Custom math functions for molecular dynamics

While developing the protein folding application for the IBM Blue $Gene^{\mathbb{B}}/L$ supercomputer, some frequently executed computational kernels were encountered. These were significantly more complex than the linear algebra kernels that are normally provided as tuned libraries with modern machines. Using regular library functions for these would have resulted in an application that exploited only 5-10% of the potential floating-point throughput of the machine. This paper is a tour of the functions encountered; they have been expressed in C++ (and could be expressed in other languages such as Fortran or C). With the help of a good optimizing compiler, floating-point efficiency is much closer to 100%. The protein folding application was initially run by the life science researchers on IBM POWER3™ machines while the computer science researchers were designing and bringing up the Blue Gene/L hardware. Some of the work discussed resulted in enhanced compiler optimizations, which now improve the performance of floating-point-intensive applications compiled by the IBM VisualAge® series of compilers for POWER3, POWER4™, $POWER4+^{TM}$, and $POWER5^{TM}$. The implementations are offered in the hope that they may help in other implementations of molecular dynamics or in other fields of endeavor, and in the hope that others may adapt the ideas presented here to deliver additional mathematical functions at high throughput.

R. F. Enenkel
B. G. Fitch
R. S. Germain
F. G. Gustavson
A. Martin
M. Mendell
J. W. Pitera
M. C. Pitman
A. Rayshubskiy
F. Suits
W. C. Swope
T. J. C. Ward

Molecular dynamics

Sequencing the genome has enabled scientists to read the "words" in the building blocks of life. All-atom molecular dynamics is one of the tools in the grand challenge of understanding the stories told by those words.

We want to model the time-series behavior of a covalently bonded structure, such as a protein molecule that is surrounded by water molecules, as it would be in a living cell. We usually imagine a single protein molecule in a cubic box of a few thousand water molecules, and then imagine that there are identical boxes stacked in all directions, rather like atomic-scale synchronized swimming, with the swimmer made up of balls held together with springs. To understand the behavior of a single "spring" would require quantum mechanics, but on the larger scale of wanting to understand the "swimmer," classical mechanics is sufficient.

Most of the forces to be calculated are the long-range electrostatic forces between atoms in separate water molecules, but the interesting behavior is related to the short-range forces along the springs and between various three-atom and four-atom bonded groups. This requires calculation of large quantities of square roots and their reciprocals (for multiplying and dividing by distances); error functions (one way of approaching the electrostatics); angles (between pairs of springs); periodic images (to work out which swimmer a water molecule is nearest to); and polynomials (for Lennard–Jones bonded forces and to softly switch off forces as pairs of atoms move farther apart and fade to the background).

Custom math functions

Source code for the functions presented here can be found at [1].

©Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the Editor.

0018-8646/05/\$5.00 @ 2005 IBM

Vectorizable math functions

The IBM xlc compiler can schedule instructions flexibly within a basic block, that is, a sequence of code with no conditional branches and no entry points other than the first instruction. This paper explains how to exploit this for functions commonly used in molecular dynamics; if the compiler can be enabled to see a sufficient number of independent instructions, it will schedule instructions to avoid stalls in the floating-point execution pipeline, and so the hardware will run at a high fraction of peak throughput. To make good use of the compiler instruction scheduling facility, the use of branch instructions should be minimized. This means that special cases and error handling should be omitted or done in a way that avoids branches. Therefore, all of these math functions will return a scalar result, will not set errno², and will not signal a NaN (a not-a-number exception value in IEEE floating-point) in any useful way. Wrapper code could be placed around the functions to produce conventional results for out-of-domain cases, for example, to produce NaN for $\log(-1)$, but for molecular dynamics, we are generally confident that they will not be asked to process out-of-domain cases, and so the extra computation involved in obtaining conventional answers is best skipped.

One way to enhance scheduling opportunities by exposing independent instructions to the compiler is to write each independent computation explicitly in the source code. Another way is to compute the same basic block repeatedly with different arguments in a counted loop and verify that the compiler can see that loop iterations are independent; the compiler then applies loop transformation optimizations, such as unrolling³ and modulo scheduling⁴, to construct the appropriate work itself. Both techniques aim to reduce stalls⁵.

Vectorizable log

The function log may be vectorized by appreciating that a floating-point number is represented as an exponent k and a mantissa (also called a fraction) m; i.e., as $m \times 2^k$, for some m in [1.0, 2.0) and for integer k,

$$\ln(m \times 2^k) = \ln(m) + \ln(2^k).$$

The approximation is produced as three terms, which are added together to give the result.

The variable k is extracted as the exponent part of the argument, giving the first term of the result as $k \times \ln(2)$.

The variable m is expressed as $m0 \times m1$, where m0 is 1 + (a/16) for integer a in (0, 15), and m1 is m/[1 + (a/16)].

The variable a is determined by extracting the first four bits after the binary point from m.

The expression 1/[1 + (a/16)] is looked up in a 16-element table, and this gives a value for m1 roughly between 1 and [1 + (1/16)].

The second term of the result is ln(m0), which comes from another 16-element table.

The third term of the result comes from a Taylor series for $\ln(1+x)$. This converges quite rapidly for x < (1/16). The full result then is

$$ln(a) \simeq k \times ln(2) + Lookup(a) + TaylorSeries(x).$$

An improvement comes from a slight modification, where m1 is arranged to be in the domain [1 - (1/32), 1 + (1/32)), and so the Taylor series is used for |x| < (1/32).

Vectorizable exp

The function exp may be vectorized by using the relation

$$\exp(a0 + a1 + a2 + a3)$$

$$= \exp(a0) \times \exp(a1) \times \exp(a2) \times \exp(a3).$$

The variable a0 is extracted as the integer part of the argument; a1 is the next four bits; a2 is the subsequent four bits; a3 is the remaining bits; a3 is a number between 0 and (1/256).

The variable a0 is shifted into the exponent of the resulting floating-point number; $\exp(a1)$ and $\exp(a2)$ are looked up in 16-element tables; $\exp(a3)$ is estimated by a Taylor series, which converges quite rapidly for 0 < a3 < (1/256).

Again, an improvement comes from a slight modification, setting a3 in the domain [-(1/512), + (1/512)).

IBM PowerPC* and follow-on hardware supports a floating-point "select" instruction that performs the equivalent of

as a single hardware instruction. This can be used to arrange that $\exp(x)$ returns 0 for a sufficiently large negative argument and \inf^6 for a sufficiently large positive argument without causing a branch in the generated code.

¹On Blue Gene*/L, if code has dependencies such that a, b, and c must be computed in that order, with b depending on a and c depending on b, and no other work is available, the machine will deliver 10% of its theoretical peak performance. Here, the term vectorizable stands for assorted techniques to get closer to 100%.

²A global variable used to indicate which error has occurred.

³Grouping of multiple loop iterations so that the instructions from multiple iterations can be worked on in parallel.

⁴Software pipelining of loops—rearranging them to work on parts of more than one iteration at a time, the way a button is sewn on a shirt.

⁵Situations in which an instruction must wait before entering the processor because the calculations which produce one or more operands have not yet completed.

⁶A bit pattern representing *infinity*, or *larger than the largest representable value*, in IEEE floating-point.

Vectorizable erf/erfc—piecewise Chebyshev

Traditionally in molecular dynamics codes, $\operatorname{erfc}(x)$ has been approximated using the approximation for $\operatorname{erf}(x)$ in Section 7.1.26 of [2], related by $\operatorname{erfc}(x) + \operatorname{erf}(x) = 1$. The Abramowitz and Stegun approximation from the reference is

$$\begin{split} \operatorname{erf} x &= 1 - (a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5) e^{-x^2} + \epsilon(x), \\ t &= \frac{1}{1 + px}, \\ |\epsilon(x)| &\leq 1.5 \times 10^{-7}, \\ p &= 0.32759 \ 11, \\ a_1 &= 0.25482 \ 9592, \\ a_2 &= -0.28449 \ 6736, \\ a_3 &= 1.42141 \ 3741, \\ a_4 &= -1.45315 \ 2027, \\ a_5 &= 1.06140 \ 5429. \end{split}$$

Vectorizable $\exp(x)$ can be used to form vectorizable $\operatorname{erfc}(x)$ in the obvious way, but there is an alternative that can be used to form a more accurate result, which is desirable in molecular dynamics because it should give better energy conservation for a given timestep size or, alternatively, will allow a larger timestep size before numerical instability sets in.

The reciprocal required above is a special case; for molecular dynamics codes, the dividend will be in the single-precision range, and there is no point returning a result much more accurate than the one part in 10^5 of the complete approximation. This leads to a faster expression of reciprocal than the hardware double-precision divide will give (more on this below).

For molecular dynamics, we are interested in erfc to support electrostatics, $\operatorname{erfc}(x)$ for a limited domain of x, typically (-4, 4).

We partition the domain into equal-sized subdomains, say [-4, -3), [-3, -2), ..., [3, 4). Represent x as x0 + x1, where x1 is in [-0.5, 0.5) and x0 is an integer that identifies the subdomain. Each subdomain is associated with a polynomial approximator—a set of eight Chebyshev polynomials works well.

Select the appropriate polynomial by using x0 to index an array, and erfc(x) follows.

It is relatively easy to set the polynomials up to give $\operatorname{erfc}(x)$ accurate within $1 \operatorname{ulp}^7$ over the whole domain. It is desirable to use fsel to avoid misleading results in case the function is used for a value of x outside the designed domain.

It is possible to exploit the symmetry between $\operatorname{erfc}(x)$ and $\operatorname{erfc}(-x)$ to halve the number of tables required.

The required table for Chebyshev coefficients is machine-generated. The algorithm is shown in [3]. First, the Chebyshev coefficients for (d/dx) erfc(x) are generated using the analytic expression $(-2/\sqrt{\pi}) \exp(-x^2)$. Then the coefficients for erfc(x) are generated by applying the appropriate transformation on these.

Vectorizable derivative erfc

Derivative erfc is $(-2/\sqrt{\pi}) \exp(-x^2)$ and may be vectorized using vectorizable $\exp(x)$.

However, for molecular dynamics, it is desirable to have derivative erfc and erfc related accurately as derivative and integral of each other; this results in better reported energy conservation and better accuracy when switch or soft force cutoff is in use.

When the Abramowitz and Stegun approximation for erfc(x) is in use, we can differentiate the expression analytically. The derivative has an exponential term of the same form as the original, i.e., $\exp(-x^2)$, so a single evaluation of $\exp(X)$ will do duty for both functions when erfc and its derivative are both required in a computation.

When the multiple Chebyshev approach is in use, another set of Chebyshev polynomials can be used to deliver derivative erfc. If these are on the same subdomains, there is a computational economy.

Vectorizable erfc and derivative—piecewise cubic spline

In molecular dynamics, erfc and its derivative are used in the evaluation of electrostatic forces. Another approximation (particle mesh) means that it is not useful to get $\operatorname{erfc}(x)$ more precise than a relative error of about 10^{-5} ; the imprecision due to the "particle mesh" approximation dominates.

However, it is important for the values returned for erfc(x) and its derivative to be continuous and an analytic integral/derivative pair.

This can be satisfied by approximating (d/dx) erfc(x) with a set of cubic splines, matching the $(-2/\sqrt{\pi})$ exp $(-x^2)$ function and its derivative at the piecewise endpoints and integrating these polynomials to give piecewise-quartic approximations for erfc(x). A set of 64 piecewise-cubic polynomials and their integrals, for domains [0, (1/16), [(1/16), (2/16)), ..., [(63/16), (64/16)) gives the ability to approximate erfc(x) and its derivative to the required precision in the domain [0-4).

Vectorizable sin and cos

It is convenient to use a multiple-Chebyshev-polynomial approach for this as well. Divide $\sin(x)$ into domains [-45, 45), [45, 135), [135, 225), and [225, 315) degrees and repeat cyclically.

467

 $^{^7\}mbox{Ultimate limit of precision}\mbox{—one double-precision unit in the last place of the IEEE fraction part.}$

In domains [-45, 45) degrees and [135, 225) degrees, use a Chebyshev polynomial for $[\sin(x)/x]$, and multiply the result by x. This arranges that the result for small |x| can be within an ulp without requiring an excessive number of terms in the polynomial.

In domains [45, 135) and [225, 315), use a Chebyshev polynomial for cos(x).

The required Chebyshev polynomials are always even functions, such that f(x) = f(-x). This economizes on the computation.

After the polynomial evaluation, fix up the result using a suitable multiply and add, according to the subdomain.

Since cos(x) = sin(x + 90) with angles in degrees, cos and sin are related.

The tables are machine-generated offline, using higher-precision sin and cos functions and the algorithm in [3].

Vectorizable inverse sin and cos

Sometimes an application knows the sin and cos of an angle and wishes to evaluate the angle. Traditional arcsin involves an ambiguity as to the angle (as between 80 degrees or 100 degrees, for example), is ill-conditioned in ranges near 90 and 270 degrees, and usually involves a conditional branch and a square root.

By expressing it as

double acossin(double cos_angle, double sin_angle)

we can overcome these limitations and produce an implementation without branches.

We want to compute θ such that cosangle = $\cos \theta$ and sinangle = $\sin \theta$. Let c = |cosangle|, s = |sinangle|, and use the fsel instruction to obtain minsc = $\min(c, s)$ and $\max c = \max(c, s)$. Then $0 < \min c < \sqrt{0.5}$ and $\sqrt{0.5} < \max c < 1$, and there is an angle ϕ in [0, 45] degrees such that minsc = $\sin \phi$ and maxsc = $\cos \phi$.

Then we use the compound angle formula

$$\sin(a-b) = \sin(a)\cos(b) - \cos(a)\sin(b)$$

for b = 22.5 degrees to form the sine of an angle in [-22.5, 22.5] degrees, a value approximately in the domain [-0.38, 0.38].

Next, we use the Taylor expansion for $\arcsin(x)$, which converges quite rapidly over this domain, and we multiply by and add suitable constants (according to whether the original parameters were negated and which was smaller) to evaluate the called-for angle.

Vectorizable reciprocal square root

The natural way to express this is

double a=1.0/sqrt(x);

The IBM xlc compiler "-qnostrict" option causes this to be recognized as an idiom. There is a hardware reciprocal square root estimate instruction that gives a result accurate to five bits (POWER3)⁸ or 13 bits (Blue Gene/L)⁹ using lookup tables in the same amount of time that a multiply–add instruction would take; and the compiler generates a suitable number of iterations of Newton's method, or a suitable Taylor correction polynomial, to bring the result to double-precision accuracy. This avoids the division operation, and this direct "reciprocal square root" evaluation is faster than "square root" would be.

Newton's iteration is expressed in terms of multiplies and adds. The "divide by b" that seems to be required is replaced with "multiply by estimate of 1/b." The running estimate of 1/b is steadily improving, so quadratic convergence is maintained.

Vectorizable square root

The compiler recognizes the use of \sqrt{x} in a source program

double a=sqrt(x)

and rather than calling a function, it generates the fsqrt hardware instruction on the POWER3 processor. Blue Gene/L (BG/L) lacks this instruction, so the compiler, in effect, changes the computation to x/\sqrt{x} , which it implements with the help of the floating reciprocal square root estimate instruction. However, x/\sqrt{x} on its own will give "not-a-number" for x=0; the compiler generates additional code to handle this case correctly, but it is computationally expensive.

If the source program is not dependent on the result for x = 0, it will run better on both POWER3 and BG/L if coded as

double a=x/sqrt(x).

Vectorizable nearest_image_in_periodic_volume

Molecular dynamics is frequently run with periodic boundary conditions, i.e., where we imagine that the simulation volume is surrounded by a never-ending sequence of matching simulation volumes and the interaction force between a pair of atoms is calculated as if one of the atoms is influenced by only by the nearest of the 27 images of the other atom.

To find the nearest image vector between a pair of atoms, one algorithm would remap the simulation volume to a unit cube and scale the vector appropriately, drop the integer part of the x, y, and z coordinates of the vector (each of which would be -1, 0, or +1), and subtract

$$\left\{\begin{array}{c} 0.5\\0.5\\0.5\end{array}\right\},\,$$

giving a vector in

⁸Using a stepwise lookup.

⁹Using a piecewise-linear lookup, stepwise for "offset" and "slope," then passing through the multiply-add unit, which would otherwise be idle. It is better precision with the same transistor count.

$$\left\{\begin{array}{l}
\pm 0.5 \\
\pm 0.5 \\
\pm 0.5
\end{array}\right\},$$

and rescale back to the original coordinate system.

This appears to require divisions, tests, and conditional branches, but can actually be calculated without requiring any of these.

Vectorizable nearest integer

Vectorizable nearest_integer relies on the IEEE floating-point representation. Double precision takes 64 bits. The top bit is a sign bit, the next 11 bits are a binary exponent, and the remaining 52 bits are a binary mantissa, with an implied leading 1.

IEEE addition, with the hardware in its usual mode, is specified to round to the nearest representable number. Thus, if one takes a double-precision floating-point number and adds $(2^{52} + 2^{51})$, the fractional part is dropped. One can then subtract the $(2^{52} + 2^{51})$ and obtain the integer nearest to the number used to start.

There is a range around 2⁵² in which one obtains the nearest even integer, so this is not applicable in all cases, but is acceptable for molecular dynamics.

The compiler is being asked to generate code for (x+k)-k. It is important to prevent the optimizer from reassociating this to x+(k-k) and then optimizing this to x+0, that is, x.

The sample code does this by expressing $(x + k \times k1) \times k1 - k$, where k1 is 1.0, but the compiler is unable to tell that k1 is a constant. Since the basic floating-point instruction in the IBM Power Architecture* is multiply-add, this does not cause any extra processing cycles.

Vectorizable fragment_in_range

Molecular dynamics is generally concerned with forces between atoms in an imagined simulation box with periodic boundary conditions. Computation of the force between a pair of atoms is skipped if the atoms are more than a threshold distance apart.

For computational convenience, the atoms are grouped into fragments, typically a water molecule or a covalently bonded set of atoms within a larger molecule. The question arises, "Given fragment a, what is the set of fragments $\{b0, b1, \ldots\}$ such that an atom in a is in range of an atom in each bi, accounting for the periodic boundary?" The simulation will be functionally correct if extra fragments b are in the set, because the forces involved will evaluate to zero, but the simulation is more efficient with fewer extra fragments.

There is an algorithm for this that makes 100% use of the floating-point units (FPUs), successively slicing for slab, cylinder, and sphere.

There is another algorithm that does not use the FPUs; instead, it uses the integer units with wrap at 2³², successively slicing for slab, square prism, and cube. It then uses the FPUs to slice for sphere. On POWER3 and BG/L, the integer algorithm is faster. Either algorithm is sufficiently fast that our implementation of the molecular dynamics code does not have to maintain lists of fragments (known as *Verlet lists*) that may be within a "cut-off" distance.

These algorithms show how to do "vector compress," i.e., produce a vector that is a subset of a starting vector, including only those elements matching a selection criterion, without requiring a conditional branch.

A practical example—reciprocal square roots

The reciprocal square root function evaluates the reciprocal square root for each of nine values, as would be needed to support the calculation of distances between atoms in a pair of three-site¹⁰ water molecules.

Figure 1 shows source code and the compiler-generated assembly listing for the BG/L machine architecture. Compiler intermediate code with cycle counts and corresponding listings for POWER3 can be found at [1].

Values are copied into local variables to make it clear to the compiler what is intended if the function is called with source and target overlapping in memory.

POWER3 requires a vector of length at least 6 to keep the FPUs fully busy on this algorithm. BG/L requires a vector of length 10. In each case, the compiler finds an optimal instruction sequence; 100% floating-point utilization for POWER3 and 90% utilization (four "parallel" ops, then a "primary" op) for BG/L.

The "reciprocal square root estimate" instruction of POWER3 gives five bits of precision; that of BG/L gives 13 bits of precision. BG/L requires fewer follow-on instructions to converge the estimate to double precision. POWER3 uses a Newton–Raphson algorithm for convergence; BG/L uses a Taylor expansion.

The theoretical peak rate for each 440 processor core in the BG/L hardware is ten double-precision square roots per 40 clock cycles. By enclosing similar code in a "for" loop, it is possible to get the VisualAge* compiler to generate code that achieves within a few cycles of this rate.

Examining the machine code reveals that when a floating-point value is calculated, there are at least four other floating-point instructions between the calculation and the first use of the result. This keeps the floating-point pipeline full, allowing the FPU to operate at maximum throughput.

¹⁰A three-site water molecule is a model with electrostatic charges centered on the three atom locations. A five-site model has fractional electron charges at two other locations. Models run this way often match experiment more closely, and always take more computation for a simulation timestep.

```
IBM VisualAge* C++ Version 6.0.0.3 for Linux** on pSeries* --- > > > > OPTIONS SECTION < < < < <
               ARCH=440D
IGNERRNO
                               0PT=3
                                            ALIAS=ANSI
                                                             ALIGN=LINUXPPC
FLOAT=NOHSFLT:NORNDSNGL:NOHSSNGL:MAF:NORRM:FOLD:NONANS:RSQRT:FLTINT:NOEMULATE
               NOSTRICT
MAXMFM=-1
                                NOSTRICT_INDUCTION TBTABLE=SMALL
                                                                          LIST
SHOWINC=NOSYS: NOUSR
                                SOURCE
                                           STATICINLINE TMPLPARSE=NO
NOEH
>>>> SOURCE SECTION < < < < <
          1
              #include <math.h>
              void nineroot(double* f, const double* x)
              double x0 = x[0];
              double x1 = x[1]
double x2 = x[2]
          6
              double x3 = x[3]
              double x4 = x[4]
              double x5 = x[5]
         10
              double x6 = x[6]
              double x7 = x[7]
              double x8 = x[8]
              double r0 = 1.0/sqrt(x0);
              double r1 = 1.0/sqrt(x1)
         14
              double r2 = 1.0/sqrt(x2)
double r3 = 1.0/sqrt(x3)
         15
         16
              double r4 = 1.0/\text{sqrt}(x4)
double r5 = 1.0/\text{sqrt}(x5)
         17
              double r6 = 1.0/sqrt(x6);
         19
              double r7 = 1.0/\text{sqrt}(x7)
double r8 = 1.0/\text{sqrt}(x8)
         22
              f[0] = r0 ;
              f[1] = r1;

f[2] = r2;
         23
         24
         25
              f[3] = r3;
         26
              f[4] = r4
         27
              f[5] = r5
              f[6] = r6;
f[7] = r7;
         28
         29
         30
              f[8] = r8;
         31
-qdebug=BGL:PLST3:CYCLES:SHUTUP:HUMMER:LINUX:NEWSCHED1:NEWSCHED2:REGPRES:ADRA:ANTIDEP:
GPR's set/used:
                   SSUU SSSS S--- S--- ----
                   FPR's set/used:
                   SSSS SSSS SSSS SS-- ---- ---- S-S-S-
CCR's set/used:
    000000
                                  PDFF
                                           nineroot(double *, const double *)
                                  PROC
                                            f,x,gr3,gr4
                          602C0000 1 LR
0
    000000 ori
                                                gr12=gr1
                                            gr0=-16
0
    000004 addi
                     3800FFF0 1 LI
                                           gr1,#stack(gr1,-96)=gr1
gr12,#stack(gr12,gr0,0)=fp31,fp63
                      9421FFA0 1 ST4U
 0
    000008 stwu
                     7FECO7DC 1 SFPLU
 0
    00000C stfpdux
                     7FCCO7DC 1 SFPLU
    000010 stfpdux
                                            gr12,#stack(gr12,gr0,0)=fp30,fp62
0
 0
    000014 stfpdux
                      7FAC07DC
                               1 SEPLU
                                            gr12, #stack(gr12, gr0, 0) = fp29, fp61
 0
    000018 stfpdux
                     7F8C07DC 1 SFPLU
                                           gr12, #stack(gr12, gr0, 0)=fp28, fp60
 0
    00001C stfpdux
                     7F6C07DC 1 SFPLU
                                            gr12,#stack(gr12,gr0,0)=fp27,fp59
                      C9A40000 1 LFL
                                            fp13=(double)(gr4,0)
    000020 1fd
    000024 addi
                      38C00008 1 LI
                                            gr6=8
    000028 addi
                      38A00018 1 LI
                                            gr5=24
    00002C 1fsdx
                      7DA4319C 1 LFL
                                            fp45=(double)(gr4,gr6,0,trap=8)
    000030 addi
                      39000028 1 LI
                                            gr8=40
                      38C00038 1 LI
    000034 addi
11
                                            gr6=56
13
    000038 addis
                      3CE00000 1 LA
                                            gr7=.+CONSTANT_AREA%HI(gr2,0)
    00003C 1fd
                      C9640010
                                1 LFL
                                            fp11=(double)(gr4,16)
    000040 addi
                      38E70000 1 LA
                                            gr7=+CONSTANT_AREA%LO(gr7,0)
13
    000044 lfsdx
000048 lfd
                                            fp43=(double)(gr4,gr5,0,trap=24)
fp10=(double)(gr4,32)
                               1 LFL
                      7D64299C
                      C9440020
                                1 LFL
13
    00004C fprsqrte 0120681E 1 FPRSQRE
                                           fp9,fp41=fp13,fp45
    000050 lfsdx
                      7D44419C
                                1 LFL
                                            fp42=(double)(gr4,gr8,0,trap=40)
                      602C0000 1 LR
                                            gr12=gr1
31
    000054 ori
    000058 1fd
                      C9040030 1 LFL
                                            fp8=(double)(gr4,48)
10
31
    00005C addi
                      38000010 1 LI
                                            gr0=16
    000060 1fsdx
                      7D04319C 1 LFL
                                            fp40=(double)(gr4,gr6,0,trap=56)
11
   000064 fprsqrte 00E0581E 1 FPRSQRE fp7,fp39=fp11,fp43
```

470

```
000068 addi
                     38C00020 1 LI
13
                                           gr6=32
12
                                           fp31=(double)(gr4,64)
    00006C 1fd
                     CBE40040 1 LFL
                     7F672B1C 1
                                LFPS
                                           fp27,fp59=+CONSTANT_AREA(gr7,gr5,0,trap=24)
13
    000070 lfpsx
13
    000074 fpmul
                     01890250
                                 FPMUL
                                           fp12,fp44=fp9,fp41,fp9,fp41,fcr
    000078 fprsqrte 00C0501E
                                 FPRSORE
17
                                           fp6,fp38=fp10,fp42
                                 LFS
                                           fp30=+CONSTANT_AREA(gr7,4)
13
    00007C 1fs
                     C3C70004
19
    000080 fprsqrte 0080401E
                                 FPRSQRE
                                           fp4,fp36=fp8,fp40
    000084 lfpsx
                     7CA7331C
                                 LFPS
                                           fp5,fp37=+CONSTANT_AREA(gr7,gr6,0,trap=32)
13
                                           fp29=fp31
    000088 frsqrte
                                 FRSQRE
21
                     FFA0F834
    00008C 1fpsx
                                           fp3,fp35=+CONSTANT_AREA(gr7,gr8,0,trap=40)
13
                     70674310
                                 LFPS
                                           gr4=48
13
    000090 addi
                     38800030 1
                                 LI
    000094 fpmul
15
                     002701D0
                                 FPMUL
                                           fp1,fp33=fp7,fp39,fp7,fp39,fcr
                                           fp2,fp34=+CONSTANT_AREA(gr7,gr4,0,trap=48)
                     7C47231C
13
    000098 lfpsx
                                 LEPS
                                           fp13,fp45=fp27,fp59,fp13,fp45,fp12,fp44,fcr
    00009C fpmadd
                     01ADDB20 1
                                 FPMADD
13
                                 FPMUL
    0000A0 fpmul
                     00060190
                                           fp0,fp32=fp6,fp38,fp6,fp38,fcr
    0000A4 addi
                     38000008 1
23
                                           gr6=8
19
                     01840110
                                 FPMUL
    0000A8 fpmul
                                           fp12, fp44=fp4, fp36, fp4, fp36, fcr
    0000AC fmul
                     FF9D0772
                                 MFL
                                           fp28=fp29,fp29,fcr
21
                                 FPMADD
                                           fp1,fp33=fp27,fp59,fp11,fp43,fp1,fp33,fcr
fp10,fp42=fp27,fp59,fp10,fp42,fp0,fp32,fcr
15
    0000B0 fpmadd
                     002BD860
                                 FPMADD
    0000B4 fpmadd
                     014AD820
    0000B8 fpmadd
19
                     0108DB20
                                 FPMADD
                                           fp8,fp40=fp27,fp59,fp8,fp40,fp12,fp44,fcr
                                           fp31=fp27,fp31,fp28,fcr
21
    0000BC fmadd
                     FFFFDF3A
                                 FMA
13
    0000C0 fxcpmadd 001E2B64
                                 FXPMADD
                                           fp0,fp32=fp5,fp37,fp13,fp45,fp30,fp30,fcr
                                 FXPMADD
15
    0000C4 fxcpmadd 019E2864
                                           fp12,fp44=fp5,fp37,fp1,fp33,fp30,fp30,fcr
31
    0000C8 lfpdux
                     7F6C03DC
                                 LEPLU
                                           fp27,fp59,gr12=#stack(gr12,gr0,0)
17
    0000CC fxcpmadd 017E2AA4
                                 FXPMADD
                                           fp11,fp43=fp5,fp37,fp10,fp42,fp30,fp30,fcr
19
    0000D0 fxcpmadd 039E2A24
                                 FXPMADD
                                           fp28,fp60=fp5,fp37,fp8,fp40,fp30,fp30,fcr
                     FCRF2FRA
                                 FMA
                                           fp5=fp5,fp31,fp30,fcr
    0000D4 fmadd
                                 FPMADD
13
    0000D8 fpmadd
                     000D1820
                                           fp0,fp32=fp3,fp35,fp13,fp45,fp0,fp32,fcr
15
    0000DC fpmadd
                     01811B20
                                 FPMADD
                                           fp12, fp44=fp3, fp35, fp1, fp33, fp12, fp44, fcr
                                           fp11,fp43=fp3,fp35,fp10,fp42,fp11,fp43,fcr
17
    0000E0 fpmadd
                     016A1AE0
                                 FPMADD
                                 FPMADD
                                           fp30,fp62=fp3,fp35,fp8,fp40,fp28,fp60,fcr
19
    0000E4 fpmadd
                     03C81F20
    0000E8 fmadd
                     FCBF197A
                                 FΜΔ
                                           fp5=fp3,fp31,fp5,fcr
13
    0000EC fpmadd
                     000D1020
                                 FPMADD
                                           fp0,fp32=fp2,fp34,fp13,fp45,fp0,fp32,fcr
                                           fp28,fp60,gr12=#stack(gr12,gr0,0)
    0000F0 lfpdux
                                 LFPLU
31
                     7F8C03DC
                                           fp3,fp35=fp2,fp34,fp1,fp33,fp12,fp44,fcr
    0000F4 fpmadd
                     00611320
                                 FPMADD
15
                                           fp11,fp43=fp2,fp34,fp10,fp42,fp11,fp43,fcr
    0000F8 fpmadd
                                 FPMADD
                     016A12E0
19
    0000FC fpmadd
                     018817A0
                                 FPMADD
                                           fp12,fp44=fp2,fp34,fp8,fp40,fp30,fp62,fcr
21
    000100 fmadd
                     FCBF117A
                                           fp5=fp2,fp31,fp5,fcr
                                 FMA
13
    000104 fpmul
                     000D0010
                                 FPMUL
                                           fp0,fp32=fp13,fp45,fp0,fp32,fcr
15
    000108 fpmul
                     002100D0
                                 FPMUL
                                           fp1,fp33=fp1,fp33,fp3,fp35,fcr
                     004A02D0
                                 FPMUI
                                           fp2,fp34=fp10,fp42,fp11,fp43,fcr
    00010C fpmul
19
    000110 fpmul
                     00680310
                                 FPMUL
                                           fp3,fp35=fp8,fp40,fp12,fp44,fcr
21
    000114 fmul
                     FCBF0172
                                 MFL
                                           fp5=fp31,fp5,fcr
13
    000118 fpmadd
                     00094820
                                 FPMADD
                                           fp0,fp32=fp9,fp41,fp9,fp41,fp0,fp32,fcr
                                 FPMADD
                                           fp1,fp33=fp7,fp39,fp7,fp39,fp1,fp33,fcr
    00011C fpmadd
                     00273860 1
15
                                 FPMADD
    000120 fpmadd
                     004630A0 1
                                           fp2,fp34=fp6,fp38,fp6,fp38,fp2,fp34,fcr
19
    000124 fpmadd
                     006420E0
                                 FPMADD
                                           fp3,fp35=fp4,fp36,fp4,fp36,fp3,fp35,fcr
21
    000128 fmadd
                     FC9DE97A
                                 FMA
                                           fp4=fp29,fp29,fp5,fcr
22
                     D8030000 1
                                 STFL
                                           (double)(gr3,0)=fp0
    00012C stfd
    000130 stfsdx
                     7C03359C
                                 STFL
                                           (double)(gr3,gr6,0,trap=8)=fp32
29
    000134 addi
                     38000038 1
                                           gr6=56
31
    000138 lfpdux
                     7FAC03DC
                                 LFPLU
                                           fp29,fp61,gr12=#stack(gr12,gr0,0)
24
    00013C stfd
                     D8230010 1
                                 STFL
                                           (double)(gr3,16)=fp1
    000140 stfsdx
000144 lfpdux
                     7C232D9C
7FCC03DC
25
                                 STEL
                                           (double)(gr3,gr5,0,trap=24)=fp33
31
                                 LFPLU
                                           fp30,fp62,gr12=#stack(gr12,gr0,0)
26
    000148 stfd
                     D8430020 1
                                 STFL
                                           (double)(gr3,32)=fp2
                                           (double)(gr3,gr8,0,trap=40)=fp34
fp31,fp63,gr12=#stack(gr12,gr0,0)
27
    00014C stfsdx
                     7C43459C
                                 STFL
    000150 lfpdux
31
                     7FEC03DC 1
                                LFPLU
    000154 stfd
                     D8630030 1
                                           (double)(gr3,48)=fp3
                                STFL
    000158 addi
                     38210060 1 AI
                                           gr1=gr1,96,gr12
    00015C stfsdx
                     7C63359C 1 STFL
                                           (double)(gr3,gr6,0,trap=56)=fp35
29
                                           (double)(gr3,64)=fp4
    000160 stfd
                     D8830040 1 STFL
    000164 bclr
                     4E800020 0 BA 1r
    Instruction count 90
    000000 BF800000 3E8C0000 BEA00000 3EC00000 BF000000 49424D20
    000018 BF800000 BF800000 BEA00000 BEA00000 3EC00000 3EC00000
    000030 BF000000 BF000000
```

Figure 1

Code tuned for Blue Gene/L.

Each 440 processor core in BG/L can dispatch two instructions per clock cycle. Each has one floating-point instruction pipeline, one load/store pipeline, two integer pipelines, and one branch pipeline. The 440 does not have "out-of-order" processing capability or "rename" registers; both of these cost transistors and electrical energy, which the BG/L design puts to better use elsewhere. Therefore, we are dependent for good performance on the ability of the compiler to schedule instructions and allocate registers in the optimal patterns for the real hardware. The compiler effort to exploit the two-instructions-per-cycle capability can be seen in the assembly fragment shown in the figure.

IBM Power Architecture defines 32 double-precision floating-point registers. Floating-point operations, in general, work on three operand registers and a result register. For example, "floating-point multiply–add" might evaluate $f_1 = f_2 + (f_3 \times f_4)$ in a single pass through the FPU. The Blue Gene/L chip has an additional 32 double-precision floating-point registers, an additional FPU, and extensions to the instruction decoder to implement "parallel" versions of these, such as

$$f_1 = f_2 + (f_3 \times f_4), \ s_1 = s_2 + (s_3 \times s_4)$$

and various "cross" versions, such as

$$f_1 = f_2 + (f_3 \times f_4), \ s_1 = s_2 + (s_3 \times f_4)$$

or

$$f_1 = f_2 + (f_3 \times s_4), \ s_1 = s_2 + (s_3 \times f_4),$$

and an "antisymmetric" version,

$$f_1 = f_2 + (f_3 \times f_4), \ s_1 = s_2 - (s_3 \times s_4).$$

Several of these can be seen in the assembly fragment shown in Figure 1.

Conclusion

When we started designing the protein folding application, we imagined that we would be unable to fully exploit the floating-point capacity of a modern uniprocessor because of the sequential nature of the scalar library functions, which we expected would limit the performance of the application. This would limit the fraction of peak flops that we would achieve on the massively parallel machine we had in mind.

Working with the life scientists on the actual requirements of the application and with the compiler programmers on optimization capabilities has resulted in techniques for evaluating the required functions and presenting the machine with sufficient independent work that we, in fact, achieved a high fraction of peak flops on a uniprocessor. This is expressible as source code in a high-level language, such as C++; it has not been necessary to hand-code anything in assembler.

Knowing that we can well exploit a uniprocessor, we are motivated to use the machine efficiently as we take the next steps to scale up to the 40,960 processors that will be available to us in our contribution to the "grand challenge" of understanding the Protein Economy.¹¹

Blue Gene/L can do more than just lead the world at linear algebra. It takes some thought, but the results are worth the effort.

Acknowledgments

The Blue Gene/L project has been supported and partially funded by the Lawrence Livermore National Laboratory on behalf of the United States Department of Energy under Lawrence Livermore National Laboratory Subcontract No. B517552.

*Trademark or registered trademark of International Business Machines Corporation.

**Trademark or registered trademark of Linus Torvalds in the United States, other countries, or both.

References

- See http://www.research.ibm.com/bluegene/jrd_2005/cust_math/ index.html.
- Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, M. Abramowitz and I. A. Stegun, Eds., U.S. Department of Commerce, Washington, DC, 1972.
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, 1992.

Received May 5, 2004; accepted for publication August 17, 2004; Internet publication April 12, 2005

¹¹Proteomics: the Protein Economy. Deoxyribonucleic acid (DNA) stores information. We know; we have sequenced it. Ribonucleic acid (RNA) copies information. We know; we can make it happen in the laboratory. Ribosome (a protein) reads the RNA and assembles a protein out of amino acids according to the recipe it has read. We know; every living thing on earth works in much the same way. The protein folds into its equilibrium structure, more or less, quickly or slowly. We're curious about this. Function follows form, and all the diversity of life happens.

Robert F. Enenkel IBM Software Group, Toronto Laboratory, 8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7 (enenkel@ca.ibm.com). Dr. Enenkel currently works in the Optimizing Compiler Group at the IBM Toronto Laboratory; he was previously a Research Associate at the IBM Centre for Advanced Studies (CAS). He worked at IBM on the development of a C compiler and its math library, and developed parallel methods for random-number generation for Fortran and highperformance Fortran compilers prior to joining the CAS. He received his B.S., M.S., and Ph.D. degrees from the University of Toronto, with thesis work in the area of numerical methods for the parallel solution of initial value problems for ordinary differential equations. He currently performs research and development in numerical computing as it relates to compilers and operating systems, including floating-point arithmetic, mathematical function libraries, and the performance tuning of algorithms. He is also interested in parallel computing and the application of numerical methods to practical problems in various areas of science. He has received two IBM Invention Achievement Awards and several IBM Author Recognition Awards. Dr. Enenkel is a member of the Society for Industrial and Applied Mathematics. More information may be found on his Web page at https://www-927.ibm.com/ibm/cas/toronto/people/ members/renekel.shtml.

Blake G. Fitch IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (bgf@us.ibm.com). Mr. Fitch joined the IBM Thomas J. Watson Research Center in 1985 as a student. He received his B.S. degree in computer science from Antioch College in 1987 and remained at IBM to pursue interests in parallel systems. He joined the Scalable Parallel Systems Group in 1990, contributing to research and development that culminated in the IBM scalable parallel system (SP*) product. His research interests have focused on application frameworks and programming models suitable for production parallel computing environments. Practical application of this work includes contributions to the transputer-based control system for the IBM CMOS S/390* mainframes (IBM Boeblingen, Germany, 1994) and the architecture of the IBM Automatic Fingerprint Identification System parallel application (IBM Hursley, UK, 1996). Mr. Fitch joined the Blue Gene project in 1999 as the application architect for Blue Matter, a scalable molecular dynamics package.

Robert S. Germain IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (rgermain@us.ibm.com). Dr. Germain manages the Biomolecular Dynamics and Scalable Modeling Group within the Computational Biology Center at the IBM Thomas J. Watson Research Center. He received his A.B. degree in physics from Princeton University in 1982 and his M.S. and Ph.D. degrees in physics from Cornell University. He joined the Thomas J. Watson Research Center as a Research Staff Member in the Physical Sciences Department after receiving his doctorate in 1989, and later the VLSI/Scalable Parallel Systems Packaging Department. Dr. Germain was project leader, from 1995 to 1998, for the development of a largescale fingerprint identification system using an indexing scheme (FLASH) developed at IBM Research. He has been responsible for the science and associated application portions of the Blue Gene project since 2000. His current research interests include the parallel implementation of algorithms for high-performance scientific computing, the development of new programming models for parallel computing, and applications of highperformance computing to challenging scientific problems in computational biology. Dr. Germain is a member of the IEEE and the American Physical Society.

Fred G. Gustavson IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (gustav@us.ibm.com). Dr. Gustavson leads the Algorithms and Architectures project in the Mathematical Sciences Department at the IBM Thomas J. Watson Research Center. He received his B.S. degree in physics, and his M.S. and Ph.D. degrees in applied mathematics, all from Rensselaer Polytechnic Institute. He joined IBM Research in 1963. One of his primary interests has been in developing theory and programming techniques for exploiting the sparseness inherent in large systems of linear equations. Dr. Gustavson has worked in the areas of nonlinear differential equations, linear algebra, symbolic computation, computer-aided design of networks, design and analysis of algorithms, and programming applications. He and his group are currently engaged in activities that are aimed at exploiting the novel features of the IBM family of RISC processors. These include hardware design for divide and square root, new algorithms for the IBM Power Family* of processors for the Engineering and Scientific Subroutine Library (ESSL) and for other math kernels, and parallel algorithms for distributed and shared memory processors. Dr. Gustavson has received an IBM Outstanding Contribution Award, an IBM Outstanding Innovation Award, an IBM Invention Achievement Award, two IBM Corporate Technical Recognition Awards, and a Research Division Technical Group Award. He is a Fellow of the IEEE.

Allan Martin IBM Software Group, Toronto Laboratory, 8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7 (armartin@ca.ibm.com). Mr. Martin graduated from the University of Toronto with a B.S. degree in engineering science in 1999. He has worked in compiler back-end development since 1999, and has expertise in the area of modulo scheduling and other loop optimizations. He has implemented and continues to develop a version of swing modulo scheduling in the compiler that includes a number of algorithm enhancements that help to achieve near-optimal performance.

Mark Mendell IBM Software Group, Toronto Laboratory, 8200 Warden Avenue, Markham, Ontario, Canada L6G 1C7 (mendell@ca.ibm.com) Mr. Mendell graduated from Cornell University in 1980 with a B.S. degree in computer engineering. He received his M.S. degree in computer science from the University of Toronto in 1983. At the University of Toronto, he helped to develop the Concurrent Euclid, Turing, and Turing Plus compilers and worked on the Tunis operating system project. In 1991 he joined IBM, working initially on the AIX* C++ compiler from V1.0 to V5.0. He has been the team leader for the TOBEY Optimizer Group since 2000. Mr. Mendell implemented the automatic compiler support of the dual FPU for the BG/L project.

Jed W. Pitera IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (pitera@us.ibm.com). Dr. Pitera is a Research Staff Member in the Science and Technology Department at the IBM Almaden Research Center. His research focuses on the use of computer simulation to address questions in biology and chemistry, particularly in the areas of protein folding, molecular recognition, and self-assembly. He received undergraduate training in biology and chemistry at the California Institute of Technology, where he worked in Dr. Pamela Bjorkman's Protein Crystallography Group. He subsequently pursued graduate studies in biophysics at the University of California at San Francisco (UCSF) in the laboratory of Dr. Peter Kollman. Dr. Pitera developed an interest in the use of biomolecular simulation and free-energy calculations in the rational design of proteins and pharmaceuticals while in Dr. Kollman's group. He pursued similar work in a postdoctoral

position with Prof. Dr. Wilfred van Gunsteren at the Swiss Federal Institute of Technology Zurich (ETH), where his research focused on novel methods of calculating free energies for ligand design. He has worked as a member of the IBM Blue Gene Project Science and Application team since February of 2001. Dr. Pitera is also an adjunct assistant professor in the UCSF Department of Pharmaceutical Chemistry.

Michael C. Pitman IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (pitman@watson.ibm.com). Dr. Pitman received his Ph.D. degree in chemistry in 1995 from the University of California at Santa Cruz. He joined the Biomolecular Dynamics and Scalable Modeling Group within the Computational Biology Center at the IBM Thomas J. Watson Research Center soon afterward and continued work in the area of computational drug design methods. He began a leading role in the Blue Gene Protein Science program in 2001, focusing on large-scale membrane and membrane protein simulation. His research interests are focused on understanding the nature of protein—membrane interactions. Dr. Pitman conducts large-scale all-atom simulations of membrane proteins in explicit, biologically relevant environments.

Aleksandr Rayshubskiy IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (arayshu@us.ibm.com). Mr. Rayshubskiy received an M.E. degree in computer science from Cornell University in 2002. He worked in the Biomolecular Dynamics and Scalable Modeling Group within the Computational Biology Center at the IBM Thomas J. Watson Research Center in 2000 as an intern, joining the group as a full-time software engineer in 2003. Mr. Rayshubskiy worked primarily on the development of the Blue Matter molecular dynamics package. His current research interests include parallel applications, load balancing, performance tuning, and lower-level hardware interfaces to the application.

Frank Suits IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (suits@us.ibm.com). Dr. Suits is a member of the Biomolecular Dynamics and Scalable Modeling Group within the Computational Biology Center at the IBM Thomas J. Watson Research Center. This group is responsible for the software and science involved in the protein simulations that are integral to the Blue Gene project. Although his degree is in optical physics, he has worked on a wide variety of projects at the IBM Thomas J. Watson Research Center, including optical storage, magnetic storage materials, scientific visualization, and queuing systems. At present, Dr. Suits is focusing on the analysis of the protein and membrane simulations currently running on BG/L.

William C. Swope IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120 (swope@almaden.ibm.com). Dr. Swope has been engaged with the IBM Blue Gene Protein Science Project since 2000, with strong emphasis on biomolecular simulation methodology and the development of practical techniques to simulate protein folding kinetics and thermodynamics. He joined the Science and Technology Department in 1992 at the IBM Almaden Research Center, where he has also been involved in scientific software development for computational chemistry applications and in technical data management issues related to life sciences. He began with IBM in 1982 at IBM Instruments, Inc., an IBM subsidiary that developed scientific instrumentation, where he worked in an advanced processor design group. He also worked for six years

at the IBM Scientific Center in Palo Alto, California, where he supported scientific customers of IBM in their development of software for numerically intensive computation. He received his undergraduate degree in chemistry and physics from Harvard University and his Ph.D. degree in quantum chemistry from the University of California at Berkeley. He then performed postdoctoral research on the statistical mechanics of solvation and condensed phases in the chemistry department at Stanford University. Dr. Swope maintains a number of scientific relationships and collaborations with academic and commercial scientists involved in the life sciences, specifically related to drug development.

T. J. Christopher Ward IBM United Kingdom Limited, Hursley House, Hursley Park, Winchester, Hants SO21 2JN, England (tjcw@uk.ibm.com). Mr. Ward graduated from Cambridge University in 1982 with a first-class honors degree in electrical engineering. He has worked for IBM in various hardware and software development roles, always finding ways of improving performance of products and processes. He was a member of the IBM Computational Biology Center at the IBM Thomas J. Watson Research Center from 2001 to 2004, arranging for the Blue Gene/L hardware and compilers and the Blue Matter protein folding application to work effectively together and achieve the performance entitlement. Mr. Ward currently works for IBM Hursley as part of the IBM Center for Business Optimization, enabling customers of IBM to take advantage of the opportunities afforded by the rapidly decreasing cost of supercomputing services.