Logic-based
eDRAM: Origins
and rationale
for use

The IBM logic-based eDRAM (embedded DRAM ) technology
integrates a trench DRAM (dynamic random access memory )
storage-cell technology into a logic-circuit technology, merging the
two previously separate technologies. Since its introduction in the
1970s, the DRAM technology has been driven by cost while the
logic technology has been driven by speed, leading to an ever-
widening gap between slower memory and faster logic devices. That
has led to the need for increasingly complex levels of memory
hierarchies, resulting in considerable degradation of system
performance despite many design and architecture compromises.
DRAM can provide six to eight times as much memory as SRAM
(static random access memory) in the same area, but has been too
slow to be used at any cache level. Our studies, highlighted in this
paper, indicated that the use of logic-based DRAM could resolve
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that difficulty—and was necessary for integrating systems on a
chip. This has led to the inclusion of logic-based eDRAM as a
memory option in the IBM ASICs (application-specific integrated

circuits) product.

Introduction

The principles on which the logic-based eDRAM
advantages are based are easy to understand. Most
important is that the density advantage of DRAM
permits replacement of the same area of SRAM with
DRAM,l which is from four times up to as much as eight
times larger in capacity [1]. A factor of 16 to 20 or more in
DRAM vs. SRAM capacity per unit area is obtained if
DRAM is designed, in the traditional way, for achieving
optimum density. The factor decreases to approximately
4 to 8 when the DRAM is designed for improved speed
because of the need for shorter bits lines, faster sensing,
etc. For cache applications, such as for an L2 cache, the
miss ratio decreases approximately as the square root of
the capacity increase. Hence, the use of a cache that is
larger by a factor of 4 leads to a decrease in the miss ratio
by a factor of 2; some relevant studies are described later.
Fewer misses to an on-chip cache result in a decrease in

'SRAM uses six field-effect transistors that retain the stored information as long as
power is maintained, and is nondestructively read, requiring no rewrite; DRAM uses
one field-effect device and one capacitor and is destructively read, requiring write after
read, and also requiring refreshing because of capacitor charge leakage.

the number of cache reloads needed from the slower,
external (off-chip) memory system. The larger-capacity
on-chip DRAM may not provide a performance
improvement if the access speed is too slow. However, the
DRAM need not be as fast as the replaced SRAM, but
must be faster than a typical DRAM.

Since DRAM was designed for density, not speed, it
was clear that a substantial speed improvement should be
possible. Questions that we decided to address were how
much of an improvement should be possible and how
much would be required. In a memory hierarchy, the
combination of the miss ratio and the first access time
is most crucial for achieving performance. Since this
relationship is nonlinear, with many contributing factors,
some memory hierarchy analysis was needed in order to
determine what speed improvement should be possible.
The net result of the analysis was that if the DRAM speed
could be made sufficiently fast, its larger capacity should
enable it to outperform SRAM over a wide range of
cases. A brief discussion of the fundamentals of cache
reload and the associated performance impact on a simple
system is presented later as an introduction to memory
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hierarchy analysis. First, we present a historical
perspective of the evolution of eDRAM and how the
industry unknowingly generated a need for it.

Historical perspective

One of the most serious and fundamental limitations on
system performance during the late 1980s and 1990s was
the growing “speed gap” between logic and DRAM
memory technologies. Ideally, the memory system
attached to a processor should be large enough to contain
the operating system and several complete applications,
both code and data, and be randomly accessible in one
processor cycle. This was true in some early computers,
but it is not generally possible now, because operating
systems and applications have increased rapidly in size as
processors have become faster. This results from the fact
that a fast processor can process more data in a given
period of time and hence requires larger amounts of data
and programs in order to stay busy. Thus, as processors
have become faster, their attached “main memory”
capacity has increased, requiring increasingly more
processor cycles for an access (see Appendix A for an
expanded discussion). The relatively inexpensive “main
memory” portion of a system (its DRAM) has become
increasingly remote from its processor, requiring an ever-
increasing number of levels of cache to bridge the gap.
This has increased not only system complexity but also
cost, and has prevented the incremental performance
gains from being as large as they could otherwise have
been.

During the period in which the speed gap was growing,
the remoteness of main memory was due to two trends—
the increasing gap between logic and DRAM
technologies and the ever-increasing size of the required
DRAM. The increasing electrical and logic paths
associated with the latter resulted in increased delays.
Both added to the total memory access delay for
reloading a cache miss, and thus had a significant impact
on system performance. (See Appendix B for a discussion
of this impact.) The primary emphasis for reducing delays
was on overall system architecture, primarily because
closing the technology gap would have increased the cost
of DRAM (now regarded as a “commodity”). While the
gap between logic and DRAM was obvious and well
known, its significance with respect to overall system
performance and possible solutions was not fully
appreciated.

The value of having logic of various kinds on a DRAM
chip is a relatively old concept. For example, as early
as 1976, proposals were studied for placing directory
translation directly on main memory chips in order to
eliminate page tables [2]. Also, early in the evolution of
DRAM, improvements in data transfers into and out of
DRAM chips were achieved by various forms of page
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mode buffers, too numerous to discuss here.” Video RAM
[3, 4] was a somewhat more advanced and specialized
means for improving DRAM bandwidth, and it helped
fuel the proliferation of personal computers during the
late 1980s and 1990s. The proposed use of a separate
distributed cache on a DRAM chip [5] led to the current
ESDRAM (enhanced synchronous DRAM) technology.
Numerous means were considered for merging SRAM
and DRAM on the same chip. Many were unsuccessful
because of a lack of proper integration of key functions.
For example, in [6], an experiment was described in which
the DRAM and SRAM were interconnected with a
somewhat standard, narrow bus that was not much
different from a bus that would be used if the SRAM were
on a separate chip. For the on-chip hierarchy to function
effectively, significant integration of the data transfer
processes was necessary, such as that used with the
“Supercache,” discussed below. This was a significant
omission in many of the early proposals; i.e., associated
functions were not integrated to make use of on-chip
advantages.

Despite the rather clear need for more highly integrated
functions on a chip, logic technology continued to be
driven by speed considerations and memory technology
by cost considerations. As the levels of integration
continued to increase, the inclusion of fast logic and
DRAM on the same chip became feasible. However,
there were different views about how to optimize
system performance and cost. Within IBM, there was
considerable interest in using sophisticated packaging
techniques to achieve this—permitting separate logic and
DRAM chips to be more tightly integrated on a carrier
with large numbers of interconnections [7, 8]. However,
this would have led to additional delays and cost.

Since the early introduction of semiconductor memories,
there had been numerous proposals to use two-, three-, or
four- device memory cells [9, 10], which could be fabricated
using standard logic technology, resulting in densities far
higher than those of normal six-device SRAM, but not as
high as DRAM densities. This would provide improved
SRAM density without the need for a new technology.
However, the performance still lagged behind what
could be obtained with the eEDRAM approach.

We had been working extensively on caches, DRAM/
SRAM arrays, and memory hierarchies [11-18] and thus
had hands-on experience with the wide range of diverse
problems encountered in optimizing total system
performance. Early in the evolution of the growing
speed gap, it became evident to us that 1) the continued
advances in integrated circuits would soon make possible
fully integrated systems (large memory and processor) on
a single chip; 2) the speed gap between DRAM and logic

2 . .
For more information, search the Internet for page mode.
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circuits would impose serious performance limitations on
integrated systems on a chip; and 3) DRAM could be
nearly as fast as SRAM in the same technology. In such
integrated systems, large memory capacity on-chip would
result in better performance, but if the historical trend
were to continue, such systems-on-a-chip would not
be able to make use of the larger density provided by
DRAM-—a serious limitation. Thus, early in the 1990s,
we became convinced that the optimum performance of
future systems would require the use of a logic-based
DRAM technology. We reached this conclusion through
various types of analysis which began in 1990 and
continued for more than seven years in numerous forms
and complexities. A substantial amount of the initial
work was “engineering analysis” of memory hierarchies
based on insights and educated assumptions. While this
type of analysis proved to be correct, it was nevertheless,
by itself, insufficient to dispel the considerable doubt
about our conclusion that the use of logic-based e DRAM
would be essential for continued system evolution.
Several options were considered, but when designed
“on paper” they clearly indicated the difficulties with a
DRAM-based e DRAM. Two of these are discussed later:
the so-called “Supercache” option and a full system-on-a-
chip option implementing a matrix multiply unit.
Initially, the consensus was that the use of DRAM-
based eDRAM with its cheaper processing but slower
device speed was the correct strategy for system
evolution. The basic issue was whether logic should be
implemented via the DRAM process (DRAM-based
eDRAM)3 or DRAM implemented via the logic process
(logic-based eDRAM, seemingly more difficult and
expensive).4 Despite opposition, our view was that closing
the speed gap via the use of logic-based DRAM would be
the most viable means to ensure system evolution. The
timely commencement of an implementation effort in the
IBM Technology Group5 and continued system studies
ultimately led to the inclusion of logic-based eDRAM in
the IBM ASICs (application-specific integrated circuits)
product; see for example [19—-26]. This history unfolded as
described next.

Early environment of the IBM metal-oxide field-

effect transistor (MOSFET) technology

The MOSFET technology used by IBM in the late 1960s
and early 1970s for manufacturing semiconductor logic

*DRAM-based eDRAM involves retaining the current, single-work-function
technology (described later) and relatively slow DRAM technology and re-mapping
logic books and libraries to its ground rules. Thus, embedded processors with DRAM
can be designed in same technology, but they are slower than those designed in logic-
based (dual-work-function) technology (described later).

4Logic-based eDRAM involves adding the DRAM deep trench and other processes to
the logic process, requiring extra masks and processing steps. However, the logic
libraries do not have to be remapped to new ground rules, which is a significant extra
advantage.

*Undertaken by the IBM Academy under the leadership of Russell Lange (IBM
Technology Group).
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and memory devices and circuits was based on the use of
n-channel MOSFETS (also designated as “n-channel
devices,” “n-MOSFETs,” “n-FETs,” “n-type devices,”
etc.), metal gates, and associated depletion loads (ratio
logic levels without p-channel devices) [27, 28]. Thus,
logic and memory functions could be integrated on a
single chip. At the time, main memory used SRAM
arrays, as illustrated by the 2-Kb Riesling chip [29], which
contained six-device cells. Subsequently, use was made of
the DRAM-based technology, based on the use of cells
containing one MOSFET device and one capacitor [30].
That technology has become the dominant memory
technology because of its improved density and cost.

After the introduction of the DRAM technology but
before the availability of the CMOS (complementary
metal oxide semiconductor)6 technology, there was
continued use of n-channel devices for both logic and
memory. However, a small but noticeable difference
between logic and DRAM device speed appeared. The
reason for this was that the DRAM technology required
the use of devices having a higher threshold voltage V| to
ensure low leakage, resulting in an increase in the time
interval between refresh cycles.7 The logic technology
involved the use of a similar but modified process to
obtain devices having a slightly lower threshold voltage
that facilitated higher overdrive, V,, — V, (where V is
the power-supply voltage), and thus greater circuit
speed.8 The different V, values were achieved by slightly
different channel doping. However, since the magnitude
of V,, was 5V, the difference in overdrive for devices
with “high” V, (~1 V) vs. “low” V', (~0.7 V) was not very
large (5 to 10%); thus, the speed increase was small. The
technology required the use of only one type of gate with
only minor differences needed to speed up the logic
circuitry (lower V) or reduce the DRAM leakage
(higher V).

CMOS technology

During the late 1970s to early 1980s, CMOS technology
became viable in IBM manufacturing. The technology
required the use of p-channel load devices. Two methods
available for introducing such devices were

1. A low-cost approach based on the use of heavily
n-doped polysilicon (n+-p01y) gates and a buried
p-doped channel to produce its p-channel load devices

*The “M” in MOS and CMOS originally referred to the use of a metal gate. Although
the metal gate has mostly been replaced by an n-doped or p-doped polysilicon gate,
the “M™ has been retained.

"A DRAM cell stores data as charge on a capacitor. This charge continually leaks
away through the field-effect access device and must be refreshed about every 16
milliseconds. Refresh time can interfere with normal accesses and must be controlled.
The use of higher-V devices reduces this leakage.

*Overdrive is a measure of the amount of force exerted on the carriers in the channel
of a field-effect device in order to accelerate them during switching; thus, it affects
switching speed.
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Note that the doping of the p-type load device channel is low compared to that of the buried channel, hence minimal short-channel effects.
(b)

Illustrative cross sections of CMOS configurations fabricated via (a) single- and (b) dual-work-function technologies. In (a), n*-poly
gates are used for the n- and p-channel devices; the p-channel device has dopant added to its surface channel region (to achieve lower V;),
resulting in the formation of a relatively deep channel and associated short-channel degradation effects (single-work-function
technology). In (b), an n*-poly gate is used for the n-channel (normal surface channel) device and a p*™-poly gate for the p-channel
(normal surface channel) device (dual-work-function technology).

(“single-work-function technology”), as illustrated by speed did not scale well. This difficulty is due to short-
the configuration in Figure 1(a). channel effects resulting from the deep diffusion incurred
2. A more costly approach based on the use of n+-poly for a buried channel. Short-channel effects arise because
gates for its n-type devices and p+.p01y gates for its the implanted boron layer has a finite and relatively large
p-channel load devices (“dual-work-function thickness, as shown for the device to the right in Figure
technology™), as illustrated in Figure 1(b). 1(a), instead of being an infinitesimally thin sheet, as for

the (dual-work-function technology) surface-channel
devices of Figure 1(b).

To scale to smaller devices and obtain a lower V, for
logic operation, use was made of a dual-work-function
process which functioned at V,; = 2.5 Vand V, ~0.5V
(CMOS 5X). The use of a p-poly surface channel for the
p-type devices resulted in the lower value of V. However,
because the process was more expensive, the use of a
slower, buried-channel p-type device (single-work-
function technology) was continued for DRAM. Thus,
DRAM devices continued to be slower than their logic
counterparts. (A buried-channel n-type device has not
been used because its p+-poly gate has a relatively high
resistance and its processing is difficult.) Other device and
technology requirements which tended to make DRAM
technology slower than logic are the following:

At that time, the state of the art employed rather large
devices (~1-um channel length). The single-work-
function (buried-channel) approach was suitable for
producing both logic and DRAM structures. The first
CMOS technology in IBM manufacturing, CMOS 2, was
based on the use of that approach (with a channel length
of ~1 um) for both logic and DRAM devices, and was
designed to function at V; = 5 V. The use of this
relatively large operating power-supply voltage resulted
in only a small difference between logic and DRAM
device speeds. Different thresholds were obtained for
the devices through the use of different doping levels. For
information on CMOS 2 and subsequent generations of
IBM CMOS device technologies, see for example [31] and
cited references.

While this single-work-function technology was 1. The need for a thicker gate oxide to allow word-line
suitable for the relatively large devices being used at the boost for writing and reading at higher overdrive
time, it was very difficult to scale the buried-channel in order to obtain a higher signal-to-noise ratio
devices to smaller channel lengths and concurrently (the thicker oxide is needed to prevent electrical
obtain the desired scaled speed improvement; i.e., the breakdown of the oxide at the higher overdrive).
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2. The need for a relatively large threshold voltage in
order to reduce leakage current (and thus obtain a
longer data retention time and longer time between
refresh cycles).

Thus, the small speed gap between the logicand DRAM
technologies became significantly wider than previously.
For more on buried-channel devices and short-channel
effects, see [31], part (a), p. 188 and [32], p. 291.

New IBM DRAM strategy for on-chip systems
In the early to mid-1990s, the industry continued to use
the above strategy, i.e. the use of separate technologies
for DRAM (single-work-function technology) and logic
(dual-work-function technology). This caused the speed
gap between logic and DRAM to continue to widen, as
illustrated in Figure 2.

In the early 1990s our engineering analyses of simple
systems showed that as the levels of integration increased,
significant amounts of memory could and should be
placed on a chip to improve performance. The analyses
indicated that for memory hierarchies on a chip, if the
DRAM speed could be sufficiently improved, the
significantly higher density of DRAM compared to
SRAM (four to eight times more DRAM in the same
area) would offset any speed difference. This would
effectively allow DRAM to replace SRAM because of the
improved miss ratio of the larger capacity. In addition,
further analysis convinced us that the difference in access
speed between SRAM and DRAM was limited mainly
by the technologies used for implementation, not by
fundamental elements. (See Appendix C for a discussion
of this issue.) Thus, if DRAM were to be built in logic
technology, its access time could be much closer to that of
SRAM (rather than being significantly different, as was
prevalent at that time).

Our subsequent analysis of memory hierarchies in the
early 1990s indicated the various speed ranges required
for on-chip DRAM to compete with faster but less dense
SRAM (presented later) over a wide range of system
parameters. It was found that significant improvements in
system performance could result from replacing SRAM
with improved DRAM and that the required DRAM
parameters were well within the realm of possibility.
Thus, it appeared that it should be possible to decrease
the speed gap between logic and DRAM technology, as
indicated by the dotted curve in Figure 2]

Our first memory-hierarchy-on-a-chip design
While we were aware of the potential and the need for fast
DRAM in the early 1990s, there was little capability for

°Note that this does not necessarily imply that large, off-chip main memory systems
should be designed with the same fast logic-based eDRAM chips. This is a separate
issue that is not part of this work.
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Logic and SRAM

Device speed

~1990 ~2000 Year

Increasing speed gap between IBM logic and DRAM technologies
resulting from cost vs. performance design objectives.

any actual implementation. Thus, our first design was a
memory hierarchy consisting of an SRAM in front of a
standard DRAM, all on the same DRAM chip. We chose
as the base the highest-density DRAM available at the
time, the IBM 16-Mb chip [33]. We removed half of the
DRAM and replaced it with SRAM and many custom
interface circuits and buffers (store-back buffers, reload
buffers, etc.). The base design consisted of two 8-Mb
islands with built-in error correction and other
intervening circuits, thus making it easy to divide. Our
modified design contained several buffers and circuits
similar to that used in the first IBM RS/6000* cache
[18, 34] to support high-speed simultaneous transfers
between the L1, L2, and L3 levels. By integrating the
two-level cache hierarchy on a single chip, high bandwidth,
reduced latency, and better performance were achieved.
Substantial circuit analysis, projected speeds, and power
calculations were carried out. A schematic diagram of the
chip functions and their placement is shown in Figure 3.
This chip, designated as the Supercachew chip, became
part of an advanced RS/6000 multiprocessor product
plan of record in the early 1990s. It offered substantial
performance improvement but lacked sufficient product
design support at that time. Thus the Supercache design
was abandoned, but the same basic idea is currently used
for the on-chip L3/L2 cache of the IBM Blue Gene* high-
performance processor [35], implemented in IBM logic-
based eDRAM technology.

Matrix multiply unit (MXU)—Full system on a
chip

A subsequent study was undertaken to evaluate the
performance potential of a special vector processor [36]
designated as the matrix multiply unit, or MXU. The
concept required a relatively large memory and a high

'°US. Patents 5,388,072 (1995) and 5,890,215 (1999).
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bandwidth for the parallel processing of vectors. We
immediately recognized that the use of embedded DRAM
with an SRAM buffer similar to Supercache could
provide these, and configured a possible implementation
consisting of a processor, MXU, with associated memory
on one chip, as shown in Figure 4. The MXU includes
everything except the memory; in a non-integrated design,
the MXU as well as the memory would be located on
separate chips. This study proved to be pivotal; up to that
time, our arguments for a logic-based eDRAM had been
based primarily on engineering analysis of very general
memory hierarchies, and we did not have an actual,
convincing example. The Supercache system mentioned
above did not have an on-chip processor/memory
hierarchy. The MXU provided our first, definitive such
case. We intended the MXU study to be realistic, and
thus carried out the initial system integration using the
only appropriate technology available at the time, the
DRAM technology (single-work-function, slow, lower-
cost chips). The results showed that such an integrated
MXU system on a chip fabricated in a DRAM-based
eDRAM technology could not win in the marketplace.
The fundamental problem was that the CPU and matrix-
processing unit logic would be fabricated in a technology
that was too slow compared with a conventional system
using fast logic and SRAM chips with a standard memory
hierarchy. The use of larger-capacity DRAM to replace
SRAM could not compensate for the degradation resulting

from the slower, DRAM-based CPU|LI cache/vector logic.

It thus became clear that in order to achieve better
performance than that possible with a conventional
technology, enhanced device speed would be needed. The
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analysis which led us to this conclusion proceeded as
described in limited detail in Appendix D.

The MXU study and subsequent related work showed
the need for logic-based eDRAM in order to achieve
higher system performance, not necessarily higher
DRAM performance. Thus, if DRAM-based eDRAM is
used as the base, system performance is always limited by
the CPU/logic and will be inferior even for the best
achievable DRAM speed; i.e., the larger DRAM cannot
compensate for the lower processor performance.
However, the use of a logic-based eDRAM facilitates the
fabrication of fast CPU/logic for a competitive position
and the replacement of on-chip SRAM with eDRAM,
which can now also be relatively fast—thus leading to an
improved overall system.

Engineering analysis of generic systems
Throughout our more than seven years of study, we made
use of different techniques and methods of analysis to
make our case for logic-based eDRAM. The essence of
the case is the use of miss rates and spreadsheets to
calculate relevant parameters. An overview of the
approach is presented next, followed by a discussion of its
use in comparing the performance of memory hierarchies
when SRAM for the L2 and L3 levels of cache is replaced
by DRAM of various speeds.

Analysis using miss rates and spreadsheets

The ideal, raw processing power of a processor is
measured in cycles per instruction for an infinite cache
[37]; i.e., its first-level cache functions as if there were
no cache misses and thus no reload penalties. This is
equivalent to having attached to the system only one ideal
memory of very large size and using a cycle time equal to
that of the processor. Since such an ideal memory is not
feasible, designers attempt to approximate it by using a
memory hierarchy comprising caches of small size and
high speed at the first level (the processor level), and
designing for a gradually increasing capacity with a
decreasing speed, up to main memory. Typically there
may be one to four such cache levels between the
processor and main memory. Since the level closest to the
processor (L1) is smaller in capacity, it cannot retain all
of the information which may be required by the
processor at any instant. Address translation is required
to determine whether any requested information is
actually present. Thus, some accesses “miss,” i.e., are not
present, and require a “reload,” which is a transfer of the
full block that contains the required information, from
the downstream memory to L1. An L1 miss requests the
data from L2. If L2 has a miss, it requests the data from
L3, etc. until the information, which may be in main
memory as the last level, is found. An access to any level
downstream from L1 results in the transfer of a block or

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005



32 bytes per cycle A

15 mm
S } 576 bytes 13 mm
DRAM array e emomme =T --I-= Scaled from 4-MB macro
Address 2-MB 16-Mb 5 mm
8 bytes 24/44-ns access per cycle
> 65 mm? 2.1 W
30% } 2% 576 bytes 18.5 mm
X X
Instruction of 2 X 576 byte buffer (2 l64 DW)
4 bytes H DW/cycle H DW/cycle |1 DW/eycle H DW/cycle
T M L i ! \ ____)_-- Vector register file = 4 X 2 KB
X 2-KB 2-KB 2-KB 2KB |=---""7777 66 mm?> 3.5ns <I7W
Controls 8 register register register register | 5 mm Scaled from
4 bytes file file il file 512 DW (4 KB) 6 port file
> uH uu HH uH 4 DW/cycle per FPU t0 256 DW (2 KB) 6 port file
________ --|-- Scaled from IBM 620 FPU in
FPU FPU FPU FPU |<---"""7" CMOS 58 to CMOS 6
8.5 mm 88mm? 89ns 21W

~15mmX 185mm 9ns 40W

Layout and busing of matrix multiply unit accelerator chip having four FPUs and 2-MB on-chip DRAM L2.

line, typically 32 to 128 bytes, of information to L1 since
this likely contains the next piece of information required
by the processor. At the beginning of this transfer, the
initially requested information which caused the miss
(typically a doubleword, 8 bytes) is the first data accessed
and is simultaneously “loaded through” to the processor
so that it can resume processing. Thus, the average,
equivalent memory access time for any system with a
memory hierarchy is considerably longer than one system
cycle because of stalls and delays caused by cache misses
and reloading. This additional delay, measured in cycles
per instruction executed, is typically known as the finite
cache penalty (FCP). These two parameters are added
together to obtain the cycles per instruction (CPI) for the
system:

CPI [system] = CPI [infinite cache] + FCP. (1)

The CPI [infinite cache] is independent of the memory
hierarchy and is assumed to be given. The attached
memory hierarchy affects only the FCP term. The memory
hierarchy analysis of only a simple uniprocessor is
presented below. Analyses of more complex multiprocessor
systems as well as a fuller treatment of this subject

are presented in [37].

A uniprocessor system consisting of a single processor
having an n-level memory hierarchy is illustrated in
Figure 5. A processor and first-level cache (L1) are
typically designed as a single self-contained unit and thus
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are not available for optimization as part of the hierarchy
analysis. The L1 capacity is typically limited by the
processor cycle time and silicon space available, and thus
is not a degree of freedom. Rather, the processor and L1
together are the source which generates misses at a given
miss rate of mr, misses per instruction executed. If there
were no misses (i.e., infinite L1 cache) or if the miss
latency time were 0, the resulting CPI value would be
CPl[infinite cache]. Assuming that this parameter is
given, our task is to determine the additional number of
cycles per instruction required for the given memory
hierarchy. Miss rates are typically used as the measure of
the miss characteristics of each level of the hierarchy:

Miss rate = number of misses per instruction
executed by the processor. (2)

It is possible to express the FCP in terms of a miss ratio
for a level, defined as the number of misses per access to
that level. These parameters are quite different and are
not interchangeable. The miss ratios can be expressed
in terms of miss rates for all cache levels except the
L1 cache, which requires an additional parameter, as
discussed in Appendix B of [38]. The FCP expression is
derived below in terms of both miss rates and miss ratios.
In the figure, the miss latency time at each level is
assumed to be a fixed constant T, where n = 2, 3, 4, etc.
for each downstream level, as indicated. This time is the
total effective time to reload a hit at any level, including
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level.)

all electrical and logical delays; to a good approximation,
it can be taken as the time to first access at that level. In
a more complex system, particularly a multiprocessor
configuration, there are additional queuing delays due to
multiple requests to any cache from multiple sources.
Such delays are a nonlinear function of the requests at
each level and greatly complicate modeling and analysis.
A good design minimizes these delays so that they are
second-order effects. Thus, this simple analysis is a good
approximation.

The L1 miss rate mr, serves as input to the memory
hierarchy for the FCP calculation. It is necessary to
determine only the average number of cycles per
instruction required to reload these mr, misses per
instruction. All L1 misses trigger an interrogation of L2,
producing some L2 hits, with the remainder being L2
misses. The L2 misses propagate to L3, producing some
L3 hits, with the remainder being L3 misses. This hit-miss
behavior continues to the level which produces only hits,
which is main memory in this model. A specific hit at any
level is reloaded with appropriate delay, and terminates
any further miss-request interrogations downstream.""
Portions of the total average reload delay come from each
level. For a general case, this includes hits in L2 with
delay T,, hits in L3 with delay T, hits in L4 with delay
T,, etc., as shown in the figure. These amounts are easily
determined as follows: The hit rate Ar, at any level n is
given by

"Misses flow downstream from L1 to L2 to L3, etc., while reloads flow upstream.
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hr, = inputs per instruction — outputs per instruction
= misses per instruction | previous level|
— misses per instruction [current level]

=mr,_, —mr,. (3)

The portion of the total FCP contributed by each level
n of the hierarchy is the hit rate multiplied by the average
effective reload time per hit of that level. The FCP is
expressed in units of processor cycles per instruction;
hence, all delays T, are expressed in units of number
of processor cycles per hit rather than absolute time.
Thus, the contribution to the FCP for any level of the
hierarchy is given by

Fcp o =hr, -T = (mr,  —mr)T, . 4)

n—1 n

The total finite cache penalty of an n-level hierarchy is
the sum of all individual terms, or

FCP =" (mr,_, —mr)T,. (5)
n=2

Assuming no misses in main memory, the FCP for a
hierarchy with four levels below main memory would be

FCP = (mr, —mr,)T, + (mr, —mr;)T,

+ (mry —mr,)T, +mr,T (6)

4~ main’

where mr,, mr,, --- are the miss rates at levels 1, 2, etc.,

1 My
in misses per instruction executed, and 7,, T, - - - are

the average effective reload time in units of the number of
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processor cycles per miss (i.e., the actual delay divided by
the cycle time of the processor). This equation can be
written in terms of miss ratios as follows. As shown in
Appendix B of [38], miss rates can be expressed as

mr, = A/ MR, mr, =mr,MR,, mr, =mr, MR, and

27 3

mr, =mr,_ MR, , (7)

where 4| is the average processor memory accesses per
instruction executed, and MR, MR,, etc. are the miss
ratios of L1, L2, etc. in misses per accesses to that level.
Substituting these into Equation (6) gives

FCP = A MR, (1 — MR,)T, + A MR, MR, (1 — MR)T,
+ A MR, MR, MR,(1 — MR,)T, - --
= A[MR,(1 — MR))T, + MR, MR,(1 — MR,)T,
+ MR, MR, MR(1 — MR,)T, --"]. (8)

The value of 4, is generally unknown, since the number
of memory accesses required by program instructions
such as load or store-multiple, etc. are unknown until the
program is compiled or executed—and can be data-
dependent. However, a value of unity is valid for many
cases. Assuming that value, we obtain

mr, = MR, mr, = MR, MR,, mr, = MR, MR, MR;,
mr, = MR MR, MR, --- MR, 9)
and
FCP = MR,(1 — MR,)T, + MR, MR,(1 — MR,)T,
+ MR MR, MR,(1 — MR,)T,- -, (10)

where T,, T}, etc. are the effective reload access times for
L2, L3, etc. in units of processor cycles.

At the processor/L1 cache level, the L1 cache speed
is included indirectly by way of the CPI[infinite cache]
parameter, which is assumed to be given; hence, it is not a
variable in this analysis, as can be seen from Equations
(6) and (10). The only L1 variable in these equations is the
L1 miss ratio, which is varied below. Equations (6) and
(10) are the fundamental equations used for most of our
subsequent analyses of memory hierarchies of a simple
uniprocessor. (See for example [38].)

Spreadsheet analyses of memory hierarchies

The crucial performance parameter in any memory
hierarchy is the sum of the products of hit rate times the
reload time at each cache level. The reload time consists
primarily of chip access time plus all additional packaging
and transfer delays.12 The miss rate or the miss ratio at

lzTrailing-edge effects may add additional delays if the transfer of a block or line is
done piecemeal, requiring many cycles. This results from the fact that the first reload
cycle restarts the CPU and subsequent cache accesses may be to a doubleword that is
in the same line but not yet reloaded—see [37] for more details.
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size, for a commercial transaction processing trace workload.

any cache level improves (decreases) with increasing
cache size (capacity); detailed analyses have shown that
the miss ratio varies approximately as the square root of
the cache size, as can be seen, for example, in Figure 6.
Plotted in that figure is the miss ratio as a function of
cache size for a transaction-processing-type commercial
trace on a log scale, indicating that the miss ratio varies as
the square root of the cache size between 4 and 64 KB
(the “square root” rule). Above 64 KB, this and other
analyses suggest that for larger caches, the slope may be
—3/4. However, this analysis was not extended sufficiently
to reach a more definitive conclusion about the slope
variation. If the miss ratio vs. size were actually to vary as
3/4 power, the eDRAM approach could have an even
greater advantage. This square root rule is assumed to
apply in subsequent analyses unless stated otherwise.

At a given technology level, assuming that the square
root rule applies, analyses indicate that DRAM can
typically provide anywhere from four to eight times more
bits than SRAM in the same area, or two to nearly three
times lower miss ratios for the same amount of silicon
area consumed. However, DRAM has traditionally been
slower than SRAM, and in the past had not been
considered as a candidate to replace SRAM. With System
Scale Integration (SSI), DRAM array and packaging/
transfer delays for cache reloads are greatly diminished so
that for many practical cases, the hit ratio X reload time
and the resulting FCP can be substantially better for a
DRAM than for an SRAM. This is seen to be true in the
following analysis.

When the concept of logic-based eDRAM was first
proposed, the technical community was of the opinion
that better performance could be obtained via either of
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the following: a DRAM-based eDRAM in which the
processor, SRAM, and DRAM were fabricated in the
normal DRAM-based technology, or the standard
approach involving fabrication of logic and SRAM in the
high-speed logic technology and DRAM in the standard
DRAM-based technology. The following analysis
demonstrates that this is not the case over a wide set

of parameters representing typical cases.

Clearly, the performance improvement is highly
dependent on the DRAM access time achievable. Also,
the reload times 7, or T include delays other than the
array access times, such as logic delays, translation
delays, and fixed wire delays. These aspects are not
easy to quantify without some specific system design.
Nevertheless, we were confident during the initial phases
of this work that we could reduce the DRAM access time
to within a few cycles (roughly three to five) of an SRAM.
Thus, whatever values of 7, or T, are assumed for an
SRAM, the best DRAM effective reload access would be
that SRAM time plus a few cycles. This is typically the
assumption used in the following analysis. However, it is
currently expected that DRAM access times will approach
and possibly exceed those of SRAMs. "

Processor plus SRAM L2 vs. processor plus
DRAM L2
In the first comparison, the basic system is assumed to
consist of a processor with its given L1 cache (and given
CPlI[infinite]) plus an L2 cache connected to a main
memory. We compute the overall performance of such a
system as given by the total system CPI vs. L1 miss ratio
MR, for three cases: a system consisting of a logic-
technology-based processor plus an SRAM L2
(traditional, standard design); a DRAM-technology-
based processor plus a DRAM L2; and a logic-based
processor plus a logic-based DRAM L2. This is similar to
the comparison done for the one specific design point
in the MXU study detailed in Appendix D, but now
done more generally and for a range of miss ratios.
We assume a speed scaling factor of 1.7X between the
DRAM-based and logic-based technologies, which is
similar to that used in the MXU study.14

We start with a logic-based processor with its L1 cache
and arbitrarily assume a value of one cycle per instruction
for its CPI[inﬁnite].15 The same processor plus L1 cache

“For the same memory capacity, because of its significantly smaller cell, a

DRAM occupies considerably less area than an SRAM. Additionally, because its
interconnections are shorter, its loading is less, etc., its speed can potentially become
faster than that of an SRAM. In addition, as we scale to smaller dimensions, in the
sub-0.1-um range, SRAM cells become unstable because of “read-disturbs.” As a
result, the SRAM cell size must be increased to larger than minimum size. Since this
does not occur for DRAM cells, DRAM scales more easily, adding to its area
advantage. (SRAM scaling problems raise many interesting issues pertaining to power
leakage, speed, etc.)

“A scaling factor between normal DRAM and logic speeds would increase as the
technologies evolve, making the case for logic-based eDRAM even more compelling.
‘SCPI[inﬁnile cache] is very dependent on the specific processor and L1 cache design
(see Appendix B).
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in a DRAM-based technology would then have a
CPlI[infinite] value of 1.7 cycles per instruction (i.e., one
cycle per instruction times the speed scaling factor of 1.7).
To the former, logic-based processor/L1, we attach an
on-chip SRAM L2 having a T, value of 13 cycles and a
miss ratio of 30%. The main memory (L3 in this case,
with MR, = 0) is assumed to have a reload access time T,
of 134 cycles. The total system CPI is equal to 1 + FCP,
where the FCP is evaluated from Equation (10) with MR,
varying from 0 to 10%. The results are given by the blue
curve in Figure 7. At MR = 0, obviously the FCP is 0, so
the intercept on the y-axis must be at 1, as shown. Clearly,
this represents the traditional standard system using high-
speed logic technology for processor/L1 and SRAM L2.
The same system implemented using a DRAM-based
technology for processor/L1 and DRAM would yield a
DRAM L2 which would be eight times larger in capacity
and 1.7 times slower, or would have a reload access time
of T, = 1.7X 18 = 31 cycles (i.e., the logic-based DRAM
discussed below is chosen at 18 cycles). For this case, the
processor/L1 would similarly have a CPI[infinite] value of
1.7 compared to 1 for the logic-based case. A plot of the
calculated system CPI vs. MR, for this case using the
same main memory is shown in Figure 7 as the green
curve. The value of the system CPI at MR = 0 starts out
at a larger value of 1.7 (re: use of slower technology).
However, as MR, increases, the larger L2 DRAM gives
a much more slowly increasing FCP than the previous
logic-based processor + SRAM L2 case. As can be seen,
the two curves cross at a value of MR, of about 10%,
indicating that the DRAM-based technology should have
an inferior performance at L1 miss ratios less than 10%
and superior performance above 10%. Since most
applications run with an average L1 miss ratio less than
10%, the DRAM-based system is not as attractive as a
standard processor with an SRAM L2. This was the
situation and general view of DRAM performance
potential for memory hierarchy applications before the
introduction of the concept of logic-based DRAM. We
next introduce such a DRAM into the same system.
The calculated performance for a logic-based processor
plus a DRAM L2 with a capacity of eight times that of
the SRAM but with a T, of 18 cycles is plotted in Figure 7
as the red curve; i.e., the SRAM of the first case above is
replaced by a DRAM eight times larger and five cycles
slower. At MR, = 0, the system CPI must start at a value
of 1. However, the larger but slower DRAM L2 gives a
smaller FCP at all values of MR,. In addition, the logic-
based DRAM L2 appears to be increasingly superior to
the SRAM L2 as MR, increases; i.e., the slope of the
DRAM curve is smaller than that of the SRAM. This is a
result of the lower miss ratio. Similarly, the logic-based
DRAM L2 appears to be superior to the DRAM-based
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Calculated values of system CPI vs. L1 miss ratio for logic-based
systems-on-chip (red and blue curves), contrasted with a DRAM-
based system-on-chip (green curve). Statements under the plots
pertain to assumed parameters; those that pertain to only one of
the plots are color-coded.

L2 at MR, = 0 because the processor is faster, and for
MR, > 0 because the logic-based DRAM access time is
shorter (T, = 18 vs. 31 cycles).

Thus, we see that not only should the logic-based
DRAM system give the best performance, but it should
also be less sensitive to variations in MR, an important
consideration. While this has been shown for only one set
of parameters, the same trends remain valid over a very
wide, representative range of parameters. For example,
suppose we wish to attach a much larger and thus slower
main memory to the above system, keeping all other
parameters constant. The calculated performance for
such a case with a main memory of 7, = 268 (twice
as slow as previously) is shown in Figure 8. Again we
see that the logic-based eDRAM system should be far
superior and also less sensitive to variations. However,
the calculated FCP is beginning to become so large that
the use of an L3 before main memory should be
considered, as discussed later.

Replacing SRAM with DRAM: Performance
comparisons

The finite cache penalty vs. cache size (capacity) is
another dramatic, graphical method of contrasting
DRAM performance vs. an SRAM for an L2, L3,
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Calculated values of system CPI vs. L1 miss ratio for logic-based
systems-on-chip (red and blue curves), contrasted with a DRAM-
based system-on-chip (green curve). Statements under the plots
pertain to assumed parameters; those that pertain to only one of
the plots are color-coded. Assumed parameters identical to those
of previous figure except that T, = 268 cycles (twice as slow).

or any level cache. Such analyses can quickly show the
performance advantage of the larger DRAM capacity for
various assumed DRAM and SRAM access times.

For the first comparison, as previously, a memory
hierarchy is chosen which consists of L1, L2, and main
memory. The calculated FCP is plotted vs. memory
capacity for various assumed 7, access delays as in
Equation (10), where the L2 miss ratio MR, is assumed to
vary with capacity according to the square root rule.
DRAM and SRAM are distinguished only by their
different T, values and are plotted on the same figure
with all other parameters held constant.

We start by assuming an extremely slow L2 DRAM (or
a DRAM off-chip, or both) with a T, of 46 cycles, and a
relatively fast SRAM L2 with T, = 13 cycles. The L1
cache is assumed to have a fixed miss ratio of 5%, as
indicated in the figure. The SRAM and DRAM are
assumed to have the same miss ratio: 10% at the 1-MB
size (e.g., one base unit);16 and it is assumed that the miss
ratio scales as the square root of memory size. The results

16 . . . L
Actual size is fundamentally irrelevant—the base unit is whatever size gives the
assumed miss ratio. We use a base of 1 MB for convenience.
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Calculated values of FCP (finite cache penalty) vs. L2 cache size
for SRAM and slow (standard) DRAM, starting from base system
with L2 MR, = 10% at 1 MB for L2 vs. L2 size, with MR, varying
as the square root of the L2 size ratio, and with the L1 miss ratio =
miss rate = 5%.

Miss ratios:
MR, = 10%,
MR, (base case) = 30% @ 1 MB

Main memory 75 = 134 cycles

FCP (cycles per instruction)
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L2 cache size (MB)

Calculated values of FCP vs. L2 cache size for SRAM and slow
(standard) DRAM, starting from base system with L2 MR, = 30%
at 1 MB and increasing L2 size, with MR, varying as the square
root of the L2 size ratio, and with the L1 miss ratio = miss rate =
10%.

obtained are shown in Figure 9 for a relatively fast main
memory having T, = 134 cycles.

Clearly, at any given memory size such as 1 MB, the
finite cache penalty of 2.75 cycles per instruction for
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Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR, =
10% (miss rate = 0.5%) at 1 MB and increasing L2 size, with
MR, varying as the square root of the L2 size ratio, and with the
L1 miss ratio = miss rate = 5%.

DRAM is worse than the 1.25 cycles per instruction

for SRAM. If we assume that the DRAM size can be
increased by a factor of 4 or 8 over the SRAM (in the
same area), the FCP calculated for the DRAM drops to
2.5 or 2.4, respectively, as shown by the dashed lines
connecting the two curves. The DRAM would be inferior
in all of these cases because it would have been implemented
with a very slow, standard DRAM technology and|or would
have been packaged off-chip. If we were to start with a
larger SRAM, say 2 MB in size, the predicted
improvement in FCP for a 4X or 8X DRAM is even less,
as expected. If the L1 miss ratio and base L2 miss ratio
were to be increased to 10% and 30%, respectively
(reasonable values in some cases), the FCP gap between
the SRAM and DRAM should decrease, as indicated in
Figure 10. However, if the DRAM could become somewhat
faster by placing it on-chip to reduce bus delays and using
logic devices to improve the access time of the DRAM chip,
the situation would change appreciably, as shown next.

A comparison of calculated FCPs for the same SRAM
with different DRAM L2s, fabricated using on-chip,
logic-based eDRAM is shown in Figures 11 and 12. The
L1 and L2 base miss ratios are assumed to be the same as
previously (5% and 10%, respectively, in Figure 11, and
10% and 30%, respectively, in Figure 12). However, the
DRAM is assumed to have an access time only 5 cycles
greater than the SRAM, namely 18 cycles. The results
indicate that the improvement in FCP by using a larger
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Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR, =
30% (miss rate = 3%) at 1 MB and increasing L2 size, with MR,
varying as the square root of the L2 size ratio, with the L1 miss ratio
= miss rate = 10%, and with the main memory 7, = 134 cycles.

DRAM in the same area as an SRAM should be
considerable.

For example, as indicated in Figure 11, a 15%
improvement in FCP should be attainable by replacing a
1-MB SRAM with an §-MB DRAM. A more dramatic
improvement should be possible, as indicated in Figure
12; i.e., it should be possible to reduce the SRAM FCP of
4.75 cycles per instruction at 1 MB to 3.5 or 3 cycles
per instruction by replacing the SRAM (in the same area)
with 4 or 8§ MB of DRAM.

Further improvement should be possible if the off-chip
main memory were slower (reducing cost). For instance,
if 7, for the main memory of Figures 11 and 12 were
assumed to be 268 cycles, hence two times slower than the
134 processor cycles assumed in the above cases, the
trends shown in Figures 13 and 14 should apply—
indicating not only that the DRAM should have a
substantial performance advantage, but that its
performance should be less sensitive to variations
in the L1 miss ratio (as discussed previously in the
Processor plus SRAM L2 vs. processor plus DRAM
L2 section).

Similar curves for using an eDRAM L3 in place of an
SRAM L3 are illustrated in Figures 15 and 16 for two
cases of L1, L2, and L3 miss ratios: 5, 15, and 15% and
10, 20, and 30%, respectively. These two cases represent a
wide range of possible applications. The following were
assumed: The reload access time, 7,, of the L2 was
assumed to be 13 cycles (same as previously), the 7} of the
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Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR, =
10% (miss rate = 0.5%) at 1 MB and increasing L2 size, with MR,
varying as the square root of the L2 size ratio, and with the L1 miss
ratio = miss rate = 5%; identical to Figure 11 except that main
memory 7, = 268 cycles (twice as slow).
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Calculated values of FCP vs. L2 cache size for SRAM and fast
(logic-based) DRAM, starting from base system with L2 MR, =
30% (miss rate = 3%) at 1 MB and increasing L2 size, with MR,
varying as the square root of L2 size ratio, and with L1 miss ratio
= miss rate = 10%; identical to Figure 12 except that main
memory 75 = 268 cycles twice as slow as previously.

SRAM L3 was assumed to be 40 cycles, and the T, of the
DRAM L3 was assumed to be 45 cycles. The results

obtained were very similar to those obtained previously
for L2—viz., replacement of the SRAM L3 with a higher-
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Miss ratios: T, = 13 cycles
MR, = 5%, MR, = 15% T, = 45 cycles (DRAM)
MR, (base case) = 15% or 40 cycles (SRAM)
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Calculated three-level hierarchy FCP vs. L3 cache size for SRAM
and fast DRAM, with L1 and L2 miss ratios of 5% and 15%,
respectively, and with L2 delay 7', of 13 cycles. The L3 miss ratio
is 15% at 4 MB and varies as the square root of capacity, with
delays (as shown).

density, fast logic-based eDRAM should result in a
substantial improvement in performance. An even greater
advantage should be possible if a slower off-chip main
memory were to be used in the hierarchy.

Access time for SRAM L2 vs. DRAM L2

In the past, DRAMs had traditionally been designed
for large capacity at low cost; speed was relatively
unimportant. A key objective at the beginning of this
work was to estimate the speed improvement that would
make DRAM attractive for replacing SRAMs in L2 and
L3. This could be done by simply plotting the FCP vs. L2
access times for an SRAM and DRAM of assumed
capacity for various cases over a range of design points.
Assume, for example, that a 1-MB SRAM L2 of given
area and miss ratio were to be replaced by one of three
DRAMs of the same area having capacities of 4, 6,

and 8 MB. For each possibility, the FCP of a two-level
hierarchy consisting of L1 and L2 caches between main
memory and processor vs. access time could be calculated
via Equation (10).

For the first case, we assume the following: mr, = MR,
= 5%; a base miss ratio MR, of 10% for a 1-MB-capacity
SRAM; and L2 miss ratio scaling as the square root
of the size ratio for the larger DRAM, i.e., MR, at
4 MB = 1/2 X 10%, etc. The calculated FCP vs. DRAM
L2 access time is shown in Figure 17 for a moderately
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2.5
5 DRAM L3 T; = 45 cycles
241
231

22

21F

FCP (cycles per instruction)

20

SRAM L3 T; = 40 cycles

1.9 1 1 1 1 1 1
4 8 16 32 64 128

L3 cache size (MB)

Calculated three-level hierarchy FCP vs. L3 cache size for SRAM
and fast DRAM, with L1 and L2 miss ratios of 10% and 20%,
respectively, and with L2 delay 7', of 13 cycles. The L3 miss ratio
is 30% at 4 MB and varies as the square root of capacity, with
delays (as shown).

fast main memory having T, = 134 processor cycles
(same as previously). For the 1-MB SRAM, at a T, of
10 cycles, the FCP is 1.125 cycles per instruction, as
indicated in the figure by an X. If a horizontal line
is drawn from that point (i.e., at 1.125 cycles per
instruction, shown dashed, the intersections with the
DRAM curves give points of equal performance. These
intersections occur at DRAM access times of 17 cycles for
the 4X size, and at 19 cycles for the 8X size. Hence, the
DRAM should begin to outperform the SRAM when its
access time falls below these values. Similarly, we can
choose any SRAM access time, draw a horizontal line at
the FCP value corresponding to that access time, and
determine the DRAM access times for the same FCP.
Obviously, for all access times below these latter values,
the DRAM should outperform the SRAM. The smaller
the DRAM L2 access times, the larger the percentage
of improvement of DRAM over SRAM. In this case,
for any given FCP, the SRAM curve maintains a fixed
incremental access time difference of about 8 cycles to any
of the DRAM curves. Thus, for better performance, the
DRAM should have an access time less than 8 cycles
larger than the SRAM at any design point. If the DRAM
access time is 3 to 5 cycles slower than the SRAM, a
significant percentage improvement in FCP is obtained.
Larger improvements in FCP are indicated when a
given application exhibits a larger miss ratio. For

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005



Miss ratios:
MR, = 5%,
MR, (base case) = 10% @ 1 MB
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L2 access time (cycles)

Calculated FCP vs. L2 access time for SRAM and DRAM of
various densities, for L1 miss ratio = miss rate = 5% and L2 miss
ratio = 10% (miss rate = 0.5%) at 1 MB.

example, if the L2 miss ratio increases to 30%, the curves
of Figure 17 change to those of Figure 18. The horizontal
time spread between the SRAM and DRAM curves
becomes approximately 25 cycles, indicating that the
DRAM L2 access time would have to be less than 25
cycles larger than that of the SRAM in order to be
competitive. If that access time were only 3 to 5 cycles
larger than the SRAM, a very large performance
improvement should be attainable. For example, for

a 13-cycle SRAM, the calculated FCP is 2.45 cycles

per instruction, whereas for an 18-cycle DRAM at

6X the SRAM density, the calculated FCP is 1.6

cycles per instruction—an improvement by a factor

of 2.45 + 1.6 = 1.53. If the DRAM and SRAM each
have an access time of 10 cycles, the DRAM could
provide about a factor of 2 improvement in FCP, as
can be seen from the figure. Thus, the performance
improvement could be quite substantial, depending

on the miss ratio of the application.

The expected miss ratios of actual systems would be
some weighted average of these cases shown, with the
weights dependent on the exact workloads. However,
whatever values are used for miss ratios or for the base-
case SRAM size and performance, the results have the
same general trend, namely, with a relatively modest
increase in DRAM performance, it should begin to
outperform SRAM. If the access times of a DRAM
could be within a few cycles of those of an SRAM,
analysis shows that a very significant performance
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Miss ratios: Main memory 75 = 134 cycles
MR = 5%,
MR, (base case) = 30% @ 1 MB
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Calculated values of FCP vs. L2 access time for SRAM and DRAM
of various densities, for L1 miss ratio = miss rate = 5% and L2
miss ratio = 30% (miss rate = 1.5%) at | MB.

advantage should be possible over a wide range of
parameters.

Of course, a cost would be incurred to achieve the
increased performance of the DRAM. How this cost
would affect the cost/performance was a concern. Initially
this was difficult to determine, since a logic-based DRAM
technology had never been considered. However, as our
study unfolded, this proved to be less difficult than
anticipated, indicating only about a 20% increase in
process complexity [20]. Other important performance
enhancements are also inherent in logic-based eDRAM.
For example, wide, fast buses can be provided on-chip
between L2 and L1 and between L3 and L2 to minimize
the cache reload penalty and minimize other factors
that can significantly affect performance. As discussed
previously and shown in Appendix B, the total reload
time can have a very significant effect on system
performance and is often not well understood nor
appreciated.

Potential performance improvement was the main
impetus for advocating a change in strategic direction
toward logic-based eDRAM. Also, we felt that the lower
power dissipation of DRAM vs. SRAM, especially with
scaling to smaller dimensions, could become a significant
advantage. Although our work showed considerable
potential for logic-based eDRAM, making it a reality was
a separate and significant task carried out by others. Its
introduction into the IBM high-performance CMOS 7
technology was a first in the industry, making possible
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Calculated MIPS vs. effective number of cycles to reload L1 cache
at two values of miss ratio; based on simulations of an early RISC
system with CPI/infinite] = 1.22 cycles per instruction (see [15]).

not only a significant improvement in DRAM
performance, but also, by providing a larger memory
closer to the processor, a significant improvement in
system-on-a-chip performance.

Concluding remarks

Technology evolution typically starts down a particular
path on the basis of cost and performance tradeoffs
that are valid at the time of decision. The evolutionary
trends can become entrenched and are thus believed

to be correct, even when the environment changes
substantially. DRAM became entrenched as a separate
semiconductor technology early in the history of
integrated circuits and remained dominant for several
decades. When the performance factors driving the
evolution changed, it was difficult for the industry to
recognize this. Over a period of several years, we were
able to demonstrate the need for a strategic change more
convincingly, resulting gradually in a shift toward logic-
based eDRAM.

In the evolution of a new engineering direction, initial
phases are greatly enhanced by simple analysis based on
a few fundamentals with good assumptions about the
unknowns. Such early analysis is also important for
making meaningful projections when details of actual
implementations cannot possibly be available. Some
preliminary system design and performance tradeoffs then
become essential in order to resolve critical problems.
Needless to say, implementation often requires an
advocate with the ability to obtain resource commitments.

Our initial work on the path to eDRAM began with
simple engineering analysis of memory hierarchies using
miss ratios, similar to that described in this paper. The
first simple “implementation” evaluation was via the
Supercache memory hierarchy on a chip, and then via the
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subsequent matrix multiply unit, which contained a full
processor plus an on-chip memory hierarchy. This work
convinced us that the correct path for system evolution
necessitated the use of a logic-based eDRAM. Many
subsequent analyses were carried out in order to refine
and further verify our ideas and to convince others of
their relevance.

The implementation of such a change in technology
and strategy required the skills of a large number of
individuals. We were fortunate in that several key people
in the IBM Technology Group became advocates and
were able to secure funding for actual implementation
(see the Acknowledgments).

Appendix A: Memory speed scaling
As computer technology continues to scale to ever smaller
and faster switching devices with higher packing density,
the data processing speeds of the central processor
continue to improve, but the main memory access speeds
do not scale proportionally. In a certain sense, this seems
counterintuitive, but it occurs for the following reasons.
To a first approximation, within a given instruction set
architecture, the critical logic path of a processor which
sets the fundamental processor cycle time has remained
relatively fixed over a long period of time. In other words,
the number of logic stage delays in the critical path which
sets the cycle time has remained relatively fixed. While
this may change because of possible evolutionary
changes in pipeline structure, changes in design have
not substantially changed the number of logic stages
in the critical path. The cycle time is thus, to a first
approximation, set by a nearly fixed number of logic
delays, including the associated wiring time of flight. As
technology scales to faster devices, both the logic and
wiring delays decrease, so the total critical path delay
decreases, resulting in improved processor cycle times.
Faster processors require more instructions and data
per unit of time to keep busy.17 This necessitates an
ever-increasing main memory capacity as processor
performance increases. Unfortunately, such increases in
capacity require an ever-increasing number of “logic
delays” for access. This increase results from the need
for more decoding to select, typically, a doubleword
(8 bytes) from an increasing number of total words.
Additionally, the need for translation of the virtual
address increases the total access delay. Also, although
sizes of devices, wires, and associated logic gates and
memory cells have decreased, a larger capacity requires
more of each in the access path. Thus, the access delay
does not scale with technology, but may actually increase,
depending on the capacity chosen. If the memory capacity

"Processors typically require at least one MB of memory per MIPS (million
instructions per second) of processing power; see [14], Chapter 1, Figure 1.5-4.
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remained fixed, the access delay would improve as
technology scaled to smaller dimensions.

Another problem which aggravates the memory delay
is that as the speed gap between processor and memory
widens, more levels of cache are required between the
processor and main memory to bridge this gap. However,
although there is a net improvement, the cache levels
introduce some additional levels of logic delay in the path
to main memory. Thus, even though much is gained, a
small loss also occurs.

Appendix B: Cache reload time vs. system
performance

The importance of cache reload time to system
performance is illustrated in Figures 19 and 20. Figure 19
represents the simulated performance of an actual early
system design, designated internally as ROMP-E, which
was an early attempt to include a cache on the original
IBM PC RT RISC processor [15, p. 277]. The curves
show the system MIPS (million instructions per second)
vs. the effective cache reload time for two different cache
miss ratios. At a reasonable design point of about 8 cycles
used for reload, each additional cycle of reload degrades
the system performance as much as 6%. This is for a
processor with a maximum processing speed (infinite
cache) of 1.2 cycles per instruction (proportional to
1/MIPS). The reload time, which is part of the finite cache
penalty, degrades this and can be significant, as shown. If
the effective reload time is 16 cycles (not unusual at this
time), the processor MIPS can decrease to 50% of its
maximum value. The actual curve of MIPS vs. reload
time depends on a number of parameters as well as

the full memory hierarchy, and can degrade more
dramatically.

As processors improve in speed, the number of cycles
per instruction decreases (current systems function at
under one cycle per instruction). Figure 20 illustrates
typical MIPS degradation vs. effective reload time for
several cases with ideal cycles per instruction and one
typical, average cache miss ratio. As expected, with
decreasing cycles per instruction (increasing MIPS), each
cycle of delay for cache reload has a larger impact on the
overall MIPS. Thus, it is essential to continually reduce
the effective reload time as the number of cycles per
instruction decreases. This can be done quite effectively
with eDRAM.

Appendix C: DRAM vs. SRAM speed

If an SRAM and a DRAM array are both designed in
the same technology with the same organization and
objectives, the major difference in access time is in

the sensing delay, because of the smaller sense signal
available in DRAM. For similar arrays and loads, all
other delay components of any access (address-in,
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MIPS (normalized)

CPl[infinite cache]
0.5

1

Effective reload time (cycles)

[

Time to first access Trailing-edge effect

Typical dependence of MIPS on effective reload time, calculated
for several values of CPl[infinite cache], showing increasing
sensitivity to reload time as CPI/infinite cache] decreases.

decode, wordline drive, signal routing, and I/O bus) are
fundamentally not very different. In actual designs, there
are typically other small or even large differences which
can affect many of the delay components. Nevertheless,
the sense signal has been a continuing, major
component.18 Examples of estimated access times for a
DRAM macro in several different base technologies, all
at the CMOS 7 (0.225-um) lithographic level, are shown
in Figure 21. The top example corresponds to the use of a
standard DRAM design. The on-chip DRAM macro case
corresponds to the same normal DRAM design without
address multiplexing and without off-chip drivers and
receivers, since they are not required; the logic-based
eDRAM macro case corresponds to the same design as
the latter in logic-based eDRAM technology. The access
time of the logic-based eDRAM macro is further reduced
by the addition of an improved sense amplifier [11, 13],
as indicated in the improved SA case.

Similar SRAM designs were not available for

comparison; however, if they had been, the delay
components would be roughly similar, except for the
sensing delay, which is typically larger in DRAM because
of a smaller sense signal. However, with the continued
scaling of technology to smaller dimensions and currents,
the SRAM sense signals are decreasing because of the
poor scaling of device thresholds and other factors.

Currently, SRAM and DRAM sense signals are of

nearly the same amplitude, thereby allowing DRAM access
time to approach that of SRAM for arrays of the same size.

1 .

®Actual numbers are very dependent on technology, and various tradeoffs are made
in array and circuit design—tradeoffs related to the number of bits per wordline and
per bitline, the number of inputs and outputs, device driver sizes, whether self-timing
is used, etc.
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Standard
DRAM 2
On-chip 10
DRAM macro
Logic-based 5
eDRAM macro
Improved SA l] 35

B DEC = Address/word decoding [ WL = Wordline driving
B SA = Sense amplifier sensing time [ SA/IO = Sense amplifier
[ DR I/O = I/O driver delay 1/0 latch time

Improvement of DRAM access time with integration and merged
logic at CMOS 7 (0.225-um lithographic level). Logic-based devices
are 2.8X faster than DRAM-based devices in this comparison.

Appendix D: Matrix multiply unit (MXU)
The MXU system-on-a-chip study made use of the
technologies and component macros available at the time.
Figure 4 shows the logical structure and macro sizes
of a single-chip MXU containing four floating-point
units (FPUs), an 8-KB fast vector register file, a matrix
multiply control unit (MXCU), and 2 MB of DRAM, all
scaled from a CMOS 5 (see for example [33] and [39]) to a
CMOS 6'° DRAM-based eDRAM. These individual units
were all scaled from other known designs in CMOS 5.
A direct scaling into the CMOS 6 technology gave a
projected cycle time of 9 ns. An estimated improvement in
CMOS 6 DRAM-based technology of up to 15% would
give a projected improved system cycle time of about
7.5 ns. Unfortunately, neither the 9-ns nor the 7.5-ns
MXU systems were competitive for the following reason.
The competition would be a standard system in which
the processor units were fabricated on standard logic
chips with a standard memory hierarchy (SRAM on-chip,
DRAM off-chip. Two standard available (noncustom
MXU) floating-point units which could have been used at
that time to provide system cost/performance advantage
over the custom, DRAM-based MXU system on a chip were

1. An IBM PowerPC* floating-point unit (FPU)
fabricated via the CMOS 5X technology and
operating at 5 to 6 ns.

'CMOS 5 and CMOS 5X (0.5-um lithographic level) could be used to fabricate a
16-Mb/chip DRAM; CMOS 6 and CMOS 6X (0.35-um lithographic level) could be
used to fabricate a 64-Mb/chip DRAM.
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2. An IBM PowerPC FPU fabricated via the CMOS 6X
technology, operating at about 3 ns.

Various scaling studies were carried out in order to derive
reasonable standard alternatives. A high-performance
PowerPC processor with a 64K instruction cache
(SRAM) and 64K data cache (SRAM) would allow two
FPUs to be included on-chip. Such a system might have a
clock cycle time as low as 5.4 ns. The matrix multiply
performance depended on both the clock time and the
number of on-chip FPUs. With only two FPUs and
running at about 5 ns, the performance would be about
0.4 (2 + 5) floating-point operations per nanosecond.

The custom MUX-DSRAM accelerator of Figure 4
had four FPUs and operated at about 7.5 ns, so its
performance would have been about 0.53 (4 + 7.5)
floating-point operations per nanosecond. This is only
marginally better than the 0.4 floating-point operations
per nanosecond of a standard system designed in existing
technology, and is therefore unattractive. The problem
with this custom design is the MXU speed, which is
limited by the DRAM-based technology. If the system-
on-a-chip were to be fabricated in a logic-based
technology, it should be possible to reduce the MXU-
DSRAM cycle time to about 3 ns, thus improving its
system performance to about 1.33 (4 + 3) floating-point
operations per nanosecond, which would be three to four
times better than that of the standard system. Although
the system is clearly interesting, its implementation would
require the use of a logic-based eDRAM. It thus became
clear that for any applications requiring processors and
logic with embedded DRAM, the use of a logic-based
memory technology would be essential in order to be
competitive.

Glossary

CMOS (complementary metal oxide semiconductor)
configuration: A field-effect transistor configuration which
provides p-type devices, which are normally “on” for load
devices, and n-type devices (normally “off”) for pulldown
devices. A p-type device and an n-type device in series
with gates connected in parallel produce an inverter. The
p-type device has a very large ratio of “off” to “on”
resistance, unlike the earlier depletion load devices, for
which the ratio was low. The latter produced an “off”
current which was a significant fraction of the “on”
current, giving an inferior logic circuit and higher power
dissipation.

Cache block or line: The unit of transfer between levels
of cache or from memory to cache. This unit is larger
than the normal requested data size, which is typically a
doubleword, or 8 bytes. The block (line) size is typically
32 to 128 bytes at the lower levels of cache closer to the
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processor, and sometimes larger—256 bytes, at higher
levels closer to main memory.

CPI[infinite]: Cycles per instruction, assuming an
infinite cache (no misses); the average, minimum number
of cycles required by a processor per instruction
executed if there were no cache misses, i.e., if the cache
were infinite.

FCP (finite cache penalty): The average reload delay
penalty in cycles per instruction required for restarting a
processor after a cache miss. This penalty is added to the
CPI[infinite] to obtain the average execution speed of the
processor.

Doubleword: Word consisting of 8 bytes (64 bits or 72 bits
with parity), which is two normal words of 4 bytes each,
in IBM architecture.

Miss rate: For any given level of a cache, the average
number of access misses (loads or stores) per instruction
executed by the processor.

Miss ratio: For any given level of a cache, the average
number of access misses (loads or stores) per total
number of access requests to that level of cache. Miss
ratios can be expressed in terms of miss rates for all levels
of cache except L1 (the level providing loads and stores
to the processor) for reasons described in Appendix B
of [38].

Page mode: A mode which is typically used for fast data
transfer of a reload request from a DRAM chip. A full
cache line or block is loaded into an on-chip page buffer
on one DRAM row access cycle; the smaller units of
data (typically 8 to 16 bytes) are clocked out of the
buffer at the bus rate, which is much faster than the
DRAM access or cycle time. This can significantly
reduce the FCP.

SSI (System Scale Integration): The integration level at
which essentially a full processor with memory is located
on one semiconductor chip.

VideoRAM: A special type of DRAM used as a pixel
buffer for all of the graphics from an SVGA (Super Very
high Graphics Adapter). An industry standard from the
mid-1980s to the late 1990s, containing two I/O ports
which allowed simultaneous update of the stored pixel
image and copying of the stored image to the screen. It
provided a significant increase in the graphics bandwidth
required in high-performance graphics.
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