Scalable framework

for 3D FFTs on the

Blue Gene/L supercomputer:
Implementation and early
performance measurements

This paper presents results on a communications-intensive

kernel, the three-dimensional fast Fourier transform (3D FFT),
running on the 2,048-node Blue Gene®/L (BG/L) prototype.

Two implementations of the volumetric FFT algorithm were
characterized, one built on the Message Passing Interface library
and another built on an active packet Application Program
Interface supported by the hardware bring-up environment, the
BG/L advanced diagnostics environment. Preliminary performance
experiments on the BG/L prototype indicate that both of our
implementations scale well up to 1,024 nodes for 3D FFTs of size
128 X 128 X 128. The performance of the volumetric FFT is also
compared with that of the Fastest Fourier Transform in the West
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(FFTW) library. In general, the volumetric FFT outperforms a
port of the FFTW Version 2.1.5 library on large-node-count

partitions.

Introduction

One of the most commonly used computational
approaches for modeling large biophysical systems is the
molecular dynamics method, in which the Newtonian
equations of motion are solved numerically. Molecular
dynamics permits the computation of thermodynamic
and dynamic properties of biological systems [1]. Such
studies can enhance our understanding of biological
functions and provide insight into processes related to the
action of potential new medications [2]. One of the most
computationally expensive components of this method is
the calculation of long-range electrostatic forces [3]. A
commonly used technique for computing these forces

is the particle-particle particle-mesh Ewald (P3ME)
technique [4], which requires the evaluation of a
convolution using three-dimensional fast Fourier
transforms (3D FFTs). Our interest has been to provide
an efficient and scalable 3D FFT implementation on Blue
Gene*/L (BG/L). The metric for efficiency used here is the
“total time-to-solution” for the problem. Our use cases
for the 3D FFT from molecular simulation require strong
scaling for relatively small data sizes, such as 323, 643,
and 128°.

A distributed 3D FFT represents a considerable
challenge for the communications infrastructure of a
parallel machine because of the all-to-all nature of the
distributed transposes required, and it stresses aspects
of the machine that complement those addressed by
other benchmark kernels, such as Linpack [5].

A typical decomposition for performing a 3D FFT in
parallel is slabwise. With a slab decomposition, the data is
partitioned along a single axis. For example, to compute
an N X N X N FFT on P nodes, each node would be
assigned a slab of size N X N X N/P. While effective in
reducing communications costs, the scalability of this
method is limited by N, the extent of the data along a
single axis. This becomes an issue when one wants to scale
to very large node counts for a massively parallel
machine, such as BG/L.

To address the above issues, we implemented a 3D FFT
that is a good match to the volume domain decomposition
natural to BG/L. The volumetric FFT achieves scalability
to a larger number of nodes because it allows the
distribution of work for an N X N X N FFT over a
maximum of N nodes rather than N nodes for a slab
decomposition, but at the cost of additional
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communication. The description of an earlier version of the
volumetric FFT implementation and its performance on a
more conventional machine (POWER4* full bisectional
bandwidth switch) was previously published [6].

The major contribution of our work is a highly scalable
3D FFT framework for BG/L that can use any serial
1D FFT as a building block. To assess the scalability and
the performance of the volumetric FFT, we provide the
following:

¢ Scalability characterization of our implementations
on BG/L using two communication protocols.

* A comparison with a port of Fastest Fourier
Transform in the West (FFTW) [7] on BG/L.

We present a detailed review of the published FFT
algorithm [6] and describe a variation to the algorithm
that increases its scalability (i.e., increases the number
of nodes on which it is able to run). The algorithm was
reimplemented to improve the uniprocessor performance
and to allow performance comparison on two
communication layers: Message Passing Interface (MPI)
and active packets. The performance of the volumetric
FFT on BG/L for both communication layers is
presented. The measured performance is compared
with limits inherent in the hardware capabilities of the
machine, such as the bandwidth of the BG/L torus
communications network. Our measurements show that
the volumetric FFT scales well on the BG/L architecture.
The volumetric FFT now comes within 50% of the
performance of FFTW on a single processor, while
outperforming FFTW at larger node counts for a 128°
FFT. It is important to note that the MPI implementation
of the volumetric FFT uses the FFTW 1D serial FFT
as a building block.

The paper is organized as follows. We review the
volumetric decomposition algorithm for computing
the 3D FFT and describe the modified implementation
that allows the method to scale to larger numbers of
processors. Also in that section, we provide details of
the 3D FFT kernel implementation on two different
communication protocols. The hardware limits to the
ultimate performance of the 3D FFT on a BG/L machine
based on the hardware “speeds and feeds” [8] are next
discussed, followed by a description of our experimental
measurements and corresponding results. Finally, we
summarize our work.

Parallel implementation

For a machine with a 3D torus and mesh interconnect,
such as BG/L, itis natural to use volumetric decomposition
to map the data to perform a 3D FFT onto the
machine. Let us assume an array A4 of complex numbers
N, X N, X N distributed onto a P, X P, X P_ logical
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processor mesh. Processor (x, y, z) initially stores a block
of data n, X n, X n_ with

to a local array A’. Then,
A, j, R)x, p, 2] =A(xn, +i, yn +j, zn_+k).

To allow scalability beyond that obtainable with the
previous proposed implementation, we impose a new
restriction on the sizes of the local array, A"

n.-n =uaXP_,
X Y z

nx-nZ:ﬁXPy,
and

n,-n =yxXPpP,

y

where «, f§, and 7y are integers.

In evaluating a 3D FFT on an array A4 of size
N, X N, X N_, the “rowcolumn” method is used to
decompose the problem into successive evaluations of
1D FFTs along each dimension. More specifically, we
perform the 3D FFT in three phases; we first compute
N, X N, 1D FFTs along the z dimension, then N, X N. 1D
FFTs along the y dimension, and finally, N, X N, 1D
FFTs along the x dimension. Figure 1 indicates where
the all-to-all exchanges of data take place for each
of these three phases.

Each phase of the 3D FFT comprises the
communication and computation associated with
one of the three dimensions. The communication and
computation associated with each phase are analogous.
Here we describe only the first phase.

In the first phase, all N, X N, 1D FFTs of size N.
are independent. Therefore, it is sufficient to consider
only the case of the 1D grid of P. nodes that has
to compute n, X n, 1D FFTs of size N.. Suppose
A0 :n,—1,0:n,—1,0: N, —1)is an n, X n, X N.
array of complex numbers, block-distributed along
the z dimension onto P. nodes. If

AO:n —1,0:n,—1,0:n_—1)[p]

is the local array in node p, then
A, j, k)[pz)=A(i, j, pn_+k).

The data along the x and y dimensions is redistributed
onto the P, nodes. That is, if 4”(0: o,0: N, — 1)[p], with
ny -n, = o X P, is the local array in node p after the
redistribution, then

{(poc +1)

A" (Lk)[p)=4 J,(poc—i—l) modny,k)]

y
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Example in which an 8 X 8 X 8 FFT mesh is mapped onto a processor mesh of dimensions 4 X 4 X 4. Each of the three stages of commu-

nication required for the FFT is illustrated in this succession of figures.

Each node p sequentially computes a independent
1D FFTs of size N. that are stored in its local array A4”.
For these 1D FFT computations, we typically use the
services provided by a port of the FFTW library or the
FFT library [9] from the Technical University of Vienna
to BG/L, although we have also used a simple 1D FFT
implementation developed by our group for the packet
layer work. Once the FFTs are computed, data is
redistributed to the original distribution described by
Equation (1).

In summary, the computation of a 3D FFT is
performed in three phases, along the z, y, and x
dimensions. In each phase, we first redistribute the data,
perform 1D FFTs, and return the data to its original
distribution. The number of communication operations
in our implementation is minimized by combining the
post-FFT data redistribution of one phase with the
pre-FFT data redistribution of the next phase. Thus,
we reduce the data redistributions to three, as opposed
to six.

Hardware limits on 3D FFT performance

Lower bounds can be placed on the bandwidth-limited
communication time for the 3D FFT assuming that three
all-to-all communications (along a row or within a plane)
are required. Simulations of the BG/L torus network
indicate that the all-to-all communication time for data
that is distributed over a set of nodes in a line, plane,
or volume can be estimated using the expression'

'A. Gara, P. Heidelberger, and B. D. Steinmacher-Burow, private communication
with author.
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T Vreceived Nhops

alltoall — N_ BWf '

links

where Vieceivea 18 the volume of data received by each
node; Nyops is the average number of hops required (for
a 3D torus in which each dimension is p, Nnops = p/4
for alltoall in a line, Npops = p/2 for alltoall in a plane,
and Npops = 3p/4 for alltoall in a volume); Ny is the
number of links available to each node (two for linear
communication, four for planar communication, and
six for volumetric communication); BW is the raw
bandwidth of the torus per link (two bits per processor
clock cycle); and f'is the link utilization (assumed to be
80%). This expression indicates that the time required
for all-to-all communication is independent of the
dimensionality of the communication because the
increase of the average hop count with dimensionality
is compensated for by the increase in the number of
links available for the communication. At the limits of
scalability, this expression, on the basis of bandwidth
considerations, will become inadequate because the
hardware and software latencies associated with sending
a packet will become significant.

For an idealized bound on the computation time
required to compute a single 1D FFT of length N, we
assume 8N log, N cycles for a fused multiply-add machine
(although the ideal limit for a 1D FFT is 5N logy N
floating-point operations, data dependencies force a fused
multiply—add machine to use eight cycles when one
assumes that a fused multiply—add is issued every cycle).
Highly optimized FFT implementations, such as the
library developed by the team at the Technical University
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Speedups for the two different FFT libraries, volumetric FFT
(FFTBG) on MPI, and the FFTW on the BG/L for a varying
number of processors. The 3D FFT has a grid size of 128 X 128
X 128. Note that the network was configured as a full torus for
only the 2,048-node data point. All of the data for smaller node
counts was taken using a mesh topology for both libraries.
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Parallel execution times for the volumetric FFT on both communi-
cation layers and the FFTW on the BG/L for a varying number of
processors. The 3D FFT has a grid size of 128 X 128 X 128. While
the results reported here for the volumetric FFT on active message
interface are taken in a torus configuration for node counts of 512
and larger, all of the data on MPI for both the volumetric FFT and
FFTW is taken on the mesh topology up to 1,024 nodes. All of the
data for node counts below 512 was taken using a mesh topology.

of Vienna [9], can approach this idealized value. However,
the nature of the 3D FFT is such that it is communications-
bound for even small node counts, and the performance of
the 1D FFT building block is not critical.

Parallel performance analysis

All of the performance-measurement results presented in
this section were obtained on the 2,048-node Blue Gene/L
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prototype comprising two racks. Each rack has two
512-processor midplanes, each midplane comprises 16
node cards, each node card contains 16 compute cards,
and each compute card contains two nodes. The processor
clock speed in the current prototype is 700 MHz. The
prototype can be configured to complete a torus in all
three dimensions when it is partitioned as 512, 1,024,

or 2,048 nodes. Unless otherwise noted, the scalability
measurements reported here were taken in mesh mode
to simplify the interpretation of the scalability data.

We performed benchmarks of our FFT
implementation on the 2,048-node BG/L prototype in
which we varied both the number of nodes and the size
of data being transformed. For each experiment, the
execution time was measured at a series of node counts,
while the FFT size was held fixed. The MPI tasks were
organized in a 3D grid using the MPI topology
constructs. The running times reported here for the
MPI implementation are averages of ten runs. Each
experiment was run 11 times, and the first run was
discarded. The active packet layer execution times were
derived from application-specific trace data analyzed
after the runs.

We compared the performance of the MPI
implementation of the volumetric FFT using the 1D
serial FFT from the FFTW library as a building block,
and the 3D FFT from the FFTW library [10] on the mesh
network. FFTW is a well-established and widely used
library in the computational science community for
computing multidimensional FFTs. It relies on the slab
decomposition approach for running on multiple nodes.

Figure 2 shows the speedup of both the volumetric FFT
and FFTW. The speedup achieved by FFTW is observed
to be good up to 128 processors. However, the volumetric
FFT continues to exhibit good speedups through 1,024
nodes for the 128 X 128 X 128-size FFT, while FFTW
loses parallel efficiency above 128 nodes. This flattening
on the speedup occurs because FFTW is based on the slab
decomposition, which limits its scalability to 128 nodes.

The time-to-solution of the volumetric FFT
implementations on both communication layers and
FFTW are shown in Figure 3. The sequential FFT
from the FFTW library is about 50% faster than
the single-processor volumetric FFT using the MPI
implementation. While both the FFTW and the
volumetric FFT have comparable performance up to
128 nodes, the volumetric FFT implementations on
both communication protocols continue to scale up
to 1,024 nodes.

Figure 4 shows the measured execution times for the
volumetric 3D FFT as implemented using MPI collective
communications and the active packet interface on the
2,048-node prototype. Speedups in excess of 250 are
observed for 1283 FFTs at 1,024 nodes for both the
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MPI and active packet implementations. We observe
comparable performance on both communication layers
up to 256 processors on the mesh topology. We have
currently limited the data available on the two modes—
mesh and torus—for a larger number of processors,

and that prevents us from providing a complete
characterization of the performance characteristics

of all implementations on all of the available mesh

and torus modes. However, we expect the active packet
implementation to be faster at large node counts as a
result of the smaller software overheads in the active
packet implementation. In addition, the performance of
the MPI implementation at the limits of scalability of the
FFT should improve as more optimized implementations
of the MPI_A1Ttoal1 [v] collective operation become
available.

The comparison of the bounds on execution time—
based on hardware bandwidths and idealized 1D serial
FFT execution times with the measured total time to
solution in Figure 4—shows significant divergences at
small node counts. We conjecture that this divergence
from the limits estimated from hardware capabilities is
caused by memory hierarchy effects, since floating-point
efficiencies of the 1D FFTs used as building blocks for the
3D FFT implementation are fairly high; for example, for
a 64-point FFT, the efficiency of the FFT from the BG/L
FFT library supplied by the Technical University of
Vienna is more than 60%, and the naively vectorized FFT
implementation used in the active packet implementation
has an efficiency of more than 40%.

The memory access pattern of the in-memory transpose
required for the 3D FFT is presumably very unfavorable
for prefetching, and at low node counts the memory
footprint per node of the larger-size 3D FFTs will
certainly spill out of the 4-MB L3 cache. No effort has
been made to tile the implementation of the memory
transposes in the volumetric FFT. Of course, at the
high node counts that represent the limits to scalability
for the FFT, the data will sit in cache and the measured
performance will more closely approach the bandwidth-
limited constraints on performance. Note that even
without any effort at tiling, the uniprocessor performance
of the volumetric FFT implementation is within 50% of
that of the FFTW library implementation. We intend to
use instrumentation available on the BG/L chip that
can access the hardware performance counters to
eventually measure the memory hierarchy effects.

Figure 5 shows the measured data in a way that tries to
capture how closely measurements approach bandwidth-
limited behavior, as discussed above. We conjecture that
the deviations from bandwidth-limited performance at
high node counts for the smaller FFT sizes are due to
software and hardware overheads that become significant
at very small message sizes.
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Table 1  The Blue Gene 512-way prototype can be operated with the torus network enabled as a torus or as a mesh (without wrapping).
Taking data in both torus and mesh modes allows a check on the amount of time taken by the FFT that is attributable to network bandwidth
effects since the effective bandwidth available doubles in torus mode.

Mesh dimension Active packet MPI collective Model
323 64 1287 32 64 128° 32 64 128°

Tmesn (512) 136 X 107% 594 x 107* 455 % 1077 — — 501 X 107> 466 % 1075 377 x 107* 3.05 x 1073
Tiorus (512) 85X 107° 356 x107% 252x%x10° — — 317x107% 247X 107> 2.02%x 107* 1.65x 1073
Trmesh/ Teorus 1.600 1.669 1.806 — — 1578 1.889 1.870 1.851
Tron-bandwidth 340 X 107 1I8 X 107* 490 X 107* — — 134X 1073 274 x107° 263 X 107> 246 x 107*
Toandwidth 510 X 107° 238 X 107 2.03 X 1072 — — 184X 107 219 x 107 1.76 X 107* 1.40 x 1073
Thon-bandwiath/[N? loga(N)] 2.08 X 1071 7.5 x 107" 334 x 107" — — 912 x 107" 167 x 107" 1.67 x 107" 1.67 x 107"
Thandwidih/ N° 156 X 1077 9.08 X 1071® 968 x 1071 — — 876 x 107!* 6.7 x 1071 67x 107" 67x 1071

In Table 1, data taken on a 512-node partition in both
the torus and mesh modes is presented. If the execution
time of the FFT is totally dominated by bandwidth
effects, the ratio of Tpeen/Tiorus Should equal 2. A
ratio in excess of 1.8 is realized for the active packet
implementation for the largest FFT size, 128°, which
is impressively close to the ideal hardware behavior.

Conclusions

The parallel computation of three-dimensional FFTs has
been studied from two different viewpoints. The first one
is aimed at parallelizing the basic one-dimensional FFT
[11-13]; in the second, the transpose method, 3D FFTs
are carried out by successive evaluations of independent
1D local FFTs along each direction [10, 14—17]. In this
work we have presented a volumetric decomposition FFT
that belongs to the second category. We have discussed
the implementation of a 3D FFT for the Blue Gene/L
supercomputer. We base our approach on a volumetric
decomposition of data. This decomposition maps
naturally to the torus topology of BG/L and allows
scaling to very large numbers of nodes. We can also
leverage any serial 1D FFT as a building block for

our algorithm.

In this paper, we have reviewed the 3D FFT
implementation and provided lower bounds on execution
time based on the hardware capabilities of the BG/L
supercomputer. In our measurements, we found that
the volumetric algorithm performs impressively well up
through 1,024 nodes on both the active packet and MPI
communication layers. Moreover, we found that the
volumetric FFT outperforms FFTW by a significant
margin on large numbers of nodes. The results obtained
thus far are extremely encouraging with respect to our
ability to exploit the capabilities of the BG/L architecture
in the context of a real application kernel and to enable
the scalability of applications that depend on the
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evaluation of 3D FFTs to the very large node counts
required to achieve new levels of performance.

At the limits of scalability, approached by the 323
FFT at 512 nodes, the active packet implementation
is significantly faster than the MPI-based FFT. This
performance difference will presumably narrow as further
optimization of the MPI collectives takes place. Future
work will involve instrumenting the code to understand
the role of memory access patterns in the performance at
small node counts and continuing optimization of the
implementations on both communication layers.

*Trademark or registered trademark of International Business
Machines Corporation.
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