the automatic
vectorization of basic blocks of automatically generated
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code. Besides this kind of vectorization, there are also
other ways to automatically vectorize FFT code.

Formal FFT vectorization

The formal vectorization approach [11-16] developed for
classical short-vector SIMD extensions, such as the Intel
SSE family, the AMD 3DNow! family, and the Motorola
AltiVec**, has been ported successfully to Blue Gene/L
FPUs [17]. This type of vectorization is based on

the SIMD vectorizing version of the synchronous
programming language (SPL) compiler [14] that enables
the SPIRAL system [18, 19] to automatically optimize
code targeted at the double FPUs of Blue Gene/L.

Vectorization in FFTW 3

Version 3.0.1 of FFTW supports the SIMD extensions
SSE, SSE2, 3DNow!, and AltiVec. A new algorithm is
used to compute complex DFTs by means of two-way
parallel computation of real DFTs. Porting FFTW 3.0.1
to Blue Gene/L requires the mapping of the SIMD
instructions required by FFTW to instructions that exist
on Blue Gene/L. Preliminary experiments carried out
with no-twiddle codelets show promising results.

Other vectorization techniques

Some methods for vectorizing basic blocks [20-22]
attempt to find an efficient mix of SIMD and scalar
instructions to carry out the required computation,
whereas the vectorization techniques introduced in the
next section aim at a full utilization of the power of
SIMD instructions while trying to keep the SIMD
reordering overhead reasonably small.

The vectorization method of [21] introduces more
SIMD data-reordering instructions than necessary,
because it is unable to use a representation of the
numerical scalar directed acyclic graph (DAG) as
vectorization input, and is thus deprived of this
parallelism-revealing instrument. This approach is not
a suitable choice for the efficient handling of typical
numerical codes, such as FFTs, since explicit SIMD
data-reordering operations are very expensive on
the Blue Gene/L FPU.

Vienna MAP vectorizer

The Vienna MAP vectorizer [2-4, 23] automatically
extracts two-way short-vector SIMD parallelism from

a scalar code block by adequately combining scalar
variables into SIMD variables and by joining the
corresponding scalar instructions to one or more short-
vector SIMD instructions, as illustrated in Figure 1. The
MAP vectorizer targets automatically generated code that
consists solely of arithmetic operations and read/write
array access operations involving index computation.

J. LORENZ ET AL.
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Example of two-way vectorization. Ideally, two scalar instructions
are transformed into one vector instruction to achieve optimal
SIMD coverage.

Ideally, two-way vectorization transforms any pair
of scalar instructions to one SIMD instruction yielding
100% SIMD utilization (Figure 1). This maximum is
achievable only for completely parallel scalar DAGs.
For DAGs with less parallelism, SIMD reordering
instructions are required, at the cost of reduced SIMD
utilization.

Since not all combinations of scalar operations may be
joined into one SIMD instruction (as defined by the ISA
extension of the target processor), a realistic goal for the
vectorizer is to completely cover the given scalar DAG by
natively supported SIMD instructions while achieving a
satisfactory runtime performance, which is tantamount to
minimizing SIMD data reorganization. Figure 2 gives
an example of short-vector SIMD code obtained by
vectorizing straight-line complex FFT code.

The Vienna MAP vectorizer was adapted to support
Blue Gene/L FPUs. As a supplement to the MAP
vectorizer, a peephole optimizer enables the extraction
of fused multiply—add SIMD instructions.

Fundamentals of vectorization

Fusion of variables
Two scalar variables 4 and B can be fused either into a
SIMD variable of the form AB = (A4, B) or vice versa,
BA = (B, A), where AB # BA. Moreover, no scalar
variable can be part of two different SIMD variables.
An already existing fusion 4B = (4, B) is said to be
compatible with another fusion CD = (C, D) requested
in the vectorization process if and only if 4B = CD or
A = D and B = C. In the first case, fusion CD does not
have to be generated, since AB can be used. In the second
case, a SIMD swap operation is required to maintain
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Vectorization of a scalar FFT of size 3. The scalar data flow in
part (a) is computationally equivalent to the vectorized data flow
of part (b).
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data-flow consistency when using fusion 4B instead of
generating and using CD (Figure 3).

Combination of operations
Joining rules specify the allowed ways of pairwise
transforming scalar instructions into one or more
SIMD instructions. The MAP vectorizer supports
transformations of the following instruction
combinations: 1) load/load, 2) store/store,
3) unary/unary, 4) binary/binary, 5) unary/binary,
6) unary/load, and 7) load/binary.
Joining rules 1 and 2 supports the transformation
of memory operations accessing consecutive and
nonconsecutive memory locations. Rules 3 and 4
allow the pairing of instructions of only the same
type, while rules 5 to 7 also allow mixed-type pairings.
Rules of type 3 fuse the two source operands S7 and S2
for transforming two unary instructions (uopl, S1, DI)
and (uop2, S2, D2).
Rules of type 4 provide several alternatives
(Figure 4). Because they target two binary instructions
(bopl, S1, T1, DI) and (bop2, S2, T2, D2), different
possibilities arise for choosing the fusion partners among
the four source operands S/, T1, S2, and T2. Thus, three
layouts—ACC, PAR, and CHI, which define the
possibilities for fusing the operand variables for binary
instructions as shown in Figure 5—are introduced. ACC
is needed for fusing variables used as operands for SIMD
instructions of intra-operand style, whereas PAR and
CHI are meant for those of parallel style, as illustrated
in Figure 4.

Vectorization quality

To extract high-performance short-vector SIMD code
distinguished by good SIMD utilization, the joining rules
issue SIMD reorder instructions only in the unavoidable
case of a compatible fusion demanding a swap
instruction. The majority of the extracted swaps can be
removed by next applying a peephole optimization after
the vectorization process.

The vectorization engine begins by constraining all
SIMD memory operations to access consecutive locations
and by disabling the suboptimal pairing rules 5-7. If these
restrictions cause the vectorization process to fail, it is
restarted after enabling operation pairing rules 5-7 and
support for less efficient (that is, nonconsecutive) memory
access operations. Abandonment of restrictions
substantially augments the class of vectorizable codes by
allowing the extraction of some less efficient instruction
combinations.

MAP vectorization algorithm

Before the actual vectorization process is started, the
following preparatory steps are taken. First, a

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

Requested Compatible

CD| C D AB | D €

Compatible fusion. The vectorization process requests the fusion
CD = (C, D). The existing fusion 4B = (D, C) is used as the input
operand of a swap instruction whose output 7 can be used whenever
CD is needed.

Scalar ACC PAR CHI

Vectorization alternatives. Two scalar instructions, one addition
and one subtraction operation, are transformed into SIMD
instructions in three different ways.

ACC PAR CHI

S1 TI TI S1 TI

Fusion layouts. Three layouts for fusing the source variables of
the scalar instructions (opl, SI, T1, DI) and (op2, S2, T2, D2) are
supported.
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Table 1 Relative costs of SIMD operations. For a selection of ISA extensions, the actual number of SIMD instructions required to
implement the respective SIMD operations is given. This data directly influences the rule ranking underlying the MAP vectorizer.

ISA Basic Extended SSE2 SSE3 1464 Double
3DNow! 3DNow! (P4/K8) (P4e) (Intel FPU
SIMD op (K6-11+ ) (K7/K8) Ttanium™* ) (440 FP2)
Load/store 1 1 1 1 1 1
Uniform unpack 1 1 1 1 1 2
Mixed unpack 2 2 2 2 1
Uniform ACC 1 1 3 1 3 5
Mixed ACC 2 1 4 2 3 5
Uniform PAR 1 1 1 1 1 1
Mixed PAR 2 2 2 1 1 1
PAR FMA 2 2 2 2 1 1

dependency analysis is performed on the scalar DAG.
Then, instruction statistics are assembled which provide
instruction counts for each instruction type and
operation. Data gathered in these first two steps is used
as a heuristic to speed up the vectorization process by
avoiding futile vectorization attempts. Finally, store
instructions are combined nondeterministically by fusing
their respective source operands.

Vectorization algorithm
The MAP vectorization algorithm consists of two steps:

1. Pick 11 = (opl, si, t1,dl) and I2 = (op2, 52, t2, d2),
i.e., two scalar instructions that have not yet been
vectorized, with (d1, d2) or (d2, dI) being an existing
fusion.

2. The two scalar operations opl and op2 are paired
nondeterministically, yielding an equivalent sequence
of SIMD operations. This step may impose the
need for new fusions if no compatible fusions are
available. In this case, the layout for the fusion of
the respective source operands s/, ¢/, s2, and ¢2 is
mandated by the pairing rule. The vectorization
process must ensure that no scalar variable is part
of two different fusions.

The vectorizer alternately applies step 1 and step 2 until
either the vectorization succeeds (i.c., thereafter all scalar
variables are part of at most one fusion, and all scalar
operations have been paired) or the vectorization fails.
If the vectorizer succeeds, it immediately commits to
the first solution of the search process, which keeps
the vectorization runtime reasonably small. Although a
search for the solution that achieves the shortest runtime
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would be desirable, it is not feasible using the current
version of the vectorizer, even for relatively small
straight-line codes.

Nondeterminism in vectorization

Nondeterminism in vectorization arises due to
vectorization alternatives such as ACC, PAR, and CHI,
for binary/binary pairings. For a fusion (d/, d2), there
may be several layouts for fusing the source operands
sl, t1, s2, and t2, depending on the pairing (opl, op2),
as illustrated in Figure 4. This kind of nondeterminism
widens the search space of the vectorizer backtracking
search engine.

The rule ranking, i.e., the order in which vectorization
alternatives are tried, may influence the order of the
solutions of the vectorization process. Because the
vectorizer always commits to the first solution, the rule
ranking is adapted such that the first solution favors
instruction sequences that are particularly well-suited for
the given target machine, taking into account the different
costs of individual instructions (Table 1).

The rule ranking has to be considered as a kind of
extraction “hint.” At every point of decision, the search
engine initially tries the rule that is ranked first. If this
does not succeed, i.e., does not lead to a vectorization,
later-ranked rules are also used, even if their application
effectuates the extraction of pseudo instructions that are
not supported on the target ISA. This kind of retreat is
unavoidable, as a complete vectorization is the central goal.

Realization of the vectorization engine

The MAP vectorization algorithm is implemented
using a depth-first search engine with chronological
backtracking. This backtracking capability is
indispensable when a fusion that is requested by the
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current vectorization alternative does not comply with
the globally existing fusions. In these cases, the search
engine backtracks to the last nondeterministic point

of decision. There, another vectorization alternative is
chosen, and corresponding fusions of different layouts
are requested and generated if necessary. If these fusions
comply with the set of existing fusions, the rule fires
and the vectorization process continues. Otherwise,
backtracking is chronologically applied repeatedly until
either a vectorization is obtained or the search space is
exhausted. In the latter case, the vectorization engine
is unable to find a valid fusion set for the given scalar
DAG.

Vienna MAP optimizer

The Vienna MAP optimizer is a rule-based local rewriting
system that implements peephole optimization on vector
DAGs. It postprocesses the output of the MAP vectorizer
and comprises two groups of rewriting rules. Finally,
the optimized output is sorted topologically in an
attempt to minimize the lifespan of variables by
improving the locality of variable accesses, using a
scheduling algorithm based on the FFTW scheduler
GENFFT [10].

General set of rules

The first group of rewriting rules consists of general
optimization rules (Figure 6) aiming at minimization of
the instruction count, elimination of redundancy and
dead code, reduction of the number of source operands
(which reduces register pressure), minimization of the
critical path length of the vector DAG, copy propagation,
and constant folding.

With target architectures that support FMAs, such as
the Blue Gene/L double FPU, the FMAs are extracted by
combining multiplications (or sign changes) with directly
dependent addition operations (or subtraction operations
or already existing FMAs) into FMAs. If this direct
combination is not possible at first, the respective
instructions are moved down in the DAG in an attempt
to fold them into other instructions.

Specific set of rules

The second group of rewriting rules is specific to target
architecture. When optimizing for the Blue Gene/L
PPC440 FP2, vector swap instructions are folded into
FMAs utilizing vector FMA instructions with crossed
datapaths, exclusively available on Blue Gene/L, using
a method similar to FMA extraction (Figure 7).

Experimental results

Numerical experiments based on one-dimensional
FFTs applied to vectors with power-of-2 lengths
N=232% ... 28=262,144 and non-power-of-2
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v_chsLo(4, B) —_— v_sub(4, C, D)
v_chsLo(D, E) v_chsHi(C, D)
v_add(B, D, E)

General optimization rule. A vector add instruction v_add(B, D, E)—
taking the output of two sign change instructions, one on the lower
part v_chsLo(4, B) and another on the higher part v_chsHi(C, D) of
two different registers as its inputs—is transformed into a vector
subtraction v_sub(4, C, D) and a subsequent vector sign change
v_chsLo(D, F) instruction.

lengths N=9, 12, -- -, 27,000 were carried out using
FFTW combined with the new vectorization and
optimization techniques as they are implemented in
the Vienna MAP vectorizer and optimizer.

In these experiments the new vectorization and
optimization techniques were built into BGL/FFTW-
GEL and evaluated on the Blue Gene/L DD2 prototype
using one single PowerPC 440 FP2 processor running at
700 MHz. The best-performing scalar code generated by
FFTW as well as FFTW code vectorized by the XL C
compiler is used as a performance benchmark.

The floating-point performance displayed in
Figures 8(a) and 8(b) is given in pseudo Gflops, i.e.,

SN log N/T, with N being the vector length and T
the measured runtime in nanoseconds.

Figures 8(a) and 8(b) compare different FFTW library
implementations:

® The best vectorized code obtained using all
technologies presented in this paper (BGL/FFTW-
GEL).

® The best scalar FFTW implementation (with the XL
C vectorizer and FMA extraction facility turned off).

® The best vectorized FFTW implementation obtained
with the activated vectorizer and FMA extraction
facility of the XL C compiler.

J. LORENZ ET AL.
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v_chsHi(4, T1) — v_cfmac(4, (—KI, Kh), B, C)
v_swap(T1, T2)

v_mulC(T2, (KI, Kh), T3)
v_add(73, B, C)

Figure 7

Blue Gene/L specific optimization rule. A vector multiplication
with a constant v_mulC(72, (K/, Kh), T3) taking the output of
v_swap(Tl, 72), i.e., a vector swap instruction, preceded by a
vector sign change v_chsHi(4, 77) is transformed into a vector
cross FMA instruction v_cfmac(4, (—KI/, Kh), B, C) if the contents
of the temporary variables 7/, 72, and 73 are not referenced
anywhere else in the vector DAG.

The impressive performance gain attainable with BGL/
FFTW-GEL over scalar code generated by FFTW is
shown in Figure 9. For power-of-2 FFTs, BGL/FFTW-
GEL yields speedup figures up to 80% with respect to the
best-performing scalar code, i.e., the scalar FFTW library
(which serves as a baseline in the diagram). For large
problem sizes, BGL/FFTW-GEL still yields a speedup of
60%. Thus, the vectorization and optimization methods
of this paper have been demonstrated to effectuate
significant performance improvements. XL C, with its
vectorization and FMA extraction facility turned on,
when applied to FFTW-generated code without taking
advantage of the techniques presented in this paper,
produces vectorized code that runs at the same speed
or slightly slower than scalar XL C code.

Conclusions and outlook

FFTs are indispensable parts of nearly every kind of
scientific computing application. Thus, efficient FFT

J. LORENZ ET AL.
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Performance of one-dimensional complex to complex (a) power-
of-two and (b) non-power-of-two FFTs, each running on a single
PowerPC 440 FP2 node at 700 MHz.

software is needed by Blue Gene/L scientific users.

The performance portable vectorization techniques
introduced in this paper allow timely software
optimization to be done concurrently with IBM hardware
development on Blue Gene/L.

The highly portable Vienna MAP vectorizer can be used
to automatically vectorize numerical straight-line code
generated by state-of-the-art automatic performance-
tuning software, such as FFTW, thereby helping to develop
highly efficient implementations of FFT kernels.

Performance experiments carried out on Blue Gene/L
prototypes show that the newly developed vectorization
approach in combination with state-of-the-art
performance-tuning software is able to speed up
numerical codes considerably. The vectorization
approach of this paper has been demonstrated to produce
high-performance FFT kernels for the Blue Gene/L
supercomputers that fully utilize the new double FPU.

An integral part of our current work is a compiler
back end that will be particularly well-suited for the
compilation of numerical straight-line code.
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