
Organization and
implementation of the
register-renaming mapper
for out-of-order IBM
POWER4 processors

T. N. Buti
R. G. McDonald

Z. Khwaja
A. Ambekar

H. Q. Le
W. E. Burky
B. Williams

We present a new nonconventional approach for designing and
organizing register rename mappers that can be applied in modern
out-of-order processor chips. A content-addressable memory
(CAM) configuration optimal for such a register mapper
application was developed. The structure of the CAM and search
engine, described in this paper, facilitates the implementation of
the register mapper as a group of custom arrays. Each array is
dedicated to executing a specific function. Among the functions we
implemented are allocation of registers, maintaining the register
map and status, source lookup, saving a shadow copy of the register
map, and freeing up of registers. We made a novel implementation
of the register mapper to provide rename resources for the IBM
POWER4e chip, which provides the processing power for the
IBM eServere p690. Such register renaming allows for a high level
of concurrency in the pipeline and contributes to superior machine
performance.

Introduction
To increase the performance leverage of present-day

superscalar pipelined microprocessors beyond technology

scaling, one needs to maximize the concurrency and

overlap in instruction processing. Microarchitectural

techniques for instruction-level parallelism can be used to

achieve increased concurrency in instruction processing

[1–3]. Out-of-order execution and speculative execution are

two powerful techniques that are exploited in modern

high-performance processors to increase the amount of

concurrency [4–7]. If the operand data is ready and the

required execution resources are free, more concurrency

in the pipeline and more performance can be achieved

by allowing instructions to be executed out of order.

However, while the instructions are processed out of

order, they are forced to be committed in program order,

which preserves the succession in the architectural states

of the machine.

In speculative execution, predictions are made about

instructions after branches and are allowed to be

speculatively processed in parallel with other instructions.

This also increases concurrency and improves

performance. If the prediction was false, the speculatively

executed instructions are flushed and not committed.

However, to apply these microarchitectural techniques,

one has to overcome the instruction data-dependence

constraints. These artificial dependences are created

by reuse of limited architectural register and memory

storage. Such false dependences include write after read

(WAR) and write after write (WAW). A WAR occurs

when an instruction that writes a new value must wait for

all preceding instructions to read the old value. A WAW

happens when more than one instruction is written to

the same register or memory location. Executing such

instructions out of order overwrites the value of the

register produced by one instruction before it might have

been read by a subsequent one. Therefore, these false data

dependences must be eliminated before one can make

use of out-of-order and speculative executions.

These dependences and the associated ordering

constraints would not occur if a different register name

were assigned every time an instruction writes a new

value. By applying register renaming operations, each

destination architectural (logical) register name is

�
Copyright 2005 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,
of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any

other portion of this paper must be obtained from the Editor.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

167

0018-8646/05/$5.00 ª 2005 IBM

mapped into a unique physical register location in the

register file. This, in turn, eliminates all of the false

dependences [4]. When an instruction is decoded, its

destination logical register number is mapped into a

physical register location that is not currently assigned to

a logical register. The destination logical register is said

to be renamed to the designated physical register. The

assigned physical register is therefore removed from the

list of free physical registers. All subsequent references to

that destination register will point to the same physical

register until another instruction that writes to the same

logical register is decoded. At that time, the logical

register is renamed to a different physical location

selected from the free list, and the map is updated to enter

the new logical-to-physical mapping.

The physical register of old mappings is returned to

the free list to be reused once their values are no longer

needed. At the same time, the renaming also provides a

mapping table to look up the physical registers assigned

to the source logical registers of the instruction. The

source operand values are read from these physical

locations in the register file. If the free list does not have

enough registers, the instruction dispatch is suspended

until the needed registers become available. A shadow

copy of the register state can also be kept in the register

mapper. When an instruction flush occurs, the shadow

map is used to restore the register state prior to the flush

point so that the machine can resume execution. Thus, it

is clear that to facilitate the application of out-of-order

and speculative executions to gain machine performance,

a register renaming function must be implemented.

In the next section, we describe the register mapper

high-level algorithm implemented in the IBM POWER4*

machine. The functions, register states and transitions,

and logical facilities of the mapper are briefly outlined.

Following that, we give a detailed account of the register

mapping configuration we applied, we describe our new

register mapper organization, we describe the circuit and

logic implementation, we discuss instruction dispatch,

and, in the final section, we briefly summarize the rename

resources used in the POWER4 chip (IBM eServer* p690).

Register mapper high-level algorithm

Functions

Register mappers are implemented in high-performance

out-of-order machines to manage a large set of physical

registers within an associated register file. In the present

POWER4 processor, a dedicated mapper is custom-

designed for each type of renamable register file.

Renaming was implemented for files for general-purpose

registers (GPRs), floating-point registers (FPRs),

exception registers (XERs), condition registers (CRs),

and control/link registers (CTR/LRs). The register

mapper presented here is designed to perform many

functions, including the following.

� Allocation of registers: It allocates new registers during

instruction dispatch for each instruction that writes a

new result to a target register. Registers are allocated

from a physical pool of registers contained in a

particular register file. At any given time, a portion of

the registers are being used to hold committed register

values, and the rest may be used to hold speculative

register results.
� Register renaming and maintaining a register map: The

mapper performs register renaming, which allows

multiple writes to the same logical register. A register

map is maintained to associate physical registers

with logical registers. A custom content-addressable

memory (CAM) is designed to hold the register map.

Registers allocated for the dispatched instructions are

used to update the map.
� Source register lookup: These CAM maps must

be searched during instruction dispatch to locate

the physical registers that hold the latest results for

the source logical register of each instruction.
� Saving of shadow register maps: Shadow register maps

are also maintained to hold previous mappings and

replacement information for each dispatched

instruction group until it is completed or flushed.

When groups of instructions complete, the results that

they produce are committed, and registers that hold

older results for the same logical registers are released.

Register results do not have to be moved when they

are committed. If a group flush occurs, all speculatively

assigned registers for the instructions being canceled

must be released and made available for reuse. A

previous register map must also be restored.
� Selection of free registers: The mapper generates and

maintains a list of free registers. It preallocates them

into an allocation buffer in order to provide early

information for future dispatches.
� Maintaining of register status: In addition to register

maps, some amount of register status information

must also be kept in the register mapper. A ‘‘ready’’

or ‘‘w’’ bit indicates whether or not register data

is available (in the register file or off a bypass).

The instruction issue queue logic indicates when a

register is ready. A register may be tentatively ready,

depending upon whether a load hits or misses. A load

miss could require the status of a register to be reset.

Special shifting ‘‘dl0 and dl1’’ bits are also kept and

used to confirm that valid load data is delivered at the

appropriate time. The instruction issue queue logic

provides this register status information (w, dl0, dl1)

to the register mapper when a result is about to be

written into the register file.

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

168

Register states and transitions

Each physical register may be in one of four logical states,

and transitions through these four different states, as

depicted in Figure 1. A subset of registers that correspond

to the initial logical values begin in the architected state.

The rest of the registers begin in the free state. A constant

number of registers are always in the architected state

(one for each logical register). The others may be in any

of the remaining states. As instructions are dispatched,

new registers are allocated. Registers are replaced when

a subsequent instruction writes to the same logical

register. Some registers may be replaced by subsequent

instructions within the same group and are allocated and

replaced at the same time. When replaced, registers

transition to the held state. When the replacement

becomes committed, the registers are released.

Two events—completion and flush—cause registers to

be released or restored. When a group of instructions

completes, the registers that it replaced are released.

When a group is flushed, the registers that it allocated are

released. In addition, when a flush occurs, the registers

that were in the architected state just prior to the first

flushed group are restored to the architected state. In the

current design, the three states—architected (A), held (H),

and buffered (B)—are explicitly kept in the mapper

arrays. The free state is implicit when none of the other

state bits are set. Registers that are in the free state may

be selected and moved to an allocation buffer. When this

occurs, the registers transition to the buffered state. These

buffered registers are then available to be allocated for

new instructions.

Logical facilities

The logical facilities used for the high-level algorithm

of the mapper are illustrated in Figure 2. The actual

implementation requires additional state and facilities,

discussed in detail later in this paper. In Figure 2, P

represents the number of physical registers in the register

set within an associated register file managed by the

mapper. G represents the number of instruction groups

that may be active in the completion buffer. Q refers

to the mapper quadrant. The LREG array records the

logical register identifier associated with each physical

register in the machine. This information is used to locate

source registers and replaced registers during dispatch. A

vector of A, H, and B bits indicate the current state of

each register. The shadow arrays (A Shadows and R

Shadows) keep information about old architected state

maps and replacement vectors for each instruction group

that has been dispatched but not yet completed. If a flush

occurs, this information is needed to restore the proper

state. When completion occurs, this information is used

to release the appropriate registers. The allocation buffer

holds registers that are ready to be allocated.

Register map configuration

In high-performance out-of-order machines, many

instructions are dispatched each cycle. In the present

machine, four instructions plus one branch are dispatched

each clock cycle. This requires simultaneous execution of

a fairly large (.12) number of searches of logical source

and destination registers in the register map. In the

POWER4 processor, within a single clock cycle, up to

16 logical registers must be looked up in the content of

the mapper register map array [16 = 4 instructions

3 (3 sources þ 1 destination)]. CAM circuits are

usually used to implement the register map. A CAM

configuration optimized for such a register mapper

Register logical states and transitions.

Figure 1

Register states

A = Architected
H = Held
F = Free
B = Buffered

A

H

F

A
llo

ca
te

B
uffer

Replace

Rele
as

e

R
estore

R
el

ea
se

Allocate and replace

B

Logical facilities for high-level mapper algorithm. (P: number of
physical registers; G: number of instruction groups; Q: mapper
quadrant.)

Figure 2

Allocation buffer

Q0 Q1 Q2 Q3

A H BLREG
A

Shadows
R

Shadows
0

P � 1
0

G
 �

 1

G
 �

 10

Completion/
flush controls

Save
Restore
Release

B
uf

fe
r

A
llo

ca
te

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

169

application requires a nonconventional approach to

designing an area-efficient CAM circuit topology and for

organizing the register mapper. This challenging task is

discussed next in detail.

Conventional approaches

Single-compare CAM cell

Abasic single-compareCAMcell [8, 9] is shown inFigure 3.

It is a simple structure that can store, read, and write

1-bit data. It can also compare a single incoming bit of

data (Data) against its content (Str) and indicate whether

or not it matches its content. The CAM array consists of

a fixed number of word rows, and each word row (CAM

word) has the same number of CAM bits (one CAM

entry). The CAM array is supported by word-row and

bit-column logic to update and access the CAM content.

The match operation generates a match line if all of the

bits in the search pattern match all of the bits in one

CAM entry. The bit-wise compares (matches) in one

CAM entry are gated together by AND to produce a

match. The output match line is usually used to enable

encoding and other readout circuits. Note that only a

single CAM search can be performed at a time with this

circuit topology. In the register mapping application, the

number of word rows is set equal to the number of

physical registers available in the register pool. The

pattern of CAM bits in a word row is the binary

representation of the logical registers used in the

instruction sets. The mapping implemented in the CAM

array defines the associations of the logical registers with

the actual physical registers. This association can also be

dynamically updated during instruction dispatch. The

output match line is encoded to broadcast the matched

physical register (and in our present application, also used

to enable the readout of the status bits of a special

register). Such additional circuits are placed outside and

nearby the CAM array.

Multicompare CAM cell

The CAM cell in Figure 3 is capable of performing one

search (compare) at a time. For a high-performance

processor, numerous (.12) different searches (compares)

must be performed simultaneously against each CAM

entry in a single clock cycle. A CAM structure with

multicompare CAM cells is required to accommodate

such a large number of searches. In this case, multiple

match lines are needed for each CAM entry: one match

line for each search per CAM entry. All of these match

lines must be driven by the same CAM entry. To obtain

this, one must integrate into the CAM cell structure as

many bit-wise compare circuits as the CAM searches to

be conducted in one clock cycle. Theoretically, this can be

accomplished by simply integrating the required number

of compare circuits (similar to the one in Figure 3) into

the CAM cell topology shown in the figure.

Each compare has its own data and data lines, but all

compare circuits are connected to the same cell storage

nodes (str and str in Figure 3). However, the overhead of

running this many tens of bit-wise compares and match

lines across each CAM entry would make the CAM cell

and CAM entry area far too large to be used in practical

chip design. In such an approach, the required compare

circuits can be integrated to form a vertical or horizontal

stack. If 12 or more of the bit-wise compare circuits are

added to form a vertical stack, this would increase the

height of the CAM cell by more than one order of

magnitude compared with the single-compare CAM cell

of Figure 3. It would be impossible to accommodate such

a CAM size in a practical chip design. On the other hand,

the required compare circuits can be integrated into the

CAM cell to form a horizontal stack of bit-wise compare

lines. In this case many tens of compare lines must run

across the CAM entry to produce the match lines

corresponding to the search vectors presented to the

CAM array. The number of compare lines is equal to the

number of CAM bits per entry times the total number of

search vectors (=72 for 6 bits and 12 searches). Such a

large number of horizontal wires across the entry would

limit the minimum size of the CAM cell that can be

achieved with this approach.

For a given search vector, the corresponding bit-wise

compare lines are extended across the CAM entry and

combined with AND to obtain the output match lines.

Also, in these cases, the overall size of the CAM entry

Basic single-compare CAM cell. (Data: incoming bits of data; Str:
cell content; WL: word-line signal; Pch: precharge signal; Match:
bit-wise compares.)

Figure 3

Match
(precharged
high)

Pch

WL

D
at

a
Str Str

D
at

a
Compare circuit

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

170

is determined by the total size of match line generation

circuits. The match lines are then driven outside the CAM

array to enable encoder and readout circuits. These

circuits would present substantial wiring and device

loads, which require large match line drivers. This would

also ultimately increase the CAM entry area. The wire

loadings on the compare nodes (in Figure 3) would be

excessive, and the device sizes should be increased to

compensate for that. The CAM cell storage nodes would

see increased loads as well because of the increased

number of compares. This degrades the speed of the

cell search and update. The cross-coupled invertors in

Figure 3 should also be made larger.

All of the above indicate potential integration problems

using these conventional approaches. They produce

exceedingly large numbers of horizontal wires running

across the CAM array and increase the overall size of the

CAM entry by a large amount. Thus, these approaches

are impractical in terms of chip design and make poor use

of the chip area. We present a new nonconventional

approach for establishing CAM and mapper organization

and have developed circuit topologies that are optimal for

out-of-order gigaprocessors.

A new nonconventional approach

Our approach to designing an area-efficient CAM circuit

topology and to organizing the register mapper that uses

the CAM array allows a fairly large number of CAM

searches (12 to 16) to execute simultaneously. It offers

a circuit configuration capable of maximizing the

total speed of the mapper functions and enables a fast

encoding of the matched registers and a fast readout of

register status data array. The matched CAM entries

point to the physical registers that are assigned to the

logical registers presented to the mapper CAM map.

Figure 4 illustrates the key features described below.

These features, unique to the present approach, provide

the advantages discussed above.

� Instead of integrating the bit-compare function

into the CAM circuit topology, as is the case in

conventional approaches, the compare is done outside

the CAM entry.
� The CAM content storage and the update portion

of the CAM cell are separated from the compare

component. The CAM cell contains only latches to

hold the CAM-stored bits of data and a multiport

multiplexer (mux) to update the CAM content. A

CAM storage entry is then a row of these storage cells.

The CAM storage array consists of all rows of storage

entries. In the mapper application, the bits of one

logical register tag are stored in one storage entry

of the CAM array.

� The bit-wise compare functions of the CAM cells and

the match line logic are physically separated from

the CAM entry and placed in a match entry that is

horizontally aligned with the CAM storage entry, as

shown in Figure 4. The array of match entries has the

same number of rows as the CAM storage array. Each

search vector has its own match array. There are as

many match arrays as searches to be made against the

CAM stored data.
� The bits in a CAM storage entry are driven

horizontally on long buses to all match arrays. There,

they are compared simultaneously against all search

vectors presented to the various match arrays.
� Each search vector is transmitted to a separate match

array and driven vertically on long buses across the

array entries. For a given match array, a match is

obtained when all bits of the transmitted search vector

match the corresponding bits of one CAM storage

entry, which are driven to and available at the entry

location of the match array. The match entry contains

bit-wise compare circuits (XNORs) and a gate to

AND these compares to generate a CAM match for

the presented search vector.
� Each match array also contains an encoder to encode

the matched physical register. The encoded physical

register tag can then be transmitted to enable different

circuits down the pipeline. It also contains wide muxes

to enable the readout of various register status data.

The status data is stored in separate arrays and is

driven to the match arrays on long buses, similarly to

driving the CAM storage data. Note that the match

lines are used local to the match array to drive these

encoder and readout circuits. This minimizes the load

on the match lines and improves both the speed and

the area.

The height of the CAM array is reduced by a large

amount compared with the conventional CAM. The

structure of the CAM entry is largely simplified by

removing all of the compare circuits outside the CAM

array. This alone could amount to an order of magnitude

reduction in the height of the CAM cell per entry in

reference to conventional CAM configurations. The

actual comparisons of bit patterns occur outside the

CAM array and in the match arrays. The drivers of the

CAM bits to the match arrays are sized to optimize the

drive delay while minimizing the CAM entry dimensions.

The height of the CAM array sets up the heights of all

of the remaining arrays included in the mapper and,

therefore, the height of the entire mapper block. The

match lines for a given search vector are generated in a

separate dedicated match array. All of the match arrays

receive the same CAM bit patterns (one pattern per

entry), but are presented with different search bit

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

171

patterns. One search vector runs vertically across the

entire match array to generate a match line at each entry.

The match line encoder and the readout circuitry are both

integrated locally within each match array and are

distributed across the entire depth of the array. This is an

essential feature of the organization of the mapper. It

minimizes the total load on the match lines and reduces

the size of the match line drivers, which, in turn, brings

down the size of bit-wise compare XNORs and the

overall width and area of the match array. It also

increases the speed of the entire match generation and

encoding by a considerable amount.

In contrast, the conventional CAM configuration

discussed above presented very large loads on the match

lines and incurred substantial area and speed penalties. In

summary, the circuit and organization of the mapper

discussed here provides a compact and area-efficient

CAM and mapper floorplan that can be applied in a

modern out-of-order processor chip.

Register mapper organization

The structure of the CAM and search engine described

above and depicted in Figure 4 facilitates the

implementation of the register mapper as a group of

custom arrays. Each array is dedicated to execute a

specific function. The rows of all arrays are aligned

together. Each row of the array is devoted to one physical

register to keep current state, shadow state, and controls

for that specific register. As shown in Figure 5, the entire

mapper is sliced into eight special custom arrays to

L
at

ch
U

pd
at

e
m

ux

C
A

M
0

dr
iv

er

L
at

ch

U
pd

at
e

m
ux

C
A

M
n

dr
iv

er

CAM cell 0 CAM cell n

L
at

ch
U

pd
at

e
m

ux

C
A

M
0

dr
iv

er

L
at

ch
U

pd
at

e
m

ux

C
A

M
n

dr
iv

er

CAM cell 0 CAM cell n

C
A

M
 e

nt
ry

 0
C

A
M

 e
nt

ry
 m

C
A

M
 e

nt
ry

 1

Match

M
at

ch
 li

ne
 e

nc
od

er

R
eg

is
te

r
st

at
us

 r
ea

do
ut

 c
ir

cu
it

C
om

pa
re

ci
rc

ui
t

C
om

pa
re

ci
rc

ui
t

Match

Match

M
at

ch
 li

ne
 e

nc
od

er

R
eg

is
te

r
st

at
us

 r
ea

do
ut

 c
ir

cu
it

Match

R
eg

is
te

r
st

at
us

 e
nt

ry
 0

R
eg

is
te

r
st

at
us

 e
nt

ry
 m

M
at

ch
 a

rr
ay

 0

M
at

ch
 a

rr
ay

 k

R
eg

is
te

r
st

at
us

 a
rr

ay

CAM storage array

C
om

pa
re

ci
rc

ui
t

C
om

pa
re

ci
rc

ui
t

Search vector 0 Search vector k

Figure 4

Register mapper organization, showing CAM storage array, match arrays, and register status ready array.

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

172

execute the various functions of the register mapper.

Figure 5 represents the mapper of the GPR, which has, in

the current design, a set of eight source arrays and four

destination arrays. The GPR mapper has a set of 80

physical registers, and the CAM contains a map for a

total of 36 logical registers. Therefore, the CAM array

has 80 six-bit-wide entries (rows), and each CAM entry

stores a six-bit tag of a single logical register.

The eight mapper special custom arrays are the

following:

1. The CAM storage array contains the CAM register

map. Only CAM storage latches, update muxes, and

data drivers are kept in this array, as explained earlier

(see Figure 4). The CAM data is driven to source and

destination arrays, where the actual comparisons

occur.

2. The architected-bit array (bit array) holds bits to

indicate an architected state (A_bit) and a replaced

state (R_bit) of the physical registers. It also contains

logic to generate these two bits (A and R) during

instruction dispatch. These bits are used to update the

A_bit and R_bit and are sent to the free list array and

shadow array during subsequent cycles. After a flush,

this logic also assists in restoring A_bits from the

shadow maps.

3. The source array contains compare/match logic for

looking up (8 to 12) logical source registers in the

mapper.

4. The destination array contains logic for looking up

four logical destination registers in the mapper.

5. The free list array holds bits and uses logic to generate

and select a set of free registers to be used during

the subsequent instruction dispatch.

6. The allocation array allocates new registers.

7. The shadow map array contains the shadow maps

that are saved for each group of dispatched

instructions.

8. The ready bit array has the latches to hold the ready

bit register status information (w, dl0, dl1).

Circuit and logic implementation

CAM core circuit—two-cycle CAM update and

drive path

The register map that is generated in the previous cycle

can be used to perform the source register lookup. In this

case, one has to update the CAM and drive the CAM

data (the logical register tags) to the source match

detection arrays at the same cycle. The match generation,

the match line decode, and the register status readout

must then be completed in the first half of the following

Figure 5

Overall mapper organization (eight special custom arrays).
So

ur
ce

 a
rr

ay
 1

 –
 c

om
pa

re
s/

m
at

ch
 a

nd
 e

nc
od

e/
re

ad
ou

t

So
ur

ce
 a

rr
ay

 2
 –

 c
om

pa
re

s/
m

at
ch

 a
nd

 e
nc

od
e/

re
ad

ou
t

So
ur

ce
 a

rr
ay

 8
 –

 c
om

pa
re

s/
m

at
ch

 a
nd

 e
nc

od
e/

re
ad

ou
t

So
ur

ce
 a

rr
ay

 3
 –

 c
om

pa
re

s/
m

at
ch

 a
nd

 e
nc

od
e/

re
ad

ou
t

So
ur

ce
 a

rr
ay

 5
 –

 c
om

pa
re

s/
m

at
ch

 a
nd

 e
nc

od
e/

re
ad

ou
t

So
ur

ce
 a

rr
ay

 4
 –

 c
om

pa
re

s/
m

at
ch

 a
nd

 e
nc

od
e/

re
ad

ou
t

So
ur

ce
 a

rr
ay

 6
 –

 c
om

pa
re

s/
m

at
ch

 a
nd

 e
nc

od
e/

re
ad

ou
t

So
ur

ce
 a

rr
ay

 7
 –

 c
om

pa
re

s/
m

at
ch

 a
nd

 e
nc

od
e/

re
ad

ou
t

Logical sources
(search vectors)

C
A

M
 s

to
ra

ge
 a

rr
ay

 –
 la

tc
he

s/
up

da
te

 m
ux

/c
am

 d
ri

ve
rs

B
it

ar
ra

y
–

A
_b

it
an

d
R

_b
it

ge
ne

ra
tio

n

D
es

tin
at

io
n

ar
ra

y
4

–
co

m
pa

re
s

D
es

tin
at

io
n

ar
ra

y
1

–
co

m
pa

re
s

D
es

tin
at

io
n

ar
ra

y
2

–
co

m
pa

re
s

D
es

tin
at

io
n

ar
ra

y
3

–
co

m
pa

re
s

A
llo

ca
tio

n
ar

ra
y

–
en

co
de

rs
 a

nd
 v

ec
to

r
bu

ff
er

R
ea

dy
 b

it
ar

ra
y

–
la

tc
he

s,
 u

pd
at

e
po

rt
s,

 a
nd

 d
ri

ve
rs

(u
pd

at
e

de
co

de
rs

)

Fr
ee

 li
st

 a
rr

ay
 –

 la
tc

he
s,

 lo
gi

c,
 a

nd
 f

re
e

se
le

ct
 lo

gi
c

Sh
ad

ow
 m

ap
 a

rr
ay

 –
 la

tc
he

s
(d

ec
od

er
s)

n
 e

nt
ri

es

Ready bit infoSource rtags and ready bits

Logical
destinations

(CAM update)

Logical
destinations

(search vectors)

Allocated
physical register

tags (rtags)
Group

tag/mask

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

173

dispatch cycle. The mapper outputs (physical register tags

and status bits) are then driven to the issue queue (ISQ)

in the second half of the dispatch cycle. However,

we discovered that this amount of work cannot be

accomplished within the pipeline timing budget without

making a cycle steal of a half cycle or more. This makes

the source register lookup path extremely tight to fit

within the pipeline.

To alleviate this timing constraint, for the source

register lookup, we modified the CAM update and drive

path to occur in two cycles instead of a single cycle. The

basic idea was to add two extra latches between the core

CAM storage latch and the source match detection logic,

as shown in Figure 6. The clock system has two phases,

C2 and C1. In Figure 6, L1 is a latch whose clock signal is

C1, and L2 is a latch whose clock signal is C2. The first

L1 latch (scannable) shown in the figure is the core CAM

storage element. The L2 latch and the second L1 latch

are inserted in the path to the source register lookup

in order to obtain a two-cycle CAM update and drive

path. To perform the source register lookup, the source

arrays then use the register map generated two cycles

ago, rather than one cycle ago. However, the CAM

update and drive must still set up for the destination

register lookup (match) on the following cycle, as

shown in Figure 6. This is required by the A_bit

generation logic, as is explained later.

Because the destination match detection array is

smaller and narrower than the whole source match

detection array, it is possible to use a single-cycle CAM

update and drive path to accomplish the destination

lookup. In Figure 6, the CAM data (cam_dst_lreg) driven

to the destination match detection array was taken from

the first L1 latch output. In contrast, the CAM data

(cam_src_lreg) driven to the source arrays is launched a

cycle later from the second L1 latch. Figure 6 shows the

static circuit topology for a one-bit core CAM storage

cell. A 6:1 update mux is used to write the CAM cell using

inputs which correspond to four destination logical

register tags (lreg,0:3.) that are associated with the four

instructions dispatched each cycle. The mux select signals

(alloc_w,0:3._en) are derived in the allocation array

and driven to the CAM array, as described in the section

on allocation logic.

When no register is allocated, the alloc_none signal

(generated in the allocation logic) allows the CAM cell to

keep its current state, as indicated by the feedback loop in

the path. The power-on reset (POR) signal is used to

initialize the CAM cell at power-on. The drivers of the

CAM data to the source and destination arrays are

properly sized to handle the large wire and gate loads.

The first L1 storage latch is scannable, and the scan

output is taken from the L2 latch output, as shown in

Figure 6. For the GPR mapper, each CAM entry has six

CAM bits, and the CAM array has 80 six-bit entries

(Table 1). Physically, the CAM entries are stacked

horizontally from left to right. The CAM data

(cam_src_lreg and cam_dst_lreg) is driven vertically to

the source and destination lookup arrays. The entries of

all other arrays in the mapper are horizontally aligned

with the CAM entries, as indicated earlier.

A_bit and R_bit logic and circuit

A_bit logic and circuit

The A_bit path (Figure 7) is constructed to satisfy two

timing and machine performance requirements. The first

requirement is that the A_bit cell update and drive to the

source match detection array should occur in two cycles.

One-bit core CAM storage cell—two-cycle CAM update and drive
path. (L1, L2: Latch whose clock signal is connected respectively
to C1 clock or C2 clock.)

Figure 6

C2 clock

C1 clock

Two-phase clock system (50% duty cycle)

al
lo

c_
w

<0
:3

>_
en

PO
R

_b
it

lr
eg

<0
:3

>

cam_dst_lreg
(To destination
lookup array)

c1_clk

cam_src_lreg
(To source
lookup array)

L
1

la
tc

h
(s

ca
nn

ab
le

)

scan_out
PO

R

al
lo

c_
no

ne

sc
an

_i
n

sc
an

_c
lk

C
A

M
 u

pd
at

e
m

ux

L1
latch

L2
latch

c2
_c

lk

c1
_c

lk

Core CAM
storage latch

Table 1 Rename resources of the POWER4 chip.

Mapper

type

Logical

size

Physical

size

Number

of

sources

Number

of

destinations

Number

of ready

bits

GPR 36 80 8 4 5

FPR 32 72 12 4 3

CR 9 32 5 4 1

Link/count 2 16 3 3 1

XER 4 24 4 4 5

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

174

The A_bit becomes visible to the source match array for

source lookup one cycle after the A_bit is written. This

describes the normal A_bit update and drive path.

Similarly to the CAM case, the A_bit update and drive

must still set up for the destination register lookup

(match) on the following cycle. This allows the A_bit

to become visible to the destination match array

immediately after it is written.

The second requirement is that the A_bit must be

restored after a flush or dispatch reject. According to the

first requirement, we must wait an additional cycle before

dispatching after a flush recovery or dispatch reject

recovery. This is highly undesirable from a performance

perspective. To avoid this extra recovery cycle, we restore

the A_bit at two points of the two-cycle path. We restore

the A_bit at the first L1 storage latch and, at the same

time, at the second L1 latch of the two-cycle path. For

restore operation, this allows us to bypass the two-

cycle path and instead restore the A_bit in one cycle.

Instruction dispatch can then occur immediately after

recovery. For normal operation, the two-cycle A_bit

update path is selected to drive the A_bit to the source

match array for register lookup.

Figure 7 shows the circuit path of the A_bit

constructed according to the above requirements. The

path starts with the logic for generating the A_bit

(abit_gen), used to update the A_bit stored in the A_bit

storage element (the first L1 latch). The L2 latch and the

second L1 latch are inserted to obtain a two-cycle A_bit

update and drive path for the source register lookup

under normal operation. The bypass mux placed before

the second L1 latch allows the restored A_bit to become

visible to the source match detection array immediately

after it is recovered and written to the A_bit entry. By

adding the bypass mux, we avoided the extra cycle needed

to drive the A_bit to the source array under normal

operation. The delay through the bypass mux is small

compared with the A_bit logic delay, and therefore there

is enough time to write the restored A_bit (abit_restore)

and drive the data src_abit to the source match array in a

single cycle. The A_bit (dst_abit) driven to the destination

match detection array is taken from the first L1 latch

output in order to be available to generate a destination

match that is used by the subsequent A_bit logic and

update cycle.

The A_bit logic is shown in Figure 8(a). The inputs

to the A_bit logic are derived in various arrays and

logic macros inside and outside the mapper block. The

dst_match is generated in the destination array to indicate

a destination match (see the section below on destination

match). The dispatch valid signal (disp_valid) is derived

in the dispatch logic macro (see the dispatch section

below). Both signals are driven to the A_bit array and

locally latched using L2 latches. The ‘‘i’’ denotation in

Figure 8 refers to the ith entry of the A_bit array. The

restore_enable_shadow is derived in the shadow map

array and driven to the A_bit. The array_init is a mapper

initialization signal. Both signals latched local to the

A_bit using master–slave latches (L1/L2). The disp_reject

signal is created in the dispatch logic macro (located

outside the mapper—see the dispatch section) and then

driven to and locally latched in the A_bit array. The input

signals disp_arch_i,0:3. are the architected states

associated with the four instructions that are dispatched

in one cycle. They are created by the dispatch logic (see

the dispatch section) and then driven to the A_bit array

and latched locally using L2 latches.

Each of these signals runs horizontally across the

mapper, driving all of the entries in the array. The

alloc_w,0:3._en inputs are the allocation write-enable

signals originated in the allocation array and driven

directly to the A_bit entries. The same signals also feed

the CAM array and the R_bit array, and run vertically

along the mapper. The input abit_src to the second L1

A_bit logic and circuit path.

Figure 7

L
1

la
tc

h
(s

ca
nn

ab
le

)

L2
latch

c2
_c

lk

dst_abit
(To destination
lookup array)sc

an
_c

lk

sc
an

_i
n1

abit_save

src_abit
(To source
lookup
array)

A_bit
generation

logic

normal_enable
not_replaced

abit_l2

disp_arch_i<0:3>
alloc_w<0:3>_en

restore_enable
abit_restore

c1
_c

lk

A_bit storage latch

scan_out1

L
1

la
tc

h
(s

ca
nn

ab
le

)

sc
an

_c
lk

sc
an

_i
n2

c1
_c

lk

abit_l2

ab
it_

l2

abit_l2

normal_enable

restore_enable

abit_restore
B

yp
as

s
m

ux

c2
_c

lk

scan_out2

abit_gen

ab
it_

ge
n

(To free
list logic)

abit_src

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

175

latch in Figure 7 is selected by the bypass mux in

Figure 8(a). The abit_restore(i) are the A_bits that are

restored from the free list array and driven directly to

the A_bit logic. The abit_l2(i) are the current A_bit

entries that are held by the L2 latches of the two-cycle

path of Figure 7. The second L1 latch is also scannable

to permit testability of the bypass mux. The A_bit

output data src_abit and dst_abit are driven vertically

to the source and destination lookup arrays, respectively.

The outputs abit_save in Figure 7 are sent vertically to

the free list array and used there as inputs to the free

list bit logic. One single A_bit is assigned for each entry

in the A_bit array. For the GPR mapper, the A_bit

array contains 80 one-bit entries (Table 1), with 80

corresponding to the number of physical registers within

the register file managed by the mapper.

R_bit logic and circuit

Registers are replaced when a subsequent instruction

writes to the same logical register target. Some registers

may be replaced by subsequent instructions within the

same group and are allocated and replaced at the same

time. The replaced status of the registers in the mapper is

maintained in the replaced bit (R_bit) array. The R_bit

array contains logic for generating and updating the

R_bit and also contains storage elements to store the

current R_bit values. Figure 8(b) shows the R_bit circuit

path. A scannable master–slave flip-flop latch (L1/L2) is

used to store the R_bit. To prevent a flush-through

problem, the underlapped C1 clock is used to clock-gate

the master latch. The rising edge of the underlapped C1 is

delayed by a determined amount relative to the rising

edge of C1. The slave latch L2 is clock-gated by the C2

clock. The outputs [rbit_save in Figure 8(b)] are driven

vertically to the shadow map array to be saved there

during the cycle after dispatch. The same R_bit data also

feeds the free list array and is used as inputs to the free

register generation logic. The inputs to the R_bit logic are

dst_match, disp_repl_i,0:2., and alloc_w,0:2._en.

The dst_match signals are driven vertically to the bit

array to feed both the R_bit and the A_bit arrays.

The input signals disp_repl_i,0:2. are the replaced

states associated with instructions 0, 1, and 2 that are

dispatched in a single cycle. They are created by the

dispatch logic (see the section on dispatch) and then

driven to the R_bit array and latched locally using L2

latches.

Each of these dispatch signals runs horizontally across

the mapper and drives all of the entries in the array. The

alloc_w,0:2._en inputs are the same allocation write-

enable signals that drive the A_bit (and the CAM) entries.

The resulting rbit_gen(i) is used to update the R_bit

ith entry. One single R_bit is assigned for each entry

in the R_bit array. For the GPR mapper, the R_bit

array has 80 one-bit entries (see Table 1).

Source lookup

The source lookup circuits of the source arrays contain

compare and match logic for looking up the logical

source registers in the mapper. The logical source

registers for the entire instruction set dispatched in a

single clock cycle are looked up simultaneously. For the

GPR mapper, eight source searches are done in parallel

during a single dispatch cycle. For the FPR mapper, 12

source registers are searched in the same dispatch cycle.

According to this, there are eight separate source arrays

in the GPR mapper, while the FPR mapper contains 12

(a) A_bit logic and (b) R_bit logic and storage.

Figure 8

abit_l2(i)

normal_enable

alloc_w<0:3>_en(i)

disp_arch_i<0:3>

abit_restore(i)

restore_enable

ab
it_

ge
n(

i)

not_replaced(i)

4 44

abit_restore(i)

restore_enable

abit_l2(i)

normal_enable
abit_src(i)

disp_valid

dst_match(i)

not_replaced(i)

restore_enable_from_shadow

disp_reject

array_init

restore_enable

normal_enable

alloc_w<0:2>_en(i)

disp_repl_i<0:2>

3 33

dst_match(i)

sc
an

_i
n

sc
an

_c
lk

c2
_c

lk

c1
_u

nd
er

la
p_

cl
k

scan_out

rbit_save
(To free list
and shadow
map arrays)

Master–slave
flip-flop
(scannable)
R_bit storage

(b)

(a)

<4>

<3>

Bypass
mux

rbit_gen(i)

L2
latch

L2
latch

L2
latch

L2
latch

L1

L2

L1

L2

L1

L2

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

176

separate source arrays. The same source array macro is

instantiated multiple times. However, each source array is

fed by a different logical source register index associated

with the dispatched instruction set. In contrast, the same

CAM bits in a given entry drive all of the source arrays

placed in a given mapper, as explained earlier in the CAM

core circuit section. The logical source register index (up

to 6 bits) is compared with the contents of each CAM

entry (up to 6 bits), and a match line is generated for each

entry (physical register) in all of the source arrays of the

mapper. A match occurs if all of the CAM bits of the

same entry are equal to the corresponding bits of the

logical source register index, and, at the same time,

the architected bit (A_bit) of the entry is ‘‘1’’ (the

corresponding register is in the architected state).

Figure 9 shows the general timing of the mapper

functions associated with dispatch. The transport cycle

is the cycle before the dispatch cycle, during which

instruction information is transported from the

instruction decode unit (IDU) to the dispatch buffer.

The logical register indices are transmitted during the

transport cycle from the dispatch buffer and received by

L1 latches local to the mapper. The source lookup begins

during the second half of the transport cycle when the

logical source indices (Lregs) are launched from the

mapper L1 latches. In the current floorplan (oriented 908

relative to Figures 4 and 5), the Lreg L1 latches are placed

at the left-side or right-side perimeter of the source

arrays. The same Lreg index is then driven horizontally

across the mapper source array to feed the bit-wise

compare logic of all of the entries in the mapper (a fan-

out of 80 in the case of the GPR mapper). As described

earlier in the CAM core circuit section, the CAM bits

from each CAM entry are also launched from L1 latches

located in the CAM array macro and are then driven

vertically to feed the bit-wise compare logic for all of the

source arrays placed in the mapper. Similarly, the A_bit is

transmitted from the L1 latches in the bit macro and

driven vertically to the match generation circuit locations

of all of the source arrays in the mapper. At the intercept

points of Lreg bits and CAM bits, simple pass-gate

XNOR circuits are used to do a bit-wise compare between

the corresponding CAM and the Lreg bits. An entry

match line is obtained by ANDing together all of the

single-bit compares and the A_bit of that entry.

Figure 10 is a circuit diagram of the source lookup

pathway illustrated for a single mapper entry. In each

source array, the match lines are encoded using a local

highly distributed encoder circuit to derive the physical

register tags (rtags). The match lines are also used to read

out the register status bits (w and dl bits) using distributed

wide muxes local to the source array. The w and the dl

bits are generated in the ready bit macro and driven

vertically to all of the source arrays in the mapper (see the

ready bit circuit in the section on the ready bit array

below). The rtags and the register status bits for each

source array are latched locally by L2 latches to give the

main outputs of the mapper. These mapper outputs are

then driven outside the mapper to the dispatch select logic

and propagated through the issue queue macro muxes to

the receiving master–slave (L1/L2) latches. The mapper

source output is read from the mapper during the first

half of the dispatch cycle (see Figure 9), allowing time to

go through the dispatch select logic and mux and write

the data into the issue queue.

Destination lookup (destination match)

The destination lookup and match is performed to detect

registers that are replaced and whose A_bits must be

cleared. For each entry in the mapper, four logical

destination registers are compared with the contents

of the CAM, and four match lines are produced.

The four logical destination registers correspond to the

destinations of the four instructions dispatched in a single

General timing for mapper functions associated with (a) dispatch
(lookup and update) and (b) completion, flush, and reallocation.

Figure 9

Lreg transfer from disp_buffer

Lreg, CAM, and A_bit drive

Match and read sources

Disp_select mux and write
instruction queue

Allocate buffer rtags

Generate A/R_bits

Update mapper CAM

Save A/R_bits in shadow array

Ready bit write

Ready bit drive to source

C2_clock

Dispatch Dispatch � 1

(a)

(b)

Complete
or flush

Read
shadows

Free
select

Complete broadcast

 or

Flush broadcast

Gmask select

Read shadows

Restore A_bits

Select free register

Allocation encode

Dispatch � 1

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

177

cycle. These four match lines are then ORed together to

generate the destination matches (dst_match) as outputs.

The dst_match signals are driven to the A_bit array to be

used in updating the A_bits andR_bits, as described earlier.

The CAM and A_bit update and drive paths are set up

for destination lookup on the following cycle. This allows

the CAM bits and the A_bit to become visible to the

destination array immediately after they are written. The

circuit pathway used to obtain the destination match

is similar to the one used in the source lookup. A

destination match occurs if all of the entry CAM

compares are ‘‘1,’’ the entry register is architected, and the

destination is valid (dst_valid is ‘‘1’’). The destination

logical registers (lregs) are launched from L1 latches

placed local to and at the left-side or right-side perimeter

of the destination arrays. The same lreg index is then

driven horizontally across the mapper destination array

to feed the bit-wise compare logic of all of the entries in

the mapper. The lreg wires run orthogonal to the CAM

bit wires. The destination lreg signals are also driven

vertically along the array perimeter to the CAM macro

to be used to update the CAM array.

The dst_valid input signals are derived in the dispatch

buffer logic and transmitted to and captured by L1

latches located at the perimeter of the destination macro.

The dst_valids are then launched from the L1 latches

and run horizontally to feed the match circuits. Four

similar match arrays are used to give four match lines

per entry. Each match array is fed by a corresponding

set of an lreg index and dst_valid. For each entry,

the four match lines are ORed together to obtain the

entry destination match signal (dst_match). The

dst_match output signals are run vertically to the

neighboring A_bit/R_bit macro.

Free list generation and selection of free registers

The architected, held, and buffered bits (A, H, and B bits)

are kept in the free list macro to indicate the current state

of each register in the mapper. This set of register-state

bits is used to generate a free register list. These bits

are updated during the cycle after dispatch, using

information from the bit macro; during the cycle after a

completion or a flush signal is received, using information

from the shadow map macro; or during the free select

cycle. The free list macro (Figure 11) contains write logic

to set or clear each of the state bits (A, H, and B). It also

contains a simple logic to create a free bit for each

register based upon the register state bits and whether the

register is already a selected free register. In addition,

the free list macro contains a free select logic that selects

a single free register from each mapper quadrant as a

candidate register to move into the allocation buffer.

For the GPR mapper of 80 registers and four

quadrants, the select logic selects one register from 20 per

quadrant. The selected free registers are preallocated into

an allocation buffer to provide early information for

future dispatches. The free list bit logic and macro

floorplan are illustrated in Figure 11. The free list select

logic is shown in Figure 12(a). Two clock cycles are used

to fit the entire pathway. The first clock cycle is used to

update the A, H, and B bits (AHB). Master–slave L1/L2

latches are used to store the data. The second clock cycle

is used to generate free registers and then carry out

Source lookup circuit pathway (illustration for a single entry and a
single source array). [n: number of CAM bits per entry; p: number
of entries (physical registers); k: number of bits in rtag index.]

Figure 10

L1 latch
(scannable)

A_bit
entry

src_abit

L1 latch

CAM
entry

<0:n � 1>

n
cam_src_lreg<0:n � 1>

y

x

Bit-wise compare
XNOR <0:n � 1>L

1
la

tc
h

(s
ca

nn
ab

le
)

n

lreg

<0:n � 1>

(drives
p entries)

lr
eg

 (
fr

om
 d

is
pa

tc
h

bu
ff

er
)

n

n

xnor<0:n � 1>
(compares)

sr
c_

ab
it

Match line generation
(n � 1)_way AND

A
 s

in
gl

e
en

tr
y

(o
ut

si
de

 s
ou

rc
e

ar
ra

y)
Match<0> Match<1:p � 1>

Register status
(w, dl’s)

readout mux
(p_way wide

distributed muxes)
Status bits
(w, dl)

(To the
dispatch_select
and issue queue)

Match<0> Match<1:p � 1>

Match line
encoder
(p to k)

L2
latch

L2
latch

krtag

(w, dl)

Status
bit

entry

A single entry
(outside the
source array)

en
tr

y
0

en
tr

y
 p

 �
 1

(w, dl)

A
 s

in
gl

e
en

tr
y

(To the
dispatch_select
and issue queue)

L1 latch
(scannable)

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

178

the select logic cycle to select a single free register per

quadrant for preallocation. An S_bit is kept in the free list

array to designate the selected free state of the register.

S_bits are also stored in L1/L2 latches and then driven

outside the free list macro to the allocation array to feed

the allocation buffer. The S_bits generated in the previous

cycle (sbit_12) are used locally to update the B_bit, as

shown in Figure 12(b).

The F
a
, F

h
, and F

b
(in Figure 11) represent the update

logic described in Figure 12(b). The abit_save and

rbit_save come from the bit macro, while the abit_shad

and rbit_shad signals come from the shadow map array.

The alloc_q_need and alloc_any signals are driven from

the allocation macro. The abit_l2, hbit_l2, bbit_l2, and

sbit_l2 are the stored A, H, B, and S bits, respectively.

The restore_enable and release_enable come from the

shadow map array. The other enable signals (save_enable

and hold_enable) are generated locally. The disp_valid

and disp_reject signals are originated from the dispatch

buffer logic. The index ‘‘i’’ indicates the ith entry. A free

register is the NOR of A, H, B, and S_bits (AHBS). A

state register of AHBS = 0000 gives a free register.

The selection cycle for the case of the GPR mapper

with 20 registers per quadrant selects the top single free

register in one quadrant. The sel_1of3, sel_1of2, and

top_1of3 logic functions are described in Figure 12(a).

The sel_1of3 selects first one free out of three, and

sel_1of2 selects the first free out of two. The top_1of3

Free list AHB register state logic and macro floorplan (two-cycle
pathway). Fa, Fh, and Fb represent the update logic described in
Figure 12(b). [p: number of entries (physical registers); i � 0 to
p � 1.]

Figure 11

ab
it_

l2

hb
it_

l2

bb
it_

l2

sb
it_

l2

Register state

 AHBS
free 0000
valid 1000
 0100
 0010
 0001
invalid all other

Error detection

Fa

L2
L1

Fh

L2
L1

Fb

L2
L1

L2
L1

p
F

p

p p p p

p p p

p

p

p p

Cycle 1: Update AHB state
Cycle 2: Generate free
 selects

p

4

abit_save(i)

abit_shad(i)

initialize(i)

array_init

ho
ld

_e
n

re
st

or
e_

en

sa
ve

_e
n

re
le

as
e_

en

rbit_shad(i)

rbit_save(i) alloc_q_need

alloc_any(i)

se
le

ct
(i

)

abit_restore_out(i)

free_select(i)
se

le
ct

(i
)

<0:p � 1>
Four-way
NOR(i)

free(i)

Select logic

quad_free_valid
free_vld_q

not_rbit_shad_l2(i)

invalid_state logic
invalid_state

dead_register logic
dead_register

check_dead_l2

L2

L2

L1

L1

abit_save_out(i)

A H B S

(a) Free list select logic; (b) free list bit logic.

Figure 12

(a)

(b)

free(0)

select(0)

select(1)

select(2)

grp_sel

free(1)

free(2)

grp_free

sel_1of 3

select(0)

select(1)

free(0)

free(1)

grp_free

grp_sel

sel_1of 2

tgpr_free(0)

tgrp_sel(0)

tgrp_free(1)

tgpr_sel(1)

tgrp_free(2)

tgrp-sel(2)

top_1of 3

abit_save(i)

save_enable

abit_shad(i)

restore_enable

abit_l2(i)

hold_enable

initialize(i)

array_init

Fa(i)

rbit_save(i)

save_enable

rbit_shad(i)

release_enable

hbit_l2(i)

Fh(i)

sbit_l2(i)

alloc_q_need

bbit_l2(i)

alloc_any(i)

Fb(i)

L2
latch

L2
latch

L1

L2disp_valid

disp_reject

save_enable

hold_enable

restore_enable

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

179

selects the top group that has a free register. For each

quadrant, a free valid signal (free_vld_q) is generated

to indicate whether at least one register is free in that

quadrant. These signals are used in the allocation macro.

The free list macro also contains error detection logic to

diagnose invalid states and dead registers. AHBS states

other than 0000, 1000, 0100, 0010, or 0001 are invalid. A

dead register check is made to detect a register that is

stuck in the hold state (hbit_l2 mismatches the R_bit

saved in the shadow map).

Allocation of registers—encoded and vectored

allocation buffers

In each cycle, up to four registers may be selected and

moved from the free list (free macro) to the allocation

buffer (allocation macro). The preallocated registers

provide early information for future dispatches. New

registers are allocated during dispatch for each

instruction operation that writes a new result. Two

versions of the allocation buffer are kept in the allocation

macro. The encoded allocation buffer keeps encoded

register tags (indices) that must be sent to local and

remote instruction issue queues during dispatch. The

vectored allocation buffer keeps the same register identifier

in a vectored format (non-encoded) that is used to control

register allocation and CAM map update within the

mapper during the dispatch cycle. The allocation macro

also contains a logic to derive signals used to keep track

of register availability and to generate a resource hold

signal for the mapper when necessary. In the current

floorplan, the encoded allocation buffer and logic are

placed in the perimeter side of the allocation array.

The vectored allocation buffer occupies the allocation

array.

Encoded allocation buffer

The encoded buffer receives the free select signals

(free_select,0:p�1., where p is the number of registers in

the mapper) from the free list macro described in the free

list generation and selection of free registers section

above. It also receives valid bits from the free list macro.

The register allocation is done on a quadrant basis, with

up to one register allocated from each mapper quadrant

in a single dispatch cycle. In line with the free list macro,

this buffer is also partitioned into four quadrants (except

for the CTR/LR mapper, which has three triplets). In

each quadrant, the set of free_select signals is encoded

to generate one register tag per quadrant.

As shown in Figure 13, the encoded buffer contains

a set of encoders to read out a register tag from each

quadrant of the mapper during the second half of each

cycle (L1 phase). At the same time, it reads out a valid bit

from each quadrant. The entire set of register tags in each

quadrant and valid bits from all four quadrants are sent

through 4:1 muxes (7-bit, for GPR and FPR mappers),

followed by 2:1 muxes (7-bit), and then captured by L1

latches that feed into the output L2 latches.

The four 4:1 muxes (one 7-bit, 4:1 mux per quadrant)

perform rotating writes to the four allocation buffer slots

that correspond to the four instructions dispatched in a

single cycle. A 4-bit counter is used to provide the same

four select signals for all of the 4:1 muxes of the four

slots. In Figure 13, the inputs rtag0,0:6., rtag1,0:6.,

rtag2,0:6., and rtag3,0:6. to the four allowed buffer

slots are rotated such that each slot of the buffer is written

by a different quadrant during the four consecutive

cycles of the counter, and the input rotation is such that

in each of the counter four cycles, the four slots receive

their tag inputs from different mapper quadrants in

a rotating manner. This guarantees that each quadrant

of the mapper free list writes to alternating slots of the

allocation buffer during four subsequent dispatch cycles.

This rotation increases the likelihood that an allocation

slot that remained empty in a given dispatch cycle will

be filled in the next cycle.

For the next instruction dispatch to occur, all needed

allocation slots must be filled and the required free

registers from the designated quadrants must be

available. An allocation slot is filled with a new

rtag if allocation is requested by the dispatch block

(disp_i,0,1,2,3._alloc is asserted) or if the slot has an

invalid allocation in the previous cycle (alloc_valid_l2_b

is asserted). A slot fill signal, tag_fill_s, is derived locally,

as shown in Figure 13, to update the slot allocation

buffer. Only slot0, which allocates the destination register

tag for instruction i0, is fully illustrated in Figure 13.

Register tags are similarly allocated for instructions i1, i2,

and i3 by rotating the same inputs to the slot 4:1 muxes.

The alloc_rtag and rem_alloc_rtag are sent to local and

remote dispatch select macro and remote mappers. The

outputs zero_free,0:3. deliver an early L1 signal to the

dispatch control logic for computing the dispatch reject.

Vectored allocation buffer

The vectored allocation buffer keeps the same register

identifier in a vectored format (non-encoded). It provides

the write-enable signals that are used to update the CAM

logical-to-physical register map within the mapper during

the dispatch cycle. These write-enable signals are also

used to update the A_bit and R_bit, as explained earlier.

The free select signals from all quadrants are muxed

and latched to provide the write-enable signals

alloc_w0_enable,0:79., alloc_w1_enable,0:79.,

alloc_w2_enable,0:79., and alloc_w3_enable,0:79.,

as shown in Figure 14. These enable signals are driven to

the CAM array to update the CAM entries through the

four write ports of the CAM cells. The same signals also

drive the A_bit and R_bit logic. Each instruction that

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

180

writes a result will update a single CAM entry during the

dispatch cycle. The vectored allocation buffer slots are

filled in a manner consistent with the encoded allocation

buffer, as shown in Figure 14.

For example, the mux select signal q0_take0 allocates

a destination register for instruction i0 from quadrant 0

during count 0 of the allocation counter and provides

alloc_w0_enable,0:19.. In count 0, instructions i0, i1,

i2, and i3 get their allocations from quadrant 0, 1, 2, and

3, respectively. In count 1, instructions i0, i1, i2, and i3

get their allocations from quadrant 1, 2, 3, and 0,

respectively, and so on for count 2 and count 3. This is

consistent with the filling of the encoded allocation buffer

with register tags. Allocation-from-quadrant-needed

signals alloc_q0_need, alloc_q1_need, alloc_q2_need, and

alloc_q3_need are generated as shown in Figure 14

to signify that allocations were needed from the

corresponding quadrant (q0, q1, q2, and q3). These

signals are sent to the free list logic to define the B_bit of

the mapper register state. A register is moved to the

buffered state if it is selected from the quadrant free list

and allocation is needed from that quadrant in the same

cycle. The alloc_any signals are also sent to free list logic

to reset the B_bit. The alloc_none signals are driven to the

CAM array to rewrite the CAM entries.

Shadow map array

The mapper not only keeps the current state of the

registers, it also maintains shadow maps to save previous

mappings and replacement information for each group

of instructions that has been dispatched but not yet

completed or flushed. Two bits, the A_bit and R_bit, are

saved for each of the 20 groups of dispatched instructions

that are currently active and for each register in the

mapper (80 for the GPR mapper). These bits are stored in

two static random access memory (SRAM) arrays with

one read port and one write port per bit. For the GPR

mapper, two 20-bit3 80-row arrays are used. These two

Figure 13

Encoded allocation buffer (only slot 0 is illustrated; the same inputs to the 4:1 muxes are rotated for slots 1, 2, and 3).

Encoder quad 0

L1/L2

rtag0<0:6>

L1/L2 L1/L2 L1/L2

rtag1<0:6> rtag2<0:6> rtag3<0:6>

Encoder quad 1 Encoder quad 2 Encoder quad 3

c2_clk

c1_clk

sc1_clk

array_init

Count<0:3>

Counter
free

select<20:39>
free

select<0:19>
free

select<40:59>
free

select<60:79>

rtag0<0:6>

Count<0:3>

rtag1<0:6>

rtag2<0:6>

rtag3<0:6>

4:1
mux

<0:6>
L1

latch
L2

latch
alloc0_rtag<0:6>

rem_alloc0_rtag<0:6>
tag_fill_s0

tag_fill_s0_b

Allocation slot 0
Inputs rotated for slots 1, 2, 3
s1: rtag1, 2, 3, 0
s2: rtag2, 3, 0, 1
s3: rtag3, 0, 1, 2

2:
1

m
ux

free_vld_q0

free_vld_q1

free_vld_q2

free_vld_q3

4:1
mux 2:

1
m

ux L1
latch

L2
latch

zero_free<0>

L2
latch

early_disp_i0_alloc

alloc_valid_0_l2

tag_fill_s0

tag_fill_s0_b

tag_fill_s0

disp_i0_alloc_b

tag_fill_s0
Allocation slot 0
Inputs rotated for slots 1, 2, 3
s1: vld_q1, 2, 3, 0
s2: vld_q2, 3, 0, 1
s3: vld_q3, 0, 1, 2

rtag allocation

Valid
allocationCount<0:3>

(Slot 0 allocates destination register tag for instruction i0)

al
lo

c_
va

lid
_0

_l
2

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

181

arrays are vertically aligned with the rest of the mapper

arrays with word lines (rows) that run horizontally and

bit lines that run vertically. The bits are written during the

cycle after dispatch from latches that are placed in the

A_bit/R_bit arrays, described above in the section on

A_bit and R_bit logic.

The A_bit and R_bit logic formulates the A_bits and

R_bits needed to update the current register map and

save a shadow copy of these two bits to be stored in

the shadow map memory array. The shadow bits are

read during the cycle after instruction completion or

instruction flush is received. The two events, instruction

group completion and flush, cause registers to be released

or restored. When a group completes, the results that it

produced are committed, and the registers that it replaced

are released to the register free list. When a group is

flushed, the registers that it allocated are released.

Additionally, when a flush occurs, the registers that were

in the architected state just prior to the first flushed group

are restored to the architected state. In this way, the

proper state is restored.

Figure 15 shows the shadow map arrays and control

logic. A dispatch group tag (alloc_gtag) is provided

during the dispatch cycle and must be decoded, then

used to control a write into the shadow maps on

the subsequent cycle. A vector of A_bits and R_bits

(abit_save and rbit_save) are saved into the array for each

dispatch group. This write must be prevented in the case

in which a group was dispatch-rejected. Completion and

flush signals (comp_valid and flush_valid) are received

and latched here; then restore_enable and release_enable

signals are sent to other macros on the subsequent

cycle. The restore_enable signal must come on after a

flush. The release_enable signal must come on after a

completion or flush. One mask (flush_gmask) is used

to indicate one or more groups being flushed when

a flush is valid (flush_valid). We must read out and

summarize the R_bits for all groups being flushed.

Another mask (misc_pmask) is used to indicate the

group being completed when completion is valid

(comp_valid). We must read out the R_bits for the

group being completed. This second mask is also used

to indicate the oldest group being flushed. We must read

Figure 14

Vectored allocation buffer. (Only slot 0 is fully illustrated; it allocates destination registers for instruction i0. Instructions i1, i2, and i3 are
allocated similarly.)

disp_i0_alloc_b

free_select<0:19>

free_select<20:39>

free_select<40:59>

free_select<60:79>

q0
_t

ak
e0

q1
_t

ak
e0

q2
_t

ak
e0

q3
_t

ak
e0

2:1
mux

<0:79> L1/L2
latch

<0:79> alloc_w0_enable<0:79>

80

w0_en<0:79>

80

w1_en<0:79>
w2_en<0:79>

w3_en<0:79>
L1/L2
latch

<0:79>

alloc_none

alloc_any

80

80

<0:79>

(q0_take0 allocates destination register for
instruction i0 from quadrant 0)
.
(q3_take0 allocates destination register for
instruction i0 from quadrant 3)

count_0

count_1

count_2

count_3

tag_fill_s0
q0_take0

q3_take0

q2_take0

q1_take0

count_3

count_0

count_1

count_2

tag_fill_s1
q0_take1

q3_take1

q2_take1

q1_take1

q0_take0

q0_take1
q0_take2

q0_take3

alloc_q0_need

q1_take0

q1_take1
q1_take2

q1_take3

alloc_q1_need

q2_take0

q2_take1
q2_take2

q2_take3

alloc_q2_need

q3_take0

q3_take1
q3_take2

q3_take3

alloc_q3_need

count_2

count_3

count_0

count_1

tag_fill_s2

count_1

count_2

count_3

count_0

tag_fill_s3

q0_take2

q3_take2

q2_take2

q1_take2

q0_take3

q3_take3

q2_take3

q1_take3

w1_en => inst i1
w2_en => inst i2
w3_en => inst i3

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

182

out the A_bits for the group being flushed. There is one

possible hazard that occurs if the completion logic

indicates a valid flush with a flush_gmask of all zeros!

This condition is not allowed to occur.

Ready bit array

Special ready bits (w, dl0, dl1) are kept in the ready bit

array for each register to indicate whether its data is

available (possibly conditioned upon the outcome of a

load) (Figure 16). Each instruction source has a w bit to

indicate whether its data is ready (written). The two-bit

dl0 and dl1 track instruction dependence on load for

load-store units ls0 and ls1. If any of the two bits in dl0

or dl1 are set, it indicates that the corresponding source

operand directly or indirectly depends on a load that is in

progress, but the cache hit/miss (ls0, 1_data_valid in

Figure 16) is not yet known. This instruction can be

issued before we know whether the cache hit, but must be

reissued if a cache miss occurs. The instruction issue logic

provides this information when a result is about to be

written into the register file. Only ready bits written

during the previous cycle are available during dispatch.

As shown in Figure 16, the array includes latches to

hold the ready bits (w, dl0, dl1). These latches require

some special shifting and resetting functions. Split L1 to

L2 latches are used to store, drive, and shift the ready

bits. The ready bit data (W, DL0_b0, DL0_b1, DL1_b0,

DL1_b1) is driven to the source array and is available to

be read out for each source. The source macro sends the

read information to the issue queue during dispatch.

Update decoders are also required to control update of

these bits as register values become available. When a

register is allocated, its w and dl bits are cleared. When a

register value becomes available, the w bit is set to 1 and

the dl bits are set using information derived locally

(wrt_ls0 and wrt_ls1) from inputs provided by the issue

logic. Otherwise, the dl bits shift logically each cycle

toward bit 0. The shifting of dl bits is done before they are

written into the mapper for each cycle they are in the

mapper latches and after they are read out of the mapper.

The ready bit reset logic is also shown in Figure 16

using inputs from the issue queue. The two load-store

units provide the data valid signals (ls_data_valid).

Master–slave L1/L2 latches are used to hold these inputs

and also to hold the update decoder vectors. Reset

overrides any other functions and occurs for allocation

reset, load miss, and power-on reset.

Dispatch

Instruction sequencing unit

The instruction sequencing unit (ISU) manages out-of-

order instruction execution within the processor core [10].

It implements the following microarchitectural functions:

� Dispatch: Described below in this section.
� Register renaming and allocation (mapper): The topic

of the present paper.
� Issue: It queues instructions, monitors dependences,

and controls out-of-order instruction issue to the

fixed-point unit (FXU), load-store unit (LSU),

floating-point unit (FPU), and branch unit (BRU)

[10].
� Completion: It monitors the finish status of each

instruction, ensures in-order instruction completion,

controls resource deallocation, and initiates selective

instruction flushes when necessary [10].

These functions are performed during different stages of

the pipeline [10], and each function requires special

structures and logic.

Shadow map arrays and control logic for the shadow of the GPR
mapper of 80 registers.

Figure 15

w
r_

da
ta

rd
_d

at
a

ab
it_

sh
ad

<0
:7

9>

D
ec

od
eralloc_gtag<0:4>

L1/L2
latch

ab
it_

sa
ve

<0
:7

9>

A_bit
SRAM array

20 bits � 80 rows

wr_addr

rd_addr

R_bit
SRAM array

20 bits � 80 rows

wr_addr

rd_addr

C1_clk
gct_full

L2
latch

disp_valid

w
ri

te
_e

n<
0:

19
>

abit_read_en<0:19>

flush_valid

misc_pmask<0:19>

w
r_

da
ta

rd
_d

at
a

rb
it_

sh
ad

<0
:7

9>

rb
it_

sa
ve

<0
:7

9>

L1/L2
latch

rb
it_

re
ad

_e
n<

0:
19

>

flush_valid

L1/L2
latch

w
ri

te
_e

n<
0:

19
>

flush_valid

flush_gmask<0:19>

comp_valid

misc_pmask<0:19>

comp_valid

L1/L2
latch

flush_valid

L1/L2
latch

restore_enable

release_enable
comp_valid

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

183

Dispatch

The dispatch buffer and control logic receive groups of

instructions (iops) in order from the instruction decode

unit (IDU) and dispatches them or holds them when

necessary. Instructions are grouped and aligned by the

IDU such that no additional alignment is necessary.

Before a group can be dispatched, all resources required

by the group must be allocated by the ISU. The ISU must

allocate many different resources during dispatch. The

group completion table entry, issue queue slots, rename

registers, load reorder queue entries, and store reorder

queue entries must be assigned before successful dispatch

[10]. The dispatch logic determines ahead of time whether

resources will be available and precomputes a dispatch

reject signal when necessary. The dispatch engine

performs many functions:

� Allocate group tag: Up to five instructions may be

dispatched during a cycle (the fifth one may only be a

branch). These instructions are assigned a group tag,

or gtag. This tag is used to selectively serialize or

cancel instructions as they proceed down the pipeline.

It also corresponds to one entry in the completion

table in which information about each group is

maintained. The completion logic provides the next

available gtag, and the dispatch logic indicates

allocation.
� Allocate load/store tags: Each load instruction is

assigned a load tag, or ltag. Each store instruction is

assigned a store tag, or stag. An ltag and an stag flow

down the pipeline with each load or store instruction

to indicate load/store ordering information. These

tags correspond to load and store reorder queue

entries in the LSU. The completion logic provides

Figure 16

Ready bit array and control logic (one entry of the GPR mapper of 80 registers is shown).

L1

L2

L1

L2

L1

L2

L1

L2

L1

L2

reset_breset_b

DL0_b1

DL0_b0 W DL1_b0 DL1_b1

wrt_ls0
wrt_ls1
wrt_fx0
wrt_fx1
wrt_cru
initialz

w_l2

w_l2

L1/L2

L1/L2

L1/L2

L1/L2

L1/L2

L1/L2

w
_l

2

ls0_data_valid

fx0_wr_dl0

fx0_wr_dl1

fx1_wr_dl0

fx1_wr_dl1

ls1_data_valid

ls0_not_vld

ls1_not_vld

wrt_fx0<0:79>

wrt_fx1<0:79>

ls0_not_vld
dl0_b0_l2<0:79>
dl0_b1_l2<0:79>
wrt_ls0<0:79>

ls1_not_vld
dl1_b0_l2<0:79>
dl1_b1_l2<0:79>
wrt_ls1<0:79>

alloc_any<0:79>

reset_for_fx1

reset_for_fx0

dl
1_

b1
_l

2

dl1_b0_l2

dl
0_

b1
_l

2

dl0_b0_l2

re
se

t_
b

ls0_wr_rtag<0:6>

L1/L2

L1/L2
{ls1}
{fx0}
{fx1}
{cru}

ls0_wr_gpr_v

{....}
{cru}

Decoder
80

wrt_ls0<0:79>
wrt_ls1<0:79>
wrt_fx0<0:79>
wrt_fx1<0:79>
wrt_cru<0:79>

8080

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

184

the next four available ltags and stags. The dispatch

select logic must identify load/store instructions

and select an appropriate tag for each load and

store within a dispatched group.
� Move instructions to issue queues:The dispatch dataflow

and control logic is centralized to feed each of the

four major ISU partitions, as shown in Figure 17.

This includes the setup/overflow registers to receive

transmitted instructions from the IDU, the dependency

comparison blocks, the dispatch/reject registers, and

all associated dispatch control logic. The IDU

instruction buffer and instruction bus feed the

dispatch buffer. Instruction groups are dispatched into

the appropriate issue queues one group at a single

cycle [10].
� Determine intragroup dependences: Instructions

dispatched at the same time may be interdependent.

Register dependences must be identified by examining

decoded source and target register information and

comparing the appropriate register indices. The IDU

provides some partial dependence information, and

the dispatch logic performs the final dependence

detection. Dependence information is needed to

generate register allocation and selection controls.
� Floating-point status control register (FPSCR)

handling: An entry in the FPSCR result buffer is

allocated for each group of dispatched instructions.

The gtag of the last group to do a general write to the

FPSCR must be passed along as a special rtag for

the floating-point instructions. Additionally, all

instructions in a group must be analyzed, and the last

one to write the FPSCR result flags must be identified

and marked.
� Miscellaneous decode: Some information may have to

be decoded and detected and passed along to the issue

queues and execution units. Multicycle operations,

for example, may be detected during dispatch. A

scoreboard interlock must also be managed to enforce

ordering for iops that read and write non-renamed

resources.

The dispatch setup cycle is one cycle before dispatch.

Instruction groups come from the IDU validated by a

signal group_valid. The groups are latched into a master–

slave L1/L2 stage in a dispatch setup macro. This latch

stage is one cycle before dispatch, and in this cycle we

perform functions such as current-cycle dependency

compares, previous-cycle dependency compares, and

setting up the early dispatch outputs to the mapper. These

outputs consist of the mux signals, which are L2 phase

signals representing what the lreg and valid bits will be for

dispatch_valid in the next cycle (the dispatch cycle). Also,

the early (or L1-launched) allocation and replace signals

are launched from the dispatch L1 stage. During the

setup and dispatch cycles, much computation is

performed to determine whether or not the dispatch

attempt will have to be rejected. This mechanism is in

place so that dispatch is not arbitrarily delayed until

we know for sure that it is safe. All conditions for

rejecting dispatch are ORed together to yield a possible

dispatch_reject in the cycle following dispatch_valid. At

this point, the ISQs, mappers, completion table, and so

on must all recover to their state previous to the dispatch

attempt. Conditions for rejecting a dispatch attempt

include the following:

� The GPR, FPR, XER, CR, or CTR/LR mapper

is full.
� The fixed-point, floating-point, conditional register

(CR), or branch register (BR) issue queue is full.
� The sync instruction is waiting for load.
� The scoreboard checking iop is waiting for the

scoreboard setting iop.
� The exception is processed by the completion unit.
� The load reorder queue (LRQ) or store reorder queue

(SRQ) is full.
� The branch instruction queue (BIQ) is full or btag

is not yet written.
� Dispatch throttling occurs.
� Debug workarounds occur.

The early allocation signals, such as early_disp_i0_alloc

in Figure 13, are L1-launched. They are asserted per

instruction per destination field a half-cycle before

dispatch_valid, if that instruction slot has a valid

instruction and will write a result to that destination.

Major partitions of the ISU (branch, float, fixed, and completion).

Figure 17

Instruction buffer

CR
mapper

CTR/LR
mapper

Dispatch
select

CR/BR
issue queue

G
ro

up
co

m
pl

et
io

n
ta

bl
e

Dispatch buffer

FPR
mapper

FPSCR
handler

Float
issue queue

GPR
mapper

XER
mapper

Fixed
issue queue

Instruction bus

Fixed partition

C
om

pl
et

io
n

pa
rt

iti
on

Branch partition Float partition

Dispatch
select

Dispatch
select

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

185

The early arch signals, disp_arch_i,0:3. in Figure 7,

are L1-launched. They are asserted per instruction per

destination field a half-cycle before dispatch_valid, if that

allocated destination is the youngest allocation to a given

lreg. The early repl signals, disp_repl_i,0:2. in Figure 8,

are L1-launched. They are asserted per instruction per

destination field a half-cycle before dispatch_valid, if, for

that allocated destination, there is a younger instruction

allocating the same lreg. As an example, consider the

dispatch group for some destination, say gpr d0:

i0 writes lreg 5
i1 writes lreg 3
i2 writes lreg 5
i3 not valid

For such an instruction group, one has

i0: alloc=1, arch=0, repl=1
i1: alloc=1, arch=1, repl=0
i2: alloc=1, arch=1, repl=0
i3: alloc=0, arch=0, repl=0

Here, the i0 destination is replaced and not left in the

architected state, since a younger instruction, i2, wrote to

the same lreg (lreg 5).

The dispatch select logic gathers source rtags from local

mappers and destination rtags from local and remote

mappers. It then selects appropriate rtags on the basis of

intergroup dependences and register types. It is primarily

a post-mapper rtag mux to accommodate same-cycle and

previous-cycle lreg dependences. Because of the latency

to update the mapper state upon dispatch of a newly

allocated destination, dependent sources in the same

dispatch group or next dispatch group cannot use the

physical rtag mapping presented by the mapper. So,

in the worst case, an instruction in slot i3 that has a

particular lreg as a source must choose between the

mapper source rtag output and the allocated rtags for

instructions i0, i1, or i2, or the last-cycle-allocated rtags

for i0, i1, i2, or i3. This selection is based on source-to-

destination lreg comparisons done in the cycle before

dispatch. The dispatch select logic also selects appropriate

load and store tags for each load or store instruction

dispatched. The dispatch select is distributed as shown

in Figure 17 to feed the ISU partitions.

Rename resources in the IBM POWER4 chip

The ISU contains five different mappers for managing

five separate register files. All mappers are identical in

functions, but their dimensions vary according to their

specific requirements. Table 1 lists the rename resources

implemented in the POWER4 chip.

The register mappers described in the present paper

constitute the rename resources used in the IBM

POWER4 chip that provides the processing power for the

eServer p690. The p690 is the recently introduced high-

end IBM 64-bit POWER4-architecture, 8- to 32-way

server system [10, 11]. The POWER4 chips were

fabricated in the IBM 0.180-lm CMOS 8S3/SOI (silicon-

on-insulator) technology with seven levels of copper

wiring. Features of the technology and the characteristics

of the POWER4 chip are described in [11]. The chip has

been operated at clock frequencies exceeding 1.3 GHz.

The circuit and physical methodology used in the

POWER4 chip is also described in [11].

Summary and conclusion

We applied a new nonconventional approach to the

design and organization of renaming register mappers.

An optimal CAM configuration was developed for

designing area-efficient CAM circuit topology and for

organizing the register mapper. Such a structure allows

the implementation of the register mapper as a group

of custom arrays. Each array is dedicated to execute a

specific function. The entire mapper is partitioned into

eight special custom arrays to execute the various

functions of the register mapper.

We made a novel implementation of the register

mapper to provide rename resources for the IBM

POWER4 chip. Such rename resources facilitate the

application of out-of-order and speculative executions

in the processor. That, in turn, allowed for a high level

of concurrency in the pipeline and made a substantial

contribution to superior machine performance.

Acknowledgments
The authors wish to acknowledge our many colleagues on

the POWER4 design team. We would especially like to

thank Sam Chu, Peter Klim, Joel Silberman, and Nathan

Peterson for their discussions and interests, and Ray East

for his support in program management.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. R. M. Tomasulo, ‘‘An Efficient Algorithm for Exploiting

Multiple Arithmetic Units,’’ IBM J. Res. & Dev. 11, No. 1, 25–
33 (January 1967).

2. J. E. Smith and G. S. Sohi, ‘‘The Microarchitecture of
Superscalar Processors,’’ Proc. IEEE 83, No. 12, 1609–1624
(December 1995).

3. A. Moshovos and G. S. Sohi, ‘‘Microarchitectural
Innovations: Boosting Microprocessor Performance Beyond
Semiconductor Technology Scaling,’’ Proc. IEEE 89, No. 11,
1560–1575 (November 2001).

4. R. E. Kessler, ‘‘The Alpha 21264 Microprocessor,’’ IEEE
Micro 19, No. 2, 24–36 (March/April 1999).

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

186

5. R. E. Kessler, E. J. McLellan, and D. A. Webb, ‘‘The Alpha
21264 Microprocessor Architecture,’’ Proceedings of the
International Conference on Computer Design (ICCD ’98),
October 1998, pp. 90–95.

6. J. Leenstra, J. Pille, A. Muller, W. M. Sauer, R. Sautter, and
D. F. Wendel, ‘‘A 1.8-GHz Instruction Window Buffer for an
Out-of-Order Microprocessor Core,’’ IEEE J. Solid-State
Circuits 36, No. 11, 1628–1635 (November 2001).

7. D. S. Henry, B. C. Kuszmaul, G. H. Loh, and R. Sami,
‘‘Circuits for Wide-Window Superscalar Processors,’’
Proceedings of the 27th International Symposium on Computer
Architecture, June 2000, pp. 236–247.

8. K. J. Schultz, ‘‘Content-Addressable Memory Core Cells: A
Survey,’’ Integration, the VLSI Journal 23, No. 2, 171–188
(November 1997).

9. S. Jones, ‘‘Design, Selection and Implementation of Content-
Addressable Memory for a VLSI CMOS Chip Architecture,’’
Computer and Digital Techniques, IEE Proc. 135, No. 3, 165–
172 (May 1988).

10. J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B.
Sinharoy, ‘‘POWER4 System Microarchitecture,’’ IBM J. Res.
& Dev. 46, No. 1, 5–25 (January 2002).

11. J. D. Warnock, J. M. Keaty, J. Petrovick, J. G. Clabes, C. J.
Kircher, B. L. Krauter, P. J. Restle, B. A. Zoric, and C. J.
Anderson, ‘‘The Circuit and Physical Design of the POWER4
Microprocessor,’’ IBM J. Res. & Dev. 46, No. 1, 27–51
(January 2002).

Received October 30, 2003; accepted for publication
February 9,

Taqi N. Buti IBM Systems and Technology Group, 2455 South
Road, Poughkeepsie, New York 12601 (buti@us.ibm.com). Dr. Buti
is a Senior Engineer in the POWER6 development team leading the
circuit design of instruction dispatch. He led the circuit design of
the register rename mappers for the POWER4 and POWER5
processors. He has worked on the cache, cache TAGS, TLB, BAT,
SR, and register files for the 603ev, 604, and 620 PowerPC
processors. He also designed a flash EEPROM array and
charge pump. He received a Ph.D. degree in physics from the
Massachusetts Institute of Technology. His early work was
in the field of medium- and high-energy physics, investigating
and synthesizing electro-excitation and hadronic interaction
experiments. After his postdoctoral work at MIT, Dr. Buti joined
Harris Semiconductor in 1984 to work on a variety of problems
related to semiconductor device physics and technology. He joined
IBM in 1988 at the East Fishkill Semiconductor Laboratory, where
he was engaged in CMOS, SOI, and BiCMOS device and
technology, and device and process design, simulation, and
characterization. He co-invented the halo source GOLD drain
asymmetrical FET. Dr. Buti has published more than 30 papers
and holds 14 patents.

Robert G. McDonald University of Texas at Austin,
1 University Station C0500, Austin, Texas 78712
(robertmc@cs.utexas.edu). While at IBM, Mr. McDonald
helped develop several high-performance processors, including
the POWER2 and POWER4 processors. He contributed to the
definition, modeling, and performance tuning of the overall
POWER4 core microarchitecture, and also served as the primary
architect and logic designer for the original POWER4 register
mappers. Mr. McDonald studied electrical engineering at Texas
A&M University and the Massachusetts Institute of Technology.
He has filed more than 24 patent applications.

Zakaria Khwaja IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (khwaja@us.ibm.com). Mr.
Khwaja joined IBM in 1997 in the POWER4 design team as a
circuit designer. He worked in POWER4 and POWER5 processors
in the development of the floating-point register file, instruction
sequence unit mapper, and issue queue circuits. Currently he leads
a circuit design team for POWER5 and its follow-on designs. Prior
to joining IBM, he worked at Advanced Micro Devices as a
designer in the microprocessor and the chipset groups. Mr. Khwaja
received an M.S. degree in electrical engineering from Louisiana
State University, where he did research on heterojunction
semiconductor devices. His technical interests are in the areas
of array design, low-power design, and design methodology.

Asit Ambekar IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (ambekar@us.ibm.com). Mr.
Ambekar joined IBM in 1997 in the POWER4 design team
as a circuit designer. He received an M.S. degree in electrical
engineering from Texas A&M University. He worked in POWER4
and POWER5 processors in the development of the floating-point
status control register file, instruction sequence unit mapper, and
dispatch and completion unit circuits. Mr. Ambekar has been an
integral part of the array design team for POWER processors since
joining IBM. His current responsibilities include circuit design for
the POWER5 processor and follow-on designs, and POWER6
circuit design for the instruction decode unit and register file
design.

IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005 T. N. BUTI ET AL.

187

2004; Internet publication November 24, 2004

Hung Q. Le IBM Systems and Technology Group, 11400 Burnet
Road, Austin, Texas 78758 (hung@us.ibm.com). Mr. Le is a
Distinguished Engineer in the POWER6 development team. He
joined IBM in 1979 after graduating from Clarkson University
with a B.S. degree in electrical and computer engineering. He
has worked on the development of several mainframe products.
Since 1991, he has worked on the development of the PowerPC
microprocessor, and POWER3, POWER4, and POWER5
products. His technical interests are in the field of processor design
involving superscalar, out-of-order, and multithreading design.
Mr. Le received an IBM Corporate Award and two IBM
Outstanding Technical Awards for his work on mainframe
and POWER processor development. He holds 48 patents.

William E. Burky IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (burky@us.ibm.com). Mr.
Burky is a Senior Engineer in the POWER5 development team.
He joined IBM in 1991 after receiving a B.S. degree in computer
engineering from Carnegie Mellon University. He has since earned
a M.S.E.E. degree from National Technological University. He
has worked on the development of the PowerPC system ASICs
and POWER3, POWER4, and POWER5 microprocessors. He
currently leads the POWER5 instruction sequencing unit design
team, specializing in multithreading design, instruction dispatch,
and exception handling. Mr. Burky holds four patents, with 14
patents pending; he has received a Fifth Plateau IBM Invention
Achievement Award.

Bert Williams IBM Systems and Technology Group, 11400
Burnet Road, Austin, Texas 78758 (bertw@us.ibm.com). Mr.
Williams joined IBM in 1984 after receiving a B.S. degree in
electrical engineering from the University of Texas. He has
worked on the POWER2, POWER3, POWER4, and POWER5
microprocessor designs, and is currently working on the
POWER6 data prefetch engine.

T. N. BUTI ET AL. IBM J. RES. & DEV. VOL. 49 NO. 1 JANUARY 2005

188

