Custom math
functions for
molecular
dynamics

While developing the protein folding application for the IBM Blue
Gene®/L supercomputer, some frequently executed computational
kernels were encountered. These were significantly more complex
than the linear algebra kernels that are normally provided as tuned
libraries with modern machines. Using regular library functions for
these would have resulted in an application that exploited only
5-10% of the potential floating-point throughput of the machine.
This paper is a tour of the functions encountered, they have been
expressed in C++ (and could be expressed in other languages such
as Fortran or C). With the help of a good optimizing compiler,
floating-point efficiency is much closer to 100%. The protein
folding application was initially run by the life science researchers
on IBM POWER3™ machines while the computer science
researchers were designing and bringing up the Blue Gene/L
hardware. Some of the work discussed resulted in enhanced
compiler optimizations, which now improve the performance

of floating-point-intensive applications compiled by the IBM
VisualAge® series of compilers for POWER3, POWER4™,
POWER4+™, and POWERS™. The implementations are offered
in the hope that they may help in other implementations of
molecular dynamics or in other fields of endeavor, and in the hope
that others may adapt the ideas presented here to deliver additional
mathematical functions at high throughput.
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Molecular dynamics

Sequencing the genome has enabled scientists to read the
“words” in the building blocks of life. All-atom molecular
dynamics is one of the tools in the grand challenge of
understanding the stories told by those words.

We want to model the time—series behavior of a
covalently bonded structure, such as a protein molecule
that is surrounded by water molecules, as it would be in a
living cell. We usually imagine a single protein molecule
in a cubic box of a few thousand water molecules, and
then imagine that there are identical boxes stacked in
all directions, rather like atomic-scale synchronized
swimming, with the swimmer made up of balls held
together with springs. To understand the behavior of a
single “spring” would require quantum mechanics, but on
the larger scale of wanting to understand the “swimmer,”
classical mechanics is sufficient.

Most of the forces to be calculated are the long-range
electrostatic forces between atoms in separate water
molecules, but the interesting behavior is related to the
short-range forces along the springs and between various
three-atom and four-atom bonded groups. This requires
calculation of large quantities of square roots and their
reciprocals (for multiplying and dividing by distances);
error functions (one way of approaching the
electrostatics); angles (between pairs of springs); periodic
images (to work out which swimmer a water molecule is
nearest to); and polynomials (for Lennard—Jones bonded
forces and to softly switch off forces as pairs of atoms
move farther apart and fade to the background).

Custom math functions

Source code for the functions presented here can be found
at [1].
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Vectorizable' math functions

The IBM xIc compiler can schedule instructions flexibly
within a basic block, that is, a sequence of code with no
conditional branches and no entry points other than the
first instruction. This paper explains how to exploit this
for functions commonly used in molecular dynamics; if
the compiler can be enabled to see a sufficient number
of independent instructions, it will schedule instructions
to avoid stalls in the floating-point execution pipeline,
and so the hardware will run at a high fraction of

peak throughput. To make good use of the compiler
instruction scheduling facility, the use of branch
instructions should be minimized. This means that special
cases and error handling should be omitted or done in a
way that avoids branches. Therefore, all of these math
functions will return a scalar result, will not set errno?,
and will not signal a NaN (a not-a-number exception
value in IEEE floating-point) in any useful way. Wrapper
code could be placed around the functions to produce
conventional results for out-of-domain cases, for
example, to produce NaN for log(—1), but for molecular
dynamics, we are generally confident that they will not be
asked to process out-of-domain cases, and so the extra
computation involved in obtaining conventional answers
is best skipped.

One way to enhance scheduling opportunities by
exposing independent instructions to the compiler is to
write each independent computation explicitly in the
source code. Another way is to compute the same basic
block repeatedly with different arguments in a counted
loop and verify that the compiler can see that loop
iterations are independent; the compiler then applies loop
transformation optimizations, such as unrolling® and
modulo scheduling?, to construct the appropriate work
itself. Both techniques aim to reduce stalls’.

Vectorizable log

The function log may be vectorized by appreciating that a
floating-point number is represented as an exponent k
and a mantissa (also called a fraction) m; i.e., as m X 2K,
for some m in [1.0, 2.0) and for integer k,

In (m X Zk) =In(m) + ln(Zk),

The approximation is produced as three terms, which
are added together to give the result.

'On Blue Gene*/L, if code has dependencies such that a, b, and ¢ must be computed
in that order, with » depending on « and ¢ depending on b, and no other work is
available, the machine will deliver 10% of its theoretical peak performance. Here, the
term vectorizable stands for assorted techniques to get closer to 100%.

2A global variable used to indicate which error has occurred.

*Grouping of multiple loop iterations so that the instructions from multiple iterations
can be worked on in parallel.

4Software pipelining of loops—rearranging them to work on parts of more than one
iteration at a time, the way a button is sewn on a shirt.

SSituations in which an instruction must wait before entering the processor because
the calculations which produce one or more operands have not yet completed.
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The variable k is extracted as the exponent part of the
argument, giving the first term of the result as k X In(2).
The variable m is expressed as m0 X m1, where m0 is
1 4+ (a/16) for integer a in (0, 15), and m1 is m/[1 + (a/16)].

The variable a is determined by extracting the first four
bits after the binary point from m.

The expression 1/[1 + (a/16)] is looked up in a 16-
element table, and this gives a value for m1 roughly
between 1 and [1 + (1/16)].

The second term of the result is In(720), which comes
from another 16-element table.

The third term of the result comes from a Taylor series
for In(1 4 x). This converges quite rapidly for x < (1/16).

The full result then is

In(a) ~ k X In(2) 4+ Lookup(a) + TaylorSeries(x).

An improvement comes from a slight modification,
where m1 is arranged to be in the domain [1 — (1/32),
1 + (1/32)), and so the Taylor series is used for
|x| < (1/32).

Vectorizable exp
The function exp may be vectorized by using the relation

exp (a0 + al + a2 + a3)
= exp (a0) X exp(al) X exp(a2) X exp (a3).

The variable a0 is extracted as the integer part of the
argument; al is the next four bits; a2 is the subsequent
four bits; a3 is the remaining bits; a3 is a number between
0 and (1/256).

The variable a0 is shifted into the exponent of the
resulting floating-point number; exp(a1) and exp(a2)
are looked up in 16-element tables; exp(«3) is estimated
by a Taylor series, which converges quite rapidly for
0 < a3 < (1/256).

Again, an improvement comes from a slight
modification, setting a3 in the domain
[-(1/512), 4+ (1/512)).

IBM PowerPC* and follow-on hardware supports a
floating-point “select” instruction that performs the
equivalent of

double fsel (double a, double b, double c)
{

if (a>=0.0) returnb ; returnc

}

as a single hardware instruction. This can be used to
arrange that exp(x) returns 0 for a sufficiently large
negative argument and Inf® for a sufficiently large
positive argument without causing a branch in the
generated code.

°A bit pattern representing infinity, or larger than the largest representable value, in
IEEE floating-point.
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Vectorizable erflerfc—piecewise Chebyshev
Traditionally in molecular dynamics codes, erfc(x) has
been approximated using the approximation for erf(x) in
Section 7.1.26 of [2], related by erfc(x) 4+ erf(x) = 1. The
Abramowitz and Stegun approximation from the
reference is

erfx =1— (a1 + a2t2 + a3t3 + a4t4 + LISIS)(fX~ + e(x),

P 1
T 14 px’

le(x)| < 1.5x 10,
p=03275911,

a, = 0.254829592,
a, = —0.28449 6736,
a, = 1421413741,
a, = —1.453152027,
as = 1.06140 5429.

Vectorizable exp(x) can be used to form vectorizable
erfc(x) in the obvious way, but there is an alternative that
can be used to form a more accurate result, which is
desirable in molecular dynamics because it should give
better energy conservation for a given timestep size or,
alternatively, will allow a larger timestep size before
numerical instability sets in.

The reciprocal required above is a special case; for
molecular dynamics codes, the dividend will be in the
single-precision range, and there is no point returning a
result much more accurate than the one part in 10° of the
complete approximation. This leads to a faster expression
of reciprocal than the hardware double-precision divide
will give (more on this below).

For molecular dynamics, we are interested in erfc to
support electrostatics, erfc(x) for a limited domain of x,
typically (-4, 4).

We partition the domain into equal-sized subdomains,
say [—4, —3), [-3, =2), .., [3, 4). Represent x as x0 + x1,
where x1 is in [-0.5, 0.5) and x0 is an integer that
identifies the subdomain. Each subdomain is associated
with a polynomial approximator—a set of eight
Chebyshev polynomials works well.

Select the appropriate polynomial by using x0 to index
an array, and erfc(x) follows.

It is relatively easy to set the polynomials up to give
erfc(x) accurate within 1 ulp’ over the whole domain. It is
desirable to use fsel to avoid misleading results in case the
function is used for a value of x outside the designed
domain.

It is possible to exploit the symmetry between erfc(x)
and erfc(—x) to halve the number of tables required.

"Ultimate limit of precision—one double-precision unit in the last place of the IEEE
fraction part.
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The required table for Chebyshev coefficients is
machine-generated. The algorithm is shown in [3]. First,
the Chebyshev coefficients for (d/dx) erfc(x) are generated
using the analytic expression (—2/y/7) exp(—x?). Then the
coefficients for erfc(x) are generated by applying the
appropriate transformation on these.

Vectorizable derivative erfc
Derivative erfc is (—2/,/7) exp(—x?) and may be
vectorized using vectorizable exp (x).

However, for molecular dynamics, it is desirable
to have derivative erfc and erfc related accurately as
derivative and integral of each other; this results in better
reported energy conservation and better accuracy when
switch or soft force cutoff is in use.

When the Abramowitz and Stegun approximation
for erfc(x) is in use, we can differentiate the expression
analytically. The derivative has an exponential term of
the same form as the original, i.e., exp(—x?), so a single
evaluation of exp (X) will do duty for both functions when
erfc and its derivative are both required in a computation.

When the multiple Chebyshev approach is in use,
another set of Chebyshev polynomials can be used
to deliver derivative erfc. If these are on the same
subdomains, there is a computational economy.

Vectorizable erfc and derivative—piecewise cubic
spline

In molecular dynamics, erfc and its derivative are used
in the evaluation of electrostatic forces. Another
approximation (particle mesh) means that it is not useful
to get erfc(x) more precise than a relative error of about
10; the imprecision due to the “particle mesh”
approximation dominates.

However, it is important for the values returned for
erfc(x) and its derivative to be continuous and an analytic
integral/derivative pair.

This can be satisfied by approximating (d/dx) erfc(x)
with a set of cubic splines, matching the (—2/,/7) exp (—x?)
function and its derivative at the piecewise endpoints and
integrating these polynomials to give piecewise-quartic
approximations for erfc(x). A set of 64 piecewise-
cubic polynomials and their integrals, for domains
[0, (1/16)), [(1/16), (2/16)), .., [(63/16), (64/16)) gives
the ability to approximate erfc(x) and its derivative
to the required precision in the domain [0-4).

Vectorizable sin and cos

It is convenient to use a multiple-Chebyshev-polynomial
approach for this as well. Divide sin(x) into domains
[—45, 45), [45, 135), [135, 225), and [225, 315) degrees and
repeat cyclically.
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In domains [—45, 45) degrees and [135, 225) degrees,
use a Chebyshev polynomial for [sin(x)/x], and multiply
the result by x. This arranges that the result for small |x]|
can be within an ulp without requiring an excessive
number of terms in the polynomial.

In domains [45, 135) and [225, 315), use a Chebyshev
polynomial for cos(x).

The required Chebyshev polynomials are always even
functions, such that f(x) = f(—x). This economizes on the
computation.

After the polynomial evaluation, fix up the result using
a suitable multiply and add, according to the subdomain.

Since cos(x) = sin(x + 90) with angles in degrees, cos
and sin are related.

The tables are machine-generated offline, using higher-
precision sin and cos functions and the algorithm in [3].

Vectorizable inverse sin and cos
Sometimes an application knows the sin and cos of an
angle and wishes to evaluate the angle. Traditional arcsin
involves an ambiguity as to the angle (as between 80
degrees or 100 degrees, for example), is ill-conditioned in
ranges near 90 and 270 degrees, and usually involves a
conditional branch and a square root.

By expressing it as

double acossin(double cos_angle, double sin_angle)

we can overcome these limitations and produce an
implementation without branches.

We want to compute 0 such that cosangle = cos 6 and
sinangle = sin 6. Let ¢ = |cosangle|, s = [sinangle|, and
use the fsel instruction to obtain minsc = min(c, ) and
maxsc = max(c, s). Then 0 < minsc < /0.5 and
/0.5 < maxsc < 1, and there is an angle ¢ in [0, 45]
degrees such that minsc = sin ¢ and maxsc = cos ¢.

Then we use the compound angle formula

sin(a — b) = sin(a) cos(b) — cos(a) sin(h)

for b = 22.5 degrees to form the sine of an angle in
[-22.5, 22.5] degrees, a value approximately in the
domain [-0.38, 0.38].

Next, we use the Taylor expansion for arcsin(x), which
converges quite rapidly over this domain, and we multiply
by and add suitable constants (according to whether the
original parameters were negated and which was smaller)
to evaluate the called-for angle.

Vectorizable reciprocal square root
The natural way to express this is
double a=1.0/sqrt (x) ;

The IBM xIc compiler “-gnostrict” option causes this to
be recognized as an idiom. There is a hardware reciprocal
square root estimate instruction that gives a result
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accurate to five bits (POWER3)® or 13 bits (Blue
Gene/L)’ using lookup tables in the same amount of
time that a multiply—add instruction would take; and
the compiler generates a suitable number of iterations
of Newton’s method, or a suitable Taylor correction
polynomial, to bring the result to double-precision
accuracy. This avoids the division operation, and this
direct “reciprocal square root” evaluation is faster than
“square root” would be.

Newton’s iteration is expressed in terms of multiplies
and adds. The “divide by b” that seems to be required is
replaced with “multiply by estimate of 1/b.” The running
estimate of 1/b is steadily improving, so quadratic
convergence is maintained.

Vectorizable square root
The compiler recognizes the use of \/x in a source program

double a=sqrt (x)

and rather than calling a function, it generates the fsqrt
hardware instruction on the POWER3 processor. Blue
Gene/L (BG/L) lacks this instruction, so the compiler,
in effect, changes the computation to x/N/x, which it
implements with the help of the floating reciprocal square
root estimate instruction. However, x/A/x on its own will
give “not-a-number” for x = 0; the compiler generates
additional code to handle this case correctly, but it is
computationally expensive.

If the source program is not dependent on the result
for x = 0, it will run better on both POWER?3 and
BG/L if coded as

double a=x/sqrt (x) .

Vectorizable nearest_image_in_periodic_volume
Molecular dynamics is frequently run with periodic
boundary conditions, i.e., where we imagine that the
simulation volume is surrounded by a never-ending
sequence of matching simulation volumes and the
interaction force between a pair of atoms is calculated
as if one of the atoms is influenced by only by the nearest
of the 27 images of the other atom.

To find the nearest image vector between a pair of
atoms, one algorithm would remap the simulation volume
to a unit cube and scale the vector appropriately, drop the
integer part of the x, y, and z coordinates of the vector
(each of which would be —1, 0, or +1), and subtract

0.5

05 %,
0.5

giving a vector in
8Using a stepwise lookup.
“Using a piecewise-linear lookup, stepwise for “offset” and “slope,” then passing

through the multiply—add unit, which would otherwise be idle. It is better precision
with the same transistor count.
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+0.5
+0.5 9,
+0.5

and rescale back to the original coordinate system.

This appears to require divisions, tests, and conditional
branches, but can actually be calculated without requiring
any of these.

Vectorizable nearest_integer

Vectorizable nearest_integer relies on the IEEE floating-
point representation. Double precision takes 64 bits. The
top bit is a sign bit, the next 11 bits are a binary exponent,
and the remaining 52 bits are a binary mantissa, with
an implied leading 1.

IEEE addition, with the hardware in its usual mode, is
specified to round to the nearest representable number.
Thus, if one takes a double-precision floating-point
number and adds (2°% + 2°'), the fractional part is
dropped. One can then subtract the (2> 4 2°")
and obtain the integer nearest to the number
used to start.

There is a range around 2°2 in which one obtains the
nearest even integer, so this is not applicable in all cases,
but is acceptable for molecular dynamics.

The compiler is being asked to generate code for
(x+ k) — k. It is important to prevent the optimizer from
reassociating this to x + (k — k) and then optimizing this
to x + 0, that is, x.

The sample code does this by expressing (x +k X k1) X
k1 — k, where k1 is 1.0, but the compiler is unable to tell
that k1 is a constant. Since the basic floating-point
instruction in the IBM Power Architecture® is multiply—
add, this does not cause any extra processing cycles.

Vectorizable fragment_in_range

Molecular dynamics is generally concerned with forces
between atoms in an imagined simulation box with
periodic boundary conditions. Computation of the force
between a pair of atoms is skipped if the atoms are more
than a threshold distance apart.

For computational convenience, the atoms are grouped
into fragments, typically a water molecule or a covalently
bonded set of atoms within a larger molecule. The
question arises, “Given fragment @, what is the set
of fragments {50, b1, ...} such that an atom in ¢ is in
range of an atom in each bi, accounting for the periodic
boundary?” The simulation will be functionally correct
if extra fragments b are in the set, because the forces
involved will evaluate to zero, but the simulation is more
efficient with fewer extra fragments.

There is an algorithm for this that makes 100% use of
the floating-point units (FPUs), successively slicing for
slab, cylinder, and sphere.
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There is another algorithm that does not use the FPUs;
instead, it uses the integer units with wrap at 2%,
successively slicing for slab, square prism, and cube. It
then uses the FPUs to slice for sphere. On POWER3 and
BG/L, the integer algorithm is faster. Either algorithm is
sufficiently fast that our implementation of the molecular
dynamics code does not have to maintain lists of
fragments (known as Verlet lists) that may be within a
“cut-off ” distance.

These algorithms show how to do “vector compress,”
i.e., produce a vector that is a subset of a starting vector,
including only those elements matching a selection
criterion, without requiring a conditional branch.

A practical example—reciprocal square roots
The reciprocal square root function evaluates the
reciprocal square root for each of nine values, as would
be needed to support the calculation of distances between
atoms in a pair of three-site'® water molecules.

Figure 1 shows source code and the compiler-generated
assembly listing for the BG/L machine architecture.
Compiler intermediate code with cycle counts and
corresponding listings for POWER3 can be found at [1].

Values are copied into local variables to make it clear
to the compiler what is intended if the function is called
with source and target overlapping in memory.

POWERS3 requires a vector of length at least 6 to keep
the FPUs fully busy on this algorithm. BG/L requires a
vector of length 10. In each case, the compiler finds
an optimal instruction sequence; 100% floating-point
utilization for POWER3 and 90% utilization (four
“parallel” ops, then a “primary” op) for BG/L.

The “reciprocal square root estimate” instruction of
POWERS3 gives five bits of precision; that of BG/L gives
13 bits of precision. BG/L requires fewer follow-on
instructions to converge the estimate to double precision.
POWERS3 uses a Newton—Raphson algorithm for
convergence; BG/L uses a Taylor expansion.

The theoretical peak rate for each 440 processor core in
the BG/L hardware is ten double-precision square roots
per 40 clock cycles. By enclosing similar code in a “for”
loop, it is possible to get the VisualAge* compiler to
generate code that achieves within a few cycles of this
rate.

Examining the machine code reveals that when a
floating-point value is calculated, there are at least four
other floating-point instructions between the calculation
and the first use of the result. This keeps the floating-
point pipeline full, allowing the FPU to operate at
maximum throughput.

10A three-site water molecule is a model with electrostatic charges centered on the
three atom locations. A five-site model has fractional electron charges at two other
locations. Models run this way often match experiment more closely, and always take
more computation for a simulation timestep.
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IBM VisualAge* C++ Version 6.0.0.3 for Linux** on pSeries* ---
> > > > > OPTIONS SECTION < < < < <

IGNERRNO ARCH=440D 0PT=3 ALTAS=ANSI ALIGN=LINUXPPC
FLOAT=NOHSFLT:NORNDSNGL : NOHSSNGL : MAF : NORRM: FOLD : NONANS : RSQRT : FLTINT : NOEMULATE
MAXMEM=-1 NOSTRICT NOSTRICT_INDUCTION TBTABLE=SMALL LIST
SHOWINC=NOSYS:NOUSR SOURCE STATICINLINE TMPLPARSE=NO

NOEH

> > > > > SOURCE SECTION < < < < <

1 | #include <math.h>

2 void nineroot(double* f, const double* x)
3 {

4 | double x0 = x[0]

5 | double x1 = x[1]

6 double x2 = x[2]

7 | double x3 = x[3]

8 double x4 = x[4]

9 | double x5 = x[5]

10 | double x6 = x[6]

11 double x7 = x[7] ;

12 | double x8 = x[8] ;

13 | double r0 = 1.0/sqrt(x0)
14 | double rl1 = 1.0/sqrt(xl)
15 | double r2 = 1.0/sqrt(x2)
16 | double r3 = 1.0/sqrt(x3)
17 double r4 = 1.0/sqrt(x4)
18 | double r5 = 1.0/sqrt(x5)
19 | double r6 = 1.0/sqrt(x6)
20 | double r7 = 1.0/sqrt(x7)
21 double r8 = 1.0/sqrt(x8)
22 | fL0] = r0 ;

23 f[11 = rl ;

24 f[2] = r2 ;

25 f[3] = r3 ;

26 | f[4]1 = rd ;

27 f[5] = rb5 ;

28 fl6]l = r6 ;

29 f[71 = r7 ;
30 f[8] = r8 ;
31

}
-qdebug=BGL:PLST3:CYCLES: SHUTUP: HUMMER: LINUX : NEWSCHED1 : NEWSCHED2 : REGPRES : ADRA: ANTIDEP:
GPR’s set/used:  SSUU SSSS S--- S--- ---- ---- ---- ----

FPR’s set/used: SSSS SSSS $$$S §§== ==== ==== === S SSSS
$355 SSS5 5558 §5=° ==°= ==== === 5 $=5-

CCR’s set/used: ---- ----

000000 PDEF nineroot(double *, const double *)
3 PROC f,x,gr3,gr4
0| 000000 ori 602C0000 1 LR grl2=grl
0| 000004 addi 3800FFF0 1 LI gr0=-16
0| 000008 stwu 9421FFA0 1 ST4U grl,fstack(grl,-96)=grl
0| 00000C stfpdux 7FECO7DC 1 SFPLU grl2,#stack(grl2,gr0,0)=fp31,fp63
0| 000010 stfpdux 7FCCO7DC 1 SFPLU grl2,#stack(grl2,gr0,0)=fp30,fp62
0| 000014 stfpdux 7FACO7DC 1 SFPLU grl2,fstack(grl2,gr0,0)=fp29,fp6l
0| 000018 stfpdux 7F8C0O7DC 1 SFPLU grl2,#stack(grl2,gr0,0)=fp28,fp60
0| 00001C stfpdux 7F6C07DC 1 SFPLU grl2,fstack(grl2,gr0,0)=fp27,fp59
4| 000020 1fd C9A40000 1 LFL fpl3=(double)(gr4,0)
5| 000024 addi 38C00008 1 LI gr6=8
7| 000028 addi 38A00018 1 LI grb=24
5| 00002C 1fsdx 7DA4319C 1 LFL fp45=(double)(grd,gr6,0,trap=8)
9| 000030 addi 39000028 1 LI gr8=40
11| 000034 addi 38C00038 1 LI gr6=56
13| 000038 addis 3CE00000 1 LA gr7=.+CONSTANT_AREA%HI(gr2,0)
6| 00003C 1fd 9640010 1 LFL fpll=(double)(gr4,16)
13| 000040 addi 38E70000 1 LA gr7=+CONSTANT_AREA%LO(gr7,0)
7| 000044 1fsdx 7D64299C 1 LFL fp43=(double)(gr4,gr5,0,trap=24)
8| 000048 1fd 9440020 1 LFL fplO=(double)(gr4,32)
13| 00004C fprsqrte 0120681E 1 FPRSQRE fp9,fp4l=fpl3,fp4b
9| 000050 1fsdx 7D44419C 1 LFL fp42=(double)(gr4,gr8,0,trap=40)
31| 000054 ori 602C0000 1 LR grl2=grl
10| 000058 1fd 9040030 1 LFL fp8=(double)(gr4,48)
31| 00005C addi 38000010 1 LI gr0=16
11| 000060 1fsdx 7D04319C 1 LFL fp40=(double)(gr4,gr6,0,trap=56)
15| 000064 fprsqrte 00E0581E 1 FPRSQRE fp7,fp39=fpll,fp43
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13| 000068
12| 00006C
13| 000070
13| 000074
17| 000078
13| 00007C
19| 000080
13| 000084
21| 000088
13| 00008C
13| 000090
15| 000094
13| 000098
13| 00009C
17| 0000AO
23| 0000A4
19| 0000A8
21| 0000AC
15| 0000B0
17| 0000B4
19| 0000B8
21| 0000BC
13| 0000CO
15| 0000C4
31| 0000C8
17| 0000CC
19| 0000DO
21| 0000D4
13| 0000D8
15| 0000DC
17| 0000EO
19| 0000E4
21| 0000E8
13| 0000EC
31| 0000F0
15| 0000F4
17| 0000F8
19| 0000FC
21| 000100
13| 000104
15| 000108
17| 00010C
19| 000110
21| 000114
13| 000118
15| 00011C
17| 000120
19| 000124
21| 000128
22| 00012C
23| 000130
29| 000134
31| 000138
24| 00013C
25| 000140
31| 000144
26| 000148
27| 00014C
31| 000150
28| 000154
31| 000158
29| 00015C
30| 000160
31| 000164

addi
1fd
1fpsx
fpmul
fprsqarte
1fs
fprsqgrte
1fpsx
frsqrte
1fpsx
addi
fpmul
1fpsx
fpmadd
fpmul
addi
fpmul
fmul
fpmadd
fpmadd
fpmadd
fmadd
fxcpmadd
fxcpmadd
1fpdux
fxcpmadd
fxcpmadd
fmadd
fpmadd
fpmadd
fpmadd
fpmadd
fmadd
fpmadd
1fpdux
fpmadd
fpmadd
fpmadd
fmadd
fpmul
fpmul
fpmul
fpmul
fmul
fpmadd
fpmadd
fpmadd
fpmadd
fmadd
stfd
stfsdx
addi
1fpdux
stfd
stfsdx
1fpdux
stfd
stfsdx
1fpdux
stfd
addi
stfsdx
stfd
bclr

Code tuned for Blue Gene/L.

38€00020
CBE40040
7F672B1C
01890250
00CO501E
C3C70004
0080401E
7CA7331C
FFAOF834
7C67431C
38800030
002701D0
7C47231C
01ADDB20
00060190
38C00008
01840110
FF9D0772
002BD860
014AD820
0108DB20
FFFFDF3A
001E2B64
019E2864
7F6C03DC
017E2AA4
039E2A24
FCBF2FBA
00001820
01811B20
016A1AEO
03C81F20
FCBF197A
00001020
7F8C03DC
00611320
016A12E0
018817A0
FCBF117A
000D0010
00210000
004A02D0
00680310
FCBFO172
00094820
00273860
004630A0
006420E0
FCIDEI7A
08030000
7C03359C
38C00038
7FACO3DC
D8230010
7C232D9C
7FCCO3DC
08430020
7C43459C
7FEC0O3DC
D8630030
38210060
7C63359C
D8830040
4E800020

Instruction count 90
Constant Area
000000 BFB00000 3EBCO000
000018 BF800000 BF800000
000030 BFO00000 BF0O00000

LI

LFL
LFPS
FPMUL
FPRSQRE
LFS
FPRSQRE
LFPS
FRSQRE
LFPS
LI
FPMUL
LFPS
FPMADD
FPMUL
LI
FPMUL
MFL
FPMADD
FPMADD
FPMADD
FMA
FXPMADD
FXPMADD
LFPLU
FXPMADD
FXPMADD
FMA
FPMADD
FPMADD
FPMADD
FPMADD
FMA
FPMADD
LFPLU
FPMADD
FPMADD
FPMADD
FMA
FPMUL
FPMUL
FPMUL
FPMUL
MFL
FPMADD
FPMADD
FPMADD
FPMADD
FMA
STFL
STFL
LI
LFPLU
STFL
STFL
LFPLU
STFL
STFL
LFPLU
STFL
Al
STFL
STFL
BA 1r

(RN e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

gr6=32

fp31=(double)(grd,64)
fp27,fp59=+CONSTANT_AREA(gr7,gr5,0,trap=24)
fpl2, fpdd=fp9,fpdl,fp9,fpll, fcr
fp6,fp38=Ffpl0, fpd?2
fp30=+CONSTANT_AREA(gr7,4)

fp4, fp36=fp8, fp40

fp5, fp37=+CONSTANT_AREA(gr7,gr6,0,trap=32)
fp29=Ffp31

fp3, fp35=+CONSTANT_AREA(gr7,gr8,0,trap=40)
gr4=48

fpl,fp33=fp7,fp39,fp7,fp39,fcr
fp2,fp34=+CONSTANT_AREA(gr7,gr4,0,trap=48)
fpl3, fpdb=~fp27,fph9,fpl3, fp4s,fpl2,fpdd, fcr
fp0, fp32=fp6, fp38, fp6,fp38, fcr

gr6=8

fpl2, fp4d=fp4, fp36,fp4, fp36, fcr
fp28=fp29,fp29, fcr

fpl, fp33=fp27,fp59,fpll,fp43,fpl,fp33,fcr
fpl0, fpd2=fp27,fp59,fpl0,fpd2,fp0,fp32,fcr
fp8, fpd0=fp27,fph9, fp8,fp40, fpl2,fpsd, fcr
fp3l=fp27,fp31l, fp28, fcr

fp0, fp32=fp5,fp37,fpl3,fpd5, fp30,fp30,fcr
fpl2, fp4d=~fp5,fp37,fpl,fp33,fp30,fp30,fcr
fp27,fp59,grl2=fstack(gri2,gr0,0)

fpll, fp43=Ffp5,fp37,fpl0,fp42,fp30,fp30,fcr
fp28, fp60=fp5, fp37,fp8, fpd0, fp30,fp30, fcr
fp5=fpb, fp31l,fp30, fcr

fp0, fp32=fp3, fp35,fpl3,fp45, fp0,fp32,fcr
fpl2, fp4d=fp3,fp35,fpl,fp33,fpl2,fpsd,fcr
fpll, fp43=Ffp3,fp35,fpl0,fpd42,fpll,fp43,fcr
fp30, fp62=fp3, fp35, fp8, fpd0, fp28,fp60, fcr
fp5=fp3, fp31l, fp5, fcr

fp0, fp32=fp2,fp34,fpl3,fpd5,fp0,fp32,fcr
fp28,fp60,grl2=fstack(grli2,gr0,0)

fp3, fp3b=fp2,fp34,fpl,fp33,fpl2,fp44, fcr
fpll, fp43=fp2,fp34,fpl0,fpd2,fpll,fpd3,fcr
fpl2, fpdd=~fp2,fp34,fp8,fp40, fp30,fp62,fcr
fp5=fp2,fp31l, fp5, fcr

fp0, fp32=fpl3, fpds,fp0,fp32, fcr

fpl, fp33=fpl, fp33,fp3,fp35, fcr
fp2,fp34=fpl0, fpd42,fpll,fp43, fcr
fp3,fp35=Ffp8, fp40,fpl2, fpd4d,fcr
fp5=fp31, fp5, fcr

fp0, fp32=fp9, fp4l, fp9,fpal, fp0, fp32,fcr
fpl, fp33=fp7,fp39,fp7,fp39,fpl,fp33,fcr
fp2,fp34=Ffp6,fp38,fp6,fp38,fp2,fp34,fcr
fp3,fp35=Ffp4,fp36,fp4, fp36,fp3,fp35,fcr
fpd=fp29,fp29,fp5, fcr

(double) (gr3,0)=fp0
(double)(gr3,gr6,0,trap=8)=fp32

gr6=56

fp29,fp6l,gri2=ffstack(grl2,gr0,0)

(double) (gr3,16)=fpl
(double)(gr3,gr5,0,trap=24)=fp33
fp30,fp62,gri2=fstack(gri2,gr0,0)

(double) (gr3,32)=fp2
(double)(gr3,gr8,0,trap=40)=fp34
fp31,fp63,grl2=fstack(gri2,gr0,0)

(double) (gr3,48)=fp3

grl=grl,96,grl?2
(double)(gr3,gr6,0,trap=56)=fp35

(double) (gr3,64)=fp4

BEAO0O0OO 3EC00000 BFO00000 49424D20
BEA0O00OOO BEAO000O 3EC00000 3EC00000
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Each 440 processor core in BG/L can dispatch two
instructions per clock cycle. Each has one floating-point
instruction pipeline, one load/store pipeline, two integer
pipelines, and one branch pipeline. The 440 does not
have “out-of-order” processing capability or “rename”
registers; both of these cost transistors and electrical
energy, which the BG/L design puts to better use
elsewhere. Therefore, we are dependent for good
performance on the ability of the compiler to schedule
instructions and allocate registers in the optimal patterns
for the real hardware. The compiler effort to exploit the
two-instructions-per-cycle capability can be seen in the
assembly fragment shown in the figure.

IBM Power Architecture defines 32 double-precision
floating-point registers. Floating-point operations, in
general, work on three operand registers and a result
register. For example, “floating-point multiply—add”
might evaluate f; = f, + (f3 X f) in a single pass through
the FPU. The Blue Gene/L chip has an additional 32
double-precision floating-point registers, an additional
FPU, and extensions to the instruction decoder to
implement “parallel” versions of these, such as

f, =1, 4+ (f; Xf,), s, =s, 4+ (s; Xs,)
and various “cross” versions, such as
f, =1, + (f; Xf,), s, =5, + (s; Xf,)
or

f, =1, 4+ (f; Xs,), 5, =8, 4 (53 Xf,),
and an “antisymmetric” version,

f, =1, + (f; X£,), s, =5, — (55 Xs,).

Several of these can be seen in the assembly fragment
shown in Figure 1.

Conclusion
When we started designing the protein folding
application, we imagined that we would be unable to
fully exploit the floating-point capacity of a modern
uniprocessor because of the sequential nature of the
scalar library functions, which we expected would limit
the performance of the application. This would limit
the fraction of peak flops that we would achieve on
the massively parallel machine we had in mind.
Working with the life scientists on the actual
requirements of the application and with the compiler
programmers on optimization capabilities has resulted
in techniques for evaluating the required functions and
presenting the machine with sufficient independent work
that we, in fact, achieved a high fraction of peak flops on
a uniprocessor. This is expressible as source code in a
high-level language, such as C++; it has not been
necessary to hand-code anything in assembler.

R. F. ENENKEL ET AL.

Knowing that we can well exploit a uniprocessor, we
are motivated to use the machine efficiently as we take the
next steps to scale up to the 40,960 processors that will
be available to us in our contribution to the “grand
challenge” of understanding the Protein Economy.'!

Blue Gene/L can do more than just lead the world at
linear algebra. It takes some thought, but the results are
worth the effort.
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""Proteomics: the Protein Economy. Deoxyribonucleic acid (DNA) stores informa-
tion. We know; we have sequenced it. Ribonucleic acid (RNA) copies information. We
know; we can make it happen in the laboratory. Ribosome (a protein) reads the RNA
and assembles a protein out of amino acids according to the recipe it has read. We
know; every living thing on earth works in much the same way. The protein folds into
its equilibrium structure, more or less, quickly or slowly. We’re curious about this.
Function follows form, and all the diversity of life happens.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005



Robert F. Enenkel IBM Software Group, Toronto Laboratory,
8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7
(enenkel(@ca.ibm.com). Dr. Enenkel currently works in the
Optimizing Compiler Group at the IBM Toronto Laboratory;
he was previously a Research Associate at the IBM Centre for
Advanced Studies (CAS). He worked at IBM on the development
of a C compiler and its math library, and developed parallel
methods for random-number generation for Fortran and high-
performance Fortran compilers prior to joining the CAS. He
received his B.S., M.S., and Ph.D. degrees from the University
of Toronto, with thesis work in the area of numerical methods
for the parallel solution of initial value problems for ordinary
differential equations. He currently performs research and
development in numerical computing as it relates to compilers
and operating systems, including floating-point arithmetic,
mathematical function libraries, and the performance tuning

of algorithms. He is also interested in parallel computing and
the application of numerical methods to practical problems in
various areas of science. He has received two IBM Invention
Achievement Awards and several IBM Author Recognition
Awards. Dr. Enenkel is a member of the Society for Industrial
and Applied Mathematics. More information may be found on
his Web page at https://www-927.ibm.com[ibm/cas/toronto[people/
members/renekel.shtml.

Blake G. Fitch IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bgf@us.ibm.com). Mr. Fitch joined the IBM Thomas J.
Watson Research Center in 1985 as a student. He received his B.S.
degree in computer science from Antioch College in 1987 and
remained at IBM to pursue interests in parallel systems. He joined
the Scalable Parallel Systems Group in 1990, contributing to
research and development that culminated in the IBM scalable
parallel system (SP*) product. His research interests have focused
on application frameworks and programming models suitable for
production parallel computing environments. Practical application
of this work includes contributions to the transputer-based control
system for the IBM CMOS S/390* mainframes (IBM Boeblingen,
Germany, 1994) and the architecture of the IBM Automatic
Fingerprint Identification System parallel application (IBM
Hursley, UK, 1996). Mr. Fitch joined the Blue Gene project in
1999 as the application architect for Blue Matter, a scalable
molecular dynamics package.

Robert S. Germain IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights,

New York 10598 (rgermain@us.ibm.com). Dr. Germain
manages the Biomolecular Dynamics and Scalable Modeling
Group within the Computational Biology Center at the IBM
Thomas J. Watson Research Center. He received his A.B.
degree in physics from Princeton University in 1982 and

his M.S. and Ph.D. degrees in physics from Cornell University.
He joined the Thomas J. Watson Research Center as a Research
Staff Member in the Physical Sciences Department after receiving
his doctorate in 1989, and later the VLSI/Scalable Parallel
Systems Packaging Department. Dr. Germain was project
leader, from 1995 to 1998, for the development of a large-

scale fingerprint identification system using an indexing scheme
(FLASH) developed at IBM Research. He has been responsible
for the science and associated application portions of the Blue
Gene project since 2000. His current research interests include the
parallel implementation of algorithms for high-performance
scientific computing, the development of new programming
models for parallel computing, and applications of high-
performance computing to challenging scientific problems in
computational biology. Dr. Germain is a member of the IEEE
and the American Physical Society.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

Fred G. Gustavson IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (gustav@us.ibm.com). Dr. Gustavson leads the
Algorithms and Architectures project in the Mathematical Sciences
Department at the IBM Thomas J. Watson Research Center. He
received his B.S. degree in physics, and his M.S. and Ph.D. degrees
in applied mathematics, all from Rensselaer Polytechnic Institute.
He joined IBM Research in 1963. One of his primary interests
has been in developing theory and programming techniques

for exploiting the sparseness inherent in large systems of linear
equations. Dr. Gustavson has worked in the areas of nonlinear
differential equations, linear algebra, symbolic computation,
computer-aided design of networks, design and analysis of
algorithms, and programming applications. He and his group

are currently engaged in activities that are aimed at exploiting
the novel features of the IBM family of RISC processors.

These include hardware design for divide and square root, new
algorithms for the IBM Power Family™ of processors for the
Engineering and Scientific Subroutine Library (ESSL) and for
other math kernels, and parallel algorithms for distributed and
shared memory processors. Dr. Gustavson has received an

IBM Outstanding Contribution Award, an IBM Outstanding
Innovation Award, an IBM Invention Achievement Award, two
IBM Corporate Technical Recognition Awards, and a Research
Division Technical Group Award. He is a Fellow of the IEEE.

Allan Martin IBM Software Group, Toronto Laboratory,

8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7
(armartin@ca.ibm.com). Mr. Martin graduated from the
University of Toronto with a B.S. degree in engineering science
in 1999. He has worked in compiler back-end development since
1999, and has expertise in the area of modulo scheduling and other
loop optimizations. He has implemented and continues to develop
a version of swing modulo scheduling in the compiler that includes
a number of algorithm enhancements that help to achieve near-
optimal performance.

Mark Mendell IBM Software Group, Toronto Laboratory,
8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7
(mendell@ca.ibm.com) Mr. Mendell graduated from Cornell
University in 1980 with a B.S. degree in computer engineering.
He received his M.S. degree in computer science from the University
of Toronto in 1983. At the University of Toronto, he helped to
develop the Concurrent Euclid, Turing, and Turing Plus compilers
and worked on the Tunis operating system project. In 1991 he
joined IBM, working initially on the AIX*™ C++ compiler from
V1.0 to V5.0. He has been the team leader for the TOBEY
Optimizer Group since 2000. Mr. Mendell implemented the
automatic compiler support of the dual FPU for the BG/L project.

Jed W. Pitera IBM Research Division, Almaden

Research Center, 650 Harry Road, San Jose, California 95120
(pitera@us.ibm.com). Dr. Pitera is a Research Staff Member in
the Science and Technology Department at the IBM Almaden
Research Center. His research focuses on the use of computer
simulation to address questions in biology and chemistry,
particularly in the areas of protein folding, molecular recognition,
and self-assembly. He received undergraduate training in biology
and chemistry at the California Institute of Technology, where
he worked in Dr. Pamela Bjorkman’s Protein Crystallography
Group. He subsequently pursued graduate studies in biophysics
at the University of California at San Francisco (UCSF) in the
laboratory of Dr. Peter Kollman. Dr. Pitera developed an interest
in the use of biomolecular simulation and free-energy calculations
in the rational design of proteins and pharmaceuticals while in
Dr. Kollman’s group. He pursued similar work in a postdoctoral

R. F. ENENKEL ET AL.

473



474

position with Prof. Dr. Wilfred van Gunsteren at the Swiss Federal
Institute of Technology Zurich (ETH), where his research focused
on novel methods of calculating free energies for ligand design. He
has worked as a member of the IBM Blue Gene Project Science and
Application team since February of 2001. Dr. Pitera is also an
adjunct assistant professor in the UCSF Department of
Pharmaceutical Chemistry.

Michael C. Pitman IBM Thomas J. Watson Research
Center, P.O. Box 218, Yorktown Heights, New York 10598
(pitman@watson.ibm.com). Dr. Pitman received his Ph.D. degree
in chemistry in 1995 from the University of California at Santa
Cruz. He joined the Biomolecular Dynamics and Scalable
Modeling Group within the Computational Biology Center at
the IBM Thomas J. Watson Research Center soon afterward and
continued work in the area of computational drug design methods.
He began a leading role in the Blue Gene Protein Science program
in 2001, focusing on large-scale membrane and membrane protein
simulation. His research interests are focused on understanding the
nature of protein-membrane interactions. Dr. Pitman conducts
large-scale all-atom simulations of membrane proteins in explicit,
biologically relevant environments.

Aleksandr Rayshubskiy IBM Research Division, Thomas
J. Watson Research Center, Yorktown Heights, New York 10598
(arayshu@us.ibm.com). Mr. Rayshubskiy received an M.E. degree
in computer science from Cornell University in 2002. He worked in
the Biomolecular Dynamics and Scalable Modeling Group within
the Computational Biology Center at the IBM Thomas J. Watson
Research Center in 2000 as an intern, joining the group as a full-
time software engineer in 2003. Mr. Rayshubskiy worked primarily
on the development of the Blue Matter molecular dynamics
package. His current research interests include parallel
applications, load balancing, performance tuning, and lower-
level hardware interfaces to the application.

Frank Suits IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New

York 10598 (suits@us.ibm.com). Dr. Suits is a member of the
Biomolecular Dynamics and Scalable Modeling Group within the
Computational Biology Center at the IBM Thomas J. Watson
Research Center. This group is responsible for the software and
science involved in the protein simulations that are integral to the
Blue Gene project. Although his degree is in optical physics, he has
worked on a wide variety of projects at the IBM Thomas J. Watson
Research Center, including optical storage, magnetic storage
materials, scientific visualization, and queuing systems. At present,
Dr. Suits is focusing on the analysis of the protein and membrane
simulations currently running on BG/L.

William C. Swope IBM Research Division, Almaden
Research Center, 650 Harry Road, San Jose, California 95120
(swope@almaden.ibm.com). Dr. Swope has been engaged with the
IBM Blue Gene Protein Science Project since 2000, with strong
emphasis on biomolecular simulation methodology and the
development of practical techniques to simulate protein folding
kinetics and thermodynamics. He joined the Science and
Technology Department in 1992 at the IBM Almaden Research
Center, where he has also been involved in scientific software
development for computational chemistry applications and in
technical data management issues related to life sciences. He began
with IBM in 1982 at IBM Instruments, Inc., an IBM subsidiary
that developed scientific instrumentation, where he worked in an
advanced processor design group. He also worked for six years

R. F. ENENKEL ET AL.

at the IBM Scientific Center in Palo Alto, California, where he
supported scientific customers of IBM in their development of
software for numerically intensive computation. He received his
undergraduate degree in chemistry and physics from Harvard
University and his Ph.D. degree in quantum chemistry from
the University of California at Berkeley. He then performed
postdoctoral research on the statistical mechanics of solvation
and condensed phases in the chemistry department at Stanford
University. Dr. Swope maintains a number of scientific
relationships and collaborations with academic and commercial
scientists involved in the life sciences, specifically related to drug
development.

T. J. Christopher Ward IBM United Kingdom Limited,
Hursley House, Hursley Park, Winchester, Hants SO21 2JN,
England (tjew@uk.ibm.com). Mr. Ward graduated from
Cambridge University in 1982 with a first-class honors degree in
electrical engineering. He has worked for IBM in various hardware
and software development roles, always finding ways of improving
performance of products and processes. He was a member of

the IBM Computational Biology Center at the IBM Thomas J.
Watson Research Center from 2001 to 2004, arranging for the Blue
Gene/L hardware and compilers and the Blue Matter protein
folding application to work effectively together and achieve the
performance entitlement. Mr. Ward currently works for IBM
Hursley as part of the IBM Center for Business Optimization,
enabling customers of IBM to take advantage of the opportunities
afforded by the rapidly decreasing cost of supercomputing services.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005



