
Scalable framework
for 3D FFTs on the
Blue Gene/L supercomputer:
Implementation and early
performance measurements

M. Eleftheriou
B. G. Fitch

A. Rayshubskiy
T. J. C. Ward
R. S. Germain

This paper presents results on a communications-intensive
kernel, the three-dimensional fast Fourier transform (3D FFT),
running on the 2,048-node Blue Genet/L (BG/L) prototype.
Two implementations of the volumetric FFT algorithm were
characterized, one built on the Message Passing Interface library
and another built on an active packet Application Program
Interface supported by the hardware bring-up environment, the
BG/L advanced diagnostics environment. Preliminary performance
experiments on the BG/L prototype indicate that both of our
implementations scale well up to 1,024 nodes for 3D FFTs of size
1283 1283 128. The performance of the volumetric FFT is also
compared with that of the Fastest Fourier Transform in the West
(FFTW) library. In general, the volumetric FFT outperforms a
port of the FFTW Version 2.1.5 library on large-node-count
partitions.

Introduction
One of the most commonly used computational

approaches for modeling large biophysical systems is the

molecular dynamics method, in which the Newtonian

equations of motion are solved numerically. Molecular

dynamics permits the computation of thermodynamic

and dynamic properties of biological systems [1]. Such

studies can enhance our understanding of biological

functions and provide insight into processes related to the

action of potential new medications [2]. One of the most

computationally expensive components of this method is

the calculation of long-range electrostatic forces [3]. A

commonly used technique for computing these forces

is the particle-particle particle-mesh Ewald (P3ME)

technique [4], which requires the evaluation of a

convolution using three-dimensional fast Fourier

transforms (3D FFTs). Our interest has been to provide

an efficient and scalable 3D FFT implementation on Blue

Gene*/L (BG/L). The metric for efficiency used here is the

‘‘total time-to-solution’’ for the problem. Our use cases

for the 3D FFT from molecular simulation require strong

scaling for relatively small data sizes, such as 323, 643,

and 1283.

A distributed 3D FFT represents a considerable

challenge for the communications infrastructure of a

parallel machine because of the all-to-all nature of the

distributed transposes required, and it stresses aspects

of the machine that complement those addressed by

other benchmark kernels, such as Linpack [5].

A typical decomposition for performing a 3D FFT in

parallel is slabwise. With a slab decomposition, the data is

partitioned along a single axis. For example, to compute

an N3 N3 N FFT on P nodes, each node would be

assigned a slab of size N3 N3 N/P. While effective in

reducing communications costs, the scalability of this

method is limited by N, the extent of the data along a

single axis. This becomes an issue when one wants to scale

to very large node counts for a massively parallel

machine, such as BG/L.

To address the above issues, we implemented a 3D FFT

that is a good match to the volume domain decomposition

natural to BG/L. The volumetric FFT achieves scalability

to a larger number of nodes because it allows the

distribution of work for an N3N3N FFT over a

maximum of N2 nodes rather than N nodes for a slab

decomposition, but at the cost of additional

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. ELEFTHERIOU ET AL.

457

0018-8646/05/$5.00 ª 2005 IBM



communication. The description of an earlier version of the

volumetric FFT implementation and its performance on a

more conventional machine (POWER4* full bisectional

bandwidth switch) was previously published [6].

The major contribution of our work is a highly scalable

3D FFT framework for BG/L that can use any serial

1D FFT as a building block. To assess the scalability and

the performance of the volumetric FFT, we provide the

following:

� Scalability characterization of our implementations

on BG/L using two communication protocols.
� A comparison with a port of Fastest Fourier

Transform in the West (FFTW) [7] on BG/L.

We present a detailed review of the published FFT

algorithm [6] and describe a variation to the algorithm

that increases its scalability (i.e., increases the number

of nodes on which it is able to run). The algorithm was

reimplemented to improve the uniprocessor performance

and to allow performance comparison on two

communication layers: Message Passing Interface (MPI)

and active packets. The performance of the volumetric

FFT on BG/L for both communication layers is

presented. The measured performance is compared

with limits inherent in the hardware capabilities of the

machine, such as the bandwidth of the BG/L torus

communications network. Our measurements show that

the volumetric FFT scales well on the BG/L architecture.

The volumetric FFT now comes within 50% of the

performance of FFTW on a single processor, while

outperforming FFTW at larger node counts for a 1283

FFT. It is important to note that the MPI implementation

of the volumetric FFT uses the FFTW 1D serial FFT

as a building block.

The paper is organized as follows. We review the

volumetric decomposition algorithm for computing

the 3D FFT and describe the modified implementation

that allows the method to scale to larger numbers of

processors. Also in that section, we provide details of

the 3D FFT kernel implementation on two different

communication protocols. The hardware limits to the

ultimate performance of the 3D FFT on a BG/L machine

based on the hardware ‘‘speeds and feeds’’ [8] are next

discussed, followed by a description of our experimental

measurements and corresponding results. Finally, we

summarize our work.

Parallel implementation
For a machine with a 3D torus and mesh interconnect,

such as BG/L, it is natural to use volumetric decomposition

to map the data to perform a 3D FFT onto the

machine. Let us assume an array A of complex numbers

Nx 3 Ny 3 Nz distributed onto a Px 3 Py 3 Pz logical

processor mesh. Processor (x, y, z) initially stores a block

of data nx 3 ny 3 nz with

n
m
¼

N
m

P
m

� �

to a local array A0. Then,

A
0ði; j; kÞ½x; y; z�[Aðxn

x
þ i; yn

y
þ j; zn

z
þ kÞ:

To allow scalability beyond that obtainable with the

previous proposed implementation, we impose a new

restriction on the sizes of the local array, A0:

n
x
� n

y
¼ a3P

z
;

n
x
� n

z
¼ b3P

y
;

and

n
y
� n

z
¼ c3P

x
;

where a, b, and c are integers.

In evaluating a 3D FFT on an array A of size

Nx 3 Ny 3 Nz, the ‘‘rowcolumn’’ method is used to

decompose the problem into successive evaluations of

1D FFTs along each dimension. More specifically, we

perform the 3D FFT in three phases; we first compute

Nx3Ny 1D FFTs along the z dimension, thenNx3Nz 1D

FFTs along the y dimension, and finally, Ny 3 Nz 1D

FFTs along the x dimension. Figure 1 indicates where

the all-to-all exchanges of data take place for each

of these three phases.

Each phase of the 3D FFT comprises the

communication and computation associated with

one of the three dimensions. The communication and

computation associated with each phase are analogous.

Here we describe only the first phase.

In the first phase, all Nx 3 Ny 1D FFTs of size Nz

are independent. Therefore, it is sufficient to consider

only the case of the 1D grid of Pz nodes that has

to compute nx 3 ny 1D FFTs of size Nz. Suppose

Að0 : nx � 1; 0 : ny � 1; 0 : Nz � 1Þ is an nx 3 ny 3 Nz

array of complex numbers, block-distributed along

the z dimension onto Pz nodes. If

A
0ð0 : n

x
� 1; 0 : n

y
� 1; 0 : n

z
� 1Þ½ p�

is the local array in node p, then

A
0ði; j; kÞ½ pz�[Aði; j; pn

z
þ kÞ:

The data along the x and y dimensions is redistributed

onto the Pz nodes. That is, if A
00ð0 : a; 0 : Nz � 1Þ½ p�; with

nx � ny ¼ a3Pz, is the local array in node p after the

redistribution, then

A
00ðl; kÞ½ p�[A

ðpaþ lÞ
n
y

$ %
; ðpaþ lÞmod n

y
; kÞ

" #
:

M. ELEFTHERIOU ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

458



Each node p sequentially computes a independent

1D FFTs of size Nz that are stored in its local array A00.

For these 1D FFT computations, we typically use the

services provided by a port of the FFTW library or the

FFT library [9] from the Technical University of Vienna

to BG/L, although we have also used a simple 1D FFT

implementation developed by our group for the packet

layer work. Once the FFTs are computed, data is

redistributed to the original distribution described by

Equation (1).

In summary, the computation of a 3D FFT is

performed in three phases, along the z, y, and x

dimensions. In each phase, we first redistribute the data,

perform 1D FFTs, and return the data to its original

distribution. The number of communication operations

in our implementation is minimized by combining the

post-FFT data redistribution of one phase with the

pre-FFT data redistribution of the next phase. Thus,

we reduce the data redistributions to three, as opposed

to six.

Hardware limits on 3D FFT performance

Lower bounds can be placed on the bandwidth-limited

communication time for the 3D FFT assuming that three

all-to-all communications (along a row or within a plane)

are required. Simulations of the BG/L torus network

indicate that the all-to-all communication time for data

that is distributed over a set of nodes in a line, plane,

or volume can be estimated using the expression1

T
alltoall

¼
V

received
N

hops

N
links

BWf
;

where Vreceived is the volume of data received by each

node; Nhops is the average number of hops required (for

a 3D torus in which each dimension is p, Nhops ¼ p=4

for alltoall in a line, Nhops ¼ p=2 for alltoall in a plane,

and Nhops ¼ 3p=4 for alltoall in a volume); Nlinks is the

number of links available to each node (two for linear

communication, four for planar communication, and

six for volumetric communication); BW is the raw

bandwidth of the torus per link (two bits per processor

clock cycle); and f is the link utilization (assumed to be

80%). This expression indicates that the time required

for all-to-all communication is independent of the

dimensionality of the communication because the

increase of the average hop count with dimensionality

is compensated for by the increase in the number of

links available for the communication. At the limits of

scalability, this expression, on the basis of bandwidth

considerations, will become inadequate because the

hardware and software latencies associated with sending

a packet will become significant.

For an idealized bound on the computation time

required to compute a single 1D FFT of length N, we

assume 8N log2N cycles for a fused multiply–add machine

(although the ideal limit for a 1D FFT is 5N log2 N

floating-point operations, data dependencies force a fused

multiply–add machine to use eight cycles when one

assumes that a fused multiply–add is issued every cycle).

Highly optimized FFT implementations, such as the

library developed by the team at the Technical University

Figure 1

Example in which an 8 � 8 � 8 FFT mesh is mapped onto a processor mesh of dimensions 4 � 4 � 4. Each of the three stages of commu-
nication required for the FFT is illustrated in this succession of figures.

y
z

x

Communication along z-axis Communication in yz-plane Communication in xy-plane

y
z

x

y
z

x

1A. Gara, P. Heidelberger, and B. D. Steinmacher-Burow, private communication
with author.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. ELEFTHERIOU ET AL.

459



of Vienna [9], can approach this idealized value. However,

the nature of the 3DFFT is such that it is communications-

bound for even small node counts, and the performance of

the 1D FFT building block is not critical.

Parallel performance analysis

All of the performance-measurement results presented in

this section were obtained on the 2,048-node Blue Gene/L

prototype comprising two racks. Each rack has two

512-processor midplanes, each midplane comprises 16

node cards, each node card contains 16 compute cards,

and each compute card contains two nodes. The processor

clock speed in the current prototype is 700 MHz. The

prototype can be configured to complete a torus in all

three dimensions when it is partitioned as 512, 1,024,

or 2,048 nodes. Unless otherwise noted, the scalability

measurements reported here were taken in mesh mode

to simplify the interpretation of the scalability data.

We performed benchmarks of our FFT

implementation on the 2,048-node BG/L prototype in

which we varied both the number of nodes and the size

of data being transformed. For each experiment, the

execution time was measured at a series of node counts,

while the FFT size was held fixed. The MPI tasks were

organized in a 3D grid using the MPI topology

constructs. The running times reported here for the

MPI implementation are averages of ten runs. Each

experiment was run 11 times, and the first run was

discarded. The active packet layer execution times were

derived from application-specific trace data analyzed

after the runs.

We compared the performance of the MPI

implementation of the volumetric FFT using the 1D

serial FFT from the FFTW library as a building block,

and the 3D FFT from the FFTW library [10] on the mesh

network. FFTW is a well-established and widely used

library in the computational science community for

computing multidimensional FFTs. It relies on the slab

decomposition approach for running on multiple nodes.

Figure 2 shows the speedup of both the volumetric FFT

and FFTW. The speedup achieved by FFTW is observed

to be good up to 128 processors. However, the volumetric

FFT continues to exhibit good speedups through 1,024

nodes for the 1283 1283 128-size FFT, while FFTW

loses parallel efficiency above 128 nodes. This flattening

on the speedup occurs because FFTW is based on the slab

decomposition, which limits its scalability to 128 nodes.

The time-to-solution of the volumetric FFT

implementations on both communication layers and

FFTW are shown in Figure 3. The sequential FFT

from the FFTW library is about 50% faster than

the single-processor volumetric FFT using the MPI

implementation. While both the FFTW and the

volumetric FFT have comparable performance up to

128 nodes, the volumetric FFT implementations on

both communication protocols continue to scale up

to 1,024 nodes.

Figure 4 shows the measured execution times for the

volumetric 3D FFT as implemented using MPI collective

communications and the active packet interface on the

2,048-node prototype. Speedups in excess of 250 are

observed for 1283 FFTs at 1,024 nodes for both the

Figure 2

Speedups for the two different FFT libraries, volumetric FFT 
(FFTBG) on MPI, and the FFTW on the BG/L for a varying 
number of processors. The 3D FFT has a grid size of 128 � 128 
� 128. Note that the network was configured as a full torus for 
only the 2,048-node data point. All of the data for smaller node 
counts was taken using a mesh topology for both libraries.

1

10

100

1,000

10,000

1 10 100 1,000 10,000

Ideal speedup
FFTBG on MPI
FFTW port

Number of processors

Sp
ee

du
p

Figure 3

0.001

0.01

0.1

1

10

1 10 100 1,000 10,000

3D
 F

FT
 e

xe
cu

tio
n 

tim
e 

 (
s)

Node count

Volumetric FFT on MPI
Volumetric FFT on active packet/blade
FFTW port

Parallel execution times for the volumetric FFT on both communi-
cation layers and the FFTW on the BG/L for a varying number of 
processors. The 3D FFT has a grid size of 128 � 128 � 128. While 
the results reported here for the volumetric FFT on active message 
interface are taken in a torus configuration for node counts of 512 
and larger, all of the data on MPI for both the volumetric FFT and 
FFTW is taken on the mesh topology up to 1,024 nodes. All of the 
data for node counts below 512 was taken using a mesh topology.

M. ELEFTHERIOU ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

460



MPI and active packet implementations. We observe

comparable performance on both communication layers

up to 256 processors on the mesh topology. We have

currently limited the data available on the two modes—

mesh and torus—for a larger number of processors,

and that prevents us from providing a complete

characterization of the performance characteristics

of all implementations on all of the available mesh

and torus modes. However, we expect the active packet

implementation to be faster at large node counts as a

result of the smaller software overheads in the active

packet implementation. In addition, the performance of

the MPI implementation at the limits of scalability of the

FFT should improve as more optimized implementations

of the MPI_Alltoall [v] collective operation become

available.

The comparison of the bounds on execution time—

based on hardware bandwidths and idealized 1D serial

FFT execution times with the measured total time to

solution in Figure 4—shows significant divergences at

small node counts. We conjecture that this divergence

from the limits estimated from hardware capabilities is

caused by memory hierarchy effects, since floating-point

efficiencies of the 1D FFTs used as building blocks for the

3D FFT implementation are fairly high; for example, for

a 64-point FFT, the efficiency of the FFT from the BG/L

FFT library supplied by the Technical University of

Vienna is more than 60%, and the naively vectorized FFT

implementation used in the active packet implementation

has an efficiency of more than 40%.

The memory access pattern of the in-memory transpose

required for the 3D FFT is presumably very unfavorable

for prefetching, and at low node counts the memory

footprint per node of the larger-size 3D FFTs will

certainly spill out of the 4-MB L3 cache. No effort has

been made to tile the implementation of the memory

transposes in the volumetric FFT. Of course, at the

high node counts that represent the limits to scalability

for the FFT, the data will sit in cache and the measured

performance will more closely approach the bandwidth-

limited constraints on performance. Note that even

without any effort at tiling, the uniprocessor performance

of the volumetric FFT implementation is within 50% of

that of the FFTW library implementation. We intend to

use instrumentation available on the BG/L chip that

can access the hardware performance counters to

eventually measure the memory hierarchy effects.

Figure 5 shows the measured data in a way that tries to

capture how closely measurements approach bandwidth-

limited behavior, as discussed above. We conjecture that

the deviations from bandwidth-limited performance at

high node counts for the smaller FFT sizes are due to

software and hardware overheads that become significant

at very small message sizes.

Figure 4

Measured execution times for the volumetric FFT for a series of 
problem sizes (323, 643, 1283) as a function of node (task) count. 
Note that the network is connected as a full torus only for 2,048 
nodes for FFTW and the volumetric FFT on MPI. While the results 
reported here for the volumetric FFT on active message interface 
are taken in a torus configuration for node counts of 512 and larger, 
all of the data on MPI is taken on the mesh topology up to 1,024 
nodes. The limits to execution time using simple estimates for 
computation and communication costs are also shown (the limits 
shown assume mesh bandwidths, which are half those available on 
a torus for node counts below 512 and torus bandwidths for larger 
node counts).

0.00001

0.0001

0.001

0.01

0.1

1

10

1 10 100 1,000

T
im

e 
 (

s)

Task count

1283 MPI collective
1283 active packet
1283 model

643 MPI collective
643 active packet
643 model

323 MPI collective
323 active packet
323 model 

Figure 5

Execution time multiplied by node count to the 2/3 power to make 
the approach to (and deviations from) bandwidth-limited behavior 
more clear.

0.001

0.01

0.1

1

10

1 10 100 1,000

(T
as

k 
co

un
t)

2/
3  

�
 ti

m
e 

 (
s)

Task count

1283 MPI collective
1283 active packet
643 MPI collective

643 active packet
323 MPI collective
323 active packet

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. ELEFTHERIOU ET AL.

461



In Table 1, data taken on a 512-node partition in both

the torus and mesh modes is presented. If the execution

time of the FFT is totally dominated by bandwidth

effects, the ratio of Tmesh/Ttorus should equal 2. A

ratio in excess of 1.8 is realized for the active packet

implementation for the largest FFT size, 1283, which

is impressively close to the ideal hardware behavior.

Conclusions
The parallel computation of three-dimensional FFTs has

been studied from two different viewpoints. The first one

is aimed at parallelizing the basic one-dimensional FFT

[11–13]; in the second, the transpose method, 3D FFTs

are carried out by successive evaluations of independent

1D local FFTs along each direction [10, 14–17]. In this

work we have presented a volumetric decomposition FFT

that belongs to the second category. We have discussed

the implementation of a 3D FFT for the Blue Gene/L

supercomputer. We base our approach on a volumetric

decomposition of data. This decomposition maps

naturally to the torus topology of BG/L and allows

scaling to very large numbers of nodes. We can also

leverage any serial 1D FFT as a building block for

our algorithm.

In this paper, we have reviewed the 3D FFT

implementation and provided lower bounds on execution

time based on the hardware capabilities of the BG/L

supercomputer. In our measurements, we found that

the volumetric algorithm performs impressively well up

through 1,024 nodes on both the active packet and MPI

communication layers. Moreover, we found that the

volumetric FFT outperforms FFTW by a significant

margin on large numbers of nodes. The results obtained

thus far are extremely encouraging with respect to our

ability to exploit the capabilities of the BG/L architecture

in the context of a real application kernel and to enable

the scalability of applications that depend on the

evaluation of 3D FFTs to the very large node counts

required to achieve new levels of performance.

At the limits of scalability, approached by the 323

FFT at 512 nodes, the active packet implementation

is significantly faster than the MPI-based FFT. This

performance difference will presumably narrow as further

optimization of the MPI collectives takes place. Future

work will involve instrumenting the code to understand

the role of memory access patterns in the performance at

small node counts and continuing optimization of the

implementations on both communication layers.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. M. Karplus and J. A. McCammon, ‘‘Molecular Dynamics

Simulations of Macromolecules: A Perspective,’’ Nature
Struct. Biol. 9, No. 9, 646–652 (2002).

2. F. Allen, G. Almasi, W. Andreoni, D. Beece, B. J. Berne, A.
Bright, J. Brunheroto, C. Cascaval, J. Castanos, P. Coteus,
P. Crumley, A. Curioni, M. Denneau, W. Donath, M.
Eleftheriou, B. Fitch, B. Fleischer, C. J. Georgiou, R.
Germain, M. Giampapa, D. Gresh, M. Gupta, R. Haring,
H. Ho, P. Hochschild, S. Hummel, T. Jonas, D. Lieber, G.
Martyna, K. Maturu, J. Moreira, D. Newns, M. Newton,
R. Philhower, T. Picunko, J. Pitera, M. Pitman, R. Rand,
A. Royyuru, V. Salapura, A. Sanomiya, R. Shah, Y. Sham,
S. Singh, M. Snir, F. Suits, R. Swetz, W. C. Swope, N.
Vishnumurthy, T. J. C. Ward, H. Warren, and R. Zhou,
‘‘Blue Gene: A Vision for Protein Science Using a Petaflop
Supercomputer,’’ IBM Syst. J. 40, No. 2, 310–327 (2001);
see http://www.research.ibm.com/journal/sj/402/allen.html.

3. R. S. Germain, Y. Zhestkov, M. Eleftheriou, A. Rayshubskiy,
F. Suits, T. J. C. Ward, and B. G. Fitch, ‘‘Early Performance
Data on the Blue Matter Molecular Simulation Framework,’’
IBM J. Res. & Dev. 49, No. 2/3, 447–455 (2005, this issue).

4. M. Deserno and C. Holm, ‘‘How to Mesh Up Ewald Sums
(II): A Theoretical and Numerical Comparison of Various
Particle Mesh Routines,’’ J. Chem. Phys. 109, No. 18, 7678–
7693 (1998).

5. A. Petitet, R. C. Whaley, J. Dongarra, and A. Cleary, ‘‘HPL:
A Portable Implementation of the High-Performance Linpack
Benchmark for Distributed-Memory Computers,’’ Innovative

Table 1 The Blue Gene 512-way prototype can be operated with the torus network enabled as a torus or as a mesh (without wrapping).

Taking data in both torus and mesh modes allows a check on the amount of time taken by the FFT that is attributable to network bandwidth

effects since the effective bandwidth available doubles in torus mode.

Mesh dimension Active packet MPI collective Model

323 643 1283 323 643 1283 323 643 1283

Tmesh (512) 1.36 3 10�4 5.94 3 10�4 4.55 3 10�3 — — 5.01 3 10�3 4.66 3 10�5 3.77 3 10�4 3.05 3 10�3

Ttorus (512) 8.5 3 10�5 3.56 3 10�4 2.52 3 10�3 — — 3.17 3 10�3 2.47 3 10�5 2.02 3 10�4 1.65 3 10�3

Tmesh/Ttorus 1.600 1.669 1.806 — — 1.578 1.889 1.870 1.851

Tnon-bandwidth 3.40 3 10�5 1.18 3 10�4 4.90 3 10�4 — — 1.34 3 10�3 2.74 3 10�6 2.63 3 10�5 2.46 3 10�4

Tbandwidth 5.10 3 10�5 2.38 3 10�4 2.03 3 10�3 — — 1.84 3 10�3 2.19 3 10�5 1.76 3 10�4 1.40 3 10�3

Tnon-bandwidth/[N
3 log2(N)] 2.08 3 10�10 7.5 3 10�11 3.34 3 10�11 — — 9.12 3 10�11 1.67 3 10�11 1.67 3 10�11 1.67 3 10�11

Tbandwidth/N
3 1.56 3 10�9 9.08 3 10�10 9.68 3 10�10 — — 8.76 3 10�10 6.7 3 10�10 6.7 3 10�10 6.7 3 10�10

M. ELEFTHERIOU ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

462



Computing Laboratory, Computer Science Department,
University of Tennessee, Knoxville, TN, 2004; see http://
www.netlib.org/benchmark/hpl/.

6. M. Eleftheriou, J. E. Moreira, B. G. Fitch, and R. S. Germain,
‘‘A Volumetric FFT for BlueGene/L,’’ Proceedings of the
Conference on High Performance Computing, 2003, pp. 194–
203.

7. See http://www.fftw.org/.
8. N. R. Adiga et al. ‘‘An Overview of the Blue Gene/L

Supercomputer,’’ Proceedings of the ACM/IEEE Conference
on Supercomputing, 2002, pp. 1–22; see www.sc-conference.org/
sc2002/.

9. S. Kral, F. Franchetti, J. Lorenz, C. W. Ueberhuber, and P.
Wurzinger, ‘‘FFT Compiler Techniques,’’ Proceedings of the
13th International Conference on Compiler Construction, Joint
European Conferences on Theory and Practice of Software,
2004, pp. 217–231.

10. M. Frigo and S. G. Johnson, ‘‘FFTW: An Adaptive Software
Architecture for the FFT,’’ Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 1998, pp. 1381–1384.

11. E. L. Zapata, F. F. Rivera, I. Benavides, J. M. Garazo, and
R. Peskin, ‘‘Multidimensional Fast Fourier Transform into
SIMD Hypercubes,’’ J. IEE Proc. E: Computers & Digital
Techniques 137, No. 4, 253–260 (July 1990).

12. A. Edelman, P. McCorquodale, and S. Toledo, ‘‘The Future
Fast Fourier Transform?’’, SIAM J. Sci. Computing 20, No. 3,
1094–1114 (1999).

13. R. C. Agarwal, F. G. Gustavson, and M. Zubair, ‘‘A High
Performance Parallel Algorithm for 1-D FFT,’’ Proceedings of
the IEEE/ACM Supercomputing Conference, 1994, pp. 34–40.

14. M. Frigo and S. G. Johnson, ‘‘The Fastest Fourier Transform
in the West,’’ Technical Report MIT-LCS-TR-728,
Massachusetts Institute of Technology, Laboratory for
Computing Sciences, Cambridge, MA, 1997.

15. H. Q. Ding, R. D. Ferraro, and D. B. Gennery, ‘‘A Portable
3D FFT Package for Distributed Memory Parallel
Architecture,’’ Proceedings of the 7th SIAM Conference on
Parallel Processing for Scientific Computing, 1995, pp. 70–71.

16. C. E. Cramer and J. A. Board, ‘‘The Development and
Integration of a Distributed 3D FFT for a Cluster of
Workstations,’’ Proceedings of the 4th Annual Linux
Showcase and Conference, 2000, pp. 121–128; see http://
www.linuxshowcase.org/2000/2000papers/papers/cramer/
cramer_html.

17. P. D. Haynes and M. Cote, ‘‘Parallel Fast Fourier Transforms
for Electronic Structure Calculations,’’ Comp. Phys. Commun.
130, No. 1/2, 132–136 (2000).

Received July 20, 2004; accepted for publication
September 24,

Maria Eleftheriou IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (mariae@us.ibm.com). Dr. Eleftheriou is a Research Staff
Member at the IBM Thomas J. Watson Research Center. She
received a B.S. degree (with honors) in physics from Saint Joseph’s
University, and an M.S. degree in engineering and a Ph.D. degree
in theoretical and computational chemistry, both from Brown
University, in 1995 and 1999, respectively. She subsequently
worked as a Postdoctoral Fellow in the Columbia Center for
Biomolecular Simulation at Columbia University. Since joining
IBM, she has worked primarily on the Blue Gene project. Dr.
Eleftheriou has contributed, in particular, to the design and
implementation of parallel algorithms and parallel programming
models, and studied the performance of parallel scientific
applications for the Blue Gene/L architecture.

Blake G. Fitch IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (bgf@us.ibm.com). Mr. Fitch joined the IBM Thomas J.
Watson Research Center in 1985 as a student. He received his B.S.
degree in computer science from Antioch College in 1987 and
remained at IBM to pursue interests in parallel systems. He joined
the Scalable Parallel Systems Group in 1990, contributing to
research and development that culminated in the IBM scalable
parallel system (SP*) product. Mr. Fitch’s research interests have
focused on application frameworks and programming models
suitable for production parallel computing environments. Practical
application of this work includes contributions to the transputer-
based control system for the IBM CMOS S/390* mainframes (IBM
Boeblingen, Germany, 1994) and the architecture of the IBM
Automatic Fingerprint Identification System parallel application
(IBM Hursley, UK, 1996). Mr. Fitch joined the Blue Gene project
in 1999 as the application architect for Blue Matter, a scalable
molecular dynamics package.

Aleksandr Rayshubskiy IBM Research Division, Thomas J.
Watson Research Center, Yorktown Heights, New York 10598
(arayshu@us.ibm.com). Mr. Rayshubskiy received an M.E. degree
in computer science from Cornell University in 2002. He worked in
the Biomolecular Dynamics and Scalable Modeling Group within
the Computational Biology Center at the IBM Thomas J. Watson
Research Center in 2000 as an intern, joining the group as a full-
time software engineer in 2003. Mr. Rayshubskiy worked primarily
on the development of the Blue Matter molecular dynamics
package. His current research interests include parallel
applications, load balancing, performance tuning, and lower-
level hardware interfaces to the application.

T. J. Christopher Ward IBM United Kingdom Limited,
Hursley House, Hursley Park, Winchester, Hants SO21 2JN,
England (tjcw@uk.ibm.com). Mr. Ward graduated from
Cambridge University in 1982 with a first-class honors degree in
electrical engineering. He has worked for IBM in various hardware
and software development roles, always finding ways of improving
performance of products and processes. He was a member of
the IBM Computational Biology Center at the IBM Thomas J.
Watson Research Center from 2001 to 2004, arranging for the Blue
Gene/L hardware and compilers and the Blue Matter protein
folding application to work effectively together and achieve the
performance entitlement. Mr. Ward currently works for IBM
Hursley as part of the IBM Center for Business Optimization,
enabling customers of IBM to take advantage of the opportunities
afforded by the rapidly decreasing cost of supercomputing services.

IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005 M. ELEFTHERIOU ET AL.

463

2004; Internet publication April 12, 2005



Robert S. Germain IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (rgermain@us.ibm.com). Dr. Germain manages the
Biomolecular Dynamics and Scalable Modeling Group within the
Computational Biology Center at the IBM Thomas J. Watson
Research Center. He received his A.B. degree in physics from
Princeton University in 1982 and his M.S. and Ph.D. degrees in
physics from Cornell University. He joined the Thomas J. Watson
Research Center as a Research Staff Member in the Physical
Sciences Department after receiving his doctorate in 1989, and
later the VLSI/Scalable Parallel Systems Packaging Department.
Dr. Germain was project leader, from 1995 to 1998, for the
development of a large-scale fingerprint identification system using
an indexing scheme (FLASH) developed at IBM Research. He has
been responsible for the science and associated application
portions of the Blue Gene project since 2000. His current research
interests include the parallel implementation of algorithms for
high-performance scientific computing, the development of new
programming models for parallel computing, and applications of
high-performance computing to challenging scientific problems in
computational biology. Dr. Germain is a member of the IEEE and
the American Physical Society.

M. ELEFTHERIOU ET AL. IBM J. RES. & DEV. VOL. 49 NO. 2/3 MARCH/MAY 2005

464


