Organization and
implementation of the
register-renaming mapper
for out-of-order IBM
POWER4 processors

We present a new nonconventional approach for designing and
organizing register rename mappers that can be applied in modern
out-of-order processor chips. A content-addressable memory
(CAM) configuration optimal for such a register mapper
application was developed. The structure of the CAM and search
engine, described in this paper, facilitates the implementation of
the register mapper as a group of custom arrays. Each array is
dedicated to executing a specific function. Among the functions we
implemented are allocation of registers, maintaining the register
map and status, source lookup, saving a shadow copy of the register
map, and freeing up of registers. We made a novel implementation
of the register mapper to provide rename resources for the IBM
POWER4™ chip, which provides the processing power for the
IBM eServer™ p690. Such register renaming allows for a high level
of concurrency in the pipeline and contributes to superior machine

T. N. Buti

R. G. McDonald
Z. Khwaja

A. Ambekar

H. Q. Le

W. E. Burky

B. Williams

performance.

Introduction

To increase the performance leverage of present-day
superscalar pipelined microprocessors beyond technology
scaling, one needs to maximize the concurrency and
overlap in instruction processing. Microarchitectural
techniques for instruction-level parallelism can be used to
achieve increased concurrency in instruction processing
[1-3]. Out-of-order execution and speculative execution are
two powerful techniques that are exploited in modern
high-performance processors to increase the amount of
concurrency [4-7]. If the operand data is ready and the
required execution resources are free, more concurrency
in the pipeline and more performance can be achieved
by allowing instructions to be executed out of order.
However, while the instructions are processed out of
order, they are forced to be committed in program order,
which preserves the succession in the architectural states
of the machine.

In speculative execution, predictions are made about
instructions after branches and are allowed to be
speculatively processed in parallel with other instructions.
This also increases concurrency and improves

performance. If the prediction was false, the speculatively
executed instructions are flushed and not committed.

However, to apply these microarchitectural techniques,
one has to overcome the instruction data-dependence
constraints. These artificial dependences are created
by reuse of limited architectural register and memory
storage. Such false dependences include write after read
(WAR) and write after write (WAW). A WAR occurs
when an instruction that writes a new value must wait for
all preceding instructions to read the old value. A WAW
happens when more than one instruction is written to
the same register or memory location. Executing such
instructions out of order overwrites the value of the
register produced by one instruction before it might have
been read by a subsequent one. Therefore, these false data
dependences must be eliminated before one can make
use of out-of-order and speculative executions.

These dependences and the associated ordering
constraints would not occur if a different register name
were assigned every time an instruction writes a new
value. By applying register renaming operations, each
destination architectural (logical) register name is

©Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor. 167

0018-8646/05/$5.00 © 2005 IBM

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

T. N. BUTI ET AL.

168

mapped into a unique physical register location in the
register file. This, in turn, eliminates all of the false
dependences [4]. When an instruction is decoded, its
destination logical register number is mapped into a
physical register location that is not currently assigned to
a logical register. The destination logical register is said
to be renamed to the designated physical register. The
assigned physical register is therefore removed from the
list of free physical registers. All subsequent references to
that destination register will point to the same physical
register until another instruction that writes to the same
logical register is decoded. At that time, the logical
register is renamed to a different physical location
selected from the free list, and the map is updated to enter
the new logical-to-physical mapping.

The physical register of old mappings is returned to
the free list to be reused once their values are no longer
needed. At the same time, the renaming also provides a
mapping table to look up the physical registers assigned
to the source logical registers of the instruction. The
source operand values are read from these physical
locations in the register file. If the free list does not have
enough registers, the instruction dispatch is suspended
until the needed registers become available. A shadow
copy of the register state can also be kept in the register
mapper. When an instruction flush occurs, the shadow
map is used to restore the register state prior to the flush
point so that the machine can resume execution. Thus, it
is clear that to facilitate the application of out-of-order
and speculative executions to gain machine performance,
a register renaming function must be implemented.

In the next section, we describe the register mapper
high-level algorithm implemented in the IBM POWER4*
machine. The functions, register states and transitions,
and logical facilities of the mapper are briefly outlined.
Following that, we give a detailed account of the register
mapping configuration we applied, we describe our new
register mapper organization, we describe the circuit and
logic implementation, we discuss instruction dispatch,
and, in the final section, we briefly summarize the rename
resources used in the POWER4 chip (IBM eServer* p690).

Register mapper high-level algorithm

Functions

Register mappers are implemented in high-performance
out-of-order machines to manage a large set of physical
registers within an associated register file. In the present
POWER4 processor, a dedicated mapper is custom-
designed for each type of renamable register file.
Renaming was implemented for files for general-purpose
registers (GPRs), floating-point registers (FPRs),
exception registers (XERs), condition registers (CRs),
and control/link registers (CTR/LRs). The register

T. N. BUTI ET AL.

mapper presented here is designed to perform many
functions, including the following.

* Allocation of registers: It allocates new registers during
instruction dispatch for each instruction that writes a
new result to a target register. Registers are allocated
from a physical pool of registers contained in a
particular register file. At any given time, a portion of
the registers are being used to hold committed register
values, and the rest may be used to hold speculative
register results.

® Register renaming and maintaining a register map: The
mapper performs register renaming, which allows
multiple writes to the same logical register. A register
map is maintained to associate physical registers
with logical registers. A custom content-addressable
memory (CAM) is designed to hold the register map.
Registers allocated for the dispatched instructions are
used to update the map.

* Source register lookup: These CAM maps must
be searched during instruction dispatch to locate
the physical registers that hold the latest results for
the source logical register of each instruction.

* Saving of shadow register maps: Shadow register maps
are also maintained to hold previous mappings and
replacement information for each dispatched
instruction group until it is completed or flushed.
When groups of instructions complete, the results that
they produce are committed, and registers that hold
older results for the same logical registers are released.
Register results do not have to be moved when they
are committed. If a group flush occurs, all speculatively
assigned registers for the instructions being canceled
must be released and made available for reuse. A
previous register map must also be restored.

e Selection of free registers: The mapper generates and
maintains a list of free registers. It preallocates them
into an allocation buffer in order to provide early
information for future dispatches.

* Maintaining of register status: In addition to register
maps, some amount of register status information
must also be kept in the register mapper. A “ready”
or “w” bit indicates whether or not register data
is available (in the register file or off a bypass).

The instruction issue queue logic indicates when a
register is ready. A register may be tentatively ready,
depending upon whether a load hits or misses. A load
miss could require the status of a register to be reset.
Special shifting “dl0 and dI1” bits are also kept and
used to confirm that valid load data is delivered at the
appropriate time. The instruction issue queue logic
provides this register status information (w, dl0, dl1)
to the register mapper when a result is about to be
written into the register file.

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

P&\\Qcate and rep]a(‘e

Register states

A = Architected
H = Held

F =Free

B = Buffered

Register logical states and transitions.

Register states and transitions

Each physical register may be in one of four logical states,
and transitions through these four different states, as
depicted in Figure 1. A subset of registers that correspond
to the initial logical values begin in the architected state.
The rest of the registers begin in the free state. A constant
number of registers are always in the architected state
(one for each logical register). The others may be in any
of the remaining states. As instructions are dispatched,
new registers are allocated. Registers are replaced when
a subsequent instruction writes to the same logical
register. Some registers may be replaced by subsequent
instructions within the same group and are allocated and
replaced at the same time. When replaced, registers
transition to the held state. When the replacement
becomes committed, the registers are released.

Two events—completion and flush—cause registers to
be released or restored. When a group of instructions
completes, the registers that it replaced are released.
When a group is flushed, the registers that it allocated are
released. In addition, when a flush occurs, the registers
that were in the architected state just prior to the first
flushed group are restored to the architected state. In the
current design, the three states—architected (A), held (H),
and buffered (B)—are explicitly kept in the mapper
arrays. The free state is implicit when none of the other
state bits are set. Registers that are in the free state may
be selected and moved to an allocation buffer. When this
occurs, the registers transition to the buffered state. These
buffered registers are then available to be allocated for
new instructions.

Logical facilities

The logical facilities used for the high-level algorithm
of the mapper are illustrated in Figure 2. The actual
implementation requires additional state and facilities,
discussed in detail later in this paper. In Figure 2, P

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

Allocation buffer

Q QI Q2 Q

w
-

A R
Shadows Shadows

Allocate

LREG AHB

0
LN
-
Save
Restore
Release
P—1

Logical facilities for high-level mapper algorithm. (P: number of
physical registers; G: number of instruction groups; Q: mapper
quadrant.)

Buffer

0 - 0 -
A Ao
L° le
4 ¢— Completion/

flush controls

represents the number of physical registers in the register
set within an associated register file managed by the
mapper. G represents the number of instruction groups
that may be active in the completion buffer. Q refers

to the mapper quadrant. The LREG array records the
logical register identifier associated with each physical
register in the machine. This information is used to locate
source registers and replaced registers during dispatch. A
vector of A, H, and B bits indicate the current state of
each register. The shadow arrays (A Shadows and R
Shadows) keep information about old architected state
maps and replacement vectors for each instruction group
that has been dispatched but not yet completed. If a flush
occurs, this information is needed to restore the proper
state. When completion occurs, this information is used
to release the appropriate registers. The allocation buffer
holds registers that are ready to be allocated.

Register map configuration

In high-performance out-of-order machines, many
instructions are dispatched each cycle. In the present
machine, four instructions plus one branch are dispatched
each clock cycle. This requires simultaneous execution of
a fairly large (>12) number of searches of logical source
and destination registers in the register map. In the
POWERA4 processor, within a single clock cycle, up to
16 logical registers must be looked up in the content of
the mapper register map array [16 = 4 instructions

X (3 sources + 1 destination)]. CAM circuits are

usually used to implement the register map. A CAM
configuration optimized for such a register mapper

T. N. BUTI ET AL.

169

170

WL

Match
— (precharged
high)

Data

Compare circuit

Basic single-compare CAM cell. (Data: incoming bits of data; Str:
cell content; WL: word-line signal; Pch: precharge signal; Match:
bit-wise compares.)

application requires a nonconventional approach to
designing an area-efficient CAM circuit topology and for
organizing the register mapper. This challenging task is
discussed next in detail.

Conventional approaches

Single-compare CAM cell

A basicsingle-compare CAM cell [8, 9] is shown in Figure 3.
It is a simple structure that can store, read, and write
1-bit data. It can also compare a single incoming bit of
data (Data) against its content (Str) and indicate whether
or not it matches its content. The CAM array consists of
a fixed number of word rows, and each word row (CAM
word) has the same number of CAM bits (one CAM
entry). The CAM array is supported by word-row and
bit-column logic to update and access the CAM content.
The match operation generates a match line if all of the
bits in the search pattern match all of the bits in one
CAM entry. The bit-wise compares (matches) in one
CAM entry are gated together by AND to produce a
match. The output match line is usually used to enable
encoding and other readout circuits. Note that only a
single CAM search can be performed at a time with this
circuit topology. In the register mapping application, the
number of word rows is set equal to the number of
physical registers available in the register pool. The
pattern of CAM bits in a word row is the binary
representation of the logical registers used in the
instruction sets. The mapping implemented in the CAM
array defines the associations of the logical registers with

T. N. BUTI ET AL.

the actual physical registers. This association can also be
dynamically updated during instruction dispatch. The
output match line is encoded to broadcast the matched
physical register (and in our present application, also used
to enable the readout of the status bits of a special
register). Such additional circuits are placed outside and
nearby the CAM array.

Multicompare CAM cell

The CAM cell in Figure 3 is capable of performing one
search (compare) at a time. For a high-performance
processor, numerous (>12) different searches (compares)
must be performed simultaneously against each CAM
entry in a single clock cycle. A CAM structure with
multicompare CAM cells is required to accommodate
such a large number of searches. In this case, multiple
match lines are needed for each CAM entry: one match
line for each search per CAM entry. All of these match
lines must be driven by the same CAM entry. To obtain
this, one must integrate into the CAM cell structure as
many bit-wise compare circuits as the CAM searches to
be conducted in one clock cycle. Theoretically, this can be
accomplished by simply integrating the required number
of compare circuits (similar to the one in Figure 3) into
the CAM cell topology shown in the figure.

Each compare has its own data and data lines, but all
compare circuits are connected to the same cell storage
nodes (str and str in Figure 3). However, the overhead of
running this many tens of bit-wise compares and match
lines across each CAM entry would make the CAM cell
and CAM entry area far too large to be used in practical
chip design. In such an approach, the required compare
circuits can be integrated to form a vertical or horizontal
stack. If 12 or more of the bit-wise compare circuits are
added to form a vertical stack, this would increase the
height of the CAM cell by more than one order of
magnitude compared with the single-compare CAM cell
of Figure 3. It would be impossible to accommodate such
a CAM size in a practical chip design. On the other hand,
the required compare circuits can be integrated into the
CAM cell to form a horizontal stack of bit-wise compare
lines. In this case many tens of compare lines must run
across the CAM entry to produce the match lines
corresponding to the search vectors presented to the
CAM array. The number of compare lines is equal to the
number of CAM bits per entry times the total number of
search vectors (=72 for 6 bits and 12 searches). Such a
large number of horizontal wires across the entry would
limit the minimum size of the CAM cell that can be
achieved with this approach.

For a given search vector, the corresponding bit-wise
compare lines are extended across the CAM entry and
combined with AND to obtain the output match lines.
Also, in these cases, the overall size of the CAM entry

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

is determined by the total size of match line generation
circuits. The match lines are then driven outside the CAM
array to enable encoder and readout circuits. These
circuits would present substantial wiring and device
loads, which require large match line drivers. This would
also ultimately increase the CAM entry area. The wire
loadings on the compare nodes (in Figure 3) would be
excessive, and the device sizes should be increased to
compensate for that. The CAM cell storage nodes would
see increased loads as well because of the increased
number of compares. This degrades the speed of the

cell search and update. The cross-coupled invertors in
Figure 3 should also be made larger.

All of the above indicate potential integration problems
using these conventional approaches. They produce
exceedingly large numbers of horizontal wires running
across the CAM array and increase the overall size of the
CAM entry by a large amount. Thus, these approaches
are impractical in terms of chip design and make poor use
of the chip area. We present a new nonconventional
approach for establishing CAM and mapper organization
and have developed circuit topologies that are optimal for
out-of-order gigaprocessors.

A new nonconventional approach
Our approach to designing an area-efficient CAM circuit
topology and to organizing the register mapper that uses
the CAM array allows a fairly large number of CAM
searches (12 to 16) to execute simultaneously. It offers
a circuit configuration capable of maximizing the
total speed of the mapper functions and enables a fast
encoding of the matched registers and a fast readout of
register status data array. The matched CAM entries
point to the physical registers that are assigned to the
logical registers presented to the mapper CAM map.
Figure 4 illustrates the key features described below.
These features, unique to the present approach, provide
the advantages discussed above.

¢ Instead of integrating the bit-compare function
into the CAM circuit topology, as is the case in
conventional approaches, the compare is done outside
the CAM entry.

e The CAM content storage and the update portion
of the CAM cell are separated from the compare
component. The CAM cell contains only latches to
hold the CAM-stored bits of data and a multiport
multiplexer (mux) to update the CAM content. A
CAM storage entry is then a row of these storage cells.
The CAM storage array consists of all rows of storage
entries. In the mapper application, the bits of one
logical register tag are stored in one storage entry
of the CAM array.

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

* The bit-wise compare functions of the CAM cells and
the match line logic are physically separated from
the CAM entry and placed in a match entry that is
horizontally aligned with the CAM storage entry, as
shown in Figure 4. The array of match entries has the
same number of rows as the CAM storage array. Each
search vector has its own match array. There are as
many match arrays as searches to be made against the
CAM stored data.

* The bits in a CAM storage entry are driven
horizontally on long buses to all match arrays. There,
they are compared simultaneously against all search
vectors presented to the various match arrays.

¢ Each search vector is transmitted to a separate match
array and driven vertically on long buses across the
array entries. For a given match array, a match is
obtained when all bits of the transmitted search vector
match the corresponding bits of one CAM storage
entry, which are driven to and available at the entry
location of the match array. The match entry contains
bit-wise compare circuits (XNORs) and a gate to
AND these compares to generate a CAM match for
the presented search vector.

¢ FEach match array also contains an encoder to encode
the matched physical register. The encoded physical
register tag can then be transmitted to enable different
circuits down the pipeline. It also contains wide muxes
to enable the readout of various register status data.
The status data is stored in separate arrays and is
driven to the match arrays on long buses, similarly to
driving the CAM storage data. Note that the match
lines are used local to the match array to drive these
encoder and readout circuits. This minimizes the load
on the match lines and improves both the speed and
the area.

The height of the CAM array is reduced by a large
amount compared with the conventional CAM. The
structure of the CAM entry is largely simplified by
removing all of the compare circuits outside the CAM
array. This alone could amount to an order of magnitude
reduction in the height of the CAM cell per entry in
reference to conventional CAM configurations. The
actual comparisons of bit patterns occur outside the
CAM array and in the match arrays. The drivers of the
CAM bits to the match arrays are sized to optimize the
drive delay while minimizing the CAM entry dimensions.
The height of the CAM array sets up the heights of all
of the remaining arrays included in the mapper and,
therefore, the height of the entire mapper block. The
match lines for a given search vector are generated in a
separate dedicated match array. All of the match arrays
receive the same CAM bit patterns (one pattern per
entry), but are presented with different search bit

T. N. BUTI ET AL.

171

172

Search vector 0

CAM storage array *
R E— S -l Gl
J gu
o =§-§,77k7<
z R = 85
8| wao 2 % 5 2
S| 22 35 EES
< ES =) o = 5 [
O 2 = = = Match
9 = 2, <
(=9 ©)]
5 © = -
CAM cell 0 CAM cell n
I
= I O
o 52
,,,,,,,, =
z E
@) 5| °
=B -]
> SR
g 5| s
] o | &
3 HE
=] = | 8
w
,,,,,,,, S‘D
&
I - | el b
o -
,,,,,, =
DD E T B
= V=Y |- S
5 5 W o B “
s| £% 2 £% £ [
<
ZC) ° 3 = o = = Match
= s 15} >
=l =l <
. < ="
=) &) =) ©
CAM cell 0 CAM cell n

———————————— H—
———————————— H—
2 (=}
s = 2
777777777777 &3 =
g .5 g
SHR)
Q v
2
<
8
[v
o]
Match =
"B
Q
,,,,,,,,,,,,,,,,,, — |- - 4
B
=
=
(= 15) >
Q <
-~ g 2 =1
> SiNS s
= =] el 7]
2 S| 8 £
,,,,,,,,,, < | = S
= =] 2] 7]
3} =| 2 =
= = = 2
S 2| @ 42
=y B
=l &
.2
on
Q
[
———————————— H—
777777777777 B s
””””””” e i z
5= 5
———————————— —»mg o
£L g
o ° g
[b
2
Match 2
20
2
~

Search vector k

Register mapper organization, showing CAM storage array, match arrays, and register status ready array.

patterns. One search vector runs vertically across the
entire match array to generate a match line at each entry.
The match line encoder and the readout circuitry are both
integrated locally within each match array and are
distributed across the entire depth of the array. This is an
essential feature of the organization of the mapper. It
minimizes the total load on the match lines and reduces
the size of the match line drivers, which, in turn, brings
down the size of bit-wise compare XNORs and the
overall width and area of the match array. It also
increases the speed of the entire match generation and
encoding by a considerable amount.

In contrast, the conventional CAM configuration
discussed above presented very large loads on the match
lines and incurred substantial area and speed penalties. In

T. N. BUTI ET AL.

summary, the circuit and organization of the mapper
discussed here provides a compact and area-efficient
CAM and mapper floorplan that can be applied in a
modern out-of-order processor chip.

Register mapper organization

The structure of the CAM and search engine described
above and depicted in Figure 4 facilitates the
implementation of the register mapper as a group of
custom arrays. Each array is dedicated to execute a
specific function. The rows of all arrays are aligned
together. Each row of the array is devoted to one physical
register to keep current state, shadow state, and controls
for that specific register. As shown in Figure 5, the entire
mapper is sliced into eight special custom arrays to

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

Allocated Logical Logical
Group physical register destinations destinations Logical sources
tag/mask tags (rtags) (search vectors) (CAM update) (search vectors)
—H A
Y VY H YIYIV|Y YYyvy Y Y[Y| Y| Y[Y|VY|Y
o=l el all al sl el allaiks
» S| S| 2| B| B|B| B2 -
B - 2|l 2| |l 2|lalala a
B0 4 TR =R =R = A = A =R =] 5}
=) o S| 8| S| | | 8| S| I =
= = [5) o 5] 5] 0| O 0| o =
= 5 -5 S &S EE)E S| E S
Q = =} k=] o Q Q o Q Q Q o
0 g 5] BB BB B|B g
- 2 - = g S| o o] ©| | ©| ©| & =
7 @ D|n|lw|n = & ol 9| 9| 9| 8| o] &@| &
& o I SRR AR] S S|l g| gl el || g8 “
= 3 8 ‘a s E s (5} ? L5 o o L5 [o] L5 L5 =
2 & 3] alalala 5] = glg|lglg|lv|lwlT| g
= g glg|g|g & g S| 8| 5| 5| 8| &| 5|8 2
= ISARSN RN RS = o 2
I =] 9 S|o|a|o ic Q Slglgl=sl=slgls]S P
> 7 < = ERERER | = 212121 2/8|]2/1g8]
S 5 > s ~ < S| S| S| 8| S| S| 8|8 2 e 2
g8 9 » — | |en [< o E|E|E|E|E|E| E|E 3 =]
k<] 2 z g3 2
.- g = zlzlz = 2 2l alalzlalalala .S =
= -~ = SIS|e|s b= 2 ol o| o| 0| 0| ©| O © 5 o s
s 8 B o ENEIRENRE o gl a2 =2l 2] 2182 2| = Le 5}
g = % 3] S|c|c| = = < < < S| S S| s S| s S &
S 5 glglg|g) 2 ol 2 & & & & & & o3 =
: S R EEEE R {HEHHEE RS
3 5 > SE|5|5 \ |3 3 et | e e s P2
3) glg|E|8 ! > Pl e 2
<= ! =] =R =R B=g = >) s
2] 5 = n|lwnlwnlwn < =] — | N|[en| | V| O || =)
s LIRIRIR =] i} SN > x| x| x| x| x| » <
E 5 ARIA|IA < & s 8| &8 8| & & & &8 =
s 2 = & ElE|E|E|E|E|E|E B
= < |- m < < < < < < < S
2 Q ~ 5 ol 0| ol o | ©| © © 5
2 = 5 gl g Bl g glg]glE 5
) = ~ S| 2| 2| 2| 2| 2| 2|32 Q
= < s ol o| 2| 2| | 5| 5|20 ~
= Z Ala|lalalalra|la|a
&)
| | | | | | | |
Y Y Yy Yy ov Y 1 '
Source rtags and ready bits Ready bit info

Overall mapper organization (eight special custom arrays).

execute the various functions of the register mapper.
Figure 5 represents the mapper of the GPR, which has, in
the current design, a set of eight source arrays and four
destination arrays. The GPR mapper has a set of 80
physical registers, and the CAM contains a map for a
total of 36 logical registers. Therefore, the CAM array
has 80 six-bit-wide entries (rows), and each CAM entry
stores a six-bit tag of a single logical register.

The eight mapper special custom arrays are the

following:

1.

The CAM storage array contains the CAM register
map. Only CAM storage latches, update muxes, and
data drivers are kept in this array, as explained earlier
(see Figure 4). The CAM data is driven to source and
destination arrays, where the actual comparisons
occur.

The architected-bit array (bit array) holds bits to
indicate an architected state (A_bit) and a replaced
state (R_bit) of the physical registers. It also contains
logic to generate these two bits (A and R) during
instruction dispatch. These bits are used to update the
A_bit and R_bit and are sent to the free list array and
shadow array during subsequent cycles. After a flush,
this logic also assists in restoring A_bits from the
shadow maps.

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

3. The source array contains compare/match logic for
looking up (8 to 12) logical source registers in the
mapper.

4. The destination array contains logic for looking up
four logical destination registers in the mapper.

5. The free list array holds bits and uses logic to generate
and select a set of free registers to be used during
the subsequent instruction dispatch.

6. The allocation array allocates new registers.

7. The shadow map array contains the shadow maps
that are saved for each group of dispatched
instructions.

8. The ready bit array has the latches to hold the ready
bit register status information (w, dl0, dI1).

Circuit and logic implementation

CAM core circuit—two-cycle CAM update and
drive path

The register map that is generated in the previous cycle
can be used to perform the source register lookup. In this
case, one has to update the CAM and drive the CAM
data (the logical register tags) to the source match
detection arrays at the same cycle. The match generation,
the match line decode, and the register status readout
must then be completed in the first half of the following

T. N. BUTI ET AL.

173

174

]
[
A
g Core CAM
v storage latch
A Bl ===%====
el 9 :
< =2 =~ I
% = BI I % scan_out
) — | N\
— Ll o © I 3}
2
5 2|
= S|
= w® S H
= Z e
—
= < S |!
5 &) =] 2 |1
o |
o
&

cam_dst_lreg

—|
=
=
. OI
=
<
Q
@

g =
S - . .
i\ o (To destination
< S lookup array)
<
cl_clk
—
L1
latch cam_src_lreg
Ll (To source
CI clock lookup array)

[—
Two-phase clock system (50% duty cycle)

One-bit core CAM storage cell—two-cycle CAM update and drive
path. (L1, L2: Latch whose clock signal is connected respectively
to CI clock or C2 clock.)

dispatch cycle. The mapper outputs (physical register tags
and status bits) are then driven to the issue queue (ISQ)
in the second half of the dispatch cycle. However,

we discovered that this amount of work cannot be
accomplished within the pipeline timing budget without
making a cycle steal of a half cycle or more. This makes
the source register lookup path extremely tight to fit
within the pipeline.

To alleviate this timing constraint, for the source
register lookup, we modified the CAM update and drive
path to occur in two cycles instead of a single cycle. The
basic idea was to add two extra latches between the core
CAM storage latch and the source match detection logic,
as shown in Figure 6. The clock system has two phases,
C2 and C1. In Figure 6, L1 is a latch whose clock signal is
Cl1, and L2 is a latch whose clock signal is C2. The first
L1 latch (scannable) shown in the figure is the core CAM
storage element. The L2 latch and the second L1 latch
are inserted in the path to the source register lookup
in order to obtain a two-cycle CAM update and drive
path. To perform the source register lookup, the source
arrays then use the register map generated two cycles
ago, rather than one cycle ago. However, the CAM
update and drive must still set up for the destination
register lookup (match) on the following cycle, as
shown in Figure 6. This is required by the A_bit
generation logic, as is explained later.

T. N. BUTI ET AL.

Table 1 Rename resources of the POWER4 chip.

Mapper Logical Physical Number — Number — Number
type size size of of of ready
sources destinations bits

GPR 36 80 8 4 5
FPR 32 72 12 4 3
CR 9 32 5 4 1
Link/count 2 16 3 3 1
XER 4 24 4 4 5

Because the destination match detection array is
smaller and narrower than the whole source match
detection array, it is possible to use a single-cycle CAM
update and drive path to accomplish the destination
lookup. In Figure 6, the CAM data (cam_dst_lreg) driven
to the destination match detection array was taken from
the first L1 latch output. In contrast, the CAM data
(cam_src_Ireg) driven to the source arrays is launched a
cycle later from the second L1 latch. Figure 6 shows the
static circuit topology for a one-bit core CAM storage
cell. A 6:1 update mux is used to write the CAM cell using
inputs which correspond to four destination logical
register tags (Ireg<<0:3>) that are associated with the four
instructions dispatched each cycle. The mux select signals
(alloc_w<0:3>_en) are derived in the allocation array
and driven to the CAM array, as described in the section
on allocation logic.

When no register is allocated, the alloc_none signal
(generated in the allocation logic) allows the CAM cell to
keep its current state, as indicated by the feedback loop in
the path. The power-on reset (POR) signal is used to
initialize the CAM cell at power-on. The drivers of the
CAM data to the source and destination arrays are
properly sized to handle the large wire and gate loads.
The first L1 storage latch is scannable, and the scan
output is taken from the L2 latch output, as shown in
Figure 6. For the GPR mapper, each CAM entry has six
CAM bits, and the CAM array has 80 six-bit entries
(Table 1). Physically, the CAM entries are stacked
horizontally from left to right. The CAM data
(cam_src_lreg and cam_dst_Ireg) is driven vertically to
the source and destination lookup arrays. The entries of
all other arrays in the mapper are horizontally aligned
with the CAM entries, as indicated earlier.

A_bit and R_bit logic and circuit

A_bit logic and circuit

The A_bit path (Figure 7) is constructed to satisfy two
timing and machine performance requirements. The first
requirement is that the A_bit cell update and drive to the
source match detection array should occur in two cycles.

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

The A_bit becomes visible to the source match array for
source lookup one cycle after the A_bit is written. This
describes the normal A_bit update and drive path.
Similarly to the CAM case, the A_bit update and drive
must still set up for the destination register lookup
(match) on the following cycle. This allows the A_bit

to become visible to the destination match array
immediately after it is written.

The second requirement is that the A_bit must be
restored after a flush or dispatch reject. According to the
first requirement, we must wait an additional cycle before
dispatching after a flush recovery or dispatch reject
recovery. This is highly undesirable from a performance
perspective. To avoid this extra recovery cycle, we restore
the A_bit at two points of the two-cycle path. We restore
the A_bit at the first L1 storage latch and, at the same
time, at the second L1 latch of the two-cycle path. For
restore operation, this allows us to bypass the two-
cycle path and instead restore the A_bit in one cycle.
Instruction dispatch can then occur immediately after
recovery. For normal operation, the two-cycle A_bit
update path is selected to drive the A_bit to the source
match array for register lookup.

Figure 7 shows the circuit path of the A_bit
constructed according to the above requirements. The
path starts with the logic for generating the A_bit
(abit_gen), used to update the A_bit stored in the A_bit
storage element (the first L1 latch). The L2 latch and the
second L1 latch are inserted to obtain a two-cycle A_bit
update and drive path for the source register lookup
under normal operation. The bypass mux placed before
the second L1 latch allows the restored A_bit to become
visible to the source match detection array immediately
after it is recovered and written to the A_bit entry. By
adding the bypass mux, we avoided the extra cycle needed
to drive the A_bit to the source array under normal
operation. The delay through the bypass mux is small
compared with the A_bit logic delay, and therefore there
is enough time to write the restored A_bit (abit_restore)
and drive the data src_abit to the source match array in a
single cycle. The A_bit (dst_abit) driven to the destination
match detection array is taken from the first L1 latch
output in order to be available to generate a destination
match that is used by the subsequent A_bit logic and
update cycle.

The A_bit logic is shown in Figure 8(a). The inputs
to the A_bit logic are derived in various arrays and
logic macros inside and outside the mapper block. The
dst_match is generated in the destination array to indicate
a destination match (see the section below on destination
match). The dispatch valid signal (disp_valid) is derived
in the dispatch logic macro (see the dispatch section
below). Both signals are driven to the A_bit array and
locally latched using L2 latches. The “i” denotation in

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

normal_enable ——»
not_replaced ——|
abit_I2

- A_bit
disp_arch_i<0:3> —»| generation
alloc_w<0:3>_en ——»| logic =
restore_enable ——— =
abit_restore ———»| ‘_g
abit_gen
A_bit storage latch .
********* 1 abit_save

I
I
| = [= (To free
| | | it Toyss
| 5 ‘ Q3 ist logic)
| | —
I e : scan_outl
el
— EE L2
I — 3 latch
e
I
1-1----- &
dst_abit =l
(To destination =
lookup array)
abit_12

abit_12

J—> scan_out2

normal_enable | » g D
12} abit_src =2
L
restore_enable |/ g = = src_abit
S — - <
= 2 (To source
: z
abit_restore lookup
| array)

scan_in2

A_bit logic and circuit path.

Figure 8 refers to the ith entry of the A_bit array. The
restore_enable_shadow is derived in the shadow map
array and driven to the A_bit. The array_init is a mapper
initialization signal. Both signals latched local to the
A_Dbit using master—slave latches (L1/L2). The disp_reject
signal is created in the dispatch logic macro (located
outside the mapper—see the dispatch section) and then
driven to and locally latched in the A_bit array. The input
signals disp_arch_i<<0:3> are the architected states
associated with the four instructions that are dispatched
in one cycle. They are created by the dispatch logic (see
the dispatch section) and then driven to the A_bit array
and latched locally using L2 latches.

Each of these signals runs horizontally across the
mapper, driving all of the entries in the array. The
alloc_w<0:3>_en inputs are the allocation write-enable
signals originated in the allocation array and driven
directly to the A_bit entries. The same signals also feed
the CAM array and the R_bit array, and run vertically
along the mapper. The input abit_src to the second L1

T. N. BUTI ET AL.

175

176

abit_I12(i) abit_I2(i)

.
not_replaced(i) }

normal_enable

abit_src(i)

normal_enable

alloc_w<0:3>_en(i) abit_restore(i) Bypass

YEQ! a 4 mux
restore_enable
disp_arch_i<0:3>

abit_gen(i)

disp_valid L2 .
abit_restore(i) — not_replaced(i)
latch
restore_enable dst_match(i)
—— L2
latch

restore_enable_from_shadow
normal_enable

di ject
isp_rejec 5

latch

restore_enable

array_init

(@)

dst_match(i
*7() L2

latch

£ cl_underlap_clk

alloc_w<0:2>_en(i) rbit_gen(i) tbit_save
(To free list
and shadow

map arrays)

disp_repl_i<0:2>
Master—slave
flip-flop
(scannable)
R_bit storage

scan_in
scan_clk

—~
=2
=

(a) A_bit logic and (b) R_bit logic and storage.

latch in Figure 7 is selected by the bypass mux in
Figure 8(a). The abit_restore(i) are the A_bits that are
restored from the free list array and driven directly to
the A_bit logic. The abit_I2(i) are the current A_bit
entries that are held by the L2 latches of the two-cycle
path of Figure 7. The second L1 latch is also scannable
to permit testability of the bypass mux. The A_bit
output data src_abit and dst_abit are driven vertically

to the source and destination lookup arrays, respectively.

The outputs abit_save in Figure 7 are sent vertically to
the free list array and used there as inputs to the free
list bit logic. One single A_bit is assigned for each entry
in the A_bit array. For the GPR mapper, the A_bit

T. N. BUTI ET AL.

array contains 80 one-bit entries (Table 1), with 80
corresponding to the number of physical registers within
the register file managed by the mapper.

R_bit logic and circuit

Registers are replaced when a subsequent instruction
writes to the same logical register target. Some registers
may be replaced by subsequent instructions within the
same group and are allocated and replaced at the same
time. The replaced status of the registers in the mapper is
maintained in the replaced bit (R_bit) array. The R_bit
array contains logic for generating and updating the
R_bit and also contains storage elements to store the
current R_bit values. Figure 8(b) shows the R_bit circuit
path. A scannable master—slave flip-flop latch (L1/L2) is
used to store the R_bit. To prevent a flush-through
problem, the underlapped C1 clock is used to clock-gate
the master latch. The rising edge of the underlapped C1 is
delayed by a determined amount relative to the rising
edge of Cl. The slave latch L2 is clock-gated by the C2
clock. The outputs [rbit_save in Figure 8(b)] are driven
vertically to the shadow map array to be saved there
during the cycle after dispatch. The same R_bit data also
feeds the free list array and is used as inputs to the free
register generation logic. The inputs to the R_bit logic are
dst_match, disp_repl_i<0:2>, and alloc_w<0:2>_en.
The dst_match signals are driven vertically to the bit
array to feed both the R_bit and the A_bit arrays.

The input signals disp_repl_i<0:2> are the replaced
states associated with instructions 0, 1, and 2 that are
dispatched in a single cycle. They are created by the
dispatch logic (see the section on dispatch) and then
driven to the R_bit array and latched locally using L2
latches.

Each of these dispatch signals runs horizontally across
the mapper and drives all of the entries in the array. The
alloc_w<0:2>_en inputs are the same allocation write-
enable signals that drive the A_bit (and the CAM) entries.
The resulting rbit_gen(i) is used to update the R_bit
ith entry. One single R_bit is assigned for each entry
in the R_bit array. For the GPR mapper, the R_bit
array has 80 one-bit entries (see Table 1).

Source lookup

The source lookup circuits of the source arrays contain
compare and match logic for looking up the logical
source registers in the mapper. The logical source
registers for the entire instruction set dispatched in a
single clock cycle are looked up simultaneously. For the
GPR mapper, eight source searches are done in parallel
during a single dispatch cycle. For the FPR mapper, 12
source registers are searched in the same dispatch cycle.
According to this, there are eight separate source arrays
in the GPR mapper, while the FPR mapper contains 12

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

separate source arrays. The same source array macro is
instantiated multiple times. However, each source array is
fed by a different logical source register index associated
with the dispatched instruction set. In contrast, the same
CAM bits in a given entry drive all of the source arrays
placed in a given mapper, as explained earlier in the CAM
core circuit section. The logical source register index (up
to 6 bits) is compared with the contents of each CAM
entry (up to 6 bits), and a match line is generated for each
entry (physical register) in all of the source arrays of the
mapper. A match occurs if all of the CAM bits of the
same entry are equal to the corresponding bits of the
logical source register index, and, at the same time,

the architected bit (A_bit) of the entry is “1” (the
corresponding register is in the architected state).

Figure 9 shows the general timing of the mapper
functions associated with dispatch. The transport cycle
is the cycle before the dispatch cycle, during which
instruction information is transported from the
instruction decode unit (IDU) to the dispatch buffer.
The logical register indices are transmitted during the
transport cycle from the dispatch buffer and received by
L1 latches local to the mapper. The source lookup begins
during the second half of the transport cycle when the
logical source indices (Lregs) are launched from the
mapper L1 latches. In the current floorplan (oriented 90°
relative to Figures 4 and 5), the Lreg L1 latches are placed
at the left-side or right-side perimeter of the source
arrays. The same Lreg index is then driven horizontally
across the mapper source array to feed the bit-wise
compare logic of all of the entries in the mapper (a fan-
out of 80 in the case of the GPR mapper). As described
earlier in the CAM core circuit section, the CAM bits
from each CAM entry are also launched from L1 latches
located in the CAM array macro and are then driven
vertically to feed the bit-wise compare logic for all of the
source arrays placed in the mapper. Similarly, the A_bit is
transmitted from the L1 latches in the bit macro and
driven vertically to the match generation circuit locations
of all of the source arrays in the mapper. At the intercept
points of Lreg bits and CAM bits, simple pass-gate
XNOR circuits are used to do a bit-wise compare between
the corresponding CAM and the Lreg bits. An entry
match line is obtained by ANDing together all of the
single-bit compares and the A_bit of that entry.

Figure 10 is a circuit diagram of the source lookup
pathway illustrated for a single mapper entry. In each
source array, the match lines are encoded using a local
highly distributed encoder circuit to derive the physical
register tags (rtags). The match lines are also used to read
out the register status bits (w and dl bits) using distributed
wide muxes local to the source array. The w and the dl
bits are generated in the ready bit macro and driven
vertically to all of the source arrays in the mapper (see the

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

C2_clock —»| | | | | |

Dispatch — 1 Dispatch Dispatch + 1

Lreg transfer from disp_buffer i
Lreg, CAM, and A_bit drive

Match and read sources

Disp_select mux and write
instruction queue

Allocate buffer rtags
Generate A/R_bits

Update mapper CAM [
Save A/R_bits in shadow array [—
Ready bit write
Ready bit drive to source H-
(a)
Complete Read Free
or flush shadows select

Complete broadcast
or
Flush broadcast

| —
Gmask select 1

Read shadows [—
Restore A_bits
Select free register

Allocation encode

(b)

General timing for mapper functions associated with (a) dispatch
(lookup and update) and (b) completion, flush, and reallocation.

ready bit circuit in the section on the ready bit array
below). The rtags and the register status bits for each
source array are latched locally by L2 latches to give the
main outputs of the mapper. These mapper outputs are
then driven outside the mapper to the dispatch select logic
and propagated through the issue queue macro muxes to
the receiving master—slave (L1/L2) latches. The mapper
source output is read from the mapper during the first
half of the dispatch cycle (see Figure 9), allowing time to
go through the dispatch select logic and mux and write
the data into the issue queue.

Destination lookup (destination match)

The destination lookup and match is performed to detect
registers that are replaced and whose A_bits must be
cleared. For each entry in the mapper, four logical
destination registers are compared with the contents

of the CAM, and four match lines are produced.

The four logical destination registers correspond to the
destinations of the four instructions dispatched in a single

T. N. BUTI ET AL.

177

178

! I .
: L1 latch Status | A Slf{gle entry
111/ (scannable) R
: entry | source array)
Ay
(To the
Match line dispatch_select
encoder L2 and issue queue)
(p to k) latch [rtag K
Match<0> T T Match<l:p — 1>
¥ (w, d)
Register status (TO i
(w, dI’s) dispatch_select
’ and issue queue)
readout mux L2
(p_way wide | 15(ch Status bits
distributed muxes) (w, dl)
n
Match<0> T T Match<l:pp — 1>
& | -
3 \ Match line generation g1
5 } (n + 1)_way AND o
g I - Y TED :
] <0m —1>| i n & |
g | o <
é | = xnor<Q:n — 1> I
b -3 : (compares) :
=4 25 , n T |
Lyl = g {>c{>v _ Bit-wise compare)
3 § Ireg XNOR <0:n — 1> :
= Y W
. n
(drlv-e S cam_src_lreg<O:n — 1>
pentries) | | T T ° T ,
| |
! CAM A <0 — 1> I
L Jentry & i
! } L1 latch § U
I =l 1l
I S
| E\ 8 |
y : f src_abit 5 é : —
| . o
- L | Albit é XN D
! entry ‘35 ****b
o L1 latch <SS ----Z
%‘ | (scannable) \ ©
3! I

Source lookup circuit pathway (illustration for a single entry and a
single source array). [n: number of CAM bits per entry; p: number
of entries (physical registers); k: number of bits in rtag index.]

cycle. These four match lines are then ORed together to
generate the destination matches (dst_match) as outputs.
The dst_match signals are driven to the A_bit array to be
used in updating the A_bits and R_bits, as described earlier.
The CAM and A_bit update and drive paths are set up
for destination lookup on the following cycle. This allows
the CAM bits and the A_bit to become visible to the
destination array immediately after they are written. The
circuit pathway used to obtain the destination match

T. N. BUTI ET AL.

is similar to the one used in the source lookup. A
destination match occurs if all of the entry CAM
compares are “1,” the entry register is architected, and the
destination is valid (dst_valid is “1”). The destination
logical registers (Iregs) are launched from L1 latches
placed local to and at the left-side or right-side perimeter
of the destination arrays. The same lreg index is then
driven horizontally across the mapper destination array
to feed the bit-wise compare logic of all of the entries in
the mapper. The Ireg wires run orthogonal to the CAM
bit wires. The destination Ireg signals are also driven
vertically along the array perimeter to the CAM macro
to be used to update the CAM array.

The dst_valid input signals are derived in the dispatch
buffer logic and transmitted to and captured by L1
latches located at the perimeter of the destination macro.
The dst_valids are then launched from the L1 latches
and run horizontally to feed the match circuits. Four
similar match arrays are used to give four match lines
per entry. Each match array is fed by a corresponding
set of an Ireg index and dst_valid. For each entry,
the four match lines are ORed together to obtain the
entry destination match signal (dst_match). The
dst_match output signals are run vertically to the
neighboring A_bit/R_bit macro.

Free list generation and selection of free registers
The architected, held, and buffered bits (A, H, and B bits)
are kept in the free list macro to indicate the current state
of each register in the mapper. This set of register-state
bits is used to generate a free register list. These bits
are updated during the cycle after dispatch, using
information from the bit macro; during the cycle after a
completion or a flush signal is received, using information
from the shadow map macro; or during the free select
cycle. The free list macro (Figure 11) contains write logic
to set or clear each of the state bits (A, H, and B). It also
contains a simple logic to create a free bit for each
register based upon the register state bits and whether the
register is already a selected free register. In addition,
the free list macro contains a free select logic that selects
a single free register from each mapper quadrant as a
candidate register to move into the allocation buffer.
For the GPR mapper of 80 registers and four
quadrants, the select logic selects one register from 20 per
quadrant. The selected free registers are preallocated into
an allocation buffer to provide early information for
future dispatches. The free list bit logic and macro
floorplan are illustrated in Figure 11. The free list select
logic is shown in Figure 12(a). Two clock cycles are used
to fit the entire pathway. The first clock cycle is used to
update the A, H, and B bits (AHB). Master—slave L1/L2
latches are used to store the data. The second clock cycle
is used to generate free registers and then carry out

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

Cycle 1: Update AHB state
Cycle 2: Generate free

tbit_shad(i) L

/m alloc_q_need

e

G alloc_any(i)
p

L1 L1 L1

L2 L2 L2

hold_en
restore_en

-— —

abit_save(i)

abit_shad(i)
initialize(i)

array_init

:] save_en
release_en

£

=
¥

-

select(i)

A Hs B S

L abit_restore_out(i)

abit_save_out(i)

. p psp | P -
Ebbe Y Y Vv Y free_select(i)
AHBS <0:p — 1>
free 0000 Four-way =
valid 1000 NOR(i) 8
0100 D 3
0010 free(i) TF
0001 . P
invalid all other ’ Select logic F

ip

4—_¢—{ dead_register logic ‘

check_dead_12

Free list AHB register state logic and macro floorplan (two-cycle
pathway). F , F,, and F, represent the update logic described in
Figure 12(b). [p: number of entries (physical registers); i = 0 to
p—1]

the select logic cycle to select a single free register per
quadrant for preallocation. An S_bit is kept in the free list
array to designate the selected free state of the register.
S_bits are also stored in L1/L2 latches and then driven
outside the free list macro to the allocation array to feed
the allocation buffer. The S_bits generated in the previous
cycle (sbit_12) are used locally to update the B_bit, as
shown in Figure 12(b).

The F,, F,, and F, (in Figure 11) represent the update
logic described in Figure 12(b). The abit_save and
rbit_save come from the bit macro, while the abit_shad
and rbit_shad signals come from the shadow map array.
The alloc_q_need and alloc_any signals are driven from
the allocation macro. The abit_12, hbit_I2, bbit_12, and

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

sel_lof 3 sel_lof2 top_lof 3
free(0) tgpr_free(0)
select(0) w tgrp_sel(0)
- (F select(0)
tgrp_free(1)

free(1) 4@:«

tgpr_sel(1)

select(1) j[>So— | free(1) D
» >
free
free(2) i
3 tgrp_free(2)
grp_free
select(2) select(1)
[
N = grp_sel
M tgrp-sel(2)
(a)
rbit_save(i)
abit_save(i) Fy ()

save_enable
hbit_12(i)
rbit_shad(i)

save_enable
abit_shad(i)

restore_enable
abit_I12(i)

release_enable

sbit_I12(i)

hold_enable

initialize(i) alloc_q_need Fy (i)

— bbit_12(i)
array_init

alloc_any(i)

disp_valid 2

latch save_enable

disp_reject 2

latch hold_enable

restore_enable

(b)

(a) Free list select logic; (b) free list bit logic.

sbit_12 are the stored A, H, B, and S bits, respectively.
The restore_enable and release_enable come from the
shadow map array. The other enable signals (save_enable
and hold_enable) are generated locally. The disp_valid
and disp_reject signals are originated from the dispatch
buffer logic. The index “i” indicates the ith entry. A free
register is the NOR of A, H, B, and S_bits (AHBS). A
state register of AHBS = 0000 gives a free register.

The selection cycle for the case of the GPR mapper
with 20 registers per quadrant selects the top single free
register in one quadrant. The sel_lof3, sel_lof2, and
top_lof3 logic functions are described in Figure 12(a).
The sel_1of3 selects first one free out of three, and
sel_lof2 selects the first free out of two. The top_lof3

T. N. BUTI ET AL.

179

180

selects the top group that has a free register. For each
quadrant, a free valid signal (free_vld_q) is generated

to indicate whether at least one register is free in that
quadrant. These signals are used in the allocation macro.
The free list macro also contains error detection logic to
diagnose invalid states and dead registers. AHBS states
other than 0000, 1000, 0100, 0010, or 0001 are invalid. A
dead register check is made to detect a register that is
stuck in the hold state (hbit_12 mismatches the R_bit
saved in the shadow map).

Allocation of registers—encoded and vectored
allocation buffers

In each cycle, up to four registers may be selected and
moved from the free list (free macro) to the allocation
buffer (allocation macro). The preallocated registers
provide early information for future dispatches. New
registers are allocated during dispatch for each
instruction operation that writes a new result. Two
versions of the allocation buffer are kept in the allocation
macro. The encoded allocation buffer keeps encoded
register tags (indices) that must be sent to local and
remote instruction issue queues during dispatch. The
vectored allocation buffer keeps the same register identifier
in a vectored format (non-encoded) that is used to control
register allocation and CAM map update within the
mapper during the dispatch cycle. The allocation macro
also contains a logic to derive signals used to keep track
of register availability and to generate a resource hold
signal for the mapper when necessary. In the current
floorplan, the encoded allocation buffer and logic are
placed in the perimeter side of the allocation array.

The vectored allocation buffer occupies the allocation
array.

Encoded allocation buffer
The encoded buffer receives the free select signals
(free_select<<0:p—1>, where p is the number of registers in
the mapper) from the free list macro described in the free
list generation and selection of free registers section
above. It also receives valid bits from the free list macro.
The register allocation is done on a quadrant basis, with
up to one register allocated from each mapper quadrant
in a single dispatch cycle. In line with the free list macro,
this buffer is also partitioned into four quadrants (except
for the CTR/LR mapper, which has three triplets). In
each quadrant, the set of free_select signals is encoded
to generate one register tag per quadrant.

As shown in Figure 13, the encoded buffer contains
a set of encoders to read out a register tag from each
quadrant of the mapper during the second half of each
cycle (L1 phase). At the same time, it reads out a valid bit
from each quadrant. The entire set of register tags in each
quadrant and valid bits from all four quadrants are sent

T. N. BUTI ET AL.

through 4:1 muxes (7-bit, for GPR and FPR mappers),
followed by 2:1 muxes (7-bit), and then captured by L1
latches that feed into the output L2 latches.

The four 4:1 muxes (one 7-bit, 4:1 mux per quadrant)
perform rotating writes to the four allocation buffer slots
that correspond to the four instructions dispatched in a
single cycle. A 4-bit counter is used to provide the same
four select signals for all of the 4:1 muxes of the four
slots. In Figure 13, the inputs rtag0<<0:6>, rtagl<0:6>,
rtag2<<0:6>, and rtag3<<0:6> to the four allowed buffer
slots are rotated such that each slot of the buffer is written
by a different quadrant during the four consecutive
cycles of the counter, and the input rotation is such that
in each of the counter four cycles, the four slots receive
their tag inputs from different mapper quadrants in
a rotating manner. This guarantees that each quadrant
of the mapper free list writes to alternating slots of the
allocation buffer during four subsequent dispatch cycles.
This rotation increases the likelihood that an allocation
slot that remained empty in a given dispatch cycle will
be filled in the next cycle.

For the next instruction dispatch to occur, all needed
allocation slots must be filled and the required free
registers from the designated quadrants must be
available. An allocation slot is filled with a new
rtag if allocation is requested by the dispatch block
(disp_i<<0,1,2,3>_alloc is asserted) or if the slot has an
invalid allocation in the previous cycle (alloc_valid_12_b
is asserted). A slot fill signal, tag_fill_s, is derived locally,
as shown in Figure 13, to update the slot allocation
buffer. Only slot0, which allocates the destination register
tag for instruction 10, is fully illustrated in Figure 13.
Register tags are similarly allocated for instructions il, i2,
and i3 by rotating the same inputs to the slot 4:1 muxes.
The alloc_rtag and rem_alloc_rtag are sent to local and
remote dispatch select macro and remote mappers. The
outputs zero_free<<0:3> deliver an early L1 signal to the
dispatch control logic for computing the dispatch reject.

Vectored allocation buffer
The vectored allocation buffer keeps the same register
identifier in a vectored format (non-encoded). It provides
the write-enable signals that are used to update the CAM
logical-to-physical register map within the mapper during
the dispatch cycle. These write-enable signals are also
used to update the A_bit and R_bit, as explained earlier.
The free select signals from all quadrants are muxed
and latched to provide the write-enable signals
alloc_w0_enable<0:79>, alloc_w1_enable<<0:79>,
alloc_w2_enable<<0:79>, and alloc_w3_enable<<0:79>,
as shown in Figure 14. These enable signals are driven to
the CAM array to update the CAM entries through the
four write ports of the CAM cells. The same signals also
drive the A_bit and R_bit logic. Each instruction that

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

% ILIVILY) > ILIILY)

% ILIVIL?)

array_init

% ILIVIL?)

cl_clk
free free free free — |
select<0:19> select<20:39> select<40:59> select<60:79> c2_clk Counter
’ Encoder quad 0 ‘ ’ Encoder quad 1 ‘ ’ Encoder quad 2 ‘ ’ Encoder quad 3 ‘ M,
rtag0<0:6> rtag1<0:6> rtag2<0:6> rtag3<0:6> Count<0:3>

Count<0:3> l

rtag0<0:6>
—_—

i tag_fill_sO_b

rtagl<0:6> | <0:6>
L1
rtag2<0:6> 41
— | mux

rtag3<0:6>
—_—

T tag_fill_sO

(Slot 0 allocates destination register tag for instruction i0)

tag_fill_s0

rtag allocation

tatch [T (aqeh [T

Allocation slot 0
Inputs rotated for slots 1, 2, 3
sl:rtagl,2,3,0
s2:rtag2, 3,0, 1
s3:rtag3,0, 1,2

L2

alloc0_rtag<0:6>

rem_alloc0_rtag<0:6>

tag_fill_s0

*—>

Allocation slot 0
Inputs rotated for slots 1, 2, 3 ‘
sl:vld_ql1,2,3,0
s2:vld_q2,3,0,1
s3:vld_q3,0, 1,2

Valid

Count<0:3> allocation

early_disp_i0_alloc

disp_i0_alloc_b

L2
latch

Do

alloc_valid_0_12

free_vld_q0
—_—

L itag_ﬁll_so_b

[>o L1

latch

free_vld_ql
Teevied | 4
free_vld_q2 mux
—_—

free_vld_q3
—_—

Ttag_ﬁ11750

zero_free<0>

alloc_valid_0_12

L2
latch

Encoded allocation buffer (only slot 0 is illustrated; the same inputs to the 4:1 muxes are rotated for slots 1, 2, and 3).

writes a result will update a single CAM entry during the
dispatch cycle. The vectored allocation buffer slots are
filled in a manner consistent with the encoded allocation
buffer, as shown in Figure 14.

For example, the mux select signal q0_take0O allocates
a destination register for instruction i0 from quadrant 0
during count 0 of the allocation counter and provides
alloc_w0_enable<<0:19>. In count 0, instructions i0, il,
12, and 13 get their allocations from quadrant 0, 1, 2, and
3, respectively. In count 1, instructions i0, i1, i2, and 13
get their allocations from quadrant 1, 2, 3, and 0,
respectively, and so on for count 2 and count 3. This is
consistent with the filling of the encoded allocation buffer
with register tags. Allocation-from-quadrant-needed
signals alloc_q0_need, alloc_ql_need, alloc_q2 need, and
alloc_q3_need are generated as shown in Figure 14
to signify that allocations were needed from the
corresponding quadrant (q0, q1, q2, and q3). These
signals are sent to the free list logic to define the B_bit of

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

the mapper register state. A register is moved to the
buffered state if it is selected from the quadrant free list
and allocation is needed from that quadrant in the same
cycle. The alloc_any signals are also sent to free list logic
to reset the B_bit. The alloc_none signals are driven to the
CAM array to rewrite the CAM entries.

Shadow map array

The mapper not only keeps the current state of the
registers, it also maintains shadow maps to save previous
mappings and replacement information for each group
of instructions that has been dispatched but not yet
completed or flushed. Two bits, the A_bit and R_bit, are
saved for each of the 20 groups of dispatched instructions
that are currently active and for each register in the
mapper (80 for the GPR mapper). These bits are stored in
two static random access memory (SRAM) arrays with
one read port and one write port per bit. For the GPR
mapper, two 20-bit X 80-row arrays are used. These two

T. N. BUTI ET AL.

181

182

80 disp_i0_alloc_b

ot

(q0_take0 allocates destination register for
instruction i0 from quadrant 0)

free_select<0:19>
free_select<20:39>

<0:79> ILIALY

(q3_take0 allocates destination register for
instruction i0 from quadrant 3)

T 2:1 PS>0 -
free_select<40:59> P %0 <0:79> alloc_w0_enable<0:79>
fi lect<60:79> .
ree_select<60:79 w0_en<0:79> =0:79> alloc_none
wl_en=>inst il SRR wl_en<0:79> - L1/L2 80
w2_en => inst i2 fc‘g 'fg f,v: é‘ w27en<0.79>w3 en<0:79> latch 30
g ns (] - .
w3_en => inst i3 o| ol gla <0:79> alloc_any
q0_take0
tag_fill_s0 tag_fill_s2
ag_ fill_s q0Ltak<0 tag fill s2 q0__take2 q0_takel alloc_q0_need
7":D_—> 7’:D—> q0_take2
t 0 t 2
count_) ql_take0 o ql_take2 q0_take3
j ——> 7':1 > 1_take0
count_1 count_3 g
=) q2_take0 . D q2_take2 i alloc_ql_need
B count 0 | N
count_2 o3._take0 count_ o3_take2 ql_take2
;‘coumﬁ ——— 4_100unt_ I — ql_take3
tag_fill_s1 tag_fill_s3 92_take0
— q0_takel EE— q0_take3 q2_takel alloc_q2_need
- ¥ 721) > 2_take2
count_3 count_1 =
. ql_takel =D ey q2_take3
count_0 J ot count_2 J q2_take3 q3_take0 . X .
j _— S (e alloc_g3_nee
t3 q3_takel
count_1 o3_takel COLIIES q3_take3 q3_take2
count_2 : count_0 E q3_take3

Vectored allocation buffer. (Only slot 0 is fully illustrated; it allocates destination registers for instruction i0. Instructions il, i2, and i3 are

allocated similarly.)

arrays are vertically aligned with the rest of the mapper
arrays with word lines (rows) that run horizontally and
bit lines that run vertically. The bits are written during the
cycle after dispatch from latches that are placed in the
A_Dbit/R_bit arrays, described above in the section on
A_bit and R_bit logic.

The A_bit and R_bit logic formulates the A_bits and
R_bits needed to update the current register map and
save a shadow copy of these two bits to be stored in
the shadow map memory array. The shadow bits are
read during the cycle after instruction completion or
instruction flush is received. The two events, instruction
group completion and flush, cause registers to be released
or restored. When a group completes, the results that it
produced are committed, and the registers that it replaced
are released to the register free list. When a group is
flushed, the registers that it allocated are released.
Additionally, when a flush occurs, the registers that were
in the architected state just prior to the first flushed group
are restored to the architected state. In this way, the
proper state is restored.

T. N. BUTI ET AL.

Figure 15 shows the shadow map arrays and control
logic. A dispatch group tag (alloc_gtag) is provided
during the dispatch cycle and must be decoded, then
used to control a write into the shadow maps on
the subsequent cycle. A vector of A_bits and R_bits
(abit_save and rbit_save) are saved into the array for each
dispatch group. This write must be prevented in the case
in which a group was dispatch-rejected. Completion and
flush signals (comp_valid and flush_valid) are received
and latched here; then restore_enable and release_enable
signals are sent to other macros on the subsequent
cycle. The restore_enable signal must come on after a
flush. The release_enable signal must come on after a
completion or flush. One mask (flush_gmask) is used
to indicate one or more groups being flushed when
a flush is valid (flush_valid). We must read out and
summarize the R_bits for all groups being flushed.

Another mask (misc_pmask) is used to indicate the
group being completed when completion is valid
(comp_valid). We must read out the R_bits for the
group being completed. This second mask is also used
to indicate the oldest group being flushed. We must read

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

out the A_bits for the group being flushed. There is one
possible hazard that occurs if the completion logic
indicates a valid flush with a flush_gmask of all zeros!
This condition is not allowed to occur.

Ready bit array
Special ready bits (w, dl0, dl1) are kept in the ready bit
array for each register to indicate whether its data is
available (possibly conditioned upon the outcome of a
load) (Figure 16). Each instruction source has a w bit to
indicate whether its data is ready (written). The two-bit
dl0 and dll track instruction dependence on load for
load-store units 1s0 and Is1. If any of the two bits in dI0
or dIl are set, it indicates that the corresponding source
operand directly or indirectly depends on a load that is in
progress, but the cache hit/miss (Is0, 1_data_valid in
Figure 16) is not yet known. This instruction can be
issued before we know whether the cache hit, but must be
reissued if a cache miss occurs. The instruction issue logic
provides this information when a result is about to be
written into the register file. Only ready bits written
during the previous cycle are available during dispatch.
As shown in Figure 16, the array includes latches to
hold the ready bits (w, dl0, dI1). These latches require
some special shifting and resetting functions. Split L1 to
L2 latches are used to store, drive, and shift the ready
bits. The ready bit data (W, DL0O_b0, DL0O_bl, DL1_b0,
DL1_bl) is driven to the source array and is available to
be read out for each source. The source macro sends the
read information to the issue queue during dispatch.
Update decoders are also required to control update of
these bits as register values become available. When a
register is allocated, its w and dl bits are cleared. When a
register value becomes available, the w bit is set to 1 and
the dlI bits are set using information derived locally
(wrt_IsO and wrt_Is1) from inputs provided by the issue
logic. Otherwise, the dl bits shift logically each cycle
toward bit 0. The shifting of dl bits is done before they are
written into the mapper for each cycle they are in the
mapper latches and after they are read out of the mapper.
The ready bit reset logic is also shown in Figure 16
using inputs from the issue queue. The two load-store
units provide the data valid signals (Is_data_valid).
Master—slave L1/L2 latches are used to hold these inputs
and also to hold the update decoder vectors. Reset
overrides any other functions and occurs for allocation
reset, load miss, and power-on reset.

Dispatch
Instruction sequencing unit
The instruction sequencing unit (ISU) manages out-of-

order instruction execution within the processor core [10].
It implements the following microarchitectural functions:

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

s &t
alloc_gtag<0:4> g ;
L1/L2 b 2
latch -LD, §| i::
= 4—1‘
t_full = Sy B
SEE Clek —) =
2 s s
Py < <
. . S 3 =
disp_valid L2 Y N E\
latch o g
Q
£ ¢» Wr_addr
g A_bit
) _bi
flush_valid LUL2 SRAM array
mise_prask<0.105 sl 20 bits X 80 rows
. l rd_addr
flush_valid abit_read_en<0:19> _
comp_valid A & A
I 5 5
flush_valid vl 9| ¥
) quee 3 5| E
flush_gmask<0:19> latch | | = = o
) = - 2
comp_valid
A s g
= S 3
misc_pmask<0:19> S o)
5 T
g L wr_addr
B
T, waikal restore_enable ! R_bit
— = L1122 2 SRAM array
latch 20 bits X 80 rows
»(rd_addr
0y v L1/L2 release_enable
latch

Shadow map arrays and control logic for the shadow of the GPR
mapper of 80 registers.

® Dispatch: Described below in this section.

® Register renaming and allocation (mapper): The topic
of the present paper.

® [Issue: It queues instructions, monitors dependences,
and controls out-of-order instruction issue to the
fixed-point unit (FXU), load-store unit (LSU),
floating-point unit (FPU), and branch unit (BRU)
[10].

® Completion: Tt monitors the finish status of each
instruction, ensures in-order instruction completion,
controls resource deallocation, and initiates selective
instruction flushes when necessary [10].

These functions are performed during different stages of

the pipeline [10], and each function requires special
structures and logic. 183

T. N. BUTI ET AL.

184

1s0_wr_rtag<0:6> 80)
‘@ L1/L2 80 WE - el

{Is1}

wrt_ls1<0:79>

(0} 1s0_wr_gpr_v

wrt_fx0<0:79>

{fx1} {...} - L112 wrt_fx1<0:79>

{cru} {cru} wrt_cru<0:79>
DLO0_b0 AW DL1_b0 DL1_bl
DLO_bl dl0_b0_12 w_12 dl1_b0_I2
L2 L2 L2 L2
o D] [D | D D]
| S
i D L ‘ D L1 ‘) L1 ~ } L1
s > 5,
S —_
S
[reset_b
w_12
z. =2
< wrt_lsO
1s0_data_valid 1s0_not_vld e wrt Isl
——— > LIL2 - wrt_fx0 -
- wrt_fx1 gl
Is1_data_valid 1s1_not_vld o g
>~ L1112 initialz
oL B alloc_any<0:79>
fx0_wr_dl0 L —L =
> L1/L2 :)J |
reset_for_fx0
fx0_wr_dll e ‘) 1s0_not_vIld
dl0_b0_12<0:79>
dlo_bl_12<0:79>
rt_fx1<0:79> — =
fx1_wr_dI0 e <0:79>
X1_wr_ N i wrt_1s0<0:79:
1s1_not_vld
1 wr dll reset_for_fx1 dl1_b0_12<0:79>
e > L1/L2 dll_bl_12<0:79>
wrt_ls1<0:79>

Ready bit array and control logic (one entry of the GPR mapper of 80 registers is shown).

Dispatch

The dispatch buffer and control logic receive groups of
instructions (iops) in order from the instruction decode
unit (IDU) and dispatches them or holds them when
necessary. Instructions are grouped and aligned by the
IDU such that no additional alignment is necessary.
Before a group can be dispatched, all resources required
by the group must be allocated by the ISU. The ISU must
allocate many different resources during dispatch. The
group completion table entry, issue queue slots, rename
registers, load reorder queue entries, and store reorder
queue entries must be assigned before successful dispatch
[10]. The dispatch logic determines ahead of time whether
resources will be available and precomputes a dispatch
reject signal when necessary. The dispatch engine
performs many functions:

T. N. BUTI ET AL.

* Allocate group tag: Up to five instructions may be
dispatched during a cycle (the fifth one may only be a
branch). These instructions are assigned a group tag,
or gtag. This tag is used to selectively serialize or
cancel instructions as they proceed down the pipeline.
It also corresponds to one entry in the completion
table in which information about each group is
maintained. The completion logic provides the next
available gtag, and the dispatch logic indicates
allocation.

* Allocate load|/store tags: Each load instruction is
assigned a load tag, or /tag. Each store instruction is
assigned a store tag, or stag. An ltag and an stag flow
down the pipeline with each load or store instruction
to indicate load/store ordering information. These
tags correspond to load and store reorder queue
entries in the LSU. The completion logic provides

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

the next four available Itags and stags. The dispatch
select logic must identify load/store instructions

and select an appropriate tag for each load and
store within a dispatched group.

* Move instructions to issue queues: The dispatch dataflow
and control logic is centralized to feed each of the
four major ISU partitions, as shown in Figure 17.
This includes the setup/overflow registers to receive
transmitted instructions from the IDU, the dependency
comparison blocks, the dispatch/reject registers, and
all associated dispatch control logic. The IDU
instruction buffer and instruction bus feed the
dispatch buffer. Instruction groups are dispatched into
the appropriate issue queues one group at a single
cycle [10].

® Determine intragroup dependences: Instructions
dispatched at the same time may be interdependent.
Register dependences must be identified by examining
decoded source and target register information and
comparing the appropriate register indices. The IDU
provides some partial dependence information, and
the dispatch logic performs the final dependence
detection. Dependence information is needed to
generate register allocation and selection controls.

® Floating-point status control register (FPSCR)
handling: An entry in the FPSCR result buffer is
allocated for each group of dispatched instructions.
The gtag of the last group to do a general write to the
FPSCR must be passed along as a special rtag for
the floating-point instructions. Additionally, all
instructions in a group must be analyzed, and the last
one to write the FPSCR result flags must be identified
and marked.

® Miscellaneous decode: Some information may have to
be decoded and detected and passed along to the issue
queues and execution units. Multicycle operations,
for example, may be detected during dispatch. A
scoreboard interlock must also be managed to enforce
ordering for iops that read and write non-renamed
resources.

The dispatch setup cycle is one cycle before dispatch.
Instruction groups come from the IDU validated by a
signal group_valid. The groups are latched into a master—
slave L1/L2 stage in a dispatch setup macro. This latch
stage is one cycle before dispatch, and in this cycle we
perform functions such as current-cycle dependency
compares, previous-cycle dependency compares, and
setting up the early dispatch outputs to the mapper. These
outputs consist of the mux signals, which are L2 phase
signals representing what the Ireg and valid bits will be for
dispatch_valid in the next cycle (the dispatch cycle). Also,
the early (or L1-launched) allocation and replace signals
are launched from the dispatch L1 stage. During the

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

D Instruction buffer ‘

1 Instruction bus
v '
D Dispatch buffer F
?: CR ||CTR/LR FPR || FPSCR GPR XER
Y ‘= | |mapper | | mapper | | |mapper | | handler | | | mapper | | mapper
=}
S Y Y Y Y Y
Dispatch Dispatch Dispatch
= select select select
L g
-t l !
BE P v o
S e CR/BR Float Fixed
issue queue issue queue issue queue

Branch partition Float partition Fixed partition

Major partitions of the ISU (branch, float, fixed, and completion).

setup and dispatch cycles, much computation is
performed to determine whether or not the dispatch
attempt will have to be rejected. This mechanism is in
place so that dispatch is not arbitrarily delayed until
we know for sure that it is safe. All conditions for
rejecting dispatch are ORed together to yield a possible
dispatch_reject in the cycle following dispatch_valid. At
this point, the ISQs, mappers, completion table, and so
on must all recover to their state previous to the dispatch
attempt. Conditions for rejecting a dispatch attempt
include the following:

e The GPR, FPR, XER, CR, or CTR/LR mapper
is full.

¢ The fixed-point, floating-point, conditional register
(CR), or branch register (BR) issue queue is full.

* The sync instruction is waiting for load.

e The scoreboard checking iop is waiting for the
scoreboard setting iop.

* The exception is processed by the completion unit.

* The load reorder queue (LRQ) or store reorder queue
(SRQ) is full.

® The branch instruction queue (BIQ) is full or btag
is not yet written.

¢ Dispatch throttling occurs.

* Debug workarounds occur.

The early allocation signals, such as early_disp_i0_alloc
in Figure 13, are L1-launched. They are asserted per
instruction per destination field a half-cycle before
dispatch_valid, if that instruction slot has a valid
instruction and will write a result to that destination.

T. N. BUTI ET AL.

185

186

The early arch signals, disp_arch_i<0:3> in Figure 7,
are L1-launched. They are asserted per instruction per
destination field a half-cycle before dispatch_valid, if that
allocated destination is the youngest allocation to a given
Ireg. The early repl signals, disp_repl_i<<0:2> in Figure §,
are L1-launched. They are asserted per instruction per
destination field a half-cycle before dispatch_valid, if, for
that allocated destination, there is a younger instruction
allocating the same Ireg. As an example, consider the
dispatch group for some destination, say gpr d0:

i0writes Tregb
ilwrites Treg3
i2writes lreghb
i3 not valid

For such an instruction group, one has

i0: alloc=1, arch=0, repl=1
il: alloc=1, arch=1, repl=0
i2: alloc=1, arch=1, repl=0
i3: alloc=0, arch=0, repl=0

Here, the i0 destination is replaced and not left in the
architected state, since a younger instruction, i2, wrote to
the same Ireg (Ireg 5).

The dispatch select logic gathers source rtags from local
mappers and destination rtags from local and remote
mappers. It then selects appropriate rtags on the basis of
intergroup dependences and register types. It is primarily
a post-mapper rtag mux to accommodate same-cycle and
previous-cycle Ireg dependences. Because of the latency
to update the mapper state upon dispatch of a newly
allocated destination, dependent sources in the same
dispatch group or next dispatch group cannot use the
physical rtag mapping presented by the mapper. So,
in the worst case, an instruction in slot i3 that has a
particular lreg as a source must choose between the
mapper source rtag output and the allocated rtags for
instructions 10, i1, or i2, or the last-cycle-allocated rtags
for 10, i1, i2, or i3. This selection is based on source-to-
destination Ireg comparisons done in the cycle before
dispatch. The dispatch select logic also selects appropriate
load and store tags for each load or store instruction
dispatched. The dispatch select is distributed as shown
in Figure 17 to feed the ISU partitions.

Rename resources in the IBM POWER4 chip
The ISU contains five different mappers for managing
five separate register files. All mappers are identical in
functions, but their dimensions vary according to their
specific requirements. Table 1 lists the rename resources
implemented in the POWER4 chip.

T. N. BUTI ET AL.

The register mappers described in the present paper
constitute the rename resources used in the IBM
POWERA4 chip that provides the processing power for the
eServer p690. The p690 is the recently introduced high-
end IBM 64-bit POWER4-architecture, 8- to 32-way
server system [10, 11]. The POWER4 chips were
fabricated in the IBM 0.180-um CMOS 8S3/SOI (silicon-
on-insulator) technology with seven levels of copper
wiring. Features of the technology and the characteristics
of the POWERA4 chip are described in [11]. The chip has
been operated at clock frequencies exceeding 1.3 GHz.
The circuit and physical methodology used in the
POWER4 chip is also described in [11].

Summary and conclusion

We applied a new nonconventional approach to the
design and organization of renaming register mappers.
An optimal CAM configuration was developed for
designing area-efficient CAM circuit topology and for
organizing the register mapper. Such a structure allows
the implementation of the register mapper as a group
of custom arrays. Each array is dedicated to execute a
specific function. The entire mapper is partitioned into
eight special custom arrays to execute the various
functions of the register mapper.

We made a novel implementation of the register
mapper to provide rename resources for the IBM
POWER4 chip. Such rename resources facilitate the
application of out-of-order and speculative executions
in the processor. That, in turn, allowed for a high level
of concurrency in the pipeline and made a substantial
contribution to superior machine performance.

Acknowledgments

The authors wish to acknowledge our many colleagues on
the POWER4 design team. We would especially like to
thank Sam Chu, Peter Klim, Joel Silberman, and Nathan
Peterson for their discussions and interests, and Ray East
for his support in program management.

*Trademark or registered trademark of International Business
Machines Corporation.

References

1. R. M. Tomasulo, “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” IBM J. Res. & Dev. 11, No. 1, 25—
33 (January 1967).

2. J. E. Smith and G. S. Sohi, “The Microarchitecture of
Superscalar Processors,” Proc. IEEE 83, No. 12, 1609-1624
(December 1995).

3. A. Moshovos and G. S. Sohi, “Microarchitectural
Innovations: Boosting Microprocessor Performance Beyond
Semiconductor Technology Scaling,” Proc. IEEE 89, No. 11,
1560-1575 (November 2001).

4. R. E. Kessler, “The Alpha 21264 Microprocessor,” IEEE
Micro 19, No. 2, 24-36 (March/April 1999).

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

5. R. E. Kessler, E. J. McLellan, and D. A. Webb, “The Alpha
21264 Microprocessor Architecture,” Proceedings of the
International Conference on Computer Design (ICCD "98),
October 1998, pp. 90-95.

6. J. Leenstra, J. Pille, A. Muller, W. M. Sauer, R. Sautter, and
D. F. Wendel, “A 1.8-GHz Instruction Window Buffer for an
Out-of-Order Microprocessor Core,” IEEE J. Solid-State
Circuits 36, No. 11, 1628-1635 (November 2001).

7. D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami,
“Circuits for Wide-Window Superscalar Processors,”
Proceedings of the 27th International Symposium on Computer
Architecture, June 2000, pp. 236-247.

8. K. J. Schultz, “Content-Addressable Memory Core Cells: A
Survey,” Integration, the VLSI Journal 23, No. 2, 171-188
(November 1997).

9. S. Jones, “Design, Selection and Implementation of Content-
Addressable Memory for a VLSI CMOS Chip Architecture,”
Computer and Digital Techniques, IEE Proc. 135, No. 3, 165-
172 (May 1988).

10. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B.
Sinharoy, “POWER4 System Microarchitecture,” IBM J. Res.
& Dev. 46, No. 1, 5-25 (January 2002).

11. J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J.
Kircher, B. L. Krauter, P. J. Restle, B. A. Zoric, and C. J.
Anderson, “The Circuit and Physical Design of the POWER4
Microprocessor,” IBM J. Res. & Dev. 46, No. 1, 27-51
(January 2002).

Received October 30, 2003; accepted for publication
February 9, 2004, Internet publication November 24, 2004

IBM J. RES. & DEV. VOL. 49 NO. I JANUARY 2005

Taqi N. Buti IBM Systems and Technology Group, 2455 South
Road, Poughkeepsie, New York 12601 (buti@us.ibm.com). Dr. Buti
is a Senior Engineer in the POWERG6 development team leading the
circuit design of instruction dispatch. He led the circuit design of
the register rename mappers for the POWER4 and POWERS
processors. He has worked on the cache, cache TAGS, TLB, BAT,
SR, and register files for the 603ev, 604, and 620 PowerPC
processors. He also designed a flash EEPROM array and

charge pump. He received a Ph.D. degree in physics from the
Massachusetts Institute of Technology. His early work was

in the field of medium- and high-energy physics, investigating
and synthesizing electro-excitation and hadronic interaction
experiments. After his postdoctoral work at MIT, Dr. Buti joined
Harris Semiconductor in 1984 to work on a variety of problems
related to semiconductor device physics and technology. He joined
IBM in 1988 at the East Fishkill Semiconductor Laboratory, where
he was engaged in CMOS, SOI, and BiCMOS device and
technology, and device and process design, simulation, and
characterization. He co-invented the halo source GOLD drain
asymmetrical FET. Dr. Buti has published more than 30 papers
and holds 14 patents.

Robert G. McDonald University of Texas at Austin,

1 University Station C0500, Austin, Texas 78712
(robertmc@cs.utexas.edu). While at IBM, Mr. McDonald
helped develop several high-performance processors, including
the POWER?2 and POWER4 processors. He contributed to the
definition, modeling, and performance tuning of the overall
POWERA4 core microarchitecture, and also served as the primary
architect and logic designer for the original POWER4 register
mappers. Mr. McDonald studied electrical engineering at Texas
A&M University and the Massachusetts Institute of Technology.
He has filed more than 24 patent applications.

Zakaria Khwaja IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (khwaja@us.ibm.com). Mr.
Khwaja joined IBM in 1997 in the POWER4 design team as a
circuit designer. He worked in POWER4 and POWERS processors
in the development of the floating-point register file, instruction
sequence unit mapper, and issue queue circuits. Currently he leads
a circuit design team for POWERS and its follow-on designs. Prior
to joining IBM, he worked at Advanced Micro Devices as a
designer in the microprocessor and the chipset groups. Mr. Khwaja
received an M.S. degree in electrical engineering from Louisiana
State University, where he did research on heterojunction
semiconductor devices. His technical interests are in the areas

of array design, low-power design, and design methodology.

Asit Ambekar IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (ambekar@us.ibm.com). Mr.
Ambekar joined IBM in 1997 in the POWER4 design team

as a circuit designer. He received an M.S. degree in electrical
engineering from Texas A&M University. He worked in POWER4
and POWERS processors in the development of the floating-point
status control register file, instruction sequence unit mapper, and
dispatch and completion unit circuits. Mr. Ambekar has been an
integral part of the array design team for POWER processors since
joining IBM. His current responsibilities include circuit design for
the POWERS processor and follow-on designs, and POWERG6
circuit design for the instruction decode unit and register file
design. 187

T. N. BUTI ET AL.

188

Hung Q. Le IBM Systems and Technology Group, 11400 Burnet
Road, Austin, Texas 78758 (hung@us.ibm.com). Mr. Le is a
Distinguished Engineer in the POWERG6 development team. He
joined IBM in 1979 after graduating from Clarkson University
with a B.S. degree in electrical and computer engineering. He

has worked on the development of several mainframe products.
Since 1991, he has worked on the development of the PowerPC
microprocessor, and POWER3, POWER4, and POWERS
products. His technical interests are in the field of processor design
involving superscalar, out-of-order, and multithreading design.
Mr. Le received an IBM Corporate Award and two IBM
Outstanding Technical Awards for his work on mainframe

and POWER processor development. He holds 48 patents.

William E. Burky IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (burky@us.ibm.com). Mr.
Burky is a Senior Engineer in the POWERS development team.
He joined IBM in 1991 after receiving a B.S. degree in computer
engineering from Carnegie Mellon University. He has since earned
a M.S.E.E. degree from National Technological University. He
has worked on the development of the PowerPC system ASICs
and POWER3, POWER4, and POWERS microprocessors. He
currently leads the POWERS instruction sequencing unit design
team, specializing in multithreading design, instruction dispatch,
and exception handling. Mr. Burky holds four patents, with 14
patents pending; he has received a Fifth Plateau IBM Invention
Achievement Award.

Bert Williams IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (bertw@us.ibm.com). Mr.
Williams joined IBM in 1984 after receiving a B.S. degree in
electrical engineering from the University of Texas. He has
worked on the POWER2, POWER3, POWER4, and POWERS
microprocessor designs, and is currently working on the
POWERG data prefetch engine.

T. N. BUTI ET AL.

IBM J. RES. & DEV. VOL. 49 NO. 1

JANUARY 2005

