
Logic-based
eDRAM: Origins
and rationale
for use

R. E. Matick
S. E Schuster

The IBM logic-based eDRAM (embedded DRAM) technology
integrates a trench DRAM (dynamic random access memory)
storage-cell technology into a logic-circuit technology, merging the
two previously separate technologies. Since its introduction in the
1970s, the DRAM technology has been driven by cost while the
logic technology has been driven by speed, leading to an ever-
widening gap between slower memory and faster logic devices. That
has led to the need for increasingly complex levels of memory
hierarchies, resulting in considerable degradation of system
performance despite many design and architecture compromises.
DRAM can provide six to eight times as much memory as SRAM
(static random access memory) in the same area, but has been too
slow to be used at any cache level. Our studies, highlighted in this
paper, indicated that the use of logic-based DRAM could resolve
that difficulty—and was necessary for integrating systems on a
chip. This has led to the inclusion of logic-based eDRAM as a
memory option in the IBM ASICs (application-specific integrated
circuits) product.

Introduction

The principles on which the logic-based eDRAM

advantages are based are easy to understand. Most

important is that the density advantage of DRAM

permits replacement of the same area of SRAM with

DRAM,
1
which is from four times up to as much as eight

times larger in capacity [1]. A factor of 16 to 20 or more in

DRAM vs. SRAM capacity per unit area is obtained if

DRAM is designed, in the traditional way, for achieving

optimum density. The factor decreases to approximately

4 to 8 when the DRAM is designed for improved speed

because of the need for shorter bits lines, faster sensing,

etc. For cache applications, such as for an L2 cache, the

miss ratio decreases approximately as the square root of

the capacity increase. Hence, the use of a cache that is

larger by a factor of 4 leads to a decrease in the miss ratio

by a factor of 2; some relevant studies are described later.

Fewer misses to an on-chip cache result in a decrease in

the number of cache reloads needed from the slower,

external (off-chip) memory system. The larger-capacity

on-chip DRAM may not provide a performance

improvement if the access speed is too slow. However, the

DRAM need not be as fast as the replaced SRAM, but

must be faster than a typical DRAM.

Since DRAM was designed for density, not speed, it

was clear that a substantial speed improvement should be

possible. Questions that we decided to address were how

much of an improvement should be possible and how

much would be required. In a memory hierarchy, the

combination of the miss ratio and the first access time

is most crucial for achieving performance. Since this

relationship is nonlinear, with many contributing factors,

some memory hierarchy analysis was needed in order to

determine what speed improvement should be possible.

The net result of the analysis was that if the DRAM speed

could be made sufficiently fast, its larger capacity should

enable it to outperform SRAM over a wide range of

cases. A brief discussion of the fundamentals of cache

reload and the associated performance impact on a simple

system is presented later as an introduction to memory

�Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

1
SRAM uses six field-effect transistors that retain the stored information as long as
power is maintained, and is nondestructively read, requiring no rewrite; DRAM uses
one field-effect device and one capacitor and is destructively read, requiring write after
read, and also requiring refreshing because of capacitor charge leakage.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

145

0018-8646/05/$5.00 ª 2005 IBM

hierarchy analysis. First, we present a historical

perspective of the evolution of eDRAM and how the

industry unknowingly generated a need for it.

Historical perspective
One of the most serious and fundamental limitations on

system performance during the late 1980s and 1990s was

the growing ‘‘speed gap’’ between logic and DRAM

memory technologies. Ideally, the memory system

attached to a processor should be large enough to contain

the operating system and several complete applications,

both code and data, and be randomly accessible in one

processor cycle. This was true in some early computers,

but it is not generally possible now, because operating

systems and applications have increased rapidly in size as

processors have become faster. This results from the fact

that a fast processor can process more data in a given

period of time and hence requires larger amounts of data

and programs in order to stay busy. Thus, as processors

have become faster, their attached ‘‘main memory’’

capacity has increased, requiring increasingly more

processor cycles for an access (see Appendix A for an

expanded discussion). The relatively inexpensive ‘‘main

memory’’ portion of a system (its DRAM) has become

increasingly remote from its processor, requiring an ever-

increasing number of levels of cache to bridge the gap.

This has increased not only system complexity but also

cost, and has prevented the incremental performance

gains from being as large as they could otherwise have

been.

During the period in which the speed gap was growing,

the remoteness of main memory was due to two trends—

the increasing gap between logic and DRAM

technologies and the ever-increasing size of the required

DRAM. The increasing electrical and logic paths

associated with the latter resulted in increased delays.

Both added to the total memory access delay for

reloading a cache miss, and thus had a significant impact

on system performance. (See Appendix B for a discussion

of this impact.) The primary emphasis for reducing delays

was on overall system architecture, primarily because

closing the technology gap would have increased the cost

of DRAM (now regarded as a ‘‘commodity’’). While the

gap between logic and DRAM was obvious and well

known, its significance with respect to overall system

performance and possible solutions was not fully

appreciated.

The value of having logic of various kinds on a DRAM

chip is a relatively old concept. For example, as early

as 1976, proposals were studied for placing directory

translation directly on main memory chips in order to

eliminate page tables [2]. Also, early in the evolution of

DRAM, improvements in data transfers into and out of

DRAM chips were achieved by various forms of page

mode buffers, too numerous to discuss here.
2
Video RAM

[3, 4] was a somewhat more advanced and specialized

means for improving DRAM bandwidth, and it helped

fuel the proliferation of personal computers during the

late 1980s and 1990s. The proposed use of a separate

distributed cache on a DRAM chip [5] led to the current

ESDRAM (enhanced synchronous DRAM) technology.

Numerous means were considered for merging SRAM

and DRAM on the same chip. Many were unsuccessful

because of a lack of proper integration of key functions.

For example, in [6], an experiment was described in which

the DRAM and SRAM were interconnected with a

somewhat standard, narrow bus that was not much

different from a bus that would be used if the SRAM were

on a separate chip. For the on-chip hierarchy to function

effectively, significant integration of the data transfer

processes was necessary, such as that used with the

‘‘Supercache,’’ discussed below. This was a significant

omission in many of the early proposals; i.e., associated

functions were not integrated to make use of on-chip

advantages.

Despite the rather clear need for more highly integrated

functions on a chip, logic technology continued to be

driven by speed considerations and memory technology

by cost considerations. As the levels of integration

continued to increase, the inclusion of fast logic and

DRAM on the same chip became feasible. However,

there were different views about how to optimize

system performance and cost. Within IBM, there was

considerable interest in using sophisticated packaging

techniques to achieve this—permitting separate logic and

DRAM chips to be more tightly integrated on a carrier

with large numbers of interconnections [7, 8]. However,

this would have led to additional delays and cost.

Since the early introduction of semiconductormemories,

there had been numerous proposals to use two-, three-, or

four- device memory cells [9, 10], which could be fabricated

using standard logic technology, resulting in densities far

higher than those of normal six-device SRAM, but not as

high as DRAM densities. This would provide improved

SRAM density without the need for a new technology.

However, the performance still lagged behind what

could be obtained with the eDRAM approach.

We had been working extensively on caches, DRAM/

SRAM arrays, and memory hierarchies [11–18] and thus

had hands-on experience with the wide range of diverse

problems encountered in optimizing total system

performance. Early in the evolution of the growing

speed gap, it became evident to us that 1) the continued

advances in integrated circuits would soon make possible

fully integrated systems (large memory and processor) on

a single chip; 2) the speed gap between DRAM and logic

2
For more information, search the Internet for page mode.

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

146

circuits would impose serious performance limitations on

integrated systems on a chip; and 3) DRAM could be

nearly as fast as SRAM in the same technology. In such

integrated systems, large memory capacity on-chip would

result in better performance, but if the historical trend

were to continue, such systems-on-a-chip would not

be able to make use of the larger density provided by

DRAM—a serious limitation. Thus, early in the 1990s,

we became convinced that the optimum performance of

future systems would require the use of a logic-based

DRAM technology. We reached this conclusion through

various types of analysis which began in 1990 and

continued for more than seven years in numerous forms

and complexities. A substantial amount of the initial

work was ‘‘engineering analysis’’ of memory hierarchies

based on insights and educated assumptions. While this

type of analysis proved to be correct, it was nevertheless,

by itself, insufficient to dispel the considerable doubt

about our conclusion that the use of logic-based eDRAM

would be essential for continued system evolution.

Several options were considered, but when designed

‘‘on paper’’ they clearly indicated the difficulties with a

DRAM-based eDRAM. Two of these are discussed later:

the so-called ‘‘Supercache’’ option and a full system-on-a-

chip option implementing a matrix multiply unit.

Initially, the consensus was that the use of DRAM-

based eDRAM with its cheaper processing but slower

device speed was the correct strategy for system

evolution. The basic issue was whether logic should be

implemented via the DRAM process (DRAM-based

eDRAM)
3
or DRAM implemented via the logic process

(logic-based eDRAM, seemingly more difficult and

expensive).
4
Despite opposition, our view was that closing

the speed gap via the use of logic-based DRAM would be

the most viable means to ensure system evolution. The

timely commencement of an implementation effort in the

IBM Technology Group
5
and continued system studies

ultimately led to the inclusion of logic-based eDRAM in

the IBM ASICs (application-specific integrated circuits)

product; see for example [19–26]. This history unfolded as

described next.

Early environment of the IBM metal-oxide field-
effect transistor (MOSFET) technology
The MOSFET technology used by IBM in the late 1960s

and early 1970s for manufacturing semiconductor logic

and memory devices and circuits was based on the use of

n-channel MOSFETS (also designated as ‘‘n-channel

devices,’’ ‘‘n-MOSFETs,’’ ‘‘n-FETs,’’ ‘‘n-type devices,’’

etc.), metal gates, and associated depletion loads (ratio

logic levels without p-channel devices) [27, 28]. Thus,

logic and memory functions could be integrated on a

single chip. At the time, main memory used SRAM

arrays, as illustrated by the 2-Kb Riesling chip [29], which

contained six-device cells. Subsequently, use was made of

the DRAM-based technology, based on the use of cells

containing one MOSFET device and one capacitor [30].

That technology has become the dominant memory

technology because of its improved density and cost.

After the introduction of the DRAM technology but

before the availability of the CMOS (complementary

metal oxide semiconductor)
6
technology, there was

continued use of n-channel devices for both logic and

memory. However, a small but noticeable difference

between logic and DRAM device speed appeared. The

reason for this was that the DRAM technology required

the use of devices having a higher threshold voltage V
t
to

ensure low leakage, resulting in an increase in the time

interval between refresh cycles.
7
The logic technology

involved the use of a similar but modified process to

obtain devices having a slightly lower threshold voltage

that facilitated higher overdrive, V
dd
� V

t
(where V

dd
is

the power-supply voltage), and thus greater circuit

speed.
8
The different V

t
values were achieved by slightly

different channel doping. However, since the magnitude

of V
dd

was 5 V, the difference in overdrive for devices

with ‘‘high’’ V
t
(;1 V) vs. ‘‘low’’ V

t
(;0.7 V) was not very

large (5 to 10%); thus, the speed increase was small. The

technology required the use of only one type of gate with

only minor differences needed to speed up the logic

circuitry (lower V
t
) or reduce the DRAM leakage

(higher V
t
).

CMOS technology
During the late 1970s to early 1980s, CMOS technology

became viable in IBM manufacturing. The technology

required the use of p-channel load devices. Two methods

available for introducing such devices were

1. A low-cost approach based on the use of heavily

n-doped polysilicon (n
þ
-poly) gates and a buried

p-doped channel to produce its p-channel load devices

3
DRAM-based eDRAM involves retaining the current, single-work-function
technology (described later) and relatively slow DRAM technology and re-mapping
logic books and libraries to its ground rules. Thus, embedded processors with DRAM
can be designed in same technology, but they are slower than those designed in logic-
based (dual-work-function) technology (described later).
4
Logic-based eDRAM involves adding the DRAM deep trench and other processes to
the logic process, requiring extra masks and processing steps. However, the logic
libraries do not have to be remapped to new ground rules, which is a significant extra
advantage.
5
Undertaken by the IBM Academy under the leadership of Russell Lange (IBM
Technology Group).

6
The ‘‘M’’ in MOS and CMOS originally referred to the use of a metal gate. Although
the metal gate has mostly been replaced by an n-doped or p-doped polysilicon gate,
the ‘‘M’’ has been retained.
7
A DRAM cell stores data as charge on a capacitor. This charge continually leaks
away through the field-effect access device and must be refreshed about every 16
milliseconds. Refresh time can interfere with normal accesses and must be controlled.
The use of higher-V

t
devices reduces this leakage.

8
Overdrive is a measure of the amount of force exerted on the carriers in the channel
of a field-effect device in order to accelerate them during switching; thus, it affects
switching speed.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

147

(‘‘single-work-function technology’’), as illustrated by

the configuration in Figure 1(a).

2. A more costly approach based on the use of n
þ
-poly

gates for its n-type devices and p
þ
-poly gates for its

p-channel load devices (‘‘dual-work-function

technology’’), as illustrated in Figure 1(b).

At that time, the state of the art employed rather large

devices (;1-lm channel length). The single-work-

function (buried-channel) approach was suitable for

producing both logic and DRAM structures. The first

CMOS technology in IBM manufacturing, CMOS 2, was

based on the use of that approach (with a channel length

of ;1 lm) for both logic and DRAM devices, and was

designed to function at V
dd

= 5 V. The use of this

relatively large operating power-supply voltage resulted

in only a small difference between logic and DRAM

device speeds. Different thresholds were obtained for

the devices through the use of different doping levels. For

information on CMOS 2 and subsequent generations of

IBM CMOS device technologies, see for example [31] and

cited references.

While this single-work-function technology was

suitable for the relatively large devices being used at the

time, it was very difficult to scale the buried-channel

devices to smaller channel lengths and concurrently

obtain the desired scaled speed improvement; i.e., the

speed did not scale well. This difficulty is due to short-

channel effects resulting from the deep diffusion incurred

for a buried channel. Short-channel effects arise because

the implanted boron layer has a finite and relatively large

thickness, as shown for the device to the right in Figure

1(a), instead of being an infinitesimally thin sheet, as for

the (dual-work-function technology) surface-channel

devices of Figure 1(b).

To scale to smaller devices and obtain a lower V
t
for

logic operation, use was made of a dual-work-function

process which functioned at V
dd

= 2.5 V and V
t

;0.5 V

(CMOS 5X). The use of a p-poly surface channel for the

p-type devices resulted in the lower value of V
t
. However,

because the process was more expensive, the use of a

slower, buried-channel p-type device (single-work-

function technology) was continued for DRAM. Thus,

DRAM devices continued to be slower than their logic

counterparts. (A buried-channel n-type device has not

been used because its p
þ
-poly gate has a relatively high

resistance and its processing is difficult.) Other device and

technology requirements which tended to make DRAM

technology slower than logic are the following:

1. The need for a thicker gate oxide to allow word-line

boost for writing and reading at higher overdrive

in order to obtain a higher signal-to-noise ratio

(the thicker oxide is needed to prevent electrical

breakdown of the oxide at the higher overdrive).

Figure 1

Illustrative cross sections of CMOS configurations fabricated via (a) single- and (b) dual-work-function technologies. In (a), n�-poly
gates are used for the n- and p-channel devices; the p-channel device has dopant added to its surface channel region (to achieve lower Vt),
resulting in the formation of a relatively deep channel and associated short-channel degradation effects (single-work-function
technology). In (b), an n�-poly gate is used for the n-channel (normal surface channel) device and a p�-poly gate for the p-channel
(normal surface channel) device (dual-work-function technology).

p�n�n�

p dopant (boron) gives
deep channel

 Note that the doping of the p-type load device channel is low compared to that of the buried channel, hence minimal short-channel effects.

Surface-channel n-type device

n�-poly gate p�-poly gate

Substrate (p-type) Well (n-doped)

n�-poly gate n�-poly gate

Surface-channel p-type load device

Surface-channel n-type device Buried-channel p-type load device

p doping, low or none

p doping, low or none n doping, medium or
low for Vt

Substrate (p-type)

n� n�

p�

p� p�

Well (n-doped)

(a)

(b)

Shallow-
trench

isolation

Shallow-
trench

isolation

Shallow-
trench

isolation

Shallow-
trench

isolation

Shallow-
trench

isolation

Shallow-
trench

isolation

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

148

2. The need for a relatively large threshold voltage in

order to reduce leakage current (and thus obtain a

longer data retention time and longer time between

refresh cycles).

Thus, the small speed gap between the logic andDRAM

technologies became significantly wider than previously.

For more on buried-channel devices and short-channel

effects, see [31], part (a), p. 188 and [32], p. 291.

New IBM DRAM strategy for on-chip systems
In the early to mid-1990s, the industry continued to use

the above strategy, i.e. the use of separate technologies

for DRAM (single-work-function technology) and logic

(dual-work-function technology). This caused the speed

gap between logic and DRAM to continue to widen, as

illustrated in Figure 2.

In the early 1990s our engineering analyses of simple

systems showed that as the levels of integration increased,

significant amounts of memory could and should be

placed on a chip to improve performance. The analyses

indicated that for memory hierarchies on a chip, if the

DRAM speed could be sufficiently improved, the

significantly higher density of DRAM compared to

SRAM (four to eight times more DRAM in the same

area) would offset any speed difference. This would

effectively allow DRAM to replace SRAM because of the

improved miss ratio of the larger capacity. In addition,

further analysis convinced us that the difference in access

speed between SRAM and DRAM was limited mainly

by the technologies used for implementation, not by

fundamental elements. (See Appendix C for a discussion

of this issue.) Thus, if DRAM were to be built in logic

technology, its access time could be much closer to that of

SRAM (rather than being significantly different, as was

prevalent at that time).

Our subsequent analysis of memory hierarchies in the

early 1990s indicated the various speed ranges required

for on-chip DRAM to compete with faster but less dense

SRAM (presented later) over a wide range of system

parameters. It was found that significant improvements in

system performance could result from replacing SRAM

with improved DRAM and that the required DRAM

parameters were well within the realm of possibility.

Thus, it appeared that it should be possible to decrease

the speed gap between logic and DRAM technology, as

indicated by the dotted curve in Figure 2.
9

Our first memory-hierarchy-on-a-chip design
While we were aware of the potential and the need for fast

DRAM in the early 1990s, there was little capability for

any actual implementation. Thus, our first design was a

memory hierarchy consisting of an SRAM in front of a

standard DRAM, all on the same DRAM chip. We chose

as the base the highest-density DRAM available at the

time, the IBM 16-Mb chip [33]. We removed half of the

DRAM and replaced it with SRAM and many custom

interface circuits and buffers (store-back buffers, reload

buffers, etc.). The base design consisted of two 8-Mb

islands with built-in error correction and other

intervening circuits, thus making it easy to divide. Our

modified design contained several buffers and circuits

similar to that used in the first IBM RS/6000* cache

[18, 34] to support high-speed simultaneous transfers

between the L1, L2, and L3 levels. By integrating the

two-level cache hierarchy on a single chip, high bandwidth,

reduced latency, and better performance were achieved.

Substantial circuit analysis, projected speeds, and power

calculations were carried out. A schematic diagram of the

chip functions and their placement is shown in Figure 3.

This chip, designated as the Supercache
10

chip, became

part of an advanced RS/6000 multiprocessor product

plan of record in the early 1990s. It offered substantial

performance improvement but lacked sufficient product

design support at that time. Thus the Supercache design

was abandoned, but the same basic idea is currently used

for the on-chip L3/L2 cache of the IBM Blue Gene* high-

performance processor [35], implemented in IBM logic-

based eDRAM technology.

Matrix multiply unit (MXU)—Full system on a
chip
A subsequent study was undertaken to evaluate the

performance potential of a special vector processor [36]

designated as the matrix multiply unit, or MXU. The

concept required a relatively large memory and a high

Increasing speed gap between IBM logic and DRAM technologies
resulting from cost vs. performance design objectives.

Figure 2

Year~1990

DRAM

Logic-based DRAM

~2000

Logic and SRAM

D
ev

ic
e

sp
ee

d

9
Note that this does not necessarily imply that large, off-chip main memory systems
should be designed with the same fast logic-based eDRAM chips. This is a separate
issue that is not part of this work.

10
U.S. Patents 5,388,072 (1995) and 5,890,215 (1999).

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

149

bandwidth for the parallel processing of vectors. We

immediately recognized that the use of embedded DRAM

with an SRAM buffer similar to Supercache could

provide these, and configured a possible implementation

consisting of a processor, MXU, with associated memory

on one chip, as shown in Figure 4. The MXU includes

everything except the memory; in a non-integrated design,

the MXU as well as the memory would be located on

separate chips. This study proved to be pivotal; up to that

time, our arguments for a logic-based eDRAM had been

based primarily on engineering analysis of very general

memory hierarchies, and we did not have an actual,

convincing example. The Supercache system mentioned

above did not have an on-chip processor/memory

hierarchy. The MXU provided our first, definitive such

case. We intended the MXU study to be realistic, and

thus carried out the initial system integration using the

only appropriate technology available at the time, the

DRAM technology (single-work-function, slow, lower-

cost chips). The results showed that such an integrated

MXU system on a chip fabricated in a DRAM-based

eDRAM technology could not win in the marketplace.

The fundamental problem was that the CPU and matrix-

processing unit logic would be fabricated in a technology

that was too slow compared with a conventional system

using fast logic and SRAM chips with a standard memory

hierarchy. The use of larger-capacity DRAM to replace

SRAM could not compensate for the degradation resulting

from the slower, DRAM-based CPU/L1 cache/vector logic.

It thus became clear that in order to achieve better

performance than that possible with a conventional

technology, enhanced device speed would be needed. The

analysis which led us to this conclusion proceeded as

described in limited detail in Appendix D.

The MXU study and subsequent related work showed

the need for logic-based eDRAM in order to achieve

higher system performance, not necessarily higher

DRAM performance. Thus, if DRAM-based eDRAM is

used as the base, system performance is always limited by

the CPU/logic and will be inferior even for the best

achievable DRAM speed; i.e., the larger DRAM cannot

compensate for the lower processor performance.

However, the use of a logic-based eDRAM facilitates the

fabrication of fast CPU/logic for a competitive position

and the replacement of on-chip SRAM with eDRAM,

which can now also be relatively fast—thus leading to an

improved overall system.

Engineering analysis of generic systems
Throughout our more than seven years of study, we made

use of different techniques and methods of analysis to

make our case for logic-based eDRAM. The essence of

the case is the use of miss rates and spreadsheets to

calculate relevant parameters. An overview of the

approach is presented next, followed by a discussion of its

use in comparing the performance of memory hierarchies

when SRAM for the L2 and L3 levels of cache is replaced

by DRAM of various speeds.

Analysis using miss rates and spreadsheets

The ideal, raw processing power of a processor is

measured in cycles per instruction for an infinite cache

[37]; i.e., its first-level cache functions as if there were

no cache misses and thus no reload penalties. This is

equivalent to having attached to the system only one ideal

memory of very large size and using a cycle time equal to

that of the processor. Since such an ideal memory is not

feasible, designers attempt to approximate it by using a

memory hierarchy comprising caches of small size and

high speed at the first level (the processor level), and

designing for a gradually increasing capacity with a

decreasing speed, up to main memory. Typically there

may be one to four such cache levels between the

processor and main memory. Since the level closest to the

processor (L1) is smaller in capacity, it cannot retain all

of the information which may be required by the

processor at any instant. Address translation is required

to determine whether any requested information is

actually present. Thus, some accesses ‘‘miss,’’ i.e., are not

present, and require a ‘‘reload,’’ which is a transfer of the

full block that contains the required information, from

the downstream memory to L1. An L1 miss requests the

data from L2. If L2 has a miss, it requests the data from

L3, etc. until the information, which may be in main

memory as the last level, is found. An access to any level

downstream from L1 results in the transfer of a block or

Placement of functions included on Supercache chip.

Figure 3

8-Mb DRAM L2
(half of 16-Mb chip)

256-Kb SRAM

High-speed buffer for DRAM L2

Cache reload buffer

Store-back buffer

Reload exchange buffer
Cache line to/from
off-chip memory

Cache data to/from
off-chip L1

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

150

line, typically 32 to 128 bytes, of information to L1 since

this likely contains the next piece of information required

by the processor. At the beginning of this transfer, the

initially requested information which caused the miss

(typically a doubleword, 8 bytes) is the first data accessed

and is simultaneously ‘‘loaded through’’ to the processor

so that it can resume processing. Thus, the average,

equivalent memory access time for any system with a

memory hierarchy is considerably longer than one system

cycle because of stalls and delays caused by cache misses

and reloading. This additional delay, measured in cycles

per instruction executed, is typically known as the finite

cache penalty (FCP). These two parameters are added

together to obtain the cycles per instruction (CPI) for the

system:

CPI [system] ¼ CPI [infinite cache] þ FCP. (1)

The CPI [infinite cache] is independent of the memory

hierarchy and is assumed to be given. The attached

memory hierarchy affects only the FCP term. The memory

hierarchy analysis of only a simple uniprocessor is

presented below. Analyses of more complex multiprocessor

systems as well as a fuller treatment of this subject

are presented in [37].

A uniprocessor system consisting of a single processor

having an n-level memory hierarchy is illustrated in

Figure 5. A processor and first-level cache (L1) are

typically designed as a single self-contained unit and thus

are not available for optimization as part of the hierarchy

analysis. The L1 capacity is typically limited by the

processor cycle time and silicon space available, and thus

is not a degree of freedom. Rather, the processor and L1

together are the source which generates misses at a given

miss rate of mr
1
misses per instruction executed. If there

were no misses (i.e., infinite L1 cache) or if the miss

latency time were 0, the resulting CPI value would be

CPI[infinite cache]. Assuming that this parameter is

given, our task is to determine the additional number of

cycles per instruction required for the given memory

hierarchy. Miss rates are typically used as the measure of

the miss characteristics of each level of the hierarchy:

Miss rate ¼ number of misses per instruction

executed by the processor: ð2Þ

It is possible to express the FCP in terms of a miss ratio

for a level, defined as the number of misses per access to

that level. These parameters are quite different and are

not interchangeable. The miss ratios can be expressed

in terms of miss rates for all cache levels except the

L1 cache, which requires an additional parameter, as

discussed in Appendix B of [38]. The FCP expression is

derived below in terms of both miss rates and miss ratios.

In the figure, the miss latency time at each level is

assumed to be a fixed constant T
n
, where n = 2, 3, 4, etc.

for each downstream level, as indicated. This time is the

total effective time to reload a hit at any level, including

Figure 4

Layout and busing of matrix multiply unit accelerator chip having four FPUs and 2-MB on-chip DRAM L2.

2-KB
register

file

2-KB
register

file

2-KB
register

file

2-KB
register

file

1 DW/cycle

FPU FPU FPU FPU

2 � 576 byte buffer (2 � 64 DW)

DRAM array
2-MB 16-Mb

24/44-ns access per cycle
65 mm2 2.1 W

4 DW/cycle per FPU

32 bytes per cycle

Address
8 bytes

Instruction
4 bytes

Controls
4 bytes

576 bytes

2 � 576 bytes

1 DW/cycle 1 DW/cycle 1 DW/cycle

5 mm

13 mm

15 mm

5 mm

8.5 mm

18.5 mm

Scaled from 4-MB macro

Scaled from IBM 620 FPU in
CMOS 5S to CMOS 6
88 mm2 8.9 ns 21 W

Vector register file � 4 � 2 KB
66 mm2 3.5 ns <17 W

Scaled from
512 DW (4 KB) 6 port file
to 256 DW (2 KB) 6 port file

~ 15 mm � 18.5 mm 9 ns 40 W

30%

of

M
X
C
U

2 mm

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

151

all electrical and logical delays; to a good approximation,

it can be taken as the time to first access at that level. In

a more complex system, particularly a multiprocessor

configuration, there are additional queuing delays due to

multiple requests to any cache from multiple sources.

Such delays are a nonlinear function of the requests at

each level and greatly complicate modeling and analysis.

A good design minimizes these delays so that they are

second-order effects. Thus, this simple analysis is a good

approximation.

The L1 miss rate mr
1
serves as input to the memory

hierarchy for the FCP calculation. It is necessary to

determine only the average number of cycles per

instruction required to reload these mr
1
misses per

instruction. All L1 misses trigger an interrogation of L2,

producing some L2 hits, with the remainder being L2

misses. The L2 misses propagate to L3, producing some

L3 hits, with the remainder being L3 misses. This hit–miss

behavior continues to the level which produces only hits,

which is main memory in this model. A specific hit at any

level is reloaded with appropriate delay, and terminates

any further miss-request interrogations downstream.
11

Portions of the total average reload delay come from each

level. For a general case, this includes hits in L2 with

delay T
2
, hits in L3 with delay T

3
, hits in L4 with delay

T
4
, etc., as shown in the figure. These amounts are easily

determined as follows: The hit rate hr
n
at any level n is

given by

hr
n
¼ inputs per instruction� outputs per instruction

¼ misses per instruction ½ previous level �

� misses per instruction ½current level �

¼ mr
n�1
�mr

n
: ð3Þ

The portion of the total FCP contributed by each level

n of the hierarchy is the hit rate multiplied by the average

effective reload time per hit of that level. The FCP is

expressed in units of processor cycles per instruction;

hence, all delays T
n
are expressed in units of number

of processor cycles per hit rather than absolute time.

Thus, the contribution to the FCP for any level of the

hierarchy is given by

FCP
n
¼ hr

n
� T

n
¼ ðmr

n�1
�mr

n
ÞT

n
: ð4Þ

The total finite cache penalty of an n-level hierarchy is

the sum of all individual terms, or

FCP ¼
Xz

n¼2

ðmr
n�1
�mr

n
ÞT

n
: ð5Þ

Assuming no misses in main memory, the FCP for a

hierarchy with four levels below main memory would be

FCP ¼ðmr
1
�mr

2
ÞT

2
þ ðmr

2
�mr

3
ÞT

3

þ ðmr
3
�mr

4
ÞT

4
þmr

4
T

main
; ð6Þ

where mr
1
, mr

2
, � � � are the miss rates at levels 1, 2, etc.,

in misses per instruction executed, and T
2
, T

3
, � � � are

the average effective reload time in units of the number of

Figure 5

Uniprocessor with simple n-level memory hierarchy. (I: no. of instructions; Tn � miss latency time, where n � 2, 3, 4 etc. for each downstream
level.)

L1
cache
mr1 Hits

CPU
 L2 cache L3 cache

Hits
Hits

MissesMisses

 L4 cache

 L3 hits / I � T3 cycles per hit
 L4 hits / I � T4 cycles per hit

 L2 hits / I � T2 cycles per hit

Reload delay
terms for FCP

mr2mr1 mr3 mr4

 No. of L3 hits per instruction
mr2 � mr3

 No. of L2 hits per instruction
mr1 � mr2

 No. of L4 hits per instruction
mr3 � mr4

Finite cache penalty � Delay / I for L2 hits � Delay / I for L3 hits � Delay / I for L4 hits ...

FCP � (mr1 � mr2) T2 � (mr2 � mr3) T3 � (mr3 � mr4) T4 � ...

Cycles per instruction � Hits per instruction � cycles per hit

11
Misses flow downstream from L1 to L2 to L3, etc., while reloads flow upstream.

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

152

processor cycles per miss (i.e., the actual delay divided by

the cycle time of the processor). This equation can be

written in terms of miss ratios as follows. As shown in

Appendix B of [38], miss rates can be expressed as

mr
1
¼ A

I
MR

1
; mr

2
¼ mr

1
MR

2
; mr

3
¼ mr

2
MR

3
; and

mr
n
¼ mr

n�1
MR

n
; ð7Þ

where A
I
is the average processor memory accesses per

instruction executed, and MR
1
, MR

2
, etc. are the miss

ratios of L1, L2, etc. in misses per accesses to that level.

Substituting these into Equation (6) gives

FCP ¼ A
I
MR

1
ð1� MR

2
ÞT

2
þ A

I
MR

1
MR

2
ð1� MR

3
ÞT

3

þ A
I
MR

1
MR

2
MR

3
ð1� MR

4
ÞT

4
� � �

¼ A
I
½MR

1
ð1� MR

2
ÞT

2
þ MR

1
MR

2
ð1� MR

3
ÞT

3

þ MR
1

MR
2

MR
3
ð1� MR

4
ÞT

4
� � ��: ð8Þ

The value of A
I
is generally unknown, since the number

of memory accesses required by program instructions

such as load or store-multiple, etc. are unknown until the

program is compiled or executed—and can be data-

dependent. However, a value of unity is valid for many

cases. Assuming that value, we obtain

mr
1
¼ MR

1
; mr

2
¼ MR

1
MR

2
; mr

3
¼ MR

1
MR

2
MR

3
;

mr
n
¼ MR

1
MR

2
MR

3
� � � MR

n
ð9Þ

and

FCP ¼ MR
1
ð1� MR

2
ÞT

2
þ MR

1
MR

2
ð1� MR

3
ÞT

3

þ MR
1

MR
2

MR
3
ð1� MR

4
ÞT

4
� � � ; ð10Þ

where T
2
, T

3
, etc. are the effective reload access times for

L2, L3, etc. in units of processor cycles.

At the processor/L1 cache level, the L1 cache speed

is included indirectly by way of the CPI[infinite cache]

parameter, which is assumed to be given; hence, it is not a

variable in this analysis, as can be seen from Equations

(6) and (10). The only L1 variable in these equations is the

L1 miss ratio, which is varied below. Equations (6) and

(10) are the fundamental equations used for most of our

subsequent analyses of memory hierarchies of a simple

uniprocessor. (See for example [38].)

Spreadsheet analyses of memory hierarchies

The crucial performance parameter in any memory

hierarchy is the sum of the products of hit rate times the

reload time at each cache level. The reload time consists

primarily of chip access time plus all additional packaging

and transfer delays.
12

The miss rate or the miss ratio at

any cache level improves (decreases) with increasing

cache size (capacity); detailed analyses have shown that

the miss ratio varies approximately as the square root of

the cache size, as can be seen, for example, in Figure 6.

Plotted in that figure is the miss ratio as a function of

cache size for a transaction-processing-type commercial

trace on a log scale, indicating that the miss ratio varies as

the square root of the cache size between 4 and 64 KB

(the ‘‘square root’’ rule). Above 64 KB, this and other

analyses suggest that for larger caches, the slope may be

�3/4. However, this analysis was not extended sufficiently

to reach a more definitive conclusion about the slope

variation. If the miss ratio vs. size were actually to vary as

3/4 power, the eDRAM approach could have an even

greater advantage. This square root rule is assumed to

apply in subsequent analyses unless stated otherwise.

At a given technology level, assuming that the square

root rule applies, analyses indicate that DRAM can

typically provide anywhere from four to eight times more

bits than SRAM in the same area, or two to nearly three

times lower miss ratios for the same amount of silicon

area consumed. However, DRAM has traditionally been

slower than SRAM, and in the past had not been

considered as a candidate to replace SRAM. With System

Scale Integration (SSI), DRAM array and packaging/

transfer delays for cache reloads are greatly diminished so

that for many practical cases, the hit ratio 3 reload time

and the resulting FCP can be substantially better for a

DRAM than for an SRAM. This is seen to be true in the

following analysis.

When the concept of logic-based eDRAM was first

proposed, the technical community was of the opinion

that better performance could be obtained via either of

Calculated values of log2 of average L1 miss ratio vs. log2 of L1
size for four-way set-associative, 128-byte cache blocks (lines),
showing 1/2 and 3/4 power dependence of miss ratio on cache
size, for a commercial transaction processing trace workload.

Figure 6

12 14 16 18 20

Slope � �1/2

Slope � �3/4

Log2 of L1 size

L
og

2
of

 a
ve

ra
ge

 L
1

m
is

s
ra

tio

4

3

2

1

0

�1

�2

12
Trailing-edge effects may add additional delays if the transfer of a block or line is

done piecemeal, requiring many cycles. This results from the fact that the first reload
cycle restarts the CPU and subsequent cache accesses may be to a doubleword that is
in the same line but not yet reloaded—see [37] for more details.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

153

the following: a DRAM-based eDRAM in which the

processor, SRAM, and DRAM were fabricated in the

normal DRAM-based technology, or the standard

approach involving fabrication of logic and SRAM in the

high-speed logic technology and DRAM in the standard

DRAM-based technology. The following analysis

demonstrates that this is not the case over a wide set

of parameters representing typical cases.

Clearly, the performance improvement is highly

dependent on the DRAM access time achievable. Also,

the reload times T
2
or T

3
include delays other than the

array access times, such as logic delays, translation

delays, and fixed wire delays. These aspects are not

easy to quantify without some specific system design.

Nevertheless, we were confident during the initial phases

of this work that we could reduce the DRAM access time

to within a few cycles (roughly three to five) of an SRAM.

Thus, whatever values of T
2
or T

3
are assumed for an

SRAM, the best DRAM effective reload access would be

that SRAM time plus a few cycles. This is typically the

assumption used in the following analysis. However, it is

currently expected that DRAM access times will approach

and possibly exceed those of SRAMs.
13

Processor plus SRAM L2 vs. processor plus

DRAM L2

In the first comparison, the basic system is assumed to

consist of a processor with its given L1 cache (and given

CPI[infinite]) plus an L2 cache connected to a main

memory. We compute the overall performance of such a

system as given by the total system CPI vs. L1 miss ratio

MR
1
for three cases: a system consisting of a logic-

technology-based processor plus an SRAM L2

(traditional, standard design); a DRAM-technology-

based processor plus a DRAM L2; and a logic-based

processor plus a logic-based DRAM L2. This is similar to

the comparison done for the one specific design point

in the MXU study detailed in Appendix D, but now

done more generally and for a range of miss ratios.

We assume a speed scaling factor of 1.73 between the

DRAM-based and logic-based technologies, which is

similar to that used in the MXU study.
14

We start with a logic-based processor with its L1 cache

and arbitrarily assume a value of one cycle per instruction

for its CPI[infinite].
15

The same processor plus L1 cache

in a DRAM-based technology would then have a

CPI[infinite] value of 1.7 cycles per instruction (i.e., one

cycle per instruction times the speed scaling factor of 1.7).

To the former, logic-based processor/L1, we attach an

on-chip SRAM L2 having a T
2
value of 13 cycles and a

miss ratio of 30%. The main memory (L3 in this case,

with MR
3
= 0) is assumed to have a reload access time T

3

of 134 cycles. The total system CPI is equal to 1 þ FCP,

where the FCP is evaluated from Equation (10) with MR
1

varying from 0 to 10%. The results are given by the blue

curve in Figure 7. AtMR
1
= 0, obviously the FCP is 0, so

the intercept on the y-axis must be at 1, as shown. Clearly,

this represents the traditional standard system using high-

speed logic technology for processor/L1 and SRAM L2.

The same system implemented using a DRAM-based

technology for processor/L1 and DRAM would yield a

DRAM L2 which would be eight times larger in capacity

and 1.7 times slower, or would have a reload access time

of T
2
= 1.7318 = 31 cycles (i.e., the logic-based DRAM

discussed below is chosen at 18 cycles). For this case, the

processor/L1 would similarly have a CPI[infinite] value of

1.7 compared to 1 for the logic-based case. A plot of the

calculated system CPI vs. MR
1
for this case using the

same main memory is shown in Figure 7 as the green

curve. The value of the system CPI at MR
1
= 0 starts out

at a larger value of 1.7 (re: use of slower technology).

However, as MR
1
increases, the larger L2 DRAM gives

a much more slowly increasing FCP than the previous

logic-based processor þ SRAM L2 case. As can be seen,

the two curves cross at a value of MR
1
of about 10%,

indicating that the DRAM-based technology should have

an inferior performance at L1 miss ratios less than 10%

and superior performance above 10%. Since most

applications run with an average L1 miss ratio less than

10%, the DRAM-based system is not as attractive as a

standard processor with an SRAM L2. This was the

situation and general view of DRAM performance

potential for memory hierarchy applications before the

introduction of the concept of logic-based DRAM. We

next introduce such a DRAM into the same system.

The calculated performance for a logic-based processor

plus a DRAM L2 with a capacity of eight times that of

the SRAM but with a T
2
of 18 cycles is plotted in Figure 7

as the red curve; i.e., the SRAM of the first case above is

replaced by a DRAM eight times larger and five cycles

slower. At MR
1
= 0, the system CPI must start at a value

of 1. However, the larger but slower DRAM L2 gives a

smaller FCP at all values of MR
1
. In addition, the logic-

based DRAM L2 appears to be increasingly superior to

the SRAM L2 as MR
1
increases; i.e., the slope of the

DRAM curve is smaller than that of the SRAM. This is a

result of the lower miss ratio. Similarly, the logic-based

DRAM L2 appears to be superior to the DRAM-based

13
For the same memory capacity, because of its significantly smaller cell, a

DRAM occupies considerably less area than an SRAM. Additionally, because its
interconnections are shorter, its loading is less, etc., its speed can potentially become
faster than that of an SRAM. In addition, as we scale to smaller dimensions, in the
sub-0.1-lm range, SRAM cells become unstable because of ‘‘read-disturbs.’’ As a
result, the SRAM cell size must be increased to larger than minimum size. Since this
does not occur for DRAM cells, DRAM scales more easily, adding to its area
advantage. (SRAM scaling problems raise many interesting issues pertaining to power
leakage, speed, etc.)
14
A scaling factor between normal DRAM and logic speeds would increase as the

technologies evolve, making the case for logic-based eDRAM even more compelling.
15
CPI[infinite cache] is very dependent on the specific processor and L1 cache design

(see Appendix B).

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

154

L2 at MR
1
= 0 because the processor is faster, and for

MR
1

. 0 because the logic-based DRAM access time is

shorter (T
2
= 18 vs. 31 cycles).

Thus, we see that not only should the logic-based

DRAM system give the best performance, but it should

also be less sensitive to variations in MR
1
, an important

consideration. While this has been shown for only one set

of parameters, the same trends remain valid over a very

wide, representative range of parameters. For example,

suppose we wish to attach a much larger and thus slower

main memory to the above system, keeping all other

parameters constant. The calculated performance for

such a case with a main memory of T
3
= 268 (twice

as slow as previously) is shown in Figure 8. Again we

see that the logic-based eDRAM system should be far

superior and also less sensitive to variations. However,

the calculated FCP is beginning to become so large that

the use of an L3 before main memory should be

considered, as discussed later.

Replacing SRAM with DRAM: Performance
comparisons
The finite cache penalty vs. cache size (capacity) is

another dramatic, graphical method of contrasting

DRAM performance vs. an SRAM for an L2, L3,

or any level cache. Such analyses can quickly show the

performance advantage of the larger DRAM capacity for

various assumed DRAM and SRAM access times.

For the first comparison, as previously, a memory

hierarchy is chosen which consists of L1, L2, and main

memory. The calculated FCP is plotted vs. memory

capacity for various assumed T
2
access delays as in

Equation (10), where the L2 miss ratio MR
2
is assumed to

vary with capacity according to the square root rule.

DRAM and SRAM are distinguished only by their

different T
2
values and are plotted on the same figure

with all other parameters held constant.

We start by assuming an extremely slow L2 DRAM (or

a DRAM off-chip, or both) with a T
2
of 46 cycles, and a

relatively fast SRAM L2 with T
2
= 13 cycles. The L1

cache is assumed to have a fixed miss ratio of 5%, as

indicated in the figure. The SRAM and DRAM are

assumed to have the same miss ratio: 10% at the 1-MB

size (e.g., one base unit);
16

and it is assumed that the miss

ratio scales as the square root of memory size. The results

Calculated values of system CPI vs. L1 miss ratio for logic-based
systems-on-chip (red and blue curves), contrasted with a DRAM-
based system-on-chip (green curve). Statements under the plots
pertain to assumed parameters; those that pertain to only one of
the plots are color-coded. Assumed parameters identical to those
of previous figure except that T3 = 268 cycles (twice as slow).

Figure 8

L1 miss ratio (%)

L2 @ 1 MB, miss ratio � 30%
Miss rate � 3% (three misses per 100 instructions)
Main memory T3 � 268 cycles

DRAM-based
processor �
DRAM L2

Logic-based
processor �
SRAM L2

Logic-based
processor �
DRAM L2

Logic-based: DRAM T2 � 18 cycles, CPI[infinite] � 1
Logic-based: SRAM T2 � 13 cycles, CPI[infinite] � 1
DRAM-based: DRAM T2 � 31 cycles, CPI[infinite] � 1.7
DRAM density � 8� SRAM

0 2 4 6 8 10

6

5

4

3

2

1

0

 S
ys

te
m

 C
PI

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Calculated values of system CPI vs. L1 miss ratio for logic-based
systems-on-chip (red and blue curves), contrasted with a DRAM-
based system-on-chip (green curve). Statements under the plots
pertain to assumed parameters; those that pertain to only one of
the plots are color-coded.

Figure 7

6

5

4

3

2

1

0
0 2 4 6 8 10

L1 miss ratio (%)

Logic-based
processor �
DRAM L2

Logic-based
processor �
SRAM L2

DRAM-based
processor �
DRAM L2

 S
ys

te
m

 C
PI

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

L2 @ 1 MB, miss ratio � 30%
Miss rate � 3% (three misses per 100 instructions)
Main memory T3 � 134 cycles

Logic-based: DRAM T2 � 18 cycles, CPI[infinite] � 1
Logic-based: SRAM T2 � 13 cycles, CPI[infinite] � 1
DRAM-based: DRAM T2 � 31 cycles, CPI[infinite] � 1.7
DRAM density � 8� SRAM

16
Actual size is fundamentally irrelevant—the base unit is whatever size gives the

assumed miss ratio. We use a base of 1 MB for convenience.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

155

obtained are shown in Figure 9 for a relatively fast main

memory having T
3
= 134 cycles.

Clearly, at any given memory size such as 1 MB, the

finite cache penalty of 2.75 cycles per instruction for

DRAM is worse than the 1.25 cycles per instruction

for SRAM. If we assume that the DRAM size can be

increased by a factor of 4 or 8 over the SRAM (in the

same area), the FCP calculated for the DRAM drops to

2.5 or 2.4, respectively, as shown by the dashed lines

connecting the two curves. The DRAM would be inferior

in all of these cases because it would have been implemented

with a very slow, standard DRAM technology and/or would

have been packaged off-chip. If we were to start with a

larger SRAM, say 2 MB in size, the predicted

improvement in FCP for a 43 or 83 DRAM is even less,

as expected. If the L1 miss ratio and base L2 miss ratio

were to be increased to 10% and 30%, respectively

(reasonable values in some cases), the FCP gap between

the SRAM and DRAM should decrease, as indicated in

Figure 10. However, if the DRAM could become somewhat

faster by placing it on-chip to reduce bus delays and using

logic devices to improve the access time of the DRAM chip,

the situation would change appreciably, as shown next.

A comparison of calculated FCPs for the same SRAM

with different DRAM L2s, fabricated using on-chip,

logic-based eDRAM is shown in Figures 11 and 12. The

L1 and L2 base miss ratios are assumed to be the same as

previously (5% and 10%, respectively, in Figure 11, and

10% and 30%, respectively, in Figure 12). However, the

DRAM is assumed to have an access time only 5 cycles

greater than the SRAM, namely 18 cycles. The results

indicate that the improvement in FCP by using a larger

Calculated values of FCP vs. L2 cache size for SRAM and slow
(standard) DRAM, starting from base system with L2 MR2 � 30%
at 1 MB and increasing L2 size, with MR2 varying as the square
root of the L2 size ratio, and with the L1 miss ratio � miss rate �
10%.

Figure 10

L2 cache size (MB)

DRAM �
4� SRAM

DRAM �
8� SRAM

DRAM T2 � 46 cycles

SRAM T2 � 13 cycles

Miss ratios: Main memory T3 � 134 cycles
MR1 � 10%,
MR2 (base case) � 30% @ 1 MB

8

7

6

5

3

4

2

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

1 2 4 8 16 32

Calculated values of FCP (finite cache penalty) vs. L2 cache size
for SRAM and slow (standard) DRAM, starting from base system
with L2 MR2 � 10% at 1 MB for L2 vs. L2 size, with MR2 varying
as the square root of the L2 size ratio, and with the L1 miss ratio �
miss rate � 5%.

Figure 9

DRAM T2 � 46 cycles

DRAM �
4� SRAM

DRAM �
8� SRAM

SRAM T2 � 13 cycles

L2 cache size (MB)

Miss ratios: Main memory T3 � 134 cycles
MR1 � 5%,
MR2 (base case) � 10% @ 1 MB

3.0

2.5

2.0

1.5

1.0

0.5

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

1 2 4 8 16 32

Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR2 �
10% (miss rate � 0.5%) at 1 MB and increasing L2 size, with
MR2 varying as the square root of the L2 size ratio, and with the
L1 miss ratio � miss rate � 5%.

Figure 11

L2 cache size (MB)

DRAM T2 � 18 cycles

DRAM �
4� SRAM

DRAM �
8� SRAM

SRAM T2 � 13 cycles

Miss ratios: Main memory T3 � 134 cycles
MR1 � 5%,
MR2 (base case) � 10% @ 1 MB

1.6

1.4

1.2

1.0

0.8

0.6

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

1 2 4 8 16 32

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

156

DRAM in the same area as an SRAM should be

considerable.

For example, as indicated in Figure 11, a 15%

improvement in FCP should be attainable by replacing a

1-MB SRAM with an 8-MB DRAM. A more dramatic

improvement should be possible, as indicated in Figure

12; i.e., it should be possible to reduce the SRAM FCP of

4.75 cycles per instruction at 1 MB to 3.5 or 3 cycles

per instruction by replacing the SRAM (in the same area)

with 4 or 8 MB of DRAM.

Further improvement should be possible if the off-chip

main memory were slower (reducing cost). For instance,

if T
3
for the main memory of Figures 11 and 12 were

assumed to be 268 cycles, hence two times slower than the

134 processor cycles assumed in the above cases, the

trends shown in Figures 13 and 14 should apply—

indicating not only that the DRAM should have a

substantial performance advantage, but that its

performance should be less sensitive to variations

in the L1 miss ratio (as discussed previously in the

Processor plus SRAM L2 vs. processor plus DRAM

L2 section).

Similar curves for using an eDRAM L3 in place of an

SRAM L3 are illustrated in Figures 15 and 16 for two

cases of L1, L2, and L3 miss ratios: 5, 15, and 15% and

10, 20, and 30%, respectively. These two cases represent a

wide range of possible applications. The following were

assumed: The reload access time, T
2
, of the L2 was

assumed to be 13 cycles (same as previously), the T
3
of the

SRAM L3 was assumed to be 40 cycles, and the T
3
of the

DRAM L3 was assumed to be 45 cycles. The results

obtained were very similar to those obtained previously

for L2—viz., replacement of the SRAM L3 with a higher-

Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR2 �
30% (miss rate � 3%) at 1 MB and increasing L2 size, with MR2
varying as the square root of the L2 size ratio, with the L1 miss ratio
� miss rate � 10%, and with the main memory T3 � 134 cycles.

Figure 12

L2 cache size (MB)

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 4 8 16 32

DRAM �
4� SRAM

DRAM �
8� SRAM

DRAM T2 � 18 cycles

SRAM T2 � 13 cycles

Miss ratios: Main memory T3 � 134 cycles
MR1 � 10%,
MR2 (base case) � 30% @ 1 MB

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR2 �
10% (miss rate � 0.5%) at 1 MB and increasing L2 size, with MR2
varying as the square root of the L2 size ratio, and with the L1 miss
ratio � miss rate � 5%; identical to Figure 11 except that main
memory T3 � 268 cycles (twice as slow).

Figure 13

L2 cache size (MB)

DRAM �
4� SRAM

DRAM �
8� SRAM

DRAM T2 � 18 cycles

SRAM T2 � 13 cycles

Miss ratios: Main memory T3 � 268 cycles
MR1 � 5%,
MR2 (base case) � 10% @ 1 MB

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.6
1 2 4 8 16 32

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR2 �
30% (miss rate � 3%) at 1 MB and increasing L2 size, with MR2
varying as the square root of L2 size ratio, and with L1 miss ratio
� miss rate � 10%; identical to Figure 12 except that main
memory T3 � 268 cycles twice as slow as previously.

Figure 14

L2 cache size (MB)

DRAM �
4� SRAM

DRAM �
8� SRAM

DRAM T2 � 18 cycles

SRAM T2 � 13 cycles

Miss ratios: Main memory T3 � 268 cycles
MR1 � 10%,
MR2 (base case) � 30% @ 1 MB

10

9

8

7

6

5

4

3
1 2 4 8 16 32

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

157

density, fast logic-based eDRAM should result in a

substantial improvement in performance. An even greater

advantage should be possible if a slower off-chip main

memory were to be used in the hierarchy.

Access time for SRAM L2 vs. DRAM L2

In the past, DRAMs had traditionally been designed

for large capacity at low cost; speed was relatively

unimportant. A key objective at the beginning of this

work was to estimate the speed improvement that would

make DRAM attractive for replacing SRAMs in L2 and

L3. This could be done by simply plotting the FCP vs. L2

access times for an SRAM and DRAM of assumed

capacity for various cases over a range of design points.

Assume, for example, that a 1-MB SRAM L2 of given

area and miss ratio were to be replaced by one of three

DRAMs of the same area having capacities of 4, 6,

and 8 MB. For each possibility, the FCP of a two-level

hierarchy consisting of L1 and L2 caches between main

memory and processor vs. access time could be calculated

via Equation (10).

For the first case, we assume the following: mr
1
= MR

1

= 5%; a base miss ratio MR
2
of 10% for a 1-MB-capacity

SRAM; and L2 miss ratio scaling as the square root

of the size ratio for the larger DRAM, i.e., MR
2
at

4 MB = 1/2 3 10%, etc. The calculated FCP vs. DRAM

L2 access time is shown in Figure 17 for a moderately

fast main memory having T
3
= 134 processor cycles

(same as previously). For the 1-MB SRAM, at a T
2
of

10 cycles, the FCP is 1.125 cycles per instruction, as

indicated in the figure by an X. If a horizontal line

is drawn from that point (i.e., at 1.125 cycles per

instruction, shown dashed, the intersections with the

DRAM curves give points of equal performance. These

intersections occur at DRAM access times of 17 cycles for

the 43 size, and at 19 cycles for the 83 size. Hence, the

DRAM should begin to outperform the SRAM when its

access time falls below these values. Similarly, we can

choose any SRAM access time, draw a horizontal line at

the FCP value corresponding to that access time, and

determine the DRAM access times for the same FCP.

Obviously, for all access times below these latter values,

the DRAM should outperform the SRAM. The smaller

the DRAM L2 access times, the larger the percentage

of improvement of DRAM over SRAM. In this case,

for any given FCP, the SRAM curve maintains a fixed

incremental access time difference of about 8 cycles to any

of the DRAM curves. Thus, for better performance, the

DRAM should have an access time less than 8 cycles

larger than the SRAM at any design point. If the DRAM

access time is 3 to 5 cycles slower than the SRAM, a

significant percentage improvement in FCP is obtained.

Larger improvements in FCP are indicated when a

given application exhibits a larger miss ratio. For

Calculated three-level hierarchy FCP vs. L3 cache size for SRAM
and fast DRAM, with L1 and L2 miss ratios of 5% and 15%,
respectively, and with L2 delay T2 of 13 cycles. The L3 miss ratio
is 15% at 4 MB and varies as the square root of capacity, with
delays (as shown).

Figure 15

L3 cache size (MB)

DRAM �
8� SRAM

DRAM L3 T3 � 45 cycles

SRAM L3 T3 � 40 cycles

Miss ratios:
MR1 � 5%, MR2 � 15%
MR3 (base case) � 15%
 @ 4 MB

T2 � 13 cycles
T3 � 45 cycles (DRAM)
 or 40 cycles (SRAM)
Main memory T4 � 134 cycles

1.00

0.98

0.96

0.94

0.92

0.90

0.88

0.86
4 8 16 32 64 128

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Calculated three-level hierarchy FCP vs. L3 cache size for SRAM
and fast DRAM, with L1 and L2 miss ratios of 10% and 20%,
respectively, and with L2 delay T2 of 13 cycles. The L3 miss ratio
is 30% at 4 MB and varies as the square root of capacity, with
delays (as shown).

Figure 16

L3 cache size (MB)

Miss ratios:
MR1 � 10%, MR2 � 20%
MR3 (base case) � 30%
 @ 4 MB

T2 � 13 cycles
T3 � 45 cycles (DRAM)
 or 40 cycles (SRAM)
Main memory T4 � 134 cycles

DRAM �
8� SRAM

DRAM L3 T3 � 45 cycles

SRAM L3 T3 � 40 cycles

2.5

2.4

2.3

2.2

2.1

2.0

1.9
4 8 16 32 64 128

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

158

example, if the L2 miss ratio increases to 30%, the curves

of Figure 17 change to those of Figure 18. The horizontal

time spread between the SRAM and DRAM curves

becomes approximately 25 cycles, indicating that the

DRAM L2 access time would have to be less than 25

cycles larger than that of the SRAM in order to be

competitive. If that access time were only 3 to 5 cycles

larger than the SRAM, a very large performance

improvement should be attainable. For example, for

a 13-cycle SRAM, the calculated FCP is 2.45 cycles

per instruction, whereas for an 18-cycle DRAM at

63 the SRAM density, the calculated FCP is 1.6

cycles per instruction—an improvement by a factor

of 2.45 4 1.6 = 1.53. If the DRAM and SRAM each

have an access time of 10 cycles, the DRAM could

provide about a factor of 2 improvement in FCP, as

can be seen from the figure. Thus, the performance

improvement could be quite substantial, depending

on the miss ratio of the application.

The expected miss ratios of actual systems would be

some weighted average of these cases shown, with the

weights dependent on the exact workloads. However,

whatever values are used for miss ratios or for the base-

case SRAM size and performance, the results have the

same general trend, namely, with a relatively modest

increase in DRAM performance, it should begin to

outperform SRAM. If the access times of a DRAM

could be within a few cycles of those of an SRAM,

analysis shows that a very significant performance

advantage should be possible over a wide range of

parameters.

Of course, a cost would be incurred to achieve the

increased performance of the DRAM. How this cost

would affect the cost/performance was a concern. Initially

this was difficult to determine, since a logic-based DRAM

technology had never been considered. However, as our

study unfolded, this proved to be less difficult than

anticipated, indicating only about a 20% increase in

process complexity [20]. Other important performance

enhancements are also inherent in logic-based eDRAM.

For example, wide, fast buses can be provided on-chip

between L2 and L1 and between L3 and L2 to minimize

the cache reload penalty and minimize other factors

that can significantly affect performance. As discussed

previously and shown in Appendix B, the total reload

time can have a very significant effect on system

performance and is often not well understood nor

appreciated.

Potential performance improvement was the main

impetus for advocating a change in strategic direction

toward logic-based eDRAM. Also, we felt that the lower

power dissipation of DRAM vs. SRAM, especially with

scaling to smaller dimensions, could become a significant

advantage. Although our work showed considerable

potential for logic-based eDRAM, making it a reality was

a separate and significant task carried out by others. Its

introduction into the IBM high-performance CMOS 7

technology was a first in the industry, making possible

Calculated values of FCP vs. L2 access time for SRAM and DRAM
of various densities, for L1 miss ratio � miss rate � 5% and L2
miss ratio � 30% (miss rate � 1.5%) at 1 MB.

Figure 18

L2 access time (cycles)

SRAM

DRAM at
8� SRAM

DRAM at
6� SRAM

DRAM at
4� SRAM

Miss ratios:
MR1 � 5%,
MR2 (base case) � 30% @ 1 MB

Main memory T3 � 134 cycles

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0
10 15 20 25 30 35

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

Calculated FCP vs. L2 access time for SRAM and DRAM of
various densities, for L1 miss ratio � miss rate � 5% and L2 miss
ratio � 10% (miss rate � 0.5%) at 1 MB.

Figure 17

L2 access time (cycles)

SRAM

DRAM at
8� SRAM

DRAM at
6� SRAM

DRAM at
4� SRAM

Miss ratios:
MR1 � 5%,
MR2 (base case) � 10% @ 1 MB

Main memory T3 � 134 cycles

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6
10 15 20 25 30 35

FC
P

 (
cy

cl
es

 p
er

 in
st

ru
ct

io
n)

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

159

not only a significant improvement in DRAM

performance, but also, by providing a larger memory

closer to the processor, a significant improvement in

system-on-a-chip performance.

Concluding remarks

Technology evolution typically starts down a particular

path on the basis of cost and performance tradeoffs

that are valid at the time of decision. The evolutionary

trends can become entrenched and are thus believed

to be correct, even when the environment changes

substantially. DRAM became entrenched as a separate

semiconductor technology early in the history of

integrated circuits and remained dominant for several

decades. When the performance factors driving the

evolution changed, it was difficult for the industry to

recognize this. Over a period of several years, we were

able to demonstrate the need for a strategic change more

convincingly, resulting gradually in a shift toward logic-

based eDRAM.

In the evolution of a new engineering direction, initial

phases are greatly enhanced by simple analysis based on

a few fundamentals with good assumptions about the

unknowns. Such early analysis is also important for

making meaningful projections when details of actual

implementations cannot possibly be available. Some

preliminary system design and performance tradeoffs then

become essential in order to resolve critical problems.

Needless to say, implementation often requires an

advocate with the ability to obtain resource commitments.

Our initial work on the path to eDRAM began with

simple engineering analysis of memory hierarchies using

miss ratios, similar to that described in this paper. The

first simple ‘‘implementation’’ evaluation was via the

Supercache memory hierarchy on a chip, and then via the

subsequent matrix multiply unit, which contained a full

processor plus an on-chip memory hierarchy. This work

convinced us that the correct path for system evolution

necessitated the use of a logic-based eDRAM. Many

subsequent analyses were carried out in order to refine

and further verify our ideas and to convince others of

their relevance.

The implementation of such a change in technology

and strategy required the skills of a large number of

individuals. We were fortunate in that several key people

in the IBM Technology Group became advocates and

were able to secure funding for actual implementation

(see the Acknowledgments).

Appendix A: Memory speed scaling
As computer technology continues to scale to ever smaller

and faster switching devices with higher packing density,

the data processing speeds of the central processor

continue to improve, but the main memory access speeds

do not scale proportionally. In a certain sense, this seems

counterintuitive, but it occurs for the following reasons.

To a first approximation, within a given instruction set

architecture, the critical logic path of a processor which

sets the fundamental processor cycle time has remained

relatively fixed over a long period of time. In other words,

the number of logic stage delays in the critical path which

sets the cycle time has remained relatively fixed. While

this may change because of possible evolutionary

changes in pipeline structure, changes in design have

not substantially changed the number of logic stages

in the critical path. The cycle time is thus, to a first

approximation, set by a nearly fixed number of logic

delays, including the associated wiring time of flight. As

technology scales to faster devices, both the logic and

wiring delays decrease, so the total critical path delay

decreases, resulting in improved processor cycle times.

Faster processors require more instructions and data

per unit of time to keep busy.
17

This necessitates an

ever-increasing main memory capacity as processor

performance increases. Unfortunately, such increases in

capacity require an ever-increasing number of ‘‘logic

delays’’ for access. This increase results from the need

for more decoding to select, typically, a doubleword

(8 bytes) from an increasing number of total words.

Additionally, the need for translation of the virtual

address increases the total access delay. Also, although

sizes of devices, wires, and associated logic gates and

memory cells have decreased, a larger capacity requires

more of each in the access path. Thus, the access delay

does not scale with technology, but may actually increase,

depending on the capacity chosen. If the memory capacity

Calculated MIPS vs. effective number of cycles to reload L1 cache
at two values of miss ratio; based on simulations of an early RISC
system with CPI[infinite] � 1.22 cycles per instruction (see [15]).

Figure 19

0 2 4 6 8 10 12 14 16 18
Effective number of CPU cycles to reload cache

0

0.2

0.4

0.6

0.8

1.0

4% miss ratio

6% miss ratio

M
IP

S
 (

no
rm

al
iz

ed
)

17
Processors typically require at least one MB of memory per MIPS (million

instructions per second) of processing power; see [14], Chapter 1, Figure 1.5-4.

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

160

remained fixed, the access delay would improve as

technology scaled to smaller dimensions.

Another problem which aggravates the memory delay

is that as the speed gap between processor and memory

widens, more levels of cache are required between the

processor and main memory to bridge this gap. However,

although there is a net improvement, the cache levels

introduce some additional levels of logic delay in the path

to main memory. Thus, even though much is gained, a

small loss also occurs.

Appendix B: Cache reload time vs. system
performance
The importance of cache reload time to system

performance is illustrated in Figures 19 and 20. Figure 19

represents the simulated performance of an actual early

system design, designated internally as ROMP-E, which

was an early attempt to include a cache on the original

IBM PC RT RISC processor [15, p. 277]. The curves

show the system MIPS (million instructions per second)

vs. the effective cache reload time for two different cache

miss ratios. At a reasonable design point of about 8 cycles

used for reload, each additional cycle of reload degrades

the system performance as much as 6%. This is for a

processor with a maximum processing speed (infinite

cache) of 1.2 cycles per instruction (proportional to

1/MIPS). The reload time, which is part of the finite cache

penalty, degrades this and can be significant, as shown. If

the effective reload time is 16 cycles (not unusual at this

time), the processor MIPS can decrease to 50% of its

maximum value. The actual curve of MIPS vs. reload

time depends on a number of parameters as well as

the full memory hierarchy, and can degrade more

dramatically.

As processors improve in speed, the number of cycles

per instruction decreases (current systems function at

under one cycle per instruction). Figure 20 illustrates

typical MIPS degradation vs. effective reload time for

several cases with ideal cycles per instruction and one

typical, average cache miss ratio. As expected, with

decreasing cycles per instruction (increasing MIPS), each

cycle of delay for cache reload has a larger impact on the

overall MIPS. Thus, it is essential to continually reduce

the effective reload time as the number of cycles per

instruction decreases. This can be done quite effectively

with eDRAM.

Appendix C: DRAM vs. SRAM speed
If an SRAM and a DRAM array are both designed in

the same technology with the same organization and

objectives, the major difference in access time is in

the sensing delay, because of the smaller sense signal

available in DRAM. For similar arrays and loads, all

other delay components of any access (address-in,

decode, wordline drive, signal routing, and I/O bus) are

fundamentally not very different. In actual designs, there

are typically other small or even large differences which

can affect many of the delay components. Nevertheless,

the sense signal has been a continuing, major

component.
18

Examples of estimated access times for a

DRAM macro in several different base technologies, all

at the CMOS 7 (0.225-lm) lithographic level, are shown

in Figure 21. The top example corresponds to the use of a

standard DRAM design. The on-chip DRAMmacro case

corresponds to the same normal DRAM design without

address multiplexing and without off-chip drivers and

receivers, since they are not required; the logic-based

eDRAM macro case corresponds to the same design as

the latter in logic-based eDRAM technology. The access

time of the logic-based eDRAM macro is further reduced

by the addition of an improved sense amplifier [11, 13],

as indicated in the improved SA case.

Similar SRAM designs were not available for

comparison; however, if they had been, the delay

components would be roughly similar, except for the

sensing delay, which is typically larger in DRAM because

of a smaller sense signal. However, with the continued

scaling of technology to smaller dimensions and currents,

the SRAM sense signals are decreasing because of the

poor scaling of device thresholds and other factors.

Currently, SRAM and DRAM sense signals are of

nearly the sameamplitude, thereby allowingDRAMaccess

time to approach that of SRAM for arrays of the same size.

Typical dependence of MIPS on effective reload time, calculated
for several values of CPI[infinite cache], showing increasing
sensitivity to reload time as CPI[infinite cache] decreases.

Figure 20

Effective reload time (cycles)

Time to first access Trailing-edge effect

CPI[infinite cache]
0.5

0.75

1

4

M
IP

S
 (

no
rm

al
iz

ed
)

18
Actual numbers are very dependent on technology, and various tradeoffs are made

in array and circuit design—tradeoffs related to the number of bits per wordline and
per bitline, the number of inputs and outputs, device driver sizes, whether self-timing
is used, etc.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

161

Appendix D: Matrix multiply unit (MXU)
The MXU system-on-a-chip study made use of the

technologies and component macros available at the time.

Figure 4 shows the logical structure and macro sizes

of a single-chip MXU containing four floating-point

units (FPUs), an 8-KB fast vector register file, a matrix

multiply control unit (MXCU), and 2 MB of DRAM, all

scaled from a CMOS 5 (see for example [33] and [39]) to a

CMOS 6
19
DRAM-based eDRAM. These individual units

were all scaled from other known designs in CMOS 5.

A direct scaling into the CMOS 6 technology gave a

projected cycle time of 9 ns. An estimated improvement in

CMOS 6 DRAM-based technology of up to 15% would

give a projected improved system cycle time of about

7.5 ns. Unfortunately, neither the 9-ns nor the 7.5-ns

MXU systems were competitive for the following reason.

The competition would be a standard system in which

the processor units were fabricated on standard logic

chips with a standard memory hierarchy (SRAM on-chip,

DRAM off-chip. Two standard available (noncustom

MXU) floating-point units which could have been used at

that time to provide system cost/performance advantage

over the custom,DRAM-basedMXUsystemona chipwere

1. An IBM PowerPC* floating-point unit (FPU)

fabricated via the CMOS 5X technology and

operating at 5 to 6 ns.

2. An IBM PowerPC FPU fabricated via the CMOS 6X

technology, operating at about 3 ns.

Various scaling studies were carried out in order to derive

reasonable standard alternatives. A high-performance

PowerPC processor with a 64K instruction cache

(SRAM) and 64K data cache (SRAM) would allow two

FPUs to be included on-chip. Such a system might have a

clock cycle time as low as 5.4 ns. The matrix multiply

performance depended on both the clock time and the

number of on-chip FPUs. With only two FPUs and

running at about 5 ns, the performance would be about

0.4 (2 4 5) floating-point operations per nanosecond.

The custom MUX-DSRAM accelerator of Figure 4

had four FPUs and operated at about 7.5 ns, so its

performance would have been about 0.53 (4 4 7.5)

floating-point operations per nanosecond. This is only

marginally better than the 0.4 floating-point operations

per nanosecond of a standard system designed in existing

technology, and is therefore unattractive. The problem

with this custom design is the MXU speed, which is

limited by the DRAM-based technology. If the system-

on-a-chip were to be fabricated in a logic-based

technology, it should be possible to reduce the MXU-

DSRAM cycle time to about 3 ns, thus improving its

system performance to about 1.33 (4 4 3) floating-point

operations per nanosecond, which would be three to four

times better than that of the standard system. Although

the system is clearly interesting, its implementation would

require the use of a logic-based eDRAM. It thus became

clear that for any applications requiring processors and

logic with embedded DRAM, the use of a logic-based

memory technology would be essential in order to be

competitive.

Glossary
CMOS (complementary metal oxide semiconductor)

configuration: A field-effect transistor configuration which

provides p-type devices, which are normally ‘‘on’’ for load

devices, and n-type devices (normally ‘‘off’’) for pulldown

devices. A p-type device and an n-type device in series

with gates connected in parallel produce an inverter. The

p-type device has a very large ratio of ‘‘off’’ to ‘‘on’’

resistance, unlike the earlier depletion load devices, for

which the ratio was low. The latter produced an ‘‘off’’

current which was a significant fraction of the ‘‘on’’

current, giving an inferior logic circuit and higher power

dissipation.

Cache block or line: The unit of transfer between levels

of cache or from memory to cache. This unit is larger

than the normal requested data size, which is typically a

doubleword, or 8 bytes. The block (line) size is typically

32 to 128 bytes at the lower levels of cache closer to the

Improvement of DRAM access time with integration and merged
logic at CMOS 7 (0.225- m lithographic level). Logic-based devices
are 2.8� faster than DRAM-based devices in this comparison.

Figure 21

26

10

5

3.5

Standard
DRAM

On-chip
DRAM macro

Logic-based
eDRAM macro

Improved SA

DEC = Address/word decoding
SA = Sense amplifier sensing time
DR I/O = I/O driver delay

WL = Wordline driving
SA/IO = Sense amplifier
 I/O latch time

�

19
CMOS 5 and CMOS 5X (0.5-lm lithographic level) could be used to fabricate a

16-Mb/chip DRAM; CMOS 6 and CMOS 6X (0.35-lm lithographic level) could be
used to fabricate a 64-Mb/chip DRAM.

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

162

processor, and sometimes larger—256 bytes, at higher

levels closer to main memory.

CPI[infinite]: Cycles per instruction, assuming an

infinite cache (no misses); the average, minimum number

of cycles required by a processor per instruction

executed if there were no cache misses, i.e., if the cache

were infinite.

FCP (finite cache penalty): The average reload delay

penalty in cycles per instruction required for restarting a

processor after a cache miss. This penalty is added to the

CPI[infinite] to obtain the average execution speed of the

processor.

Doubleword:Word consisting of 8 bytes (64 bits or 72 bits

with parity), which is two normal words of 4 bytes each,

in IBM architecture.

Miss rate: For any given level of a cache, the average

number of access misses (loads or stores) per instruction

executed by the processor.

Miss ratio: For any given level of a cache, the average

number of access misses (loads or stores) per total

number of access requests to that level of cache. Miss

ratios can be expressed in terms of miss rates for all levels

of cache except L1 (the level providing loads and stores

to the processor) for reasons described in Appendix B

of [38].

Page mode: A mode which is typically used for fast data

transfer of a reload request from a DRAM chip. A full

cache line or block is loaded into an on-chip page buffer

on one DRAM row access cycle; the smaller units of

data (typically 8 to 16 bytes) are clocked out of the

buffer at the bus rate, which is much faster than the

DRAM access or cycle time. This can significantly

reduce the FCP.

SSI (System Scale Integration): The integration level at

which essentially a full processor with memory is located

on one semiconductor chip.

VideoRAM: A special type of DRAM used as a pixel

buffer for all of the graphics from an SVGA (Super Very

high Graphics Adapter). An industry standard from the

mid-1980s to the late 1990s, containing two I/O ports

which allowed simultaneous update of the stored pixel

image and copying of the stored image to the screen. It

provided a significant increase in the graphics bandwidth

required in high-performance graphics.

Acknowledgments
Initially there was serious doubt that replacing on-chip

SRAM with logic-based eDRAM would lead to enhanced

performance. This was the initial and primary concern

addressed by the authors in their study. The second

concern pertained to its cost—and its analysis required

the additional study and support provided by the

Technology Driver Task Force of the IBM Technology

Group. The authors would like to acknowledge this

important contribution.

Around 1995, Russell C. Lange, then the Director of

Semiconductor Strategy for the IBM Microelectronics

Division, who headed both that task force and the IBM

Academy at that time, became highly interested in the

possibility of merging logic with DRAM. Without his

subsequent involvement and unique skills, the logic-based

eDRAM strategy would have been a tenuous endeavor.

Significant players in making the technology a reality

were Tze Chiang Chen, who directed the original

development effort, and Scott Crowder, Sang Dhong,

Bijan Divari, Bud El Kareh, Tom Heller, Mike

Ignatowski, Subramanian Iyer, Tak Ning, Scott Stiffler,

and numerous others.

The matrix multiply unit study was initiated by

Maurizio Arienzo (formerly an IBM employee) and Jurij

Paraszczak, who foresaw the implications of Supercache

for future systems-on-a-chip and thus provided the

opportunity for us to complete a major stepping

stone.

We respectfully acknowledge all of these valuable

contributions.

*Trademark or registered trademark of International Business
Machines Corporation.

References and associated notes
1. H. Pilo, A. Darren, J. Barth, S. Burns, P. Corson, J. Covino,

R. Houghton, and S. Lamphier, ‘‘A 5.6 Random Cycle
144 Mb DRAM with 1.4 Gb/s/pin and DDR3-SRAM
Interface,’’ IEEE J. Solid-State Circuits 38, 1974
(2003).

2. R. Matick, ‘‘Hybrid Memory with On Chip Associative Page
Addressing, Page Replacement and Control,’’ U.S. Patent
4,084,230, 1978; DRAM (or SRAM cache) with translation
directory and on-chip control.

3. R. Matick, D. T. Ling, S. Gupta, and F. Dill, ‘‘All Points
Addressable Raster Display Memory,’’ IBM J. Res. & Dev. 28,
379 (1984).

4. F. Dill, D. Ling, and R. Matick, ‘‘Random Access Memory
Having a Second Input/Output Port,’’ U.S. Patent 4,541,075,
1985; DRAM with added logic and buffers to speed up
graphics (video RAM).

5. R. Matick and D. T. Ling, ‘‘Distributed, On-Chip Cache,’’
U.S. Patent 4,577,293, 1986; included a small, fast SRAM on a
memory chip as a cache, and was a precursor to and first
version of current ESDRAM (enhanced synchronous DRAM)
chips.

6. M. Asakura, Y. Matsuda, H. Hidaka, Y. Tanaka, and K.
Fujishima, ‘‘An Experimental 1 Mbit Cache DRAM with
ECC,’’ IEEE J. Solid-State Circuits 25, 5 (1990).

7. B. Pogge, ‘‘The Next Chip Challenge: Effective Methods for
Viable Mixed Technology SoCs,’’ Proceedings of the 39th
Conference on Design Automation (ASM, IEEE), New Orleans,
June 10–14, 2002, p. 84.

8. F. Bozso and P. Emma, ‘‘Clock Skew Minimization and
Method for Integrated Circuits,’’ U.S. Patent 6,040,203, 2000;

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

163

substrates connected together, face to face, using flip-chip
technology.

9. E. R. Hnatek, A User’s Handbook of Semiconductor Memories,
John Wiley & Sons, Inc., New York, 1977, p. 360; multiple
device memory cells.

10. S. E. Schuster, L. M. Terman, and R. L. Franch, ‘‘A 4-Device
CMOS Static RAM Cell Using Sub-Threshold Conduction,’’
presented at the IEEE Symposium on VLSI Technology,
Systems, and Applications, Taipei, Taiwan, 1987; Research
Report RC-13171, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY 10598, 1987.

11. T. Chappell, B. Chappell, S. Schuster, J. Allen, S. Klepner, R.
Joshi, and R. Franch, ‘‘A 2 ns Cycle, 3.8 ns Access 512 kb
CMOS ECL SRAM with a Fully Pipelined Architecture,’’
IEEE J. Solid-State Circuits 26, 1577 (1991).

12. B. El-Kareh, G. B. Broner, and S. E. Schuster, ‘‘The Evolution
of DRAM Cell Technology,’’ Solid-State Technol. Mag. 40,
89–101 (May 1997).

13. S. E. Schuster, B. Chappell, V. DiLonardo, and P. E. Britton,
‘‘A 20ns 64K (4K 3 16) NMOS RAM,’’ IEEE J. Solid-State
Circuits SC-19, 564 (1984).

14. R. Matick, Computer Storage Systems and Technology, John
Wiley & Sons, Inc., New York, 1979.

15. R. E. Matick and D. T. Ling, ‘‘Architecture Implications in
the Design of Microprocessors,’’ IBM Syst. J. 23, 264 (1984).

16. R. E. Matick, ‘‘Impact of Memory Systems on Computer
Architecture and System Organization,’’ IBM Syst. J. 25, 274
(1986).

17. R. E. Matick, ‘‘Functional Cache Chip for Improved System
Performance,’’ IBM J. Res. & Dev. 33, 15 (1989).

18. R. Matick, R. Mao, and S. Ray, ‘‘Architecture, Design, and
Operating Characteristics of a 12-ns CMOS Functional Cache
Chip,’’ IBM J. Res. & Dev. 33, 524 (1989).

19. D. Lamers, ‘‘IBM Embeds DRAM in 0.18-Micron ASICs,’’
Electronic Engineering Times, February 22, 1999; Web-
published at http://www.eetimes.com/showArticle.
jhtml?articleID=18300993.

20. S. Deffree, ‘‘IBM Pushes eDRAM as SRAM Replacement,’’
Electronic News, February 13, 2003; Web-published at
http://www.reed-electronics.com/electronicnews/article/
CA276970?text=deffree.

21. M. Clendenin, ‘‘IBM Makes Another Run at Embedded
DRAM,’’ Electronic Engineering Times, February 13, 2003;
Web-published at http://www.eetimes.com/showArticle.
jhtml?articleID=18308029; 144-Mb, 5.6-ns eDRAM to
replace SRAM.

22. A. Cataldo, ‘‘IBM Pushes Embedded DRAM as NEC
Changes Tack,’’ Electronic Engineering Times, February 15,
2003; Web-published at http://www.eetimes.com/
showArticle.jhtml?articleID=18303603.

23. V. Klee, J. Norum, R. Weaver, S. S. K. Iyer, C. R.
Kothandaraman, J. Chiou, M. Chen, N. Kusaba, S. Lasserre,
C. Liang, J. Liu, A. Lu, P. R. Parries, B. J. Park, J. Rice,
N. Robson, D. Shum, B. Khan, Y. Liu, A. Sierkowski, C.
Waskiewiscz, P. Wensley, T. Wu, J. Yan, and S. S. Iyer, ‘‘A
0.13 lm Logic-Based Embedded DRAM Technology with
Electrical Fuses, Cu Interconnect in SiLKe, Sub-7ns Random
Access Time and Its Extension to the 0.10 lm Generation,’’
Technical Digest, IEEE International Electron Devices
Meeting, 2001, p. 407.

24. J. Barth, D. Anand, J. Dreibelbis, and E. Nelson, ‘‘A 300 MHz
Multi-Banked eDRAM Macro Featuring GND Sense, Bit-
Line Twisting and Direct Reference Cell Write,’’ Digest of
Technical Papers, IEEE International Solid-State Circuits
Conference, 2002, p. 156.

25. Y. Agata, K. Motomochi, Y. Yoshifumi, M. Shirahama,
M. Kurumada, M. Kuroda, H. Sadakata, K. Hayashi, T.
Yamada, K. Takahashi, and T. Fujita, ‘‘An 8ns Random
Cycle Embedded RAM Macro with Dual-Port Interleaved
DRAM Architecture (D2RAM),’’ Digest of Technical Papers,
IEEE International Solid-State Circuits Conference, 2002,
p. 392.

26. C.-L. Hwang, T. Kirihata, M. Wordeman, J. Fitfield, D.
Storaska, D. Pontius, G. Fredeman, B. Ji, S. Tomashot, and S.
Dhong, ‘‘A 2.9ns Random Access Cycle Embedded DRAM
with a Destructive-Read Architecture,’’ Digest of Technical
Papers, IEEE Symposium on VLSI Circuits, 2002, p. 174.

27. C. Mead and L. Conway, Introduction to VLSI Systems,
Addison-Wesley Publishing Co., Inc., Boston, 1980, p. 6.

28. P. Richman, MOS Field-Effect Transistors and Integrated
Circuits, John Wiley & Sons, Inc., New York, 1973, p. 220.

29. ‘‘Riesling 2K bit, 6 Device SRAM,’’ IBM Engineering
Specification No. 5123326, September 19, 1974; a ;4-lm
technology chip that was used in main memory for the IBM
System/360–158, 168, etc. high-end computers.

30. R. H. Dennard, ‘‘Field Effect Transistor Memory,’’ U.S.
Patent 3,387,286, filed July 14, 1967.

31. (a) Y. Taur and T. Ning, Fundamentals of Modern VLSI
Devices, Cambridge University Press, New York, 1998; (b)
IBM J. Res. & Dev. 39, No. 1/2 (1995); (c) IBM J. Res. & Dev.
46, No. 2/3 (2002).

32. S. Wolf, Silicon Processing for the VLSI Era, Vol. 3—The
Submicron MOSFET, Lattice Press, Sunset Beach, CA, 1995,
p. 291.

33. H. Kalter, C. Stapper, J. Barth, J. DiLorenzo, C. Drake,
J. Fifield, G. Kelley, C. Lewis, W. van der Hoeven, and J.
Yankosky, ‘‘A 50 ns 16 Mb DRAM with a 10 ns Data Rate
and On-Chip ECC,’’ IEEE J. Solid-State Circuits 25, 1118
(1990).

34. IBM RISC System/6000 Technology; Publication SA23-2619.
The cache described on p. 12 of ‘‘RISC System/6000 Hardware
Overview’’ and on p. 44 of ‘‘Data Cache and Storage Control
Units’’ is based on the cache described in Reference 14 of this
paper.

35. IBM Blue Gene/L Team (IBM and Lawrence Livermore
National Laboratory), ‘‘An Overview of the BlueGene/L
Supercomputer,’’ Proceedings of the 2002 ACM/IEEE
Conference on Supercomputing, 2002, p. 1; see also a
forthcoming issue of this journal (2005).

36. R. C. Agarwal, F. G. Gustavson, and M. Zubair, ‘‘A High-
Performance Matrix-Multiplication Algorithm on a
Distributed-Memory Parallel Computer, Using Overlapped
Communication,’’ IBM J. Res. & Dev. 38, 673 (1994).

37. P. G. Emma, ‘‘Understanding Some Simple Processor-
Performance Limits,’’ IBM J. Res. & Dev. 41, 215 (1997).

38. R. E. Matick, T. J. Heller, and M. Ignatowski, ‘‘Analytical
Analysis of Finite Cache Penalty and Cycles per Instruction of
a Multiprocessor Memory Hierarchy Using Miss Rates and
Queuing Theory,’’ IBM J. Res. & Dev. 45, 819 (2001).

39. P. Bakeman, A. Bergendahl, M. Hakey, D. Horak, S. Lute,
and B. Pierson, ‘‘A High Performance 16-Mb DRAM
Technology,’’ Digest of Technical Papers, IEEE Symposium
on VLSI Circuits, Honolulu, HI, June 1990.

Received January 26, 2004; accepted for publication

R. E. MATICK AND S. E. SCHUSTER IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

164

June 15, 2004; Internet publication January 31, 2005

Richard E. Matick IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (matick@us.ibm.com). Dr. Matick is a Research Staff
Member in Systems Technology and Microarchitecture. After
receiving his B.Sc., M.Sc., and Ph.D. degrees in electrical
engineering from Carnegie Mellon University in 1955, 1956,
and 1958, respectively, he joined the IBM Research Division
and worked in the areas of thin magnetic films, memories, and
ferroelectrics. As manager of the Magnetic Film Memory group
from 1962 to 1964, he received an IBM Outstanding Invention
Award for the invention and development of the thick-film read-
only memory. He joined the Technical Staff of the IBM Director of
Research in 1965 and remained until 1972, serving in various staff
positions and as Technical Assistant to the Director of Research.
In 1972 he took a one-year sabbatical to teach at the University
of Colorado and IBM in Boulder, Colorado. Dr. Matick spent
the summer of 1973 teaching and doing research at Stanford
University. In 1986, he received an IBM Outstanding Innovation
Award and in 1999 an IBM Corporate Patent Portfolio Award as
co-inventor of the industry-standard video RAM memory chip,
used to provide the high-speed, high-resolution display bit buffer in
personal computers and many workstations. His work in high-
density CMOS cache memory design, for which he received an
IBM Outstanding Technical Achievement Award in 1990, served as
the foundation for the high-speed cache system used in the IBM
RISC/6000 series processors. He is co-initiator of the concept of
logic-based embedded DRAM, which has become a key IBM
strategy for systems-on-a-chip. It was initially conceptualized in
1990 and became a reality in the late 1990s, and is now being
offered to all IBM ASIC customers. Dr. Matick is the author of the
books Transmission Lines for Digital and Communication Networks,
McGraw-Hill, 1969 (reprinted as an IEEE Press Classic Reissue in
1995 and in paperback in 2001), and Computer Storage Systems
and Technology, John Wiley & Sons, 1977. He is also the author of
chapters on memories in Introduction to Computer Architecture
(H. Stone, Editor), SRA 1975 (First Edition), 1980 (Second
Edition) and in Electronics Engineers’ Handbook, Second and
Third Editions, McGraw-Hill, 1982 and 1989. He also contributed
the ‘‘Cache Memory’’ entry in the Encyclopedia of Computer
Science, Third Edition, Van Nostrand Reinhold, 1993. Dr. Matick
is a member of Eta Kappa Nu and an IEEE Fellow.

Stanley E. Schuster IBM Research Division, Thomas J.
Watson Research Center, P.O. Box 218, Yorktown Heights, New
York 10598 (schustr@us.ibm.com). Mr. Schuster received B.S. and
M.S. degrees in electrical engineering from New York University in
1962 and 1969, respectively. In 1965, he joined the IBM Research
Division, where he currently is a Research Staff Member working
in the VLSI Design Department in the area of low-power high-
speed digital circuits and logic-based eDRAM for memory
hierarchies. Upon joining IBM, he initially worked on n-MOS
device characterization and circuit design for logic and memory.
The work was part of the effort that led to the IBM n-MOS
technology for main memory. He was also involved in the
application of semiconductor technology to communication
systems. During the early 1970s he did extensive work that
demonstrated the leverage of word- and bit-line redundancy for
semiconductor memory yield. His work on redundancy included
the development of laser personalization techniques for integrated
circuits. This technique was also used to achieve fast turnaround
times in the personalization of PLAs. In the late 1970s he started a
research effort on the design and application of a series of n-MOS
and CMOS memory chips for very-high-speed operation. This
work included the design of very-high-speed CMOS ECL-
compatible SRAMs with cycle time less than access time. A paper
describing this work received the 1992 IEEE International Solid-
State Circuits Conference Lewis Winner Award for outstanding
paper. This work was instrumental in demonstrating that CMOS
could move into the high-speed arena that was previously the
domain of bipolar technology. Mr. Schuster was an Associate

Editor of the IEEE Journal of Solid-State Circuits (ISSCC)
from 1988 to 1992 and was Guest Editor of its Special Issue on
Logic and Memory in October 1986. He served on the ISSCC
program committee from 1985 to 1988. He was Co-chairman
of the IEEE Solid-State Circuits and Technology Workshop
Committee and a member of the AdCom of the IEEE Solid-
State Circuits Society from 1994 to 2003. Mr. Schuster has 41
issued patents and more than 54 published papers. He is a
Fellow of the IEEE and a member of the IBM Academy of
Technology. He has received six IBM Outstanding Invention and
Contribution Awards and a Sixteenth Level IBM Invention
Achievement Award. He is also the recipient of an IBM
Corporate Award for his work on high-speed CMOS SRAMs.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 R. E. MATICK AND S. E. SCHUSTER

165

