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While developing the protein folding application for the IBM Blue
Genet/L supercomputer, some frequently executed computational
kernels were encountered. These were significantly more complex
than the linear algebra kernels that are normally provided as tuned
libraries with modern machines. Using regular library functions for
these would have resulted in an application that exploited only
5–10% of the potential floating-point throughput of the machine.
This paper is a tour of the functions encountered; they have been
expressed in Cþþ (and could be expressed in other languages such
as Fortran or C). With the help of a good optimizing compiler,
floating-point efficiency is much closer to 100%. The protein
folding application was initially run by the life science researchers
on IBM POWER3e machines while the computer science
researchers were designing and bringing up the Blue Gene/L
hardware. Some of the work discussed resulted in enhanced
compiler optimizations, which now improve the performance
of floating-point-intensive applications compiled by the IBM
VisualAget series of compilers for POWER3, POWER4e,
POWER4þe, and POWER5e. The implementations are offered
in the hope that they may help in other implementations of
molecular dynamics or in other fields of endeavor, and in the hope
that others may adapt the ideas presented here to deliver additional
mathematical functions at high throughput.

Molecular dynamics

Sequencing the genome has enabled scientists to read the

‘‘words’’ in the building blocks of life. All-atom molecular

dynamics is one of the tools in the grand challenge of

understanding the stories told by those words.

We want to model the time–series behavior of a

covalently bonded structure, such as a protein molecule

that is surrounded by water molecules, as it would be in a

living cell. We usually imagine a single protein molecule

in a cubic box of a few thousand water molecules, and

then imagine that there are identical boxes stacked in

all directions, rather like atomic-scale synchronized

swimming, with the swimmer made up of balls held

together with springs. To understand the behavior of a

single ‘‘spring’’ would require quantum mechanics, but on

the larger scale of wanting to understand the ‘‘swimmer,’’

classical mechanics is sufficient.

Most of the forces to be calculated are the long-range

electrostatic forces between atoms in separate water

molecules, but the interesting behavior is related to the

short-range forces along the springs and between various

three-atom and four-atom bonded groups. This requires

calculation of large quantities of square roots and their

reciprocals (for multiplying and dividing by distances);

error functions (one way of approaching the

electrostatics); angles (between pairs of springs); periodic

images (to work out which swimmer a water molecule is

nearest to); and polynomials (for Lennard–Jones bonded

forces and to softly switch off forces as pairs of atoms

move farther apart and fade to the background).

Custom math functions

Source code for the functions presented here can be found

at [1].
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Vectorizable1 math functions

The IBM xlc compiler can schedule instructions flexibly

within a basic block, that is, a sequence of code with no

conditional branches and no entry points other than the

first instruction. This paper explains how to exploit this

for functions commonly used in molecular dynamics; if

the compiler can be enabled to see a sufficient number

of independent instructions, it will schedule instructions

to avoid stalls in the floating-point execution pipeline,

and so the hardware will run at a high fraction of

peak throughput. To make good use of the compiler

instruction scheduling facility, the use of branch

instructions should be minimized. This means that special

cases and error handling should be omitted or done in a

way that avoids branches. Therefore, all of these math

functions will return a scalar result, will not set errno2,

and will not signal a NaN (a not-a-number exception

value in IEEE floating-point) in any useful way. Wrapper

code could be placed around the functions to produce

conventional results for out-of-domain cases, for

example, to produce NaN for log(�1), but for molecular

dynamics, we are generally confident that they will not be

asked to process out-of-domain cases, and so the extra

computation involved in obtaining conventional answers

is best skipped.

One way to enhance scheduling opportunities by

exposing independent instructions to the compiler is to

write each independent computation explicitly in the

source code. Another way is to compute the same basic

block repeatedly with different arguments in a counted

loop and verify that the compiler can see that loop

iterations are independent; the compiler then applies loop

transformation optimizations, such as unrolling3 and

modulo scheduling4, to construct the appropriate work

itself. Both techniques aim to reduce stalls5.

Vectorizable log

The function log may be vectorized by appreciating that a

floating-point number is represented as an exponent k

and a mantissa (also called a fraction) m; i.e., as m3 2k,

for some m in [1.0, 2.0) and for integer k,

lnðm3 2
kÞ ¼ lnðmÞ þ lnð2kÞ:

The approximation is produced as three terms, which

are added together to give the result.

The variable k is extracted as the exponent part of the

argument, giving the first term of the result as k3 ln(2).

The variable m is expressed as m03 m1, where m0 is

1þ (a/16) for integer a in (0, 15), and m1 is m/[1þ (a/16)].

The variable a is determined by extracting the first four

bits after the binary point from m.

The expression 1/[1 þ (a/16)] is looked up in a 16-

element table, and this gives a value for m1 roughly

between 1 and [1 þ (1/16)].

The second term of the result is ln(m0), which comes

from another 16-element table.

The third term of the result comes from a Taylor series

for ln(1þ x). This converges quite rapidly for x , (1/16).

The full result then is

lnðaÞ ’ k3 lnð2Þ þ LookupðaÞ þ TaylorSeriesðxÞ:

An improvement comes from a slight modification,

where m1 is arranged to be in the domain [1 � (1/32),

1 þ (1/32)), and so the Taylor series is used for

jxj , (1/32).

Vectorizable exp

The function exp may be vectorized by using the relation

expða0þ a1þ a2þ a3Þ
¼ expða0Þ3 expða1Þ3 expða2Þ3 expða3Þ:

The variable a0 is extracted as the integer part of the

argument; a1 is the next four bits; a2 is the subsequent

four bits; a3 is the remaining bits; a3 is a number between

0 and (1/256).
The variable a0 is shifted into the exponent of the

resulting floating-point number; exp(a1) and exp(a2)

are looked up in 16-element tables; exp(a3) is estimated

by a Taylor series, which converges quite rapidly for

0 , a3 , (1/256).

Again, an improvement comes from a slight

modification, setting a3 in the domain

[�(1/512), þ (1/512)).

IBM PowerPC* and follow-on hardware supports a

floating-point ‘‘select’’ instruction that performs the

equivalent of

double fsel (double a, double b, double c)

f
if (a .=0 . 0) return b ; return c

g

as a single hardware instruction. This can be used to

arrange that exp(x) returns 0 for a sufficiently large

negative argument and Inf 6 for a sufficiently large

positive argument without causing a branch in the

generated code.

1On Blue Gene*/L, if code has dependencies such that a, b, and c must be computed
in that order, with b depending on a and c depending on b, and no other work is
available, the machine will deliver 10% of its theoretical peak performance. Here, the
term vectorizable stands for assorted techniques to get closer to 100%.
2A global variable used to indicate which error has occurred.
3Grouping of multiple loop iterations so that the instructions from multiple iterations
can be worked on in parallel.
4Software pipelining of loops—rearranging them to work on parts of more than one
iteration at a time, the way a button is sewn on a shirt.
5Situations in which an instruction must wait before entering the processor because
the calculations which produce one or more operands have not yet completed.

6A bit pattern representing infinity, or larger than the largest representable value, in
IEEE floating-point.
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Vectorizable erf/erfc—piecewise Chebyshev

Traditionally in molecular dynamics codes, erfc(x) has

been approximated using the approximation for erf(x) in

Section 7.1.26 of [2], related by erfc(x)þ erf (x) = 1. The

Abramowitz and Stegun approximation from the

reference is

erfx ¼ 1� ða
1
tþ a

2
t
2 þ a

3
t
3 þ a

4
t
4 þ a

5
t
5Þe�x

2

þ �ðxÞ;

t ¼ 1

1þ px
;

j�ðxÞj � 1:53 10
�7
;

p ¼ 0:32759 11;

a
1
¼ 0:25482 9592;

a
2
¼ �0:28449 6736;

a
3
¼ 1:42141 3741;

a
4
¼ �1:45315 2027;

a
5
¼ 1:06140 5429:

Vectorizable exp(x) can be used to form vectorizable
erfc(x) in the obvious way, but there is an alternative that
can be used to form a more accurate result, which is
desirable in molecular dynamics because it should give
better energy conservation for a given timestep size or,
alternatively, will allow a larger timestep size before
numerical instability sets in.

The reciprocal required above is a special case; for

molecular dynamics codes, the dividend will be in the

single-precision range, and there is no point returning a

result much more accurate than the one part in 105 of the

complete approximation. This leads to a faster expression

of reciprocal than the hardware double-precision divide

will give (more on this below).

For molecular dynamics, we are interested in erfc to

support electrostatics, erfc(x) for a limited domain of x,

typically (�4, 4).
We partition the domain into equal-sized subdomains,

say [�4, �3), [�3, �2), . . , [3, 4). Represent x as x0 þ x1,

where x1 is in [�0.5, 0.5) and x0 is an integer that

identifies the subdomain. Each subdomain is associated

with a polynomial approximator—a set of eight

Chebyshev polynomials works well.

Select the appropriate polynomial by using x0 to index

an array, and erfc(x) follows.

It is relatively easy to set the polynomials up to give

erfc(x) accurate within 1 ulp7 over the whole domain. It is

desirable to use fsel to avoid misleading results in case the

function is used for a value of x outside the designed

domain.

It is possible to exploit the symmetry between erfc(x)

and erfc(�x) to halve the number of tables required.

The required table for Chebyshev coefficients is

machine-generated. The algorithm is shown in [3]. First,

the Chebyshev coefficients for (d/dx) erfc(x) are generated

using the analytic expression ð�2=
ffiffiffi
p

p
Þ exp(�x2). Then the

coefficients for erfc(x) are generated by applying the

appropriate transformation on these.

Vectorizable derivative erfc

Derivative erfc is ð�2=
ffiffiffi
p

p
Þ exp(�x2) and may be

vectorized using vectorizable exp(x).

However, for molecular dynamics, it is desirable

to have derivative erfc and erfc related accurately as

derivative and integral of each other; this results in better

reported energy conservation and better accuracy when

switch or soft force cutoff is in use.

When the Abramowitz and Stegun approximation

for erfc(x) is in use, we can differentiate the expression

analytically. The derivative has an exponential term of

the same form as the original, i.e., exp(�x2), so a single

evaluation of exp(X) will do duty for both functions when

erfc and its derivative are both required in a computation.

When the multiple Chebyshev approach is in use,

another set of Chebyshev polynomials can be used

to deliver derivative erfc. If these are on the same

subdomains, there is a computational economy.

Vectorizable erfc and derivative—piecewise cubic

spline

In molecular dynamics, erfc and its derivative are used

in the evaluation of electrostatic forces. Another

approximation (particle mesh) means that it is not useful

to get erfc(x) more precise than a relative error of about

10�5; the imprecision due to the ‘‘particle mesh’’

approximation dominates.

However, it is important for the values returned for

erfc(x) and its derivative to be continuous and an analytic

integral/derivative pair.

This can be satisfied by approximating (d/dx) erfc(x)

with a set of cubic splines, matching the ð�2=
ffiffiffi
p

p
Þ exp(�x2)

function and its derivative at the piecewise endpoints and

integrating these polynomials to give piecewise-quartic

approximations for erfc(x). A set of 64 piecewise-

cubic polynomials and their integrals, for domains

[0, (1/16)), [(1/16), (2/16)), . . , [(63/16), (64/16)) gives

the ability to approximate erfc(x) and its derivative

to the required precision in the domain [0–4).

Vectorizable sin and cos

It is convenient to use a multiple-Chebyshev-polynomial

approach for this as well. Divide sin(x) into domains

[�45, 45), [45, 135), [135, 225), and [225, 315) degrees and

repeat cyclically.
7Ultimate limit of precision—one double-precision unit in the last place of the IEEE
fraction part.
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In domains [�45, 45) degrees and [135, 225) degrees,

use a Chebyshev polynomial for [sin(x)/x], and multiply

the result by x. This arranges that the result for small jxj
can be within an ulp without requiring an excessive

number of terms in the polynomial.

In domains [45, 135) and [225, 315), use a Chebyshev

polynomial for cos(x).

The required Chebyshev polynomials are always even

functions, such that f (x) = f (�x). This economizes on the

computation.

After the polynomial evaluation, fix up the result using

a suitable multiply and add, according to the subdomain.

Since cos(x) = sin(x þ 90) with angles in degrees, cos

and sin are related.

The tables are machine-generated offline, using higher-

precision sin and cos functions and the algorithm in [3].

Vectorizable inverse sin and cos

Sometimes an application knows the sin and cos of an

angle and wishes to evaluate the angle. Traditional arcsin

involves an ambiguity as to the angle (as between 80

degrees or 100 degrees, for example), is ill-conditioned in

ranges near 90 and 270 degrees, and usually involves a

conditional branch and a square root.

By expressing it as

double acossin(double cos_angle, double sin_angle)

we can overcome these limitations and produce an

implementation without branches.

We want to compute h such that cosangle = cos h and

sinangle = sin h. Let c = jcosanglej, s = jsinanglej, and
use the fsel instruction to obtain minsc = min(c, s) and

maxsc = max(c, s). Then 0 , minsc , =0.5 and

=0.5 , maxsc , 1, and there is an angle / in [0, 45]

degrees such that minsc = sin / and maxsc = cos /.
Then we use the compound angle formula

sin(a� b) = sin(a) cos(b)� cos(a) sin(b)

for b = 22.5 degrees to form the sine of an angle in

[�22.5, 22.5] degrees, a value approximately in the

domain [�0.38, 0.38].
Next, we use the Taylor expansion for arcsin(x), which

converges quite rapidly over this domain, and we multiply

by and add suitable constants (according to whether the

original parameters were negated and which was smaller)

to evaluate the called-for angle.

Vectorizable reciprocal square root

The natural way to express this is

double a=1.0/sqrt (x) ;

The IBM xlc compiler ‘‘-qnostrict’’ option causes this to

be recognized as an idiom. There is a hardware reciprocal

square root estimate instruction that gives a result

accurate to five bits (POWER3)8 or 13 bits (Blue

Gene/L)9 using lookup tables in the same amount of

time that a multiply–add instruction would take; and

the compiler generates a suitable number of iterations

of Newton’s method, or a suitable Taylor correction

polynomial, to bring the result to double-precision

accuracy. This avoids the division operation, and this

direct ‘‘reciprocal square root’’ evaluation is faster than

‘‘square root’’ would be.

Newton’s iteration is expressed in terms of multiplies

and adds. The ‘‘divide by b’’ that seems to be required is

replaced with ‘‘multiply by estimate of 1/b.’’ The running

estimate of 1/b is steadily improving, so quadratic

convergence is maintained.

Vectorizable square root

The compiler recognizes the use of=x in a source program

double a=sqrt (x)

and rather than calling a function, it generates the fsqrt

hardware instruction on the POWER3 processor. Blue

Gene/L (BG/L) lacks this instruction, so the compiler,

in effect, changes the computation to x/=x, which it

implements with the help of the floating reciprocal square

root estimate instruction. However, x/=x on its own will

give ‘‘not-a-number’’ for x = 0; the compiler generates

additional code to handle this case correctly, but it is

computationally expensive.

If the source program is not dependent on the result

for x = 0, it will run better on both POWER3 and

BG/L if coded as

double a=x/sqrt (x) .

Vectorizable nearest_image_in_periodic_volume

Molecular dynamics is frequently run with periodic

boundary conditions, i.e., where we imagine that the

simulation volume is surrounded by a never-ending

sequence of matching simulation volumes and the

interaction force between a pair of atoms is calculated

as if one of the atoms is influenced by only by the nearest

of the 27 images of the other atom.

To find the nearest image vector between a pair of

atoms, one algorithm would remap the simulation volume

to a unit cube and scale the vector appropriately, drop the

integer part of the x, y, and z coordinates of the vector

(each of which would be �1, 0, or þ1), and subtract

0:5
0:5
0:5

8<
:

9=
;;

giving a vector in

8Using a stepwise lookup.
9Using a piecewise-linear lookup, stepwise for ‘‘offset’’ and ‘‘slope,’’ then passing
through the multiply–add unit, which would otherwise be idle. It is better precision
with the same transistor count.
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60:5
60:5
60:5

8<
:

9=
;;

and rescale back to the original coordinate system.

This appears to require divisions, tests, and conditional

branches, but can actually be calculated without requiring

any of these.

Vectorizable nearest_integer

Vectorizable nearest_integer relies on the IEEE floating-

point representation. Double precision takes 64 bits. The

top bit is a sign bit, the next 11 bits are a binary exponent,

and the remaining 52 bits are a binary mantissa, with

an implied leading 1.

IEEE addition, with the hardware in its usual mode, is

specified to round to the nearest representable number.

Thus, if one takes a double-precision floating-point

number and adds (252 þ 251), the fractional part is

dropped. One can then subtract the (252 þ 251)

and obtain the integer nearest to the number

used to start.

There is a range around 252 in which one obtains the

nearest even integer, so this is not applicable in all cases,

but is acceptable for molecular dynamics.

The compiler is being asked to generate code for

(xþ k)� k. It is important to prevent the optimizer from

reassociating this to xþ (k� k) and then optimizing this

to x þ 0, that is, x.

The sample code does this by expressing (xþ k3 k1)3

k1� k, where k1 is 1.0, but the compiler is unable to tell

that k1 is a constant. Since the basic floating-point

instruction in the IBM Power Architecture* is multiply–

add, this does not cause any extra processing cycles.

Vectorizable fragment_in_range

Molecular dynamics is generally concerned with forces

between atoms in an imagined simulation box with

periodic boundary conditions. Computation of the force

between a pair of atoms is skipped if the atoms are more

than a threshold distance apart.

For computational convenience, the atoms are grouped

into fragments, typically a water molecule or a covalently

bonded set of atoms within a larger molecule. The

question arises, ‘‘Given fragment a, what is the set

of fragments fb0, b1, . . .g such that an atom in a is in

range of an atom in each bi, accounting for the periodic

boundary?’’ The simulation will be functionally correct

if extra fragments b are in the set, because the forces

involved will evaluate to zero, but the simulation is more

efficient with fewer extra fragments.

There is an algorithm for this that makes 100% use of

the floating-point units (FPUs), successively slicing for

slab, cylinder, and sphere.

There is another algorithm that does not use the FPUs;

instead, it uses the integer units with wrap at 232,

successively slicing for slab, square prism, and cube. It

then uses the FPUs to slice for sphere. On POWER3 and

BG/L, the integer algorithm is faster. Either algorithm is

sufficiently fast that our implementation of the molecular

dynamics code does not have to maintain lists of

fragments (known as Verlet lists) that may be within a

‘‘cut-off ’’ distance.

These algorithms show how to do ‘‘vector compress,’’

i.e., produce a vector that is a subset of a starting vector,

including only those elements matching a selection

criterion, without requiring a conditional branch.

A practical example—reciprocal square roots
The reciprocal square root function evaluates the

reciprocal square root for each of nine values, as would

be needed to support the calculation of distances between

atoms in a pair of three-site10 water molecules.

Figure 1 shows source code and the compiler-generated

assembly listing for the BG/L machine architecture.

Compiler intermediate code with cycle counts and

corresponding listings for POWER3 can be found at [1].

Values are copied into local variables to make it clear

to the compiler what is intended if the function is called

with source and target overlapping in memory.

POWER3 requires a vector of length at least 6 to keep

the FPUs fully busy on this algorithm. BG/L requires a

vector of length 10. In each case, the compiler finds

an optimal instruction sequence; 100% floating-point

utilization for POWER3 and 90% utilization (four

‘‘parallel’’ ops, then a ‘‘primary’’ op) for BG/L.

The ‘‘reciprocal square root estimate’’ instruction of

POWER3 gives five bits of precision; that of BG/L gives

13 bits of precision. BG/L requires fewer follow-on

instructions to converge the estimate to double precision.

POWER3 uses a Newton–Raphson algorithm for

convergence; BG/L uses a Taylor expansion.

The theoretical peak rate for each 440 processor core in

the BG/L hardware is ten double-precision square roots

per 40 clock cycles. By enclosing similar code in a ‘‘for’’

loop, it is possible to get the VisualAge* compiler to

generate code that achieves within a few cycles of this

rate.

Examining the machine code reveals that when a

floating-point value is calculated, there are at least four

other floating-point instructions between the calculation

and the first use of the result. This keeps the floating-

point pipeline full, allowing the FPU to operate at

maximum throughput.

10A three-site water molecule is a model with electrostatic charges centered on the
three atom locations. A five-site model has fractional electron charges at two other
locations. Models run this way often match experiment more closely, and always take
more computation for a simulation timestep.
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IBM VisualAge* C++ Version 6.0.0.3 for Linux** on pSeries* ---
> > > > > OPTIONS SECTION < < < < <
IGNERRNO      ARCH=440D      OPT=3      ALIAS=ANSI      ALIGN=LINUXPPC
FLOAT=NOHSFLT:NORNDSNGL:NOHSSNGL:MAF:NORRM:FOLD:NONANS:RSQRT:FLTINT:NOEMULATE
MAXMEM=-1     NOSTRICT       NOSTRICT_INDUCTION    TBTABLE=SMALL    LIST
SHOWINC=NOSYS:NOUSR          SOURCE     STATICINLINE    TMPLPARSE=NO
NOEH
> > > > > SOURCE SECTION < < < < <

 1 | #include <math.h>
 2 | void nineroot(double* f, const double* x)
 3 | {
 4 | double x0 = x[0] ;
 5 | double x1 = x[1] ;
 6 | double x2 = x[2] ;
 7 | double x3 = x[3] ;
 8 | double x4 = x[4] ;
 9 | double x5 = x[5] ;
10 | double x6 = x[6] ;
11 | double x7 = x[7] ;
12 | double x8 = x[8] ;
13 | double r0 = 1.0/sqrt(x0) ;
14 | double r1 = 1.0/sqrt(x1) ;
15 | double r2 = 1.0/sqrt(x2) ;
16 | double r3 = 1.0/sqrt(x3) ;
17 | double r4 = 1.0/sqrt(x4) ;
18 | double r5 = 1.0/sqrt(x5) ;
19 | double r6 = 1.0/sqrt(x6) ;
20 | double r7 = 1.0/sqrt(x7) ;
21 | double r8 = 1.0/sqrt(x8) ;
22 | f[0] = r0 ;
23 | f[1] = r1 ;
24 | f[2] = r2 ;
25 | f[3] = r3 ;
26 | f[4] = r4 ;
27 | f[5] = r5 ;
28 | f[6] = r6 ;
29 | f[7] = r7 ;
30 | f[8] = r8 ;
31 | }

-qdebug=BGL:PLST3:CYCLES:SHUTUP:HUMMER:LINUX:NEWSCHED1:NEWSCHED2:REGPRES:ADRA:ANTIDEP:
GPR’s set/used:   ssuu ssss s--- s--- ---- ---- ---- ----
FPR’s set/used:   ssss ssss ssss ss-- ---- ---- ---s ssss
                  ssss ssss ssss ss-- ---- ---- ---s s-s-
CCR’s set/used:   ---- ----
  | 000000                     PDEF     nineroot(double *, const double *)
 3|                            PROC     f,x,gr3,gr4
 0| 000000 ori    602C0000 1 LR       gr12=gr1
 0| 000004 addi     3800FFF0 1 LI       gr0=-16
 0| 000008 stwu     9421FFA0 1 ST4U     gr1,#stack(gr1,-96)=gr1
 0| 00000C stfpdux  7FEC07DC 1 SFPLU    gr12,#stack(gr12,gr0,0)=fp31,fp63
 0| 000010 stfpdux  7FCC07DC 1 SFPLU    gr12,#stack(gr12,gr0,0)=fp30,fp62
 0| 000014 stfpdux  7FAC07DC 1 SFPLU    gr12,#stack(gr12,gr0,0)=fp29,fp61
 0| 000018 stfpdux  7F8C07DC 1 SFPLU    gr12,#stack(gr12,gr0,0)=fp28,fp60
 0| 00001C stfpdux  7F6C07DC 1 SFPLU    gr12,#stack(gr12,gr0,0)=fp27,fp59
 4| 000020 lfd      C9A40000 1 LFL      fp13=(double)(gr4,0)
 5| 000024 addi     38C00008 1 LI       gr6=8
 7| 000028 addi     38A00018 1 LI       gr5=24
 5| 00002C lfsdx    7DA4319C 1 LFL      fp45=(double)(gr4,gr6,0,trap=8)
 9| 000030 addi     39000028 1 LI       gr8=40
11| 000034 addi     38C00038 1 LI       gr6=56
13| 000038 addis    3CE00000 1 LA       gr7=.+CONSTANT_AREA%HI(gr2,0)
 6| 00003C lfd      C9640010 1 LFL      fp11=(double)(gr4,16)
13| 000040 addi     38E70000 1 LA       gr7=+CONSTANT_AREA%LO(gr7,0)
 7| 000044 lfsdx    7D64299C 1 LFL      fp43=(double)(gr4,gr5,0,trap=24)
 8| 000048 lfd      C9440020 1 LFL      fp10=(double)(gr4,32)
13| 00004C fprsqrte 0120681E 1 FPRSQRE  fp9,fp41=fp13,fp45
 9| 000050 lfsdx    7D44419C 1 LFL      fp42=(double)(gr4,gr8,0,trap=40)
31| 000054 ori      602C0000 1 LR       gr12=gr1
10| 000058 lfd      C9040030 1 LFL      fp8=(double)(gr4,48)
31| 00005C addi     38000010 1 LI       gr0=16
11| 000060 lfsdx    7D04319C 1 LFL      fp40=(double)(gr4,gr6,0,trap=56)
15| 000064 fprsqrte 00E0581E 1 FPRSQRE  fp7,fp39=fp11,fp43
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Figure 1

Code tuned for Blue Gene/L.

13| 000068 addi     38C00020 1 LI       gr6=32
12| 00006C lfd      CBE40040 1 LFL      fp31=(double)(gr4,64)
13| 000070 lfpsx    7F672B1C 1 LFPS     fp27,fp59=+CONSTANT_AREA(gr7,gr5,0,trap=24)
13| 000074 fpmul    01890250 1 FPMUL    fp12,fp44=fp9,fp41,fp9,fp41,fcr
17| 000078 fprsqrte 00C0501E 1 FPRSQRE  fp6,fp38=fp10,fp42
13| 00007C lfs      C3C70004 1 LFS      fp30=+CONSTANT_AREA(gr7,4)
19| 000080 fprsqrte 0080401E 1 FPRSQRE  fp4,fp36=fp8,fp40
13| 000084 lfpsx    7CA7331C 1 LFPS     fp5,fp37=+CONSTANT_AREA(gr7,gr6,0,trap=32)
21| 000088 frsqrte  FFA0F834 1 FRSQRE   fp29=fp31
13| 00008C lfpsx    7C67431C 1 LFPS     fp3,fp35=+CONSTANT_AREA(gr7,gr8,0,trap=40)
13| 000090 addi     38800030 1 LI       gr4=48
15| 000094 fpmul    002701D0 1 FPMUL    fp1,fp33=fp7,fp39,fp7,fp39,fcr
13| 000098 lfpsx    7C47231C 1 LFPS     fp2,fp34=+CONSTANT_AREA(gr7,gr4,0,trap=48)
13| 00009C fpmadd   01ADDB20 1 FPMADD   fp13,fp45=fp27,fp59,fp13,fp45,fp12,fp44,fcr
17| 0000A0 fpmul    00060190 1 FPMUL    fp0,fp32=fp6,fp38,fp6,fp38,fcr
23| 0000A4 addi     38C00008 1 LI       gr6=8
19| 0000A8 fpmul    01840110 1 FPMUL    fp12,fp44=fp4,fp36,fp4,fp36,fcr
21| 0000AC fmul     FF9D0772 1 MFL      fp28=fp29,fp29,fcr
15| 0000B0 fpmadd   002BD860 1 FPMADD   fp1,fp33=fp27,fp59,fp11,fp43,fp1,fp33,fcr
17| 0000B4 fpmadd   014AD820 1 FPMADD   fp10,fp42=fp27,fp59,fp10,fp42,fp0,fp32,fcr
19| 0000B8 fpmadd   0108DB20 1 FPMADD   fp8,fp40=fp27,fp59,fp8,fp40,fp12,fp44,fcr
21| 0000BC fmadd    FFFFDF3A 1 FMA      fp31=fp27,fp31,fp28,fcr
13| 0000C0 fxcpmadd 001E2B64 1 FXPMADD  fp0,fp32=fp5,fp37,fp13,fp45,fp30,fp30,fcr
15| 0000C4 fxcpmadd 019E2864 1 FXPMADD  fp12,fp44=fp5,fp37,fp1,fp33,fp30,fp30,fcr
31| 0000C8 lfpdux   7F6C03DC 1 LFPLU    fp27,fp59,gr12=#stack(gr12,gr0,0)
17| 0000CC fxcpmadd 017E2AA4 1 FXPMADD  fp11,fp43=fp5,fp37,fp10,fp42,fp30,fp30,fcr
19| 0000D0 fxcpmadd 039E2A24 1 FXPMADD  fp28,fp60=fp5,fp37,fp8,fp40,fp30,fp30,fcr
21| 0000D4 fmadd    FCBF2FBA 1 FMA      fp5=fp5,fp31,fp30,fcr
13| 0000D8 fpmadd   000D1820 1 FPMADD   fp0,fp32=fp3,fp35,fp13,fp45,fp0,fp32,fcr
15| 0000DC fpmadd   01811B20 1 FPMADD   fp12,fp44=fp3,fp35,fp1,fp33,fp12,fp44,fcr
17| 0000E0 fpmadd   016A1AE0 1 FPMADD   fp11,fp43=fp3,fp35,fp10,fp42,fp11,fp43,fcr
19| 0000E4 fpmadd   03C81F20 1 FPMADD   fp30,fp62=fp3,fp35,fp8,fp40,fp28,fp60,fcr
21| 0000E8 fmadd    FCBF197A 1 FMA      fp5=fp3,fp31,fp5,fcr
13| 0000EC fpmadd   000D1020 1 FPMADD   fp0,fp32=fp2,fp34,fp13,fp45,fp0,fp32,fcr
31| 0000F0 lfpdux   7F8C03DC 1 LFPLU    fp28,fp60,gr12=#stack(gr12,gr0,0)
15| 0000F4 fpmadd   00611320 1 FPMADD   fp3,fp35=fp2,fp34,fp1,fp33,fp12,fp44,fcr
17| 0000F8 fpmadd   016A12E0 1 FPMADD   fp11,fp43=fp2,fp34,fp10,fp42,fp11,fp43,fcr
19| 0000FC fpmadd   018817A0 1 FPMADD   fp12,fp44=fp2,fp34,fp8,fp40,fp30,fp62,fcr
21| 000100 fmadd    FCBF117A 1 FMA      fp5=fp2,fp31,fp5,fcr
13| 000104 fpmul    000D0010 1 FPMUL    fp0,fp32=fp13,fp45,fp0,fp32,fcr
15| 000108 fpmul    002100D0 1 FPMUL    fp1,fp33=fp1,fp33,fp3,fp35,fcr
17| 00010C fpmul    004A02D0 1 FPMUL    fp2,fp34=fp10,fp42,fp11,fp43,fcr
19| 000110 fpmul    00680310 1 FPMUL    fp3,fp35=fp8,fp40,fp12,fp44,fcr
21| 000114 fmul     FCBF0172 1 MFL      fp5=fp31,fp5,fcr
13| 000118 fpmadd   00094820 1 FPMADD   fp0,fp32=fp9,fp41,fp9,fp41,fp0,fp32,fcr
15| 00011C fpmadd   00273860 1 FPMADD   fp1,fp33=fp7,fp39,fp7,fp39,fp1,fp33,fcr
17| 000120 fpmadd   004630A0 1 FPMADD   fp2,fp34=fp6,fp38,fp6,fp38,fp2,fp34,fcr
19| 000124 fpmadd   006420E0 1 FPMADD   fp3,fp35=fp4,fp36,fp4,fp36,fp3,fp35,fcr
21| 000128 fmadd    FC9DE97A 1 FMA      fp4=fp29,fp29,fp5,fcr
22| 00012C stfd     D8030000 1 STFL     (double)(gr3,0)=fp0
23| 000130 stfsdx   7C03359C 1 STFL     (double)(gr3,gr6,0,trap=8)=fp32
29| 000134 addi     38C00038 1 LI       gr6=56
31| 000138 lfpdux   7FAC03DC 1 LFPLU    fp29,fp61,gr12=#stack(gr12,gr0,0)
24| 00013C stfd     D8230010 1 STFL     (double)(gr3,16)=fp1
25| 000140 stfsdx   7C232D9C 1 STFL     (double)(gr3,gr5,0,trap=24)=fp33
31| 000144 lfpdux   7FCC03DC 1 LFPLU    fp30,fp62,gr12=#stack(gr12,gr0,0)
26| 000148 stfd     D8430020 1 STFL     (double)(gr3,32)=fp2
27| 00014C stfsdx   7C43459C 1 STFL     (double)(gr3,gr8,0,trap=40)=fp34
31| 000150 lfpdux   7FEC03DC 1 LFPLU    fp31,fp63,gr12=#stack(gr12,gr0,0)
28| 000154 stfd     D8630030 1 STFL     (double)(gr3,48)=fp3
31| 000158 addi     38210060 1 AI       gr1=gr1,96,gr12
29| 00015C stfsdx   7C63359C 1 STFL     (double)(gr3,gr6,0,trap=56)=fp35
30| 000160 stfd     D8830040 1 STFL     (double)(gr3,64)=fp4
31| 000164 bclr     4E800020 0 BA lr
  | Instruction count 90
  | Constant Area
  | 000000 BF800000 3E8C0000 BEA00000 3EC00000 BF000000 49424D20
  | 000018 BF800000 BF800000 BEA00000 BEA00000 3EC00000 3EC00000
  | 000030 BF000000 BF000000

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 R. F. ENENKEL ET AL.

471



Each 440 processor core in BG/L can dispatch two

instructions per clock cycle. Each has one floating-point

instruction pipeline, one load/store pipeline, two integer

pipelines, and one branch pipeline. The 440 does not

have ‘‘out-of-order’’ processing capability or ‘‘rename’’

registers; both of these cost transistors and electrical

energy, which the BG/L design puts to better use

elsewhere. Therefore, we are dependent for good

performance on the ability of the compiler to schedule

instructions and allocate registers in the optimal patterns

for the real hardware. The compiler effort to exploit the

two-instructions-per-cycle capability can be seen in the

assembly fragment shown in the figure.

IBM Power Architecture defines 32 double-precision

floating-point registers. Floating-point operations, in

general, work on three operand registers and a result

register. For example, ‘‘floating-point multiply–add’’

might evaluate f1 = f2þ (f33 f4) in a single pass through

the FPU. The Blue Gene/L chip has an additional 32

double-precision floating-point registers, an additional

FPU, and extensions to the instruction decoder to

implement ‘‘parallel’’ versions of these, such as

f
1
¼ f

2
þ ðf

3
3 f

4
Þ; s

1
¼ s

2
þ ðs

3
3 s

4
Þ

and various ‘‘cross’’ versions, such as

f
1
¼ f

2
þ ðf

3
3 f

4
Þ; s

1
¼ s

2
þ ðs

3
3 f

4
Þ

or

f
1
¼ f

2
þ ðf

3
3 s

4
Þ; s

1
¼ s

2
þ ðs

3
3 f

4
Þ;

and an ‘‘antisymmetric’’ version,

f
1
¼ f

2
þ ðf

3
3 f

4
Þ; s

1
¼ s

2
� ðs

3
3 s

4
Þ:

Several of these can be seen in the assembly fragment

shown in Figure 1.

Conclusion
When we started designing the protein folding

application, we imagined that we would be unable to

fully exploit the floating-point capacity of a modern

uniprocessor because of the sequential nature of the

scalar library functions, which we expected would limit

the performance of the application. This would limit

the fraction of peak flops that we would achieve on

the massively parallel machine we had in mind.

Working with the life scientists on the actual

requirements of the application and with the compiler

programmers on optimization capabilities has resulted

in techniques for evaluating the required functions and

presenting the machine with sufficient independent work

that we, in fact, achieved a high fraction of peak flops on

a uniprocessor. This is expressible as source code in a

high-level language, such as Cþþ; it has not been
necessary to hand-code anything in assembler.

Knowing that we can well exploit a uniprocessor, we

are motivated to use the machine efficiently as we take the

next steps to scale up to the 40,960 processors that will

be available to us in our contribution to the ‘‘grand

challenge’’ of understanding the Protein Economy.11

Blue Gene/L can do more than just lead the world at

linear algebra. It takes some thought, but the results are

worth the effort.
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