
Custom math
functions for
molecular
dynamics

R. F. Enenkel
B. G. Fitch

R. S. Germain
F. G. Gustavson

A. Martin
M. Mendell
J. W. Pitera

M. C. Pitman
A. Rayshubskiy

F. Suits
W. C. Swope
T. J. C. Ward

While developing the protein folding application for the IBM Blue
Genet/L supercomputer, some frequently executed computational
kernels were encountered. These were significantly more complex
than the linear algebra kernels that are normally provided as tuned
libraries with modern machines. Using regular library functions for
these would have resulted in an application that exploited only
5–10% of the potential floating-point throughput of the machine.
This paper is a tour of the functions encountered; they have been
expressed in Cþþ (and could be expressed in other languages such
as Fortran or C). With the help of a good optimizing compiler,
floating-point efficiency is much closer to 100%. The protein
folding application was initially run by the life science researchers
on IBM POWER3e machines while the computer science
researchers were designing and bringing up the Blue Gene/L
hardware. Some of the work discussed resulted in enhanced
compiler optimizations, which now improve the performance
of floating-point-intensive applications compiled by the IBM
VisualAget series of compilers for POWER3, POWER4e,
POWER4þe, and POWER5e. The implementations are offered
in the hope that they may help in other implementations of
molecular dynamics or in other fields of endeavor, and in the hope
that others may adapt the ideas presented here to deliver additional
mathematical functions at high throughput.

Molecular dynamics

Sequencing the genome has enabled scientists to read the

‘‘words’’ in the building blocks of life. All-atom molecular

dynamics is one of the tools in the grand challenge of

understanding the stories told by those words.

We want to model the time–series behavior of a

covalently bonded structure, such as a protein molecule

that is surrounded by water molecules, as it would be in a

living cell. We usually imagine a single protein molecule

in a cubic box of a few thousand water molecules, and

then imagine that there are identical boxes stacked in

all directions, rather like atomic-scale synchronized

swimming, with the swimmer made up of balls held

together with springs. To understand the behavior of a

single ‘‘spring’’ would require quantum mechanics, but on

the larger scale of wanting to understand the ‘‘swimmer,’’

classical mechanics is sufficient.

Most of the forces to be calculated are the long-range

electrostatic forces between atoms in separate water

molecules, but the interesting behavior is related to the

short-range forces along the springs and between various

three-atom and four-atom bonded groups. This requires

calculation of large quantities of square roots and their

reciprocals (for multiplying and dividing by distances);

error functions (one way of approaching the

electrostatics); angles (between pairs of springs); periodic

images (to work out which swimmer a water molecule is

nearest to); and polynomials (for Lennard–Jones bonded

forces and to softly switch off forces as pairs of atoms

move farther apart and fade to the background).

Custom math functions

Source code for the functions presented here can be found

at [1].

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. F. ENENKEL ET AL.

465

0018-8646/05/$5.00 ª 2005 IBM

Vectorizable1 math functions

The IBM xlc compiler can schedule instructions flexibly

within a basic block, that is, a sequence of code with no

conditional branches and no entry points other than the

first instruction. This paper explains how to exploit this

for functions commonly used in molecular dynamics; if

the compiler can be enabled to see a sufficient number

of independent instructions, it will schedule instructions

to avoid stalls in the floating-point execution pipeline,

and so the hardware will run at a high fraction of

peak throughput. To make good use of the compiler

instruction scheduling facility, the use of branch

instructions should be minimized. This means that special

cases and error handling should be omitted or done in a

way that avoids branches. Therefore, all of these math

functions will return a scalar result, will not set errno2,

and will not signal a NaN (a not-a-number exception

value in IEEE floating-point) in any useful way. Wrapper

code could be placed around the functions to produce

conventional results for out-of-domain cases, for

example, to produce NaN for log(�1), but for molecular

dynamics, we are generally confident that they will not be

asked to process out-of-domain cases, and so the extra

computation involved in obtaining conventional answers

is best skipped.

One way to enhance scheduling opportunities by

exposing independent instructions to the compiler is to

write each independent computation explicitly in the

source code. Another way is to compute the same basic

block repeatedly with different arguments in a counted

loop and verify that the compiler can see that loop

iterations are independent; the compiler then applies loop

transformation optimizations, such as unrolling3 and

modulo scheduling4, to construct the appropriate work

itself. Both techniques aim to reduce stalls5.

Vectorizable log

The function log may be vectorized by appreciating that a

floating-point number is represented as an exponent k

and a mantissa (also called a fraction) m; i.e., as m3 2k,

for some m in [1.0, 2.0) and for integer k,

lnðm3 2
kÞ ¼ lnðmÞ þ lnð2kÞ:

The approximation is produced as three terms, which

are added together to give the result.

The variable k is extracted as the exponent part of the

argument, giving the first term of the result as k3 ln(2).

The variable m is expressed as m03 m1, where m0 is

1þ (a/16) for integer a in (0, 15), and m1 is m/[1þ (a/16)].

The variable a is determined by extracting the first four

bits after the binary point from m.

The expression 1/[1 þ (a/16)] is looked up in a 16-

element table, and this gives a value for m1 roughly

between 1 and [1 þ (1/16)].

The second term of the result is ln(m0), which comes

from another 16-element table.

The third term of the result comes from a Taylor series

for ln(1þ x). This converges quite rapidly for x , (1/16).

The full result then is

lnðaÞ ’ k3 lnð2Þ þ LookupðaÞ þ TaylorSeriesðxÞ:

An improvement comes from a slight modification,

where m1 is arranged to be in the domain [1 � (1/32),

1 þ (1/32)), and so the Taylor series is used for

jxj , (1/32).

Vectorizable exp

The function exp may be vectorized by using the relation

expða0þ a1þ a2þ a3Þ
¼ expða0Þ3 expða1Þ3 expða2Þ3 expða3Þ:

The variable a0 is extracted as the integer part of the

argument; a1 is the next four bits; a2 is the subsequent

four bits; a3 is the remaining bits; a3 is a number between

0 and (1/256).
The variable a0 is shifted into the exponent of the

resulting floating-point number; exp(a1) and exp(a2)

are looked up in 16-element tables; exp(a3) is estimated

by a Taylor series, which converges quite rapidly for

0 , a3 , (1/256).

Again, an improvement comes from a slight

modification, setting a3 in the domain

[�(1/512), þ (1/512)).

IBM PowerPC* and follow-on hardware supports a

floating-point ‘‘select’’ instruction that performs the

equivalent of

double fsel (double a, double b, double c)

f
if (a .=0 . 0) return b ; return c

g

as a single hardware instruction. This can be used to

arrange that exp(x) returns 0 for a sufficiently large

negative argument and Inf 6 for a sufficiently large

positive argument without causing a branch in the

generated code.

1On Blue Gene*/L, if code has dependencies such that a, b, and c must be computed
in that order, with b depending on a and c depending on b, and no other work is
available, the machine will deliver 10% of its theoretical peak performance. Here, the
term vectorizable stands for assorted techniques to get closer to 100%.
2A global variable used to indicate which error has occurred.
3Grouping of multiple loop iterations so that the instructions from multiple iterations
can be worked on in parallel.
4Software pipelining of loops—rearranging them to work on parts of more than one
iteration at a time, the way a button is sewn on a shirt.
5Situations in which an instruction must wait before entering the processor because
the calculations which produce one or more operands have not yet completed.

6A bit pattern representing infinity, or larger than the largest representable value, in
IEEE floating-point.

R. F. ENENKEL ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

466

Vectorizable erf/erfc—piecewise Chebyshev

Traditionally in molecular dynamics codes, erfc(x) has

been approximated using the approximation for erf(x) in

Section 7.1.26 of [2], related by erfc(x)þ erf (x) = 1. The

Abramowitz and Stegun approximation from the

reference is

erfx ¼ 1� ða
1
tþ a

2
t
2 þ a

3
t
3 þ a

4
t
4 þ a

5
t
5Þe�x

2

þ �ðxÞ;

t ¼ 1

1þ px
;

j�ðxÞj � 1:53 10
�7
;

p ¼ 0:32759 11;

a
1
¼ 0:25482 9592;

a
2
¼ �0:28449 6736;

a
3
¼ 1:42141 3741;

a
4
¼ �1:45315 2027;

a
5
¼ 1:06140 5429:

Vectorizable exp(x) can be used to form vectorizable
erfc(x) in the obvious way, but there is an alternative that
can be used to form a more accurate result, which is
desirable in molecular dynamics because it should give
better energy conservation for a given timestep size or,
alternatively, will allow a larger timestep size before
numerical instability sets in.

The reciprocal required above is a special case; for

molecular dynamics codes, the dividend will be in the

single-precision range, and there is no point returning a

result much more accurate than the one part in 105 of the

complete approximation. This leads to a faster expression

of reciprocal than the hardware double-precision divide

will give (more on this below).

For molecular dynamics, we are interested in erfc to

support electrostatics, erfc(x) for a limited domain of x,

typically (�4, 4).
We partition the domain into equal-sized subdomains,

say [�4, �3), [�3, �2), . . , [3, 4). Represent x as x0 þ x1,

where x1 is in [�0.5, 0.5) and x0 is an integer that

identifies the subdomain. Each subdomain is associated

with a polynomial approximator—a set of eight

Chebyshev polynomials works well.

Select the appropriate polynomial by using x0 to index

an array, and erfc(x) follows.

It is relatively easy to set the polynomials up to give

erfc(x) accurate within 1 ulp7 over the whole domain. It is

desirable to use fsel to avoid misleading results in case the

function is used for a value of x outside the designed

domain.

It is possible to exploit the symmetry between erfc(x)

and erfc(�x) to halve the number of tables required.

The required table for Chebyshev coefficients is

machine-generated. The algorithm is shown in [3]. First,

the Chebyshev coefficients for (d/dx) erfc(x) are generated

using the analytic expression ð�2=
ffiffiffi
p

p
Þ exp(�x2). Then the

coefficients for erfc(x) are generated by applying the

appropriate transformation on these.

Vectorizable derivative erfc

Derivative erfc is ð�2=
ffiffiffi
p

p
Þ exp(�x2) and may be

vectorized using vectorizable exp(x).

However, for molecular dynamics, it is desirable

to have derivative erfc and erfc related accurately as

derivative and integral of each other; this results in better

reported energy conservation and better accuracy when

switch or soft force cutoff is in use.

When the Abramowitz and Stegun approximation

for erfc(x) is in use, we can differentiate the expression

analytically. The derivative has an exponential term of

the same form as the original, i.e., exp(�x2), so a single

evaluation of exp(X) will do duty for both functions when

erfc and its derivative are both required in a computation.

When the multiple Chebyshev approach is in use,

another set of Chebyshev polynomials can be used

to deliver derivative erfc. If these are on the same

subdomains, there is a computational economy.

Vectorizable erfc and derivative—piecewise cubic

spline

In molecular dynamics, erfc and its derivative are used

in the evaluation of electrostatic forces. Another

approximation (particle mesh) means that it is not useful

to get erfc(x) more precise than a relative error of about

10�5; the imprecision due to the ‘‘particle mesh’’

approximation dominates.

However, it is important for the values returned for

erfc(x) and its derivative to be continuous and an analytic

integral/derivative pair.

This can be satisfied by approximating (d/dx) erfc(x)

with a set of cubic splines, matching the ð�2=
ffiffiffi
p

p
Þ exp(�x2)

function and its derivative at the piecewise endpoints and

integrating these polynomials to give piecewise-quartic

approximations for erfc(x). A set of 64 piecewise-

cubic polynomials and their integrals, for domains

[0, (1/16)), [(1/16), (2/16)), . . , [(63/16), (64/16)) gives

the ability to approximate erfc(x) and its derivative

to the required precision in the domain [0–4).

Vectorizable sin and cos

It is convenient to use a multiple-Chebyshev-polynomial

approach for this as well. Divide sin(x) into domains

[�45, 45), [45, 135), [135, 225), and [225, 315) degrees and

repeat cyclically.
7Ultimate limit of precision—one double-precision unit in the last place of the IEEE
fraction part.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. F. ENENKEL ET AL.

467

In domains [�45, 45) degrees and [135, 225) degrees,

use a Chebyshev polynomial for [sin(x)/x], and multiply

the result by x. This arranges that the result for small jxj
can be within an ulp without requiring an excessive

number of terms in the polynomial.

In domains [45, 135) and [225, 315), use a Chebyshev

polynomial for cos(x).

The required Chebyshev polynomials are always even

functions, such that f (x) = f (�x). This economizes on the

computation.

After the polynomial evaluation, fix up the result using

a suitable multiply and add, according to the subdomain.

Since cos(x) = sin(x þ 90) with angles in degrees, cos

and sin are related.

The tables are machine-generated offline, using higher-

precision sin and cos functions and the algorithm in [3].

Vectorizable inverse sin and cos

Sometimes an application knows the sin and cos of an

angle and wishes to evaluate the angle. Traditional arcsin

involves an ambiguity as to the angle (as between 80

degrees or 100 degrees, for example), is ill-conditioned in

ranges near 90 and 270 degrees, and usually involves a

conditional branch and a square root.

By expressing it as

double acossin(double cos_angle, double sin_angle)

we can overcome these limitations and produce an

implementation without branches.

We want to compute h such that cosangle = cos h and

sinangle = sin h. Let c = jcosanglej, s = jsinanglej, and
use the fsel instruction to obtain minsc = min(c, s) and

maxsc = max(c, s). Then 0 , minsc , =0.5 and

=0.5 , maxsc , 1, and there is an angle / in [0, 45]

degrees such that minsc = sin / and maxsc = cos /.
Then we use the compound angle formula

sin(a� b) = sin(a) cos(b)� cos(a) sin(b)

for b = 22.5 degrees to form the sine of an angle in

[�22.5, 22.5] degrees, a value approximately in the

domain [�0.38, 0.38].
Next, we use the Taylor expansion for arcsin(x), which

converges quite rapidly over this domain, and we multiply

by and add suitable constants (according to whether the

original parameters were negated and which was smaller)

to evaluate the called-for angle.

Vectorizable reciprocal square root

The natural way to express this is

double a=1.0/sqrt (x) ;

The IBM xlc compiler ‘‘-qnostrict’’ option causes this to

be recognized as an idiom. There is a hardware reciprocal

square root estimate instruction that gives a result

accurate to five bits (POWER3)8 or 13 bits (Blue

Gene/L)9 using lookup tables in the same amount of

time that a multiply–add instruction would take; and

the compiler generates a suitable number of iterations

of Newton’s method, or a suitable Taylor correction

polynomial, to bring the result to double-precision

accuracy. This avoids the division operation, and this

direct ‘‘reciprocal square root’’ evaluation is faster than

‘‘square root’’ would be.

Newton’s iteration is expressed in terms of multiplies

and adds. The ‘‘divide by b’’ that seems to be required is

replaced with ‘‘multiply by estimate of 1/b.’’ The running

estimate of 1/b is steadily improving, so quadratic

convergence is maintained.

Vectorizable square root

The compiler recognizes the use of=x in a source program

double a=sqrt (x)

and rather than calling a function, it generates the fsqrt

hardware instruction on the POWER3 processor. Blue

Gene/L (BG/L) lacks this instruction, so the compiler,

in effect, changes the computation to x/=x, which it

implements with the help of the floating reciprocal square

root estimate instruction. However, x/=x on its own will

give ‘‘not-a-number’’ for x = 0; the compiler generates

additional code to handle this case correctly, but it is

computationally expensive.

If the source program is not dependent on the result

for x = 0, it will run better on both POWER3 and

BG/L if coded as

double a=x/sqrt (x) .

Vectorizable nearest_image_in_periodic_volume

Molecular dynamics is frequently run with periodic

boundary conditions, i.e., where we imagine that the

simulation volume is surrounded by a never-ending

sequence of matching simulation volumes and the

interaction force between a pair of atoms is calculated

as if one of the atoms is influenced by only by the nearest

of the 27 images of the other atom.

To find the nearest image vector between a pair of

atoms, one algorithm would remap the simulation volume

to a unit cube and scale the vector appropriately, drop the

integer part of the x, y, and z coordinates of the vector

(each of which would be �1, 0, or þ1), and subtract

0:5
0:5
0:5

8<
:

9=
;;

giving a vector in

8Using a stepwise lookup.
9Using a piecewise-linear lookup, stepwise for ‘‘offset’’ and ‘‘slope,’’ then passing
through the multiply–add unit, which would otherwise be idle. It is better precision
with the same transistor count.

R. F. ENENKEL ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

468

60:5
60:5
60:5

8<
:

9=
;;

and rescale back to the original coordinate system.

This appears to require divisions, tests, and conditional

branches, but can actually be calculated without requiring

any of these.

Vectorizable nearest_integer

Vectorizable nearest_integer relies on the IEEE floating-

point representation. Double precision takes 64 bits. The

top bit is a sign bit, the next 11 bits are a binary exponent,

and the remaining 52 bits are a binary mantissa, with

an implied leading 1.

IEEE addition, with the hardware in its usual mode, is

specified to round to the nearest representable number.

Thus, if one takes a double-precision floating-point

number and adds (252 þ 251), the fractional part is

dropped. One can then subtract the (252 þ 251)

and obtain the integer nearest to the number

used to start.

There is a range around 252 in which one obtains the

nearest even integer, so this is not applicable in all cases,

but is acceptable for molecular dynamics.

The compiler is being asked to generate code for

(xþ k)� k. It is important to prevent the optimizer from

reassociating this to xþ (k� k) and then optimizing this

to x þ 0, that is, x.

The sample code does this by expressing (xþ k3 k1)3

k1� k, where k1 is 1.0, but the compiler is unable to tell

that k1 is a constant. Since the basic floating-point

instruction in the IBM Power Architecture* is multiply–

add, this does not cause any extra processing cycles.

Vectorizable fragment_in_range

Molecular dynamics is generally concerned with forces

between atoms in an imagined simulation box with

periodic boundary conditions. Computation of the force

between a pair of atoms is skipped if the atoms are more

than a threshold distance apart.

For computational convenience, the atoms are grouped

into fragments, typically a water molecule or a covalently

bonded set of atoms within a larger molecule. The

question arises, ‘‘Given fragment a, what is the set

of fragments fb0, b1, . . .g such that an atom in a is in

range of an atom in each bi, accounting for the periodic

boundary?’’ The simulation will be functionally correct

if extra fragments b are in the set, because the forces

involved will evaluate to zero, but the simulation is more

efficient with fewer extra fragments.

There is an algorithm for this that makes 100% use of

the floating-point units (FPUs), successively slicing for

slab, cylinder, and sphere.

There is another algorithm that does not use the FPUs;

instead, it uses the integer units with wrap at 232,

successively slicing for slab, square prism, and cube. It

then uses the FPUs to slice for sphere. On POWER3 and

BG/L, the integer algorithm is faster. Either algorithm is

sufficiently fast that our implementation of the molecular

dynamics code does not have to maintain lists of

fragments (known as Verlet lists) that may be within a

‘‘cut-off ’’ distance.

These algorithms show how to do ‘‘vector compress,’’

i.e., produce a vector that is a subset of a starting vector,

including only those elements matching a selection

criterion, without requiring a conditional branch.

A practical example—reciprocal square roots
The reciprocal square root function evaluates the

reciprocal square root for each of nine values, as would

be needed to support the calculation of distances between

atoms in a pair of three-site10 water molecules.

Figure 1 shows source code and the compiler-generated

assembly listing for the BG/L machine architecture.

Compiler intermediate code with cycle counts and

corresponding listings for POWER3 can be found at [1].

Values are copied into local variables to make it clear

to the compiler what is intended if the function is called

with source and target overlapping in memory.

POWER3 requires a vector of length at least 6 to keep

the FPUs fully busy on this algorithm. BG/L requires a

vector of length 10. In each case, the compiler finds

an optimal instruction sequence; 100% floating-point

utilization for POWER3 and 90% utilization (four

‘‘parallel’’ ops, then a ‘‘primary’’ op) for BG/L.

The ‘‘reciprocal square root estimate’’ instruction of

POWER3 gives five bits of precision; that of BG/L gives

13 bits of precision. BG/L requires fewer follow-on

instructions to converge the estimate to double precision.

POWER3 uses a Newton–Raphson algorithm for

convergence; BG/L uses a Taylor expansion.

The theoretical peak rate for each 440 processor core in

the BG/L hardware is ten double-precision square roots

per 40 clock cycles. By enclosing similar code in a ‘‘for’’

loop, it is possible to get the VisualAge* compiler to

generate code that achieves within a few cycles of this

rate.

Examining the machine code reveals that when a

floating-point value is calculated, there are at least four

other floating-point instructions between the calculation

and the first use of the result. This keeps the floating-

point pipeline full, allowing the FPU to operate at

maximum throughput.

10A three-site water molecule is a model with electrostatic charges centered on the
three atom locations. A five-site model has fractional electron charges at two other
locations. Models run this way often match experiment more closely, and always take
more computation for a simulation timestep.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. F. ENENKEL ET AL.

469

IBM VisualAge* C++ Version 6.0.0.3 for Linux** on pSeries* ---
> > > > > OPTIONS SECTION < < < < <
IGNERRNO ARCH=440D OPT=3 ALIAS=ANSI ALIGN=LINUXPPC
FLOAT=NOHSFLT:NORNDSNGL:NOHSSNGL:MAF:NORRM:FOLD:NONANS:RSQRT:FLTINT:NOEMULATE
MAXMEM=-1 NOSTRICT NOSTRICT_INDUCTION TBTABLE=SMALL LIST
SHOWINC=NOSYS:NOUSR SOURCE STATICINLINE TMPLPARSE=NO
NOEH
> > > > > SOURCE SECTION < < < < <

 1 | #include <math.h>
 2 | void nineroot(double* f, const double* x)
 3 | {
 4 | double x0 = x[0] ;
 5 | double x1 = x[1] ;
 6 | double x2 = x[2] ;
 7 | double x3 = x[3] ;
 8 | double x4 = x[4] ;
 9 | double x5 = x[5] ;
10 | double x6 = x[6] ;
11 | double x7 = x[7] ;
12 | double x8 = x[8] ;
13 | double r0 = 1.0/sqrt(x0) ;
14 | double r1 = 1.0/sqrt(x1) ;
15 | double r2 = 1.0/sqrt(x2) ;
16 | double r3 = 1.0/sqrt(x3) ;
17 | double r4 = 1.0/sqrt(x4) ;
18 | double r5 = 1.0/sqrt(x5) ;
19 | double r6 = 1.0/sqrt(x6) ;
20 | double r7 = 1.0/sqrt(x7) ;
21 | double r8 = 1.0/sqrt(x8) ;
22 | f[0] = r0 ;
23 | f[1] = r1 ;
24 | f[2] = r2 ;
25 | f[3] = r3 ;
26 | f[4] = r4 ;
27 | f[5] = r5 ;
28 | f[6] = r6 ;
29 | f[7] = r7 ;
30 | f[8] = r8 ;
31 | }

-qdebug=BGL:PLST3:CYCLES:SHUTUP:HUMMER:LINUX:NEWSCHED1:NEWSCHED2:REGPRES:ADRA:ANTIDEP:
GPR’s set/used: ssuu ssss s--- s--- ---- ---- ---- ----
FPR’s set/used: ssss ssss ssss ss-- ---- ---- ---s ssss
 ssss ssss ssss ss-- ---- ---- ---s s-s-
CCR’s set/used: ---- ----
 | 000000 PDEF nineroot(double *, const double *)
 3| PROC f,x,gr3,gr4
 0| 000000 ori 602C0000 1 LR gr12=gr1
 0| 000004 addi 3800FFF0 1 LI gr0=-16
 0| 000008 stwu 9421FFA0 1 ST4U gr1,#stack(gr1,-96)=gr1
 0| 00000C stfpdux 7FEC07DC 1 SFPLU gr12,#stack(gr12,gr0,0)=fp31,fp63
 0| 000010 stfpdux 7FCC07DC 1 SFPLU gr12,#stack(gr12,gr0,0)=fp30,fp62
 0| 000014 stfpdux 7FAC07DC 1 SFPLU gr12,#stack(gr12,gr0,0)=fp29,fp61
 0| 000018 stfpdux 7F8C07DC 1 SFPLU gr12,#stack(gr12,gr0,0)=fp28,fp60
 0| 00001C stfpdux 7F6C07DC 1 SFPLU gr12,#stack(gr12,gr0,0)=fp27,fp59
 4| 000020 lfd C9A40000 1 LFL fp13=(double)(gr4,0)
 5| 000024 addi 38C00008 1 LI gr6=8
 7| 000028 addi 38A00018 1 LI gr5=24
 5| 00002C lfsdx 7DA4319C 1 LFL fp45=(double)(gr4,gr6,0,trap=8)
 9| 000030 addi 39000028 1 LI gr8=40
11| 000034 addi 38C00038 1 LI gr6=56
13| 000038 addis 3CE00000 1 LA gr7=.+CONSTANT_AREA%HI(gr2,0)
 6| 00003C lfd C9640010 1 LFL fp11=(double)(gr4,16)
13| 000040 addi 38E70000 1 LA gr7=+CONSTANT_AREA%LO(gr7,0)
 7| 000044 lfsdx 7D64299C 1 LFL fp43=(double)(gr4,gr5,0,trap=24)
 8| 000048 lfd C9440020 1 LFL fp10=(double)(gr4,32)
13| 00004C fprsqrte 0120681E 1 FPRSQRE fp9,fp41=fp13,fp45
 9| 000050 lfsdx 7D44419C 1 LFL fp42=(double)(gr4,gr8,0,trap=40)
31| 000054 ori 602C0000 1 LR gr12=gr1
10| 000058 lfd C9040030 1 LFL fp8=(double)(gr4,48)
31| 00005C addi 38000010 1 LI gr0=16
11| 000060 lfsdx 7D04319C 1 LFL fp40=(double)(gr4,gr6,0,trap=56)
15| 000064 fprsqrte 00E0581E 1 FPRSQRE fp7,fp39=fp11,fp43

R. F. ENENKEL ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

470

Figure 1

Code tuned for Blue Gene/L.

13| 000068 addi 38C00020 1 LI gr6=32
12| 00006C lfd CBE40040 1 LFL fp31=(double)(gr4,64)
13| 000070 lfpsx 7F672B1C 1 LFPS fp27,fp59=+CONSTANT_AREA(gr7,gr5,0,trap=24)
13| 000074 fpmul 01890250 1 FPMUL fp12,fp44=fp9,fp41,fp9,fp41,fcr
17| 000078 fprsqrte 00C0501E 1 FPRSQRE fp6,fp38=fp10,fp42
13| 00007C lfs C3C70004 1 LFS fp30=+CONSTANT_AREA(gr7,4)
19| 000080 fprsqrte 0080401E 1 FPRSQRE fp4,fp36=fp8,fp40
13| 000084 lfpsx 7CA7331C 1 LFPS fp5,fp37=+CONSTANT_AREA(gr7,gr6,0,trap=32)
21| 000088 frsqrte FFA0F834 1 FRSQRE fp29=fp31
13| 00008C lfpsx 7C67431C 1 LFPS fp3,fp35=+CONSTANT_AREA(gr7,gr8,0,trap=40)
13| 000090 addi 38800030 1 LI gr4=48
15| 000094 fpmul 002701D0 1 FPMUL fp1,fp33=fp7,fp39,fp7,fp39,fcr
13| 000098 lfpsx 7C47231C 1 LFPS fp2,fp34=+CONSTANT_AREA(gr7,gr4,0,trap=48)
13| 00009C fpmadd 01ADDB20 1 FPMADD fp13,fp45=fp27,fp59,fp13,fp45,fp12,fp44,fcr
17| 0000A0 fpmul 00060190 1 FPMUL fp0,fp32=fp6,fp38,fp6,fp38,fcr
23| 0000A4 addi 38C00008 1 LI gr6=8
19| 0000A8 fpmul 01840110 1 FPMUL fp12,fp44=fp4,fp36,fp4,fp36,fcr
21| 0000AC fmul FF9D0772 1 MFL fp28=fp29,fp29,fcr
15| 0000B0 fpmadd 002BD860 1 FPMADD fp1,fp33=fp27,fp59,fp11,fp43,fp1,fp33,fcr
17| 0000B4 fpmadd 014AD820 1 FPMADD fp10,fp42=fp27,fp59,fp10,fp42,fp0,fp32,fcr
19| 0000B8 fpmadd 0108DB20 1 FPMADD fp8,fp40=fp27,fp59,fp8,fp40,fp12,fp44,fcr
21| 0000BC fmadd FFFFDF3A 1 FMA fp31=fp27,fp31,fp28,fcr
13| 0000C0 fxcpmadd 001E2B64 1 FXPMADD fp0,fp32=fp5,fp37,fp13,fp45,fp30,fp30,fcr
15| 0000C4 fxcpmadd 019E2864 1 FXPMADD fp12,fp44=fp5,fp37,fp1,fp33,fp30,fp30,fcr
31| 0000C8 lfpdux 7F6C03DC 1 LFPLU fp27,fp59,gr12=#stack(gr12,gr0,0)
17| 0000CC fxcpmadd 017E2AA4 1 FXPMADD fp11,fp43=fp5,fp37,fp10,fp42,fp30,fp30,fcr
19| 0000D0 fxcpmadd 039E2A24 1 FXPMADD fp28,fp60=fp5,fp37,fp8,fp40,fp30,fp30,fcr
21| 0000D4 fmadd FCBF2FBA 1 FMA fp5=fp5,fp31,fp30,fcr
13| 0000D8 fpmadd 000D1820 1 FPMADD fp0,fp32=fp3,fp35,fp13,fp45,fp0,fp32,fcr
15| 0000DC fpmadd 01811B20 1 FPMADD fp12,fp44=fp3,fp35,fp1,fp33,fp12,fp44,fcr
17| 0000E0 fpmadd 016A1AE0 1 FPMADD fp11,fp43=fp3,fp35,fp10,fp42,fp11,fp43,fcr
19| 0000E4 fpmadd 03C81F20 1 FPMADD fp30,fp62=fp3,fp35,fp8,fp40,fp28,fp60,fcr
21| 0000E8 fmadd FCBF197A 1 FMA fp5=fp3,fp31,fp5,fcr
13| 0000EC fpmadd 000D1020 1 FPMADD fp0,fp32=fp2,fp34,fp13,fp45,fp0,fp32,fcr
31| 0000F0 lfpdux 7F8C03DC 1 LFPLU fp28,fp60,gr12=#stack(gr12,gr0,0)
15| 0000F4 fpmadd 00611320 1 FPMADD fp3,fp35=fp2,fp34,fp1,fp33,fp12,fp44,fcr
17| 0000F8 fpmadd 016A12E0 1 FPMADD fp11,fp43=fp2,fp34,fp10,fp42,fp11,fp43,fcr
19| 0000FC fpmadd 018817A0 1 FPMADD fp12,fp44=fp2,fp34,fp8,fp40,fp30,fp62,fcr
21| 000100 fmadd FCBF117A 1 FMA fp5=fp2,fp31,fp5,fcr
13| 000104 fpmul 000D0010 1 FPMUL fp0,fp32=fp13,fp45,fp0,fp32,fcr
15| 000108 fpmul 002100D0 1 FPMUL fp1,fp33=fp1,fp33,fp3,fp35,fcr
17| 00010C fpmul 004A02D0 1 FPMUL fp2,fp34=fp10,fp42,fp11,fp43,fcr
19| 000110 fpmul 00680310 1 FPMUL fp3,fp35=fp8,fp40,fp12,fp44,fcr
21| 000114 fmul FCBF0172 1 MFL fp5=fp31,fp5,fcr
13| 000118 fpmadd 00094820 1 FPMADD fp0,fp32=fp9,fp41,fp9,fp41,fp0,fp32,fcr
15| 00011C fpmadd 00273860 1 FPMADD fp1,fp33=fp7,fp39,fp7,fp39,fp1,fp33,fcr
17| 000120 fpmadd 004630A0 1 FPMADD fp2,fp34=fp6,fp38,fp6,fp38,fp2,fp34,fcr
19| 000124 fpmadd 006420E0 1 FPMADD fp3,fp35=fp4,fp36,fp4,fp36,fp3,fp35,fcr
21| 000128 fmadd FC9DE97A 1 FMA fp4=fp29,fp29,fp5,fcr
22| 00012C stfd D8030000 1 STFL (double)(gr3,0)=fp0
23| 000130 stfsdx 7C03359C 1 STFL (double)(gr3,gr6,0,trap=8)=fp32
29| 000134 addi 38C00038 1 LI gr6=56
31| 000138 lfpdux 7FAC03DC 1 LFPLU fp29,fp61,gr12=#stack(gr12,gr0,0)
24| 00013C stfd D8230010 1 STFL (double)(gr3,16)=fp1
25| 000140 stfsdx 7C232D9C 1 STFL (double)(gr3,gr5,0,trap=24)=fp33
31| 000144 lfpdux 7FCC03DC 1 LFPLU fp30,fp62,gr12=#stack(gr12,gr0,0)
26| 000148 stfd D8430020 1 STFL (double)(gr3,32)=fp2
27| 00014C stfsdx 7C43459C 1 STFL (double)(gr3,gr8,0,trap=40)=fp34
31| 000150 lfpdux 7FEC03DC 1 LFPLU fp31,fp63,gr12=#stack(gr12,gr0,0)
28| 000154 stfd D8630030 1 STFL (double)(gr3,48)=fp3
31| 000158 addi 38210060 1 AI gr1=gr1,96,gr12
29| 00015C stfsdx 7C63359C 1 STFL (double)(gr3,gr6,0,trap=56)=fp35
30| 000160 stfd D8830040 1 STFL (double)(gr3,64)=fp4
31| 000164 bclr 4E800020 0 BA lr
 | Instruction count 90
 | Constant Area
 | 000000 BF800000 3E8C0000 BEA00000 3EC00000 BF000000 49424D20
 | 000018 BF800000 BF800000 BEA00000 BEA00000 3EC00000 3EC00000
 | 000030 BF000000 BF000000

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. F. ENENKEL ET AL.

471

Each 440 processor core in BG/L can dispatch two

instructions per clock cycle. Each has one floating-point

instruction pipeline, one load/store pipeline, two integer

pipelines, and one branch pipeline. The 440 does not

have ‘‘out-of-order’’ processing capability or ‘‘rename’’

registers; both of these cost transistors and electrical

energy, which the BG/L design puts to better use

elsewhere. Therefore, we are dependent for good

performance on the ability of the compiler to schedule

instructions and allocate registers in the optimal patterns

for the real hardware. The compiler effort to exploit the

two-instructions-per-cycle capability can be seen in the

assembly fragment shown in the figure.

IBM Power Architecture defines 32 double-precision

floating-point registers. Floating-point operations, in

general, work on three operand registers and a result

register. For example, ‘‘floating-point multiply–add’’

might evaluate f1 = f2þ (f33 f4) in a single pass through

the FPU. The Blue Gene/L chip has an additional 32

double-precision floating-point registers, an additional

FPU, and extensions to the instruction decoder to

implement ‘‘parallel’’ versions of these, such as

f
1
¼ f

2
þ ðf

3
3 f

4
Þ; s

1
¼ s

2
þ ðs

3
3 s

4
Þ

and various ‘‘cross’’ versions, such as

f
1
¼ f

2
þ ðf

3
3 f

4
Þ; s

1
¼ s

2
þ ðs

3
3 f

4
Þ

or

f
1
¼ f

2
þ ðf

3
3 s

4
Þ; s

1
¼ s

2
þ ðs

3
3 f

4
Þ;

and an ‘‘antisymmetric’’ version,

f
1
¼ f

2
þ ðf

3
3 f

4
Þ; s

1
¼ s

2
� ðs

3
3 s

4
Þ:

Several of these can be seen in the assembly fragment

shown in Figure 1.

Conclusion
When we started designing the protein folding

application, we imagined that we would be unable to

fully exploit the floating-point capacity of a modern

uniprocessor because of the sequential nature of the

scalar library functions, which we expected would limit

the performance of the application. This would limit

the fraction of peak flops that we would achieve on

the massively parallel machine we had in mind.

Working with the life scientists on the actual

requirements of the application and with the compiler

programmers on optimization capabilities has resulted

in techniques for evaluating the required functions and

presenting the machine with sufficient independent work

that we, in fact, achieved a high fraction of peak flops on

a uniprocessor. This is expressible as source code in a

high-level language, such as Cþþ; it has not been
necessary to hand-code anything in assembler.

Knowing that we can well exploit a uniprocessor, we

are motivated to use the machine efficiently as we take the

next steps to scale up to the 40,960 processors that will

be available to us in our contribution to the ‘‘grand

challenge’’ of understanding the Protein Economy.11

Blue Gene/L can do more than just lead the world at

linear algebra. It takes some thought, but the results are

worth the effort.

Acknowledgments
The Blue Gene/L project has been supported and

partially funded by the Lawrence Livermore National

Laboratory on behalf of the United States Department of

Energy under Lawrence Livermore National Laboratory

Subcontract No. B517552.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Linus Torvalds in the
United States, other countries, or both.

References
1.

index.html.
2. Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables, M. Abramowitz and I. A. Stegun,
Eds., U.S. Department of Commerce, Washington, DC, 1972.

3. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C: The Art of Scientific
Computing, Cambridge University Press, New York, 1992.

Received May 5, 2004; accepted for publication
August 17,

11Proteomics: the Protein Economy. Deoxyribonucleic acid (DNA) stores informa-
tion. We know; we have sequenced it. Ribonucleic acid (RNA) copies information. We
know; we can make it happen in the laboratory. Ribosome (a protein) reads the RNA
and assembles a protein out of amino acids according to the recipe it has read. We
know; every living thing on earth works in much the same way. The protein folds into
its equilibrium structure, more or less, quickly or slowly. We’re curious about this.
Function follows form, and all the diversity of life happens.

R. F. ENENKEL ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

472

2004; Internet publication April 12, 2005

See http://www.research.ibm.com/bluegene/jrd_2005/cust_math/

Robert F. Enenkel IBM Software Group, Toronto Laboratory,
8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7
(enenkel@ca.ibm.com). Dr. Enenkel currently works in the
Optimizing Compiler Group at the IBM Toronto Laboratory;
he was previously a Research Associate at the IBM Centre for
Advanced Studies (CAS). He worked at IBM on the development
of a C compiler and its math library, and developed parallel
methods for random-number generation for Fortran and high-
performance Fortran compilers prior to joining the CAS. He
received his B.S., M.S., and Ph.D. degrees from the University
of Toronto, with thesis work in the area of numerical methods
for the parallel solution of initial value problems for ordinary
differential equations. He currently performs research and
development in numerical computing as it relates to compilers
and operating systems, including floating-point arithmetic,
mathematical function libraries, and the performance tuning
of algorithms. He is also interested in parallel computing and
the application of numerical methods to practical problems in
various areas of science. He has received two IBM Invention
Achievement Awards and several IBM Author Recognition
Awards. Dr. Enenkel is a member of the Society for Industrial
and Applied Mathematics. More information may be found on
his Web page at https://www-927.ibm.com/ibm/cas/toronto/people/
members/renekel.shtml.

Blake G. Fitch IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bgf@us.ibm.com). Mr. Fitch joined the IBM Thomas J.
Watson Research Center in 1985 as a student. He received his B.S.
degree in computer science from Antioch College in 1987 and
remained at IBM to pursue interests in parallel systems. He joined
the Scalable Parallel Systems Group in 1990, contributing to
research and development that culminated in the IBM scalable
parallel system (SP*) product. His research interests have focused
on application frameworks and programming models suitable for
production parallel computing environments. Practical application
of this work includes contributions to the transputer-based control
system for the IBM CMOS S/390* mainframes (IBM Boeblingen,
Germany, 1994) and the architecture of the IBM Automatic
Fingerprint Identification System parallel application (IBM
Hursley, UK, 1996). Mr. Fitch joined the Blue Gene project in
1999 as the application architect for Blue Matter, a scalable
molecular dynamics package.

Robert S. Germain IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (rgermain@us.ibm.com). Dr. Germain
manages the Biomolecular Dynamics and Scalable Modeling
Group within the Computational Biology Center at the IBM
Thomas J. Watson Research Center. He received his A.B.
degree in physics from Princeton University in 1982 and
his M.S. and Ph.D. degrees in physics from Cornell University.
He joined the Thomas J. Watson Research Center as a Research
Staff Member in the Physical Sciences Department after receiving
his doctorate in 1989, and later the VLSI/Scalable Parallel
Systems Packaging Department. Dr. Germain was project
leader, from 1995 to 1998, for the development of a large-
scale fingerprint identification system using an indexing scheme
(FLASH) developed at IBM Research. He has been responsible
for the science and associated application portions of the Blue
Gene project since 2000. His current research interests include the
parallel implementation of algorithms for high-performance
scientific computing, the development of new programming
models for parallel computing, and applications of high-
performance computing to challenging scientific problems in
computational biology. Dr. Germain is a member of the IEEE
and the American Physical Society.

Fred G. Gustavson IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (gustav@us.ibm.com). Dr. Gustavson leads the
Algorithms and Architectures project in the Mathematical Sciences
Department at the IBM Thomas J. Watson Research Center. He
received his B.S. degree in physics, and his M.S. and Ph.D. degrees
in applied mathematics, all from Rensselaer Polytechnic Institute.
He joined IBM Research in 1963. One of his primary interests
has been in developing theory and programming techniques
for exploiting the sparseness inherent in large systems of linear
equations. Dr. Gustavson has worked in the areas of nonlinear
differential equations, linear algebra, symbolic computation,
computer-aided design of networks, design and analysis of
algorithms, and programming applications. He and his group
are currently engaged in activities that are aimed at exploiting
the novel features of the IBM family of RISC processors.
These include hardware design for divide and square root, new
algorithms for the IBM Power Family* of processors for the
Engineering and Scientific Subroutine Library (ESSL) and for
other math kernels, and parallel algorithms for distributed and
shared memory processors. Dr. Gustavson has received an
IBM Outstanding Contribution Award, an IBM Outstanding
Innovation Award, an IBM Invention Achievement Award, two
IBM Corporate Technical Recognition Awards, and a Research
Division Technical Group Award. He is a Fellow of the IEEE.

Allan Martin IBM Software Group, Toronto Laboratory,
8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7
(armartin@ca.ibm.com). Mr. Martin graduated from the
University of Toronto with a B.S. degree in engineering science
in 1999. He has worked in compiler back-end development since
1999, and has expertise in the area of modulo scheduling and other
loop optimizations. He has implemented and continues to develop
a version of swing modulo scheduling in the compiler that includes
a number of algorithm enhancements that help to achieve near-
optimal performance.

Mark Mendell IBM Software Group, Toronto Laboratory,
8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7
(mendell@ca.ibm.com) Mr. Mendell graduated from Cornell
University in 1980 with a B.S. degree in computer engineering.
He received hisM.S. degree in computer science from the University
of Toronto in 1983. At the University of Toronto, he helped to
develop the Concurrent Euclid, Turing, and Turing Plus compilers
and worked on the Tunis operating system project. In 1991 he
joined IBM, working initially on the AIX* Cþþ compiler from
V1.0 to V5.0. He has been the team leader for the TOBEY
Optimizer Group since 2000. Mr. Mendell implemented the
automatic compiler support of the dual FPU for the BG/L project.

Jed W. Pitera IBM Research Division, Almaden
Research Center, 650 Harry Road, San Jose, California 95120
(pitera@us.ibm.com). Dr. Pitera is a Research Staff Member in
the Science and Technology Department at the IBM Almaden
Research Center. His research focuses on the use of computer
simulation to address questions in biology and chemistry,
particularly in the areas of protein folding, molecular recognition,
and self-assembly. He received undergraduate training in biology
and chemistry at the California Institute of Technology, where
he worked in Dr. Pamela Bjorkman’s Protein Crystallography
Group. He subsequently pursued graduate studies in biophysics
at the University of California at San Francisco (UCSF) in the
laboratory of Dr. Peter Kollman. Dr. Pitera developed an interest
in the use of biomolecular simulation and free-energy calculations
in the rational design of proteins and pharmaceuticals while in
Dr. Kollman’s group. He pursued similar work in a postdoctoral

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. F. ENENKEL ET AL.

473

position with Prof. Dr. Wilfred van Gunsteren at the Swiss Federal
Institute of Technology Zurich (ETH), where his research focused
on novel methods of calculating free energies for ligand design. He
has worked as a member of the IBM Blue Gene Project Science and
Application team since February of 2001. Dr. Pitera is also an
adjunct assistant professor in the UCSF Department of
Pharmaceutical Chemistry.

Michael C. Pitman IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(pitman@watson.ibm.com). Dr. Pitman received his Ph.D. degree
in chemistry in 1995 from the University of California at Santa
Cruz. He joined the Biomolecular Dynamics and Scalable
Modeling Group within the Computational Biology Center at
the IBM Thomas J. Watson Research Center soon afterward and
continued work in the area of computational drug design methods.
He began a leading role in the Blue Gene Protein Science program
in 2001, focusing on large-scale membrane and membrane protein
simulation. His research interests are focused on understanding the
nature of protein–membrane interactions. Dr. Pitman conducts
large-scale all-atom simulations of membrane proteins in explicit,
biologically relevant environments.

Aleksandr Rayshubskiy IBM Research Division, Thomas
J. Watson Research Center, Yorktown Heights, New York 10598
(arayshu@us.ibm.com). Mr. Rayshubskiy received an M.E. degree
in computer science from Cornell University in 2002. He worked in
the Biomolecular Dynamics and Scalable Modeling Group within
the Computational Biology Center at the IBM Thomas J. Watson
Research Center in 2000 as an intern, joining the group as a full-
time software engineer in 2003. Mr. Rayshubskiy worked primarily
on the development of the Blue Matter molecular dynamics
package. His current research interests include parallel
applications, load balancing, performance tuning, and lower-
level hardware interfaces to the application.

Frank Suits IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (suits@us.ibm.com). Dr. Suits is a member of the
Biomolecular Dynamics and Scalable Modeling Group within the
Computational Biology Center at the IBM Thomas J. Watson
Research Center. This group is responsible for the software and
science involved in the protein simulations that are integral to the
Blue Gene project. Although his degree is in optical physics, he has
worked on a wide variety of projects at the IBM Thomas J. Watson
Research Center, including optical storage, magnetic storage
materials, scientific visualization, and queuing systems. At present,
Dr. Suits is focusing on the analysis of the protein and membrane
simulations currently running on BG/L.

William C. Swope IBM Research Division, Almaden
Research Center, 650 Harry Road, San Jose, California 95120
(swope@almaden.ibm.com). Dr. Swope has been engaged with the
IBM Blue Gene Protein Science Project since 2000, with strong
emphasis on biomolecular simulation methodology and the
development of practical techniques to simulate protein folding
kinetics and thermodynamics. He joined the Science and
Technology Department in 1992 at the IBM Almaden Research
Center, where he has also been involved in scientific software
development for computational chemistry applications and in
technical data management issues related to life sciences. He began
with IBM in 1982 at IBM Instruments, Inc., an IBM subsidiary
that developed scientific instrumentation, where he worked in an
advanced processor design group. He also worked for six years

at the IBM Scientific Center in Palo Alto, California, where he
supported scientific customers of IBM in their development of
software for numerically intensive computation. He received his
undergraduate degree in chemistry and physics from Harvard
University and his Ph.D. degree in quantum chemistry from
the University of California at Berkeley. He then performed
postdoctoral research on the statistical mechanics of solvation
and condensed phases in the chemistry department at Stanford
University. Dr. Swope maintains a number of scientific
relationships and collaborations with academic and commercial
scientists involved in the life sciences, specifically related to drug
development.

T. J. Christopher Ward IBM United Kingdom Limited,
Hursley House, Hursley Park, Winchester, Hants SO21 2JN,
England (tjcw@uk.ibm.com). Mr. Ward graduated from
Cambridge University in 1982 with a first-class honors degree in
electrical engineering. He has worked for IBM in various hardware
and software development roles, always finding ways of improving
performance of products and processes. He was a member of
the IBM Computational Biology Center at the IBM Thomas J.
Watson Research Center from 2001 to 2004, arranging for the Blue
Gene/L hardware and compilers and the Blue Matter protein
folding application to work effectively together and achieve the
performance entitlement. Mr. Ward currently works for IBM
Hursley as part of the IBM Center for Business Optimization,
enabling customers of IBM to take advantage of the opportunities
afforded by the rapidly decreasing cost of supercomputing services.

R. F. ENENKEL ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

474

